1
|
Song S, Li C, Xiao Y, Ye Z, Rong M, Zeng J. Beyond conventional therapies: MSCs in the battle against nerve injury. Regen Ther 2025; 28:280-291. [PMID: 39896446 PMCID: PMC11782851 DOI: 10.1016/j.reth.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Nerve damage can cause abnormal motor and sensory consequences, including lifelong paralysis if not surgically restored. The yearly cost of healthcare in the United States is projected to be $150 billion, and millions of Americans suffer from peripheral nerve injuries as a result of severe traumas and disorders. For nerve injuries, the outcome of conventional therapies is suboptimal and may have unfavorable side effects. However, mesenchymal stem cells (MSCs) have been proven to be a viable option for the reconstruction of injured nerve tissue and bring a ray of hope. These stem cells are derived from bone marrow, adipose tissue, and human umbilical cord blood and have the ability to secrete trophic factors, contribute to the immune system, and stimulate axonal regeneration. The purpose of this review is to examine the potential benefits of MSCs for enhancing functional recovery and patient prognosis by highlighting their characteristics and elucidating their mechanism of action in nerve injury healing.
Collapse
Affiliation(s)
- Shuo Song
- Central Laboratory, The Fourth People's Hospital of Shenzhen, Shenzhen 518118, China
| | - Cong Li
- Department of Stomatology, Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
| | - Ya Xiao
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| | - Mingdeng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jincheng Zeng
- Department of Stomatology, Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan 523000, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| |
Collapse
|
2
|
Cai X, Yu M, Li B, Zhang Y, Han Y. Cobalt ions-derived nanoenzyme array for endosseous neural network reconstruction and osseointegration. Bioact Mater 2024; 42:1-17. [PMID: 39246698 PMCID: PMC11378756 DOI: 10.1016/j.bioactmat.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Interactions between bone cells and neurocytes are crucial for endosseous nerve and ensuing bone regeneration. However, absence of neural stem cells in bone makes the innervation of implant osseointegration a major challenge. Herein, a nanorod-like array of sodium hydrogen titanate (ST) co-doped with Co2+ and Co3+, namely STCh that behaves as a reactive oxygen species (ROS)-scavenging enzyme, was hydrothermally formed on Ti substrate. We show that the doped Co2+ and Co3+ locate at TiO6 octahedral interlayers and within octahedra of STCh lattice, appearing releasable and un-releasable, respectively, leading to an increase in Co3+/Co2+ ratio and enzyme activity of the array with immersion. The nanoenzyme-released Co2+ triggers macrophages (MΦs) towards M1 phenotype, then the nanoenzyme scavenges extracellular ROS inducing M1-to-M2 transition. The neurogenic factors secreted by STCh-regulated MΦs, in combination with the released Co2+, promote mesenchymal stem cells to differentiate into neurons and Schwann cells compared to sole Co2+and ST. STCh array greatly enhances nerve reconstruction, type-H capillary formation and ensuing osseointegration in normal rat bone, and antibacteria via engulfing S. aureus by MΦs and osteogenesis in infective case. This nanoenzyme provides an alternative strategy to orchestrate endosseous nerve regeneration for osseointegration without loading exogenous neurotrophins in implants.
Collapse
Affiliation(s)
- Xinmei Cai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yingang Zhang
- Department of Orthopaedics, The First Affiliated Hospital College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Orthopaedics, The First Affiliated Hospital College of Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
3
|
Hilal-Alnaqbi A, Dagher S, Alkhatib R, Karam S. Effect of Gold Nanoparticles on Growth Characteristics of Mouse Gastric Stem Cells in Vitro. MEASUREMENT: INTERDISCIPLINARY RESEARCH AND PERSPECTIVES 2024:1-10. [DOI: 10.1080/15366367.2024.2386629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Affiliation(s)
| | - Sawsan Dagher
- Electromechanical Engineering, Abu Dhabi Polytechnic
| | | | - Sherif Karam
- Anatomy, College of Medicine and Health Sciences, United Arab Emirates University
| |
Collapse
|
4
|
Chen B, Wang L, Pan X, Jiang S, Hu Y. Adipose-derived stem cells modified by TWIST1 silencing accelerates rat sciatic nerve repair and functional recovery. Hum Cell 2024; 37:1394-1404. [PMID: 38907140 PMCID: PMC11341607 DOI: 10.1007/s13577-024-01087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/11/2024] [Indexed: 06/23/2024]
Abstract
The regeneration of peripheral nerves after injury is often slow and impaired, which may be associated with weakened and denervated muscles subsequently leading to atrophy. Adipose-derived stem cells (ADSCs) are often regarded as cell-based therapeutic candidate due to their regenerative potential. The study aims to assess the therapeutic efficacy of gene-modified ADSCs on sciatic nerve injury. We lentivirally transduced ADSCs with shRNA-TWIST1 and transplanted modified cells to rats undergoing sciatic nerve transection and repair. Results showed that TWIST1 knockdown accelerated functional recovery of rats with sciatic nerve injury as faster nerve conduction velocity and higher wire hang scores obtained by rats transplanted with TWIST1-silenced ADSCs than scramble ADSCs. Although the rats experienced degenerated axons and decreased myelin sheath thickness after sciatic nerve injury 8 weeks after operation, those transplanted with TWIST1-silenced ADSCs exhibited more signs of regenerated nerve fibers surrounded by newly formed myelin sheaths than those with scramble ADSCs. The rats transplanted with TWIST1-silenced ADSCs presented increased expressions of neurotrophic factors including neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) in the sciatic nerves than those with scramble ADSCs. These results suggest that genetically modifying TWIST1 in ADSCs could facilitate peripheral nerve repair after injury in a more efficient way than that with ADSCs alone.
Collapse
Affiliation(s)
- Bo Chen
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Leining Wang
- Department of Surgery of Hand and Foot, Beilun People's Hospital, Ningbo, 315800, Zhejiang, China
| | - Xiaogui Pan
- Department of Surgery of Hand and Foot, Beilun People's Hospital, Ningbo, 315800, Zhejiang, China
| | - Shuai Jiang
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
5
|
Tamo AK, Djouonkep LDW, Selabi NBS. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int J Biol Macromol 2024; 270:132123. [PMID: 38761909 DOI: 10.1016/j.ijbiomac.2024.132123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
In tissue engineering, 3D printing represents a versatile technology employing inks to construct three-dimensional living structures, mimicking natural biological systems. This technology efficiently translates digital blueprints into highly reproducible 3D objects. Recent advances have expanded 3D printing applications, allowing for the fabrication of diverse anatomical components, including engineered functional tissues and organs. The development of printable inks, which incorporate macromolecules, enzymes, cells, and growth factors, is advancing with the aim of restoring damaged tissues and organs. Polysaccharides, recognized for their intrinsic resemblance to components of the extracellular matrix have garnered significant attention in the field of tissue engineering. This review explores diverse 3D printing techniques, outlining distinctive features that should characterize scaffolds used as ideal matrices in tissue engineering. A detailed investigation into the properties and roles of polysaccharides in tissue engineering is highlighted. The review also culminates in a profound exploration of 3D polysaccharide-based hydrogel applications, focusing on recent breakthroughs in regenerating different tissues such as skin, bone, cartilage, heart, nerve, vasculature, and skeletal muscle. It further addresses challenges and prospective directions in 3D printing hydrogels based on polysaccharides, paving the way for innovative research to fabricate functional tