1
|
Su C, Yang J, Ding J, Ding H. Differential diagnosis of ovarian endometriosis cyst versus ovarian cystadenoma based on serum lactate dehydrogenase combined with CA-125 and CA19-9: A retrospective cohort study. Medicine (Baltimore) 2024; 103:e40776. [PMID: 39612391 DOI: 10.1097/md.0000000000040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
This study aims to construct and validate a nomogram for the differential diagnosis of ovarian endometriosis cyst versus ovarian cystadenoma. We retrospectively studied the clinical characteristics of patients with ovarian endometriosis cysts and ovarian cystadenomas from January 1, 2021, to June 1, 2022. Independent risk factors for differential diagnosis were investigated using univariate and multivariate logistic regression analyses. Based on these factors, a differential diagnosis of ovarian endometriosis cyst versus ovarian cystadenoma was established. The performance of the nomogram model was assessed by internal validation using bootstrapping resampling. Decision curve analysis (DCA) was performed to evaluate the net clinical benefit of the model. Immunohistochemistry showed that lactate dehydrogenase (LDH) A was overexpressed in ectopic endometrial tissues compared to that in normal endometrial tissues. In multivariate analysis, LDH, CA-125, and CA19-9 were identified as independent risk factors for the differential diagnosis of ovarian endometriosis cyst versus ovarian cystadenoma. LDH levels >135.50 U/L combined with CA-125 levels >25.20 U/mL and CA19-9 levels >13.59 U/mL as single covariates had a high value in the differential diagnosis of ovarian endometriosis cysts versus ovarian cystadenoma. The area under the receiver operating characteristic curve (ROC) of the nomogram constructed using LDH, CA-125, and CA19-9 expression data was 0.873 (95% CI, 0.827-0.920), and the bootstrap-validated concordance index (C-index) was 0.871. Decision curve analysis confirmed that the nomogram model had excellent clinical utility. Based on serum lactate dehydrogenase combined with CA-125 and CA19-9, we constructed and validated a nomogram for the differential diagnosis of ovarian endometriosis cyst versus ovarian cystadenoma to help physicians formulate the optimal treatment strategy.
Collapse
Affiliation(s)
- Chang Su
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Anhui, Wuhu, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Anhui, Wuhu, China
| | - Jian Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Anhui, Wuhu, China
| | - Jin Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Anhui, Wuhu, China
| | - Huafeng Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical College, Anhui, Wuhu, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Anhui, Wuhu, China
| |
Collapse
|
2
|
Moon CM, Heo SH, Jeong YY, Lee YY, Kim SK, Shin SS. In vivo Hyperpolarized Metabolic Imaging to Monitor the Progression of Hepatitis B Virus (HBV)-Related Hepatitis to Liver Fibrosis. Mol Imaging Biol 2024; 26:649-657. [PMID: 38992246 DOI: 10.1007/s11307-024-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE This study aimed to assess metabolic changes to monitor the progression from normal liver to hepatitis B virus (HBV)-related hepatitis and liver fibrosis using hyperpolarized 13C magnetic resonance imaging (MRI). PROCEDURES Hepatitis was induced in mice (n = 16) via hydrodynamic injection of HBV 1.2 plasmid (25 μg). Among them, liver fibrosis was induced in the mice (n = 8) through weight-adapted administration of thioacetamide with ethanol. Normal control mice (n = 8) were injected with a phosphate buffer solution. Subsequently, a hyperpolarized 13C MRI was performed on the mouse liver in vivo. The level of hepatitis B surface antigen (HBsAg) in blood serum was measured. Statistical analysis involved comparing the differential metabolite ratios, blood biochemistry values, and body weight among the three groups using the Kruskal-Wallis one-way analysis of variance. RESULTS HBsAg was absent in the normal and fibrosis groups, while it was detected in the hepatitis group. The ratios of [1-13C] lactate/pyruvate, [1-13C] alanine/pyruvate, [1-13C] lactate/total carbon, and [1-13C] alanine/total carbon were significantly lower in the normal control group than in the hepatitis and fibrosis groups (p < 0.05). Moreover, these ratios were significantly higher in the fibrosis group than in the hepatitis group (p < 0.05). However, no significant differences were observed in either [1-13C] pyruvate-hydrate/pyruvate or [1-13C] pyruvate-hydrate/total carbon among the three groups. CONCLUSIONS The levels of [1-13C] lactate and [1-13C] alanine in vivo may serve as valuable indicators for differentiating between HBV-related hepatitis, liver fibrosis, and normal liver.
Collapse
Affiliation(s)
- Chung Man Moon
- Research Institute of Medical Sciences, Chonnam National University, 264 Seoyang‑ro, Hwasun‑eup, Hwasun‑gun, Jeollanam‑do, 58128, Republic of Korea
| | - Suk Hee Heo
- Department of Radiology, Chonnam National University Hwasun Hospital, 322 Seoyang‑ro, Hwasun‑eup, Hwasun‑gun, Jeollanam‑do, 58128, Republic of Korea
- Department of Radiology, Chonnam National University Medical School, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, 322 Seoyang‑ro, Hwasun‑eup, Hwasun‑gun, Jeollanam‑do, 58128, Republic of Korea
- Department of Radiology, Chonnam National University Medical School, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea
| | - Yun Young Lee
- Department of Radiology, Chonnam National University Medical School, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea
- Department of Radiology, Chonnam National University Hospital, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea
| | - Seul Kee Kim
- Department of Radiology, Chonnam National University Hwasun Hospital, 322 Seoyang‑ro, Hwasun‑eup, Hwasun‑gun, Jeollanam‑do, 58128, Republic of Korea.
- Department of Radiology, Chonnam National University Medical School, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.
| | - Sang Soo Shin
- Department of Radiology, Chonnam National University Medical School, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.
- Department of Radiology, Chonnam National University Hospital, 42 Jebong‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
3
|
von Morze C, Blazey T, Shaw A, Spees WM, Shoghi KI, Ohliger MA. Detection of early-stage NASH using non-invasive hyperpolarized 13C metabolic imaging. Sci Rep 2024; 14:14854. [PMID: 38937567 PMCID: PMC11211431 DOI: 10.1038/s41598-024-65951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized from its early stages by a profound remodeling of the liver microenvironment, encompassing changes in the composition and activities of multiple cell types and associated gene expression patterns. Hyperpolarized (HP) 13C MRI provides a unique view of the metabolic microenvironment, with potential relevance for early diagnosis of liver disease. Previous studies have detected changes in HP 13C pyruvate to lactate conversion, catalyzed by lactate dehydrogenase (LDH), with experimental liver injury. HP ∝ -ketobutyrate ( ∝ KB) is a close molecular analog of pyruvate with modified specificity for LDH isoforms, specifically attenuated activity with their LDHA-expressed subunits that dominate liver parenchyma. Building on recent results with pyruvate, we investigated HP ∝ KB in methionine-choline deficient (MCD) diet as a model of early-stage NASH. Similarity of results between this new agent and pyruvate (~ 50% drop in cytoplasmic reducing capacity), interpreted together with gene expression data from the model, suggests that changes are mediated through broad effects on intermediary metabolism. Plausible mechanisms are depletion of the lactate pool by upregulation of gluconeogenesis (GNG) and pentose phosphate pathway (PPP) flux, and a possible shift toward increased lactate oxidation. These changes may reflect high levels of oxidative stress and/or shifting macrophage populations in NASH.
Collapse
Affiliation(s)
- Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA.
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - Ashley Shaw
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - William M Spees
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Deh K, Zhang G, Park AH, Cunningham CH, Bragagnolo ND, Lyashchenko S, Ahmmed S, Leftin A, Coffee E, Hricak H, Miloushev V, Mayerhoefer M, Keshari KR. First in-human evaluation of [1- 13C]pyruvate in D 2O for hyperpolarized MRI of the brain: A safety and feasibility study. Magn Reson Med 2024; 91:2559-2567. [PMID: 38205934 PMCID: PMC11009889 DOI: 10.1002/mrm.30002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE To investigate the safety and value of hyperpolarized (HP) MRI of [1-13C]pyruvate in healthy volunteers using deuterium oxide (D2O) as a solvent. METHODS Healthy volunteers (n = 5), were injected with HP [1-13C]pyruvate dissolved in D2O and imaged with a metabolite-specific 3D dual-echo dynamic EPI sequence at 3T at one site (Site 1). Volunteers were monitored following the procedure to assess safety. Image characteristics, including SNR, were compared to data acquired in a separate cohort using water as a solvent (n = 5) at another site (Site 2). The apparent spin-lattice relaxation time (T1) of [1-13C]pyruvate was determined both in vitro and in vivo from a mono-exponential fit to the image intensity at each time point of our dynamic data. RESULTS All volunteers completed the study safely and reported no adverse effects. The use of D2O increased the T1 of [1-13C]pyruvate from 66.5 ± 1.6 s to 92.1 ± 5.1 s in vitro, which resulted in an increase in signal by a factor of 1.46 ± 0.03 at the time of injection (90 s after dissolution). The use of D2O also increased the apparent relaxation time of [1-13C]pyruvate by a factor of 1.4 ± 0.2 in vivo. After adjusting for inter-site SNR differences, the use of D2O was shown to increase image SNR by a factor of 2.6 ± 0.2 in humans. CONCLUSIONS HP [1-13C]pyruvate in D2O is safe for human imaging and provides an increase in T1 and SNR that may improve image quality.
Collapse
Affiliation(s)
- Kofi Deh
- Radiology, Memorial Sloan Kettering Cancer Center
| | | | - Angela Hijin Park
- Radiochemistry & Imaging Probes Core (RMIP), Memorial Sloan Kettering Cancer Center
| | - Charles H. Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario
| | | | - Serge Lyashchenko
- Radiochemistry & Imaging Probes Core (RMIP), Memorial Sloan Kettering Cancer Center
| | - Shake Ahmmed
- Radiochemistry & Imaging Probes Core (RMIP), Memorial Sloan Kettering Cancer Center
| | | | | | - Hedvig Hricak
- Radiology, Memorial Sloan Kettering Cancer Center
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center
| | | | | | - Kayvan R. Keshari
- Radiology, Memorial Sloan Kettering Cancer Center
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center
| |
Collapse
|
5
|
Tinkov AA, Korobeinikova TV, Morozova GD, Aschner M, Mak DV, Santamaria A, Rocha JBT, Sotnikova TI, Tazina SI, Skalny AV. Association between serum trace element, mineral, and amino acid levels with non-alcoholic fatty liver disease (NAFLD) in adult women. J Trace Elem Med Biol 2024; 83:127397. [PMID: 38290269 DOI: 10.1016/j.jtemb.2024.127397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024]
Abstract
The objective of the present study is assessment of serum trace element and amino acid levels in non-alcoholic fatty liver disease (NAFLD) patients with subsequent evaluation of its independent associations with markers of liver injury and metabolic risk. MATERIALS AND METHODS 140 women aged 20-90 years old with diagnosed NAFLD and 140 healthy women with a respective age range were enrolled in the current study. Analysis of serum and hair levels of trace elements and minerals was performed with inductively-coupled plasma mass-spectrometry (ICP-MS). Serum amino acid concentrations were evaluated by high-pressure liquid chromatography (HPLC) with UV-detection. In addition, routine biochemical parameters including liver damage markers, alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT), were assessed spectrophotometrically. RESULTS The findings demonstrated that patients with NAFLD were characterized by higher ALT, GGT, lactate dehydrogenase (LDH) and cholinesterase (CE) activity, as well as increased levels of total cholesterol, low-density lipoprotein cholesterol, triglycerides, and uric acid. NAFLD patients were characterized by reduced serum and hair Co, Se, and Zn levels, as well as hair Cu content and serum Mn concentrations in comparison to controls. Circulating Ala, Cit, Glu, Gly, Ile, Leu, Phe, and Tyr levels in NAFLD patients exceeded those in the control group. Multiple linear regression demonstrated that serum and hair trace element levels were significantly associated with circulating amino acid levels after adjustment for age, BMI, and metabolic parameters including liver damage markers. CONCLUSION It is proposed that altered trace element handling may contribute to NAFLD pathogenesis through modulation of amino acid metabolism.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
| | - Tatiana V Korobeinikova
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Galina D Morozova
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10461 Bronx, NY, USA
| | - Daria V Mak
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Abel Santamaria
- Faculty of Sciencies, National Autonomous University of Mexico, 04510 Mexico City, Mexico
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria 97105-900 RS, Brazil
| | - Tatiana I Sotnikova
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Serafima Ia Tazina
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, and World-Class Research Center "Digital Biodesign and Personalized Healthcare", and Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
6
|
Agudelo JP, Kim Y, Agarwal S, Sriram R, Bok R, Kurhanewicz J, Mattis AN, Maher JJ, von Morze C, Ohliger MA. Hyperpolarized [1- 13 C] pyruvate MRSI to detect metabolic changes in liver in a methionine and choline-deficient diet rat model of fatty liver disease. Magn Reson Med 2024; 91:1625-1636. [PMID: 38115605 PMCID: PMC11032123 DOI: 10.1002/mrm.29954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/21/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE Nonalcoholic fatty liver disease is an important cause of chronic liver disease. There are limited methods for monitoring metabolic changes during progression to steatohepatitis. Hyperpolarized 13 C MRSI (HP 13 C MRSI) was used to measure metabolic changes in a rodent model of fatty liver disease. METHODS Fifteen Wistar rats were placed on a methionine- and choline-deficient (MCD) diet for 1-18 weeks. HP 13 C MRSI, T2 -weighted imaging, and fat-fraction measurements were obtained at 3 T. Serum aspartate aminotransaminase, alanine aminotransaminase, and triglycerides were measured. Animals were sacrificed for histology and measurement of tissue lactate dehydrogenase (LDH) activity. RESULTS Animals lost significant weight (13.6% ± 2.34%), an expected characteristic of the MCD diet. Steatosis, inflammation, and mild fibrosis were observed. Liver fat fraction was 31.7% ± 4.5% after 4 weeks and 22.2% ± 4.3% after 9 weeks. Lactate-to-pyruvate and alanine-to-pyruvate ratios decreased significantly over the study course; were negatively correlated with aspartate aminotransaminase and alanine aminotransaminase (r = -[0.39-0.61]); and were positively correlated with triglycerides (r = 0.59-0.60). Despite observed decreases in hyperpolarized lactate signal, LDH activity increased by a factor of 3 in MCD diet-fed animals. Observed decreases in lactate and alanine hyperpolarized signals on the MCD diet stand in contrast to other studies of liver injury, where lactate and alanine increased. Observed hyperpolarized metabolite changes were not explained by alterations in LDH activity, suggesting that changes may reflect co-factor depletion known to occur as a result of oxidative stress in the MCD diet. CONCLUSION HP 13 C MRSI can noninvasively measure metabolic changes in the MCD model of chronic liver disease.
Collapse
Affiliation(s)
- Joao Piraquive Agudelo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Shubhangi Agarwal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Aras N. Mattis
- University of California, San Francisco, Liver Center, University of California, San Francisco, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Jacquelyn J. Maher
- University of California, San Francisco, Liver Center, University of California, San Francisco, San Francisco, California, USA
- Department of Medicine, Division of Gastroenterology, University of California, San Francisco, San Francisco, California, USA
| | - Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- University of California, San Francisco, Liver Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Ma YL, Ke JF, Wang JW, Wang YJ, Xu MR, Li LX. Blood lactate levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease in type 2 diabetes: a real-world study. Front Endocrinol (Lausanne) 2023; 14:1133991. [PMID: 37223022 PMCID: PMC10200915 DOI: 10.3389/fendo.2023.1133991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
AIM To investigate the association between blood lactate levels and metabolic dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetes mellitus (T2DM). METHODS 4628 Chinese T2DM patients were divided into quartiles according to blood lactate levels in this real-world study. Abdominal ultrasonography was used to diagnosis MAFLD. The associations of blood lactate levels and quartiles with MAFLD were analyzed by logistic regression. RESULTS There were a significantly increased trend in both MAFLD prevalence (28.9%, 36.5%, 43.5%, and 54.7%) and HOMA2-IR value (1.31(0.80-2.03), 1.44(0.87-2.20), 1.59(0.99-2.36), 1.82(1.15-2.59)) across the blood lactate quartiles in T2DM patients after adjustment for age, sex, diabetic duration, and metformin use (all p<0.001 for trend). After correcting for other confounding factors, not only increased blood lactate levels were obviously associated with MAFLD presence in the patients with (OR=1.378, 95%CI: 1.210-1.569, p<0.001) and without taking metformin (OR=1.181, 95%CI: 1.010-1.381, p=0.037), but also blood lactate quartiles were independently correlated to the increased risk of MAFLD in T2DM patients (p<0.001 for trend). Compared with the subjects in the lowest blood lactate quartiles, the risk of MAFLD increased to 1.436-, 1.473-, and 2.055-fold, respectively, in those from the second to the highest lactate quartiles. CONCLUSIONS The blood lactate levels in T2DM subjects were independently associated with an increased risk of MAFLD, which was not affected by metformin-taking and might closely related to insulin resistance. Blood lactate levels might be used as a practical indicator for assessing the risk of MAFLD in T2DM patients.
Collapse
Affiliation(s)
- Yi-Lin Ma
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Jiang-Feng Ke
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jun-Wei Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Yu-Jie Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Man-Rong Xu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| |
Collapse
|
8
|
Lee PM, Chen HY, Gordon JW, Wang ZJ, Bok R, Hashoian R, Kim Y, Liu X, Nickles T, Cheung K, De Las Alas F, Daniel H, Larson PEZ, von Morze C, Vigneron DB, Ohliger MA. Whole-Abdomen Metabolic Imaging of Healthy Volunteers Using Hyperpolarized [1- 13 C]pyruvate MRI. J Magn Reson Imaging 2022; 56:1792-1806. [PMID: 35420227 PMCID: PMC9562149 DOI: 10.1002/jmri.28196] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hyperpolarized 13 C MRI quantitatively measures enzyme-catalyzed metabolism in cancer and metabolic diseases. Whole-abdomen imaging will permit dynamic metabolic imaging of several abdominal organs simultaneously in healthy and diseased subjects. PURPOSE Image hyperpolarized [1-13 C]pyruvate and products in the abdomens of healthy volunteers, overcoming challenges of motion, magnetic field variations, and spatial coverage. Compare hyperpolarized [1-13 C]pyruvate metabolism across abdominal organs of healthy volunteers. STUDY TYPE Prospective technical development. SUBJECTS A total of 13 healthy volunteers (8 male), 21-64 years (median 36). FIELD STRENGTH/SEQUENCE A 3 T. Proton: T1 -weighted spoiled gradient echo, T2 -weighted single-shot fast spin echo, multiecho fat/water imaging. Carbon-13: echo-planar spectroscopic imaging, metabolite-specific echo-planar imaging. ASSESSMENT Transmit magnetic field was measured. Variations in main magnetic field (ΔB0 ) determined using multiecho proton acquisitions were compared to carbon-13 acquisitions. Changes in ΔB0 were measured after localized shimming. Improvements in metabolite signal-to-noise ratio were calculated. Whole-organ regions of interests were drawn over the liver, spleen, pancreas, and kidneys by a single investigator. Metabolite signals, time-to-peak, decay times, and mean first-order rate constants for pyruvate-to-lactate (kPL ) and alanine (kPA ) conversion were measured in each organ. STATISTICAL TESTS Linear regression, one-sample Kolmogorov-Smirnov tests, paired t-tests, one-way ANOVA, Tukey's multiple comparisons tests. P ≤ 0.05 considered statistically significant. RESULTS Proton ΔB0 maps correlated with carbon-13 ΔB0 maps (slope = 0.93, y-intercept = -2.88, R2 = 0.73). Localized shimming resulted in mean frequency offset within ±25 Hz for all organs. Metabolite SNR significantly increased after denoising. Mean kPL and kPA were highest in liver, followed by pancreas, spleen, and kidneys (all comparisons with liver were significant). DATA CONCLUSION Whole-abdomen coverage with hyperpolarized carbon-13 MRI was feasible despite technical challenges. Multiecho gradient echo 1 H acquisitions accurately predicted chemical shifts observed using carbon-13 spectroscopy. Carbon-13 acquisitions benefited from local shimming. Metabolite energetics in the abdomen compiled for healthy volunteers can be used to design larger clinical trials in patients with metabolic diseases. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Philip M Lee
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco; San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
| | | | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
| | - Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
| | - Tanner Nickles
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco; San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
| | - Kiersten Cheung
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
| | - Francesca De Las Alas
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
| | - Heather Daniel
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
| | - Peder EZ Larson
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco; San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
| | - Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University in St. Louis; St. Louis, Missouri, USA
| | - Daniel B Vigneron
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco; San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco; San Francisco, California, USA
- Department of Radiology, Zuckerberg San Francisco General Hospital and Trauma Center; San Francisco, California, USA
| |
Collapse
|
9
|
Wei Y, Yang C, Jiang H, Li Q, Che F, Wan S, Yao S, Gao F, Zhang T, Wang J, Song B. Multi-nuclear magnetic resonance spectroscopy: state of the art and future directions. Insights Imaging 2022; 13:135. [PMID: 35976510 PMCID: PMC9382599 DOI: 10.1186/s13244-022-01262-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022] Open
Abstract
With the development of heteronuclear fluorine, sodium, phosphorus, and other probes and imaging technologies as well as the optimization of magnetic resonance imaging (MRI) equipment and sequences, multi-nuclear magnetic resonance (multi-NMR) has enabled localize molecular activities in vivo that are central to a variety of diseases, including cardiovascular disease, neurodegenerative pathologies, metabolic diseases, kidney, and tumor, to shift from the traditional morphological imaging to the molecular imaging, precision diagnosis, and treatment mode. However, due to the low natural abundance and low gyromagnetic ratios, the clinical application of multi-NMR has been hampered. Several techniques have been developed to amplify the NMR sensitivity such as the dynamic nuclear polarization, spin-exchange optical pumping, and brute-force polarization. Meanwhile, a wide range of nuclei can be hyperpolarized, such as 2H, 3He, 13C, 15 N, 31P, and 129Xe. The signal can be increased and allows real-time observation of biological perfusion, metabolite transport, and metabolic reactions in vivo, overcoming the disadvantages of conventional magnetic resonance of low sensitivity. HP-NMR imaging of different nuclear substrates provides a unique opportunity and invention to map the metabolic changes in various organs without invasive procedures. This review aims to focus on the recent applications of multi-NMR technology not only in a range of preliminary animal experiments but also in various disease spectrum in human. Furthermore, we will discuss the future challenges and opportunities of this multi-NMR from a clinical perspective, in the hope of truly bridging the gap between cutting-edge molecular biology and clinical applications.
Collapse
Affiliation(s)
- Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Caiwei Yang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Qian Li
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Feng Che
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Shang Wan
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Feifei Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Tong Zhang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, Beijing, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People's Republic of China.
- Department of Radiology, Sanya People's Hospital, Sanya, China.
| |
Collapse
|
10
|
Cao YN, Yue SS, Wang AY, Xu L, Hu YT, Qiao X, Wu TY, Ye M, Wu YC, Qi R. Antrodia cinnamomea and its compound dehydroeburicoic acid attenuate nonalcoholic fatty liver disease by upregulating ALDH2 activity. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115146. [PMID: 35304272 DOI: 10.1016/j.jep.2022.115146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disease, but currently has no specific medication in clinic. Antrodia cinnamomea (AC) is a medicinal fungus and it has been shown that AC can inhibit high fat diet (HFD)-induced lipid deposition in mouse livers, but the effective monomer in AC and mechanism against NAFLD remain unclear. It has been reported that aldehyde dehydrogenase 2 (ALDH2) activation shows protective effects on NAFLD. Our previous study demonstrates that AC and its monomer dehydroeburicoic acid (DEA) can upregulate the ALDH2 activity on alcoholic fatty liver disease mouse model, but it is not clear whether the anti-NAFLD effects of AC and DEA are mediated by ALDH2. AIM TO STUDY To elucidate the active compound in AC against NAFLD, study whether ALDH2 mediates the anti-NAFLD effects of AC and its effective monomer. MATERIALS AND METHODS WT mice, ALDH2-/- mice and ALDH2-/- mice re-expressed ALDH2 by lentivirus were fed with a methionine-choline deficient (MCD) diet or high fat diet (HFD) to induce NAFLD, and AC at the different doses (200 and/or 500 mg/kg body weight per day) was administrated by gavage at the same time. Primary hepatocytes derived from WT and ALDH2-/-mice were stimulated by oleic acid (OA) to induce lipid deposition, and the cells were treated with AC or DEA in the meantime. Lentivirus-mediated ALDH2-KD or ALDH2-OE were used to knock down or overexpress ALDH2 expression in HepG2 cells, respectively. Finally, the effects of DEA against NAFLD as well as its effects on upregulating liver ALDH2 and removing the harmful aldehyde 4-hydroxynonenal (4-HNE) were studied in the MCD diet-induced NAFLD mouse model. RESULTS In WT mice fed with a MCD diet or HFD, AC administration reduced hepatic lipid accumulation, upregulated ALDH2 activity in mouse livers, decreased 4-HNE contents both in mouse livers and serum, inhibited lipogenesis, inflammation and oxidative stress and promoted fatty acid β-oxidation. These effects were abolished in ALDH2 KO mice but could be restored by re-expression of ALDH2 by lentivirus. In primary hepatocytes of WT mice, AC and DEA inhibited OA-induced lipid accumulation and triglyceride (TG) synthesis, promoting the β-oxidation of fatty acid in the meantime. However, these effects were lost in primary hepatocytes of ALDH2 KO mice. Moreover, the expression level of ALDH2 significantly affected the inhibitory effects of AC and DEA on OA-induced lipid deposition in HepG2 cells. The effects of AC and DEA on suppressing lipid deposition, inhibiting mitochondrial ROS levels, reducing TG synthesis, and promoting β-oxidation of fatty acid were all enhanced with the overexpression of ALDH2 and reduced with the knockdown of ALDH2 expression. DEA showed dose-dependent effects on inhibiting liver lipid deposition, elevating ALDH2 activity and reducing 4-HNE levels in the livers of MCD diet-induced NAFLD mice. CONCLUSION DEA is the effective compound in AC against NAFLD. The related anti-NAFLD mechanisms of AC and DEA were through upregulating ALDH2 expression and activity, thus enhancing the elimination of 4-HNE in the livers, and sequentially alleviating oxidative stress and inflammation, promoting fatty acid β-oxidation and decreasing lipogenesis.
Collapse
Affiliation(s)
- Yi-Ni Cao
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Shan-Shan Yue
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China; School of Basic Medical Science, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - An-Yi Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Lu Xu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Yi-Tong Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tung-Ying Wu
- Department of Biological Science and Technology, Meiho University, Pingtung, 91202, Taiwan
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Chinese Medicine Research and Development Center, China Medical University Hospital, The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing, 100191, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing, 100191, China; School of Basic Medical Science, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
11
|
Florian M, Li B, Patry D, Truong J, Caldwell D, Coughlan MC, Woodworth R, Yan J, Chen Q, Petrov I, Mahemuti L, Lalande M, Li N, Chan LHM, Willmore WG, Jin X. Interplay of Obesity, Ethanol, and Contaminant Mixture on Clinical Profiles of Cardiovascular and Metabolic Diseases: Evidence from an Animal Study. Cardiovasc Toxicol 2022; 22:558-578. [PMID: 35429258 PMCID: PMC9107407 DOI: 10.1007/s12012-022-09738-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/28/2022] [Indexed: 11/05/2022]
Abstract
Obesity, ethanol, and contaminants are known risk factors of cardiovascular and metabolic diseases (CMD). However, their interplay on clinical profiles of these diseases remains unclear, and thus were investigated in this study. Male lean or obese JCR rats were given water or 10% ethanol and orally treated with or without a contaminant mixture (CM) dissolved in corn oil and loaded on two cookies at 0, 1.6, or 16 mg/kg BW/day dose levels for 4 weeks. The CM consisted 22 environmental contaminants found in human blood or serum of Northern populations. Over 60 parameters related to CMD were examined. The results revealed that obesity in JCR rats resembles the clinical profiles of non-alcoholic fatty liver disease in humans. Obesity was also associated with increased serum and organ retention of mercury, one of the chemical components of CM. Exposure to ethanol lightened hyperlipidemia, increased liver retention of mercury, and increased risk for hypertension in the obese rats. CM lessened hyperlipidemia and hyperenzymemia, worsened systemic inflammation and increased the risk for hypertension in the obese rats. CM markedly increased serum ethanol levels with or without ethanol exposure. Tissue total mercury contents significantly correlated with clinical parameters with altered profiles by both ethanol and obesity. These results suggest that obese individuals may be more prone to contaminant accumulation. Ethanol and CM exposure can alter clinical profiles associated with obesity, which may lead to misdiagnosis of CMD associated with obesity. CM can alter endogenous production and/or metabolism of ethanol, further complicating disease progression, diagnosis, and treatment.
Collapse
Affiliation(s)
- Maria Florian
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, ON, Canada
- Departments of Biology and Chemistry, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Bai Li
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Dominique Patry
- Scientific Services Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, ON, Canada
| | - Jocelyn Truong
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Don Caldwell
- Scientific Services Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, ON, Canada
| | - Melanie C Coughlan
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, ON, Canada
| | - Robert Woodworth
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, ON, Canada
| | - Jin Yan
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, ON, Canada
| | - Qixuan Chen
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, ON, Canada
| | - Ivan Petrov
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, ON, Canada
| | - Laziyan Mahemuti
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, ON, Canada
- Departments of Biology and Chemistry, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Michelle Lalande
- Scientific Services Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, ON, Canada
| | - Nanqin Li
- Hazard Identification Division, Environmental Health Science and Research Bureau, HECSB, Health Canada, Ottawa, ON, Canada
| | - Laurie H M Chan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - William G Willmore
- Departments of Biology and Chemistry, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Xiaolei Jin
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
12
|
Makeeva D, Sall T, Moskvichev D, Kartsova L, Sitkin S, Vakhitov T. CE with Cu 2+ ions and 2-hydroxypropyl-β-cyclodextrin additives for the investigation of amino acids composition of the culture medium in a cellular model of non-alcoholic fatty liver disease. J Pharm Biomed Anal 2022; 213:114663. [PMID: 35217259 DOI: 10.1016/j.jpba.2022.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 11/23/2022]
Abstract
CE method with CuSO4 and 2-hydroxypropyl-β-cyclodextrin additives in sodium acetate background electrolyte pH 4.3 for the simultaneous determination of amino acids and lactic acid was adapted for the comparative study of metabolism in "healthy" and non-alcoholic fatty liver disease model cells HepG2. In vitro model of the disease was developed by exposure HepG2 cells with oleate and palmitate to simulate an excessive flow of fatty acids into hepatocytes. The model was proven to be consistent with the disease pathophysiology, since intracellular triglyceride and cytokine interleukin 8 levels were increased, while cells viability was decreased. In order to check whether the metabolism of amino acids changes in pathology, we proposed sample preparation of culture medium and characterized the CE method by evaluating linear dynamic range, repeatability and intermediate precision of peak areas and migration times, accuracy (recovery rate and trueness estimated by reference method), detection limits and quantitation limits. The method proved to be sensitive, reliable and highly accurate for the quantitation of amino acids and lactic acid. The concentrations of amino acids in the culture medium of healthy and the disease model cells were measured and altered levels of Arg, Ala, Glu, Gln and lactic acid have been found in comparison to health control.
Collapse
Affiliation(s)
- Daria Makeeva
- Saint Petersburg State University, Institute of chemistry, Petrodvorets, Universitetskii pr. 26, 198504 Saint Petersburg, Russia
| | - Tatiana Sall
- Institute of Experimental Medicine, Department of Biochemistry, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia
| | - Danil Moskvichev
- Saint Petersburg State University, Institute of chemistry, Petrodvorets, Universitetskii pr. 26, 198504 Saint Petersburg, Russia.
| | - Liudmila Kartsova
- Saint Petersburg State University, Institute of chemistry, Petrodvorets, Universitetskii pr. 26, 198504 Saint Petersburg, Russia
| | - Stanislav Sitkin
- Institute of Experimental Medicine, Non-Infectious Disease Metabolomics Group, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia; North-Western State Medical University named after I.I. Mechnikov, Department of Internal Diseases, Gastroenterology and Dietetics, Piskarevskij pr. 47, 195067 Saint Petersburg, Russia
| | - Timur Vakhitov
- Institute of Experimental Medicine, Non-Infectious Disease Metabolomics Group, Acad. Pavlov St. 12, 197376 Saint Petersburg, Russia
| |
Collapse
|
13
|
Ye Z, Song B, Lee PM, Ohliger MA, Laustsen C. Hyperpolarized carbon 13 MRI in liver diseases: Recent advances and future opportunities. Liver Int 2022; 42:973-983. [PMID: 35230742 PMCID: PMC9313895 DOI: 10.1111/liv.15222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Hyperpolarized carbon-13 magnetic resonance imaging (HP 13 C MRI) is a recently translated metabolic imaging technique. With dissolution dynamic nuclear polarization (d-DNP), more than 10 000-fold signal enhancement can be readily reached, making it possible to visualize real-time metabolism and specific substrate-to-metabolite conversions in the liver after injecting carbon-13 labelled probes. Increasing evidence suggests that HP 13 C MRI is a potential tool in detecting liver abnormalities, predicting disease progression and monitoring response treatment. In this review, we will introduce the recent progresses of HP 13 C MRI in diffuse liver diseases and liver malignancies and discuss its future opportunities from a clinical perspective, hoping to provide a comprehensive overview of this novel technique in liver diseases and highlight its scientific and clinical potential in the field of hepatology.
Collapse
Affiliation(s)
- Zheng Ye
- Department of RadiologyWest China Hospital, Sichuan UniversityChengduSichuanChina
- The MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Bin Song
- Department of RadiologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Philip M. Lee
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
14
|
Moon CM, Lee YY, Heo SH, Shin SS, Jeong YY. Identification of potential metabolic biomarkers in predicting esophageal varices needing treatment in patients with liver cirrhosis. Sci Rep 2021; 11:19684. [PMID: 34608234 PMCID: PMC8490398 DOI: 10.1038/s41598-021-99198-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
The goal of this study was to determine the diagnostic performance of in vivo quantitative proton magnetic resonance spectroscopy (1H-MRS) to identify the presence of esophageal varices needing treatment (VNT), as well as investigate its correlation with clinical characteristics in patients with liver cirrhosis. Forty cirrhotic patients without VNT showing the negative red color sign, and 40 cirrhotic patients with VNT showing positive red color sign underwent laboratory tests, esophago-gastro-duodenoscopy, and 1H-MRS with single-voxel localization in the cirrhotic liver parenchyma. The levels of lactate + triglyceride (TG) and choline in cirrhotic patients with VNT were significantly higher than those in cirrhotic patients without VNT. In multivariate analysis, spleen diameter, platelet count, and platelet count/spleen diameter ratio, as well as lactate + TG, and choline were associated with the presence of VNT. Moreover, lactate + TG and choline levels were positively correlated with spleen diameter and negatively correlated with platelet count in the combined group of cirrhotic patients with and without VNT. Our study demonstrated that higher hepatic lactate + TG and choline levels in cirrhotic patients in conjunction with longer spleen diameter, lower platelet counts, and lower ratios of platelet count to spleen diameter were associated with the presence of esophageal VNT and the risk of developing variceal bleeding. Therefore, in vivo 1H-MRS might be an effective tool for diagnosing and predicting esophageal VNT in patients with liver cirrhosis.
Collapse
Affiliation(s)
- Chung-Man Moon
- Research Institute of Medical Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Young Lee
- Department of Radiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Suk-Hee Heo
- Department of Radiology, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwang-ju, 61469, Republic of Korea. .,Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea.
| | - Sang-Soo Shin
- Department of Radiology, Chonnam National University Hospital, Gwangju, Republic of Korea. .,Department of Radiology, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwang-ju, 61469, Republic of Korea.
| | - Yong-Yeon Jeong
- Department of Radiology, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwang-ju, 61469, Republic of Korea.,Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| |
Collapse
|
15
|
Tuthill TA, Ross TT. Editorial for "In Vivo Magnetic Resonance Spectroscopy of Hyperpolarized [1- 13 C]Pyruvate in a Guinea Pig Model of Life-Long Western Diet Consumption and Non-Alcoholic Fatty Liver Disease Development". J Magn Reson Imaging 2021; 54:1415-1416. [PMID: 34075641 DOI: 10.1002/jmri.27757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Theresa A Tuthill
- Translational Imaging, Early Clinical Development, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | - Trent T Ross
- Internal Medicine Research Unit, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Smith LM, Pitts CB, Friesen-Waldner LJ, Prabhu NH, Mathers KE, Sinclair KJ, Wade TP, Regnault TRH, McKenzie CA. In Vivo Magnetic Resonance Spectroscopy of Hyperpolarized [1- 13 C]Pyruvate and Proton Density Fat Fraction in a Guinea Pig Model of Non-Alcoholic Fatty Liver Disease Development After Life-Long Western Diet Consumption. J Magn Reson Imaging 2021; 54:1404-1414. [PMID: 33970520 DOI: 10.1002/jmri.27677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Alterations in glycolysis are central to the increasing incidence of non-alcoholic fatty liver disease (NAFLD), highlighting a need for in vivo, non-invasive technologies to understand the development of hepatic metabolic aberrations. PURPOSE To use hyperpolarized magnetic resonance spectroscopy (MRS) and proton density fat fraction (PDFF) magnetic resonance imaging (MRI) techniques to investigate the effects of a chronic, life-long exposure to the Western diet (WD) in an animal model resulting in NAFLD; to investigate the hypothesis that exposure to the WD will result in NAFLD in association with altered pyruvate metabolism. STUDY TYPE Prospective. ANIMAL MODEL Twenty-eight male guinea pigs weaned onto a control diet (N = 14) or WD (N = 14). FIELD STRENGTH/SEQUENCE 3 T; T1-weighted gradient echo, T2-weighted spin-echo, three-dimensional gradient multi-echo fat-water separation (IDEAL-IQ), and broadband point-resolved spectroscopy (PRESS) chemical-shift sequences. ASSESSMENT Median PDFF was calculated in the liver and hind limbs. [1-13 C]pyruvate dynamic MRS in the liver was quantified by the time-to-peak (TTP) for each metabolite. Animals were euthanized and tissue was analyzed for lipid and cholesterol concentration and enzyme level and activity. STATISTICAL TESTS Unpaired Student's t-tests were used to determine differences in measurements between the two diet groups. The Pearson correlation coefficient was calculated to determine correlations between measurements. RESULTS Life-long WD consumption resulted in significantly higher liver PDFF and elevated triglyceride content in the liver. The WD group exhibited a decreased TTP for lactate production, and ex vivo analysis highlighted increased liver lactate dehydrogenase (LDH) activity. DATA CONCLUSION PDFF MRI results suggest differential fat deposition patterns occurring in animals fed a life-long WD characteristic of lean, or lacking excessive subcutaneous fat, NAFLD. The decreased liver lactate TTP and increased ex vivo LDH activity suggest lipid accumulation occurs in association with a shift from oxidative metabolism to anaerobic glycolytic metabolism in WD-exposed livers. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Lauren M Smith
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Conrad B Pitts
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | | | - Neetin H Prabhu
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Katherine E Mathers
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Kevin J Sinclair
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Trevor P Wade
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Department of Obstetrics and Gynaecology, Western University, London, Ontario, Canada.,Division of Maternal, Fetal & Newborn Health, Children's Health Research Institute, Lawson Research Institution, London, Ontario, Canada
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Division of Maternal, Fetal & Newborn Health, Children's Health Research Institute, Lawson Research Institution, London, Ontario, Canada
| |
Collapse
|
17
|
Vaeggemose M, F. Schulte R, Laustsen C. Comprehensive Literature Review of Hyperpolarized Carbon-13 MRI: The Road to Clinical Application. Metabolites 2021; 11:metabo11040219. [PMID: 33916803 PMCID: PMC8067176 DOI: 10.3390/metabo11040219] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023] Open
Abstract
This review provides a comprehensive assessment of the development of hyperpolarized (HP) carbon-13 metabolic MRI from the early days to the present with a focus on clinical applications. The status and upcoming challenges of translating HP carbon-13 into clinical application are reviewed, along with the complexity, technical advancements, and future directions. The road to clinical application is discussed regarding clinical needs and technological advancements, highlighting the most recent successes of metabolic imaging with hyperpolarized carbon-13 MRI. Given the current state of hyperpolarized carbon-13 MRI, the conclusion of this review is that the workflow for hyperpolarized carbon-13 MRI is the limiting factor.
Collapse
Affiliation(s)
- Michael Vaeggemose
- GE Healthcare, 2605 Brondby, Denmark;
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|
18
|
Moon CM, Shin SS, Heo SH, Lim HS, Moon MJ, Surendran SP, Kim GE, Park IW, Jeong YY. Metabolic Changes in Different Stages of Liver Fibrosis: In vivo Hyperpolarized 13C MR Spectroscopy and Metabolic Imaging. Mol Imaging Biol 2020; 21:842-851. [PMID: 30693432 DOI: 10.1007/s11307-019-01322-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The objective was to assess metabolic changes in different stages of liver fibrosis using hyperpolarized C-13 magnetic resonance spectroscopy (MRS) and metabolic imaging. PROCEDURES Mild and severe liver fibrosis were induced in C3H/HeN mice (n = 14) by injecting thioacetamide (TAA). Other C3H/HeN mice (n = 7) were injected with phosphate buffer saline (PBS) (7.4 pH) as normal controls. Hyperpolarized C-13 MRS was performed on the livers of the mice, which was accompanied by intravoxel incoherent motion (IVIM) diffusion-weighted imaging with 12 b values. The differential metabolite ratios, apparent diffusion coefficient values, and IVIM parameters among the three groups were analyzed by a one-way analysis of variance test. RESULTS The ratios of [1-13C]lactate/pyruvate, [1-13C]lactate/total carbon (tC), [1-13C]alanine/pyruvate, and [1-13C] alanine/tC were significantly higher in both the mild and severe fibrosis groups than in the normal control group (p < 0.05). While the [1-13C]lactate/pyruvate and [1-13C]lactate/tC ratios were not significantly different between mild and severe fibrosis groups, the ratios of [1-13C]alanine/pyruvate and [1-13C]alanine/tC were significantly higher in the severe fibrosis group than in the mild fibrosis group (p < 0.05). In addition, D* showed a significantly lower value in the severe fibrosis group than in the normal or mild fibrosis groups and negatively correlated with the levels of [1-13C] lactate and [1-13C]alanine. CONCLUSIONS Our findings suggest that it might be possible to differentiate mild from severe liver fibrosis using the cellular metabolic changes with hyperpolarized C-13 MRS and metabolic imaging.
Collapse
Affiliation(s)
- Chung-Man Moon
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.,Department of Radiology, Chonnam National University Hospital, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju, 61469, South Korea
| | - Sang-Soo Shin
- Department of Radiology, Chonnam National University Hospital, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju, 61469, South Korea.
| | - Suk-Hee Heo
- Department of Radiology, Chonnam National University Hospital, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju, 61469, South Korea
| | - Hyo-Soon Lim
- Department of Radiology, Chonnam National University Hospital, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju, 61469, South Korea
| | - Myeong-Ju Moon
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | | | - Ga-Eon Kim
- Department of Pathology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Il-Woo Park
- Department of Radiology, Chonnam National University Hospital, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju, 61469, South Korea
| | - Yong-Yeon Jeong
- Department of Radiology, Chonnam National University Hospital, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju, 61469, South Korea
| |
Collapse
|
19
|
Moon CM, Shin SS, Heo SH, Jeong YY. Metabolic Alterations Associated with Early-Stage Hepatocellular Carcinoma and Their Correlation with Aging and Enzymatic Activity in Patients with Viral Hepatitis-Induced Liver Cirrhosis: A Preliminary Study. J Clin Med 2020; 9:jcm9030765. [PMID: 32178316 PMCID: PMC7141398 DOI: 10.3390/jcm9030765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis (LC) can develop hepatocellular carcinoma (HCC). However, noninvasive early diagnosis of HCCs in the cirrhotic liver is still challenging. We aimed to quantify the hepatic metabolites in normal control (NC), cirrhotic liver without HCC, cirrhotic liver with HCC (CLH), and early-stage HCC groups using proton magnetic resonance spectroscopy (1H-MRS) with a long echo-time (TE) and to assess the potential association between the levels of hepatic metabolites in these four groups and aging and enzymatic activity. Thirty NCs, 30 viral hepatitis-induced LC patients without HCC, and 30 viral hepatitis-induced LC patients with HCC were included in this study. 1H-MRS measurements were performed on a localized voxel of the normal liver parenchyma (n = 30) from NCs, cirrhotic liver parenchyma (n = 30) from LC patients without HCC, and each of the cirrhotic liver parenchyma (n = 30) and HCC (n = 30) from the same patients in the CLH group. Generalized estimating equations were used to evaluate potential risk factors for changes in metabolite levels. Potential associations between metabolite levels and age and serum enzymatic activities were assessed by correlation analysis. The levels of lactate+triglyceride (Lac+TG) and choline (Cho) in HCC were significantly higher compared to those in LC and CLH. A potential risk factor for changes in the Lac+TG and Cho levels was age, specifically 60–80 years of age. In particular, the Lac+TG level was associated with a high odds ratio of HCC in males aged 60–80 years. The Lac+TG and Cho concentrations were positively correlated with lactate dehydrogenase and alkaline phosphatase activities, respectively. Our findings suggested that 1H-MRS measurement with a long TE was useful in quantifying hepatic Lac+TG and Cho levels, where higher Lac+TG and Cho levels were most likely associated with HCC-related metabolism in the viral hepatitis-induced cirrhotic liver. Further, the level of Lac+TG in HCC was highly correlated with older age and lactate dehydrogenase activity.
Collapse
Affiliation(s)
- Chung-Man Moon
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
- Research Institute of Medical Sciences, Chonnam National University, Gwangju 61469, Korea
| | - Sang Soo Shin
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Korea; (S.H.H.); (Y.Y.J.)
- Department of Radiology, Chonnam National University Hospital, Gwangju 61469, Korea
- Correspondence: ; Tel.: +82-62-220-5882; Fax: +82-62-226-4380
| | - Suk Hee Heo
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Korea; (S.H.H.); (Y.Y.J.)
- Department of Radiology, Chonnam National University, Hwasun Hospital, Hwasun 58128, Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Korea; (S.H.H.); (Y.Y.J.)
- Department of Radiology, Chonnam National University, Hwasun Hospital, Hwasun 58128, Korea
| |
Collapse
|
20
|
Metabolic alterations in acute myocardial ischemia-reperfusion injury and necrosis using in vivo hyperpolarized [1- 13C] pyruvate MR spectroscopy. Sci Rep 2019; 9:18427. [PMID: 31804591 PMCID: PMC6895171 DOI: 10.1038/s41598-019-54965-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate real-time early detection of metabolic alteration in a rat model with acute myocardial ischemia-reperfusion (AMI/R) injury and myocardial necrosis, as well as its correlation with intracellular pH level using in vivo hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy (MRS). Hyperpolarized 13C MRS was performed on the myocardium of 8 sham-operated control rats and 8 rats with AMI/R injury, and 8 sham-operated control rats and 8 rats with AMI-induced necrosis. Also, the correlations of levels of [1-13C] metabolites with pH were analyzed by Spearman’s correlation test. The AMI/R and necrosis groups showed significantly higher ratios of [1-13C] lactate (Lac)/bicarbonate (Bicar) and [1-13C] Lac/total carbon (tC), and lower ratios of 13C Bicar/Lac + alanine (Ala), and 13C Bicar/tC than those of the sham-operated control group. Moreover, the necrosis group showed significantly higher ratios of [1-13C] Lac/Bicar and [1-13C] Lac/tC, and lower ratios of 13C Bicar/Lac + Ala and 13C Bicar/tC than those of the AMI/R group. These results were consistent with the pattern for in vivo the area under the curve (AUC) ratios. In addition, levels of [1-13C] Lac/Bicar and [1-13C] Lac/tC were negatively correlated with pH levels, whereas 13C Bicar/Lac + Ala and 13C Bicar/tC levels were positively correlated with pH levels. The levels of [1-13C] Lac and 13C Bicar will be helpful for non-invasively evaluating the early stage of AMI/R and necrosis in conjunction with reperfusion injury of the heart. These findings have potential application to real-time evaluation of cardiac malfunction accompanied by changes in intracellular pH level and enzymatic activity.
Collapse
|
21
|
Nogueira-Lima E, Lamas CDA, Baseggio AM, do Vale JSF, Maróstica Junior MR, Cagnon VHA. High-fat diet effects on the prostatic adenocarcinoma model and jaboticaba peel extract intake: protective response in metabolic disorders and liver histopathology. Nutr Cancer 2019; 72:1366-1377. [DOI: 10.1080/01635581.2019.1684526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ellen Nogueira-Lima
- Department of Structural and Functional Biology, University of Campinas, São Paulo, Brazil
| | | | - Andressa Mara Baseggio
- Department of Structural and Functional Biology, University of Campinas, São Paulo, Brazil
- Department of Food and Nutrition, University of Campinas, São Paulo, Brazil
| | | | | | | |
Collapse
|
22
|
Wang ZJ, Ohliger MA, Larson PEZ, Gordon JW, Bok RA, Slater J, Villanueva-Meyer JE, Hess CP, Kurhanewicz J, Vigneron DB. Hyperpolarized 13C MRI: State of the Art and Future Directions. Radiology 2019; 291:273-284. [PMID: 30835184 DOI: 10.1148/radiol.2019182391] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hyperpolarized (HP) carbon 13 (13C) MRI is an emerging molecular imaging method that allows rapid, noninvasive, and pathway-specific investigation of dynamic metabolic and physiologic processes that were previously inaccessible to imaging. This technique has enabled real-time in vivo investigations of metabolism that are central to a variety of diseases, including cancer, cardiovascular disease, and metabolic diseases of the liver and kidney. This review provides an overview of the methods of hyperpolarization and 13C probes investigated to date in preclinical models of disease. The article then discusses the progress that has been made in translating this technology for clinical investigation. In particular, the potential roles and emerging clinical applications of HP [1-13C]pyruvate MRI will be highlighted. The future directions to enable the adoption of this technology to advance the basic understanding of metabolism, to improve disease diagnosis, and to accelerate treatment assessment are also detailed.
Collapse
Affiliation(s)
- Zhen J Wang
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Michael A Ohliger
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Peder E Z Larson
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Jeremy W Gordon
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Robert A Bok
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - James Slater
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Javier E Villanueva-Meyer
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Christopher P Hess
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - John Kurhanewicz
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| | - Daniel B Vigneron
- From the Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
23
|
Ishitobi M, Hosaka T, Morita N, Kondo K, Murashima T, Kitahara A, Takahashi K, Sumitani Y, Tanaka T, Yokoyama T, Kondo T, Ishida H. Serum lactate levels are associated with serum alanine aminotransferase and total bilirubin levels in patients with type 2 diabetes mellitus: A cross-sectional study. Diabetes Res Clin Pract 2019; 149:1-8. [PMID: 30711436 DOI: 10.1016/j.diabres.2019.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/28/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
Abstract
AIMS It was recently reported that lactate acts as a metabolic mediator and rises in the diabetic state, but the physiological effects are as yet poorly understood. The objective of the current study was to evaluate the significance of serum lactate elevation in type 2 diabetes mellitus (T2DM) patients. METHODS Fasting serum lactate levels, hematological and inflammatory serum markers and anthropometric parameters, obtained employing bioelectric impedance analysis, were measured in 103 patients with T2DM. RESULTS Statistically significant correlations of serum lactate levels with C-reactive peptide, insulin, aspartate aminotransferase, alanine aminotransferase (ALT), serum lipids, total bilirubin, adiponectin, homeostasis model assessment-insulin resistance, body weight, body mass index and body fat (weight or percentage of subcutaneous fat, visceral fat or total body fat), but neither fasting plasma glucose nor HbA1c, were detected. Stepwise regression analysis showed ALT to be independently positively associated with total bilirubin, while being negatively associated with serum lactate levels. Furthermore, serum lactate levels were significantly higher in patients with ALT-predominant liver dysfunction. CONCLUSION We found fasting serum lactate elevation in T2DM patients to be associated with the serum levels of ALT and total bilirubin independently of blood glucose control. TRIAL REGISTRATION UMIN clinical trials registry (UMIN000029178).
Collapse
Affiliation(s)
- Minori Ishitobi
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Toshio Hosaka
- Graduate Program in Food and Nutritional Science, Graduate School of Integrated Pharmaceutical and Nutritional Science, The University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Naru Morita
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Ken Kondo
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Toshitaka Murashima
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Atsuko Kitahara
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Kazuto Takahashi
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Yoshikazu Sumitani
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Toshiaki Tanaka
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | | | - Takuma Kondo
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| | - Hitoshi Ishida
- Third Department of Internal Medicine, Division of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo 181-8611, Japan
| |
Collapse
|
24
|
Kjærgaard U, Laustsen C, Nørlinger T, Tougaard RS, Mikkelsen E, Qi H, Bertelsen LB, Jessen N, Stødkilde‐Jørgensen H. Hyperpolarized [1- 13 C] pyruvate as a possible diagnostic tool in liver disease. Physiol Rep 2018; 6:e13943. [PMID: 30548433 PMCID: PMC6289910 DOI: 10.14814/phy2.13943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/24/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction of hyperpolarized magnetic resonance in preclinical studies and lately translation to patients provides new detailed in vivo information of metabolic flux in organs. Hyperpolarized magnetic resonance based on 13 C enriched pyruvate is performed without ionizing radiation and allows quantification of the pyruvate conversion products: alanine, lactate and bicarbonate in real time. Thus, this methodology has a promising potential for in vivo monitoring of energetic alterations in hepatic diseases. Using 13 C pyruvate, we investigated the metabolism in the porcine liver before and after intravenous injection of glucose. The overall mean lactate to pyruvate ratio increased significantly after the injection of glucose whereas the bicarbonate to pyruvate ratio was unaffected, representative of the levels of pyruvate entering the tricarboxylic acid cycle. Similarly, alanine to pyruvate ratio did not change. The increased lactate to pyruvate ratio over time showed an exponential correlation with insulin, glucagon and free fatty acids. Together, these data, obtained by hyperpolarized 13 C magnetic resonance spectroscopy and by blood sampling, indicate a hepatic metabolic shift in glucose utilization following a glucose challenge. Our findings demonstrate the capacity of hyperpolarized 13 C magnetic resonance spectroscopy for quantifying hepatic substrate metabolism in accordance with well-known physiological processes. When combined with concentration of blood insulin, glucagon and free fatty acids in the blood, the results indicate the potential of hyperpolarized magnetic resonance spectroscopy as a future clinical method for quantification of hepatic substrate metabolism.
Collapse
Affiliation(s)
- Uffe Kjærgaard
- MR Research CentreAarhus University HospitalAarhusDenmark
| | | | | | - Rasmus S. Tougaard
- MR Research CentreAarhus University HospitalAarhusDenmark
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | | | - Haiyun Qi
- MR Research CentreAarhus University HospitalAarhusDenmark
| | | | - Niels Jessen
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Clinical PharmacologyAarhus University HospitalAarhusDenmark
| | | |
Collapse
|
25
|
Effects of Unfiltered Coffee and Bioactive Coffee Compounds on the Development of Metabolic Syndrome Components in a High-Fat-/High-Fructose-Fed Rat Model. Nutrients 2018; 10:nu10101547. [PMID: 30347674 PMCID: PMC6213813 DOI: 10.3390/nu10101547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
The literature is inconsistent as to how coffee affects metabolic syndrome (MetS), and which bioactive compounds are responsible for its metabolic effects. This study aimed to evaluate the effects of unfiltered coffee on diet-induced MetS and investigate whether or not phenolic acids and trigonelline are the main bioactive compounds in coffee. Twenty-four male Sprague‒Dawley rats were fed a high-fat (35% W/W) diet plus 20% W/W fructose in drinking water for 14 weeks, and were randomized into three groups: control, coffee, or nutraceuticals (5-O-caffeoylquinic acid, caffeic acid, and trigonelline). Coffee or nutraceuticals were provided in drinking water at a dosage equal to 4 cups/day in a human. Compared to the controls, total food intake (p = 0.023) and mean body weight at endpoint (p = 0.016) and estimated average plasma glucose (p = 0.041) were lower only in the coffee group. Surrogate measures of insulin resistance including the overall fasting insulin (p = 0.010), endpoint HOMA-IR (p = 0.022), and oral glucose tolerance (p = 0.029) were improved in the coffee group. Circulating triglyceride levels were lower (p = 0.010), and histopathological and quantitative (p = 0.010) measurements indicated lower grades of liver steatosis compared to controls after long-term coffee consumption. In conclusion, a combination of phenolic acids and trigonelline was not as effective as coffee per se in improving the components of the MetS. This points to the role of other coffee chemicals and a potential synergism between compounds.
Collapse
|
26
|
Moon CM, Shin SS, Lim NY, Kim SK, Kang YJ, Kim HO, Lee SJ, Beak BH, Kim YH, Jeong GW. Metabolic alterations in a rat model of hepatic ischaemia reperfusion injury: In vivo hyperpolarized 13 C MRS and metabolic imaging. Liver Int 2018; 38:1117-1127. [PMID: 29345050 DOI: 10.1111/liv.13695] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/06/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Despite a number of studies addressing the pathophysiology of hepatic IRI, a gold standard test for early diagnosis and evaluation of IRI remains elusive. This study investigated the metabolic alterations in a rat model of hepatic IRI using the in vivo hyperpolarized ¹³C MRS and metabolic imaging. METHODS Hyperpolarized 13 C MRS with IVIM-DWI was performed on the liver of 7 sham-operated control rats and 7 rats before and after hepatic IRI. RESULTS The hepatic IRI-induced rats showed significantly higher ratios of [1-13 C] alanine/pyruvate, [1-13 C] alanine/tC, [1-13 C] lactate/pyruvate and [1-13 C] lactate/tC compared with both sham-operated controls and rats before IRI, whereas [1-13 C] pyruvate/tC ratio was decreased in IRI-induced rats. In IVIM-DWI study, apparent diffusion coefficient (ADC), f and D values in rats after hepatic IRI were significantly lower than those of rats before IRI and sham-operated controls. The levels of [1-13 C] alanine and [1-13 C] lactate were negatively correlated with ADC, f and D values, whereas the level of [1-13 C] pyruvate was positively correlated with these values. CONCLUSIONS The levels of [1-13 C] alanine, [1-13 C] lactate and [1-13 C] pyruvate in conjunction with IVIM-DWI will be helpful to evaluate the hepatic IRI as well as these findings can be useful in understanding the biochemical mechanism associated with hepatic damage.
Collapse
Affiliation(s)
- Chung-Man Moon
- Advanced Institute of Aging Science, Chonnam National University, Gwangju, Korea
| | - Sang-Soo Shin
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| | - Nam-Yeol Lim
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| | - Seul-Kee Kim
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| | - Yang-Joon Kang
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| | - Hyoung-Ook Kim
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| | - Seung-Jin Lee
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| | - Byung-Hyun Beak
- Department of Radiology, Chonnam National University Hospital, Gwangju, Korea
| | - Yun-Heon Kim
- Department of Radiology, Chonnam National University Medical School, Gwangju, Korea
| | - Gwang-Woo Jeong
- Department of Radiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
27
|
Abstract
In the past, different types of diet with a generally low-carbohydrate content (< 50–< 20 g/day) have been promoted, for weight loss and diabetes, and the effectiveness of a very low dietary carbohydrate content has always been a matter of debate. A significant reduction in the amount of carbohydrates in the diet is usually accompanied by an increase in the amount of fat and to a lesser extent, also protein. Accordingly, using the term “low carb–high fat” (LCHF) diet is most appropriate. Low/very low intakes of carbohydrate food sources may impact on overall diet quality and long-term effects of such drastic diet changes remain at present unknown. This narrative review highlights recent metabolic and clinical outcomes of studies as well as practical feasibility of low LCHF diets. A few relevant observations are as follows: (1) any diet type resulting in reduced energy intake will result in weight loss and related favorable metabolic and functional changes; (2) short-term LCHF studies show both favorable and less desirable effects; (3) sustained adherence to a ketogenic LCHF diet appears to be difficult. A non-ketogenic diet supplying 100–150 g carbohydrate/day, under good control, may be more practical. (4) There is lack of data supporting long-term efficacy, safety and health benefits of LCHF diets. Any recommendation should be judged in this light. (5) Lifestyle intervention in people at high risk of developing type 2 diabetes, while maintaining a relative carbohydrate-rich diet, results in long-term prevention of progression to type 2 diabetes and is generally seen as safe.
Collapse
|
28
|
A Combination of Coffee Compounds Shows Insulin-Sensitizing and Hepatoprotective Effects in a Rat Model of Diet-Induced Metabolic Syndrome. Nutrients 2017; 10:nu10010006. [PMID: 29271886 PMCID: PMC5793234 DOI: 10.3390/nu10010006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022] Open
Abstract
Since coffee may help to prevent the development of metabolic syndrome (MetS), we aimed to evaluate the short- and long-term effects of a coffee-based supplement on different features of diet-induced MetS. In this study, 24 Sprague Dawley rats were divided into control or nutraceuticals groups to receive a high-fat/high-fructose diet with or without a mixture of caffeic acid (30 mg/day), trigonelline (20 mg/day), and cafestol (1 mg/day) for 12 weeks. An additional 11 rats were assigned to an acute crossover study. In the chronic experiment, nutraceuticals did not alter body weight or glycemic control, but improved fed hyperinsulinemia (mean difference = 30.80 mU/L, p = 0.044) and homeostatic model assessment-insulin resistance (HOMA-IR) (mean difference = 15.29, p = 0.033), and plasma adiponectin levels (mean difference = −0.99 µg/mL, p = 0.048). The impact of nutraceuticals on post-prandial glycemia tended to be more pronounced after acute administration than at the end of the chronic study. Circulating (mean difference = 4.75 U/L, p = 0.014) and intrahepatocellular alanine transaminase activity was assessed by hyperpolarized-13C nuclear magnetic resonance NMR spectroscopy and found to be reduced by coffee nutraceuticals at endpoint. There was also a tendency towards lower liver triglyceride content and histological steatosis score in the intervention group. In conclusion, a mixture of coffee nutraceuticals improved insulin sensitivity and exhibited hepatoprotective effects in a rat model of MetS. Higher dosages with or without caffeine deserve to be studied in the future.
Collapse
|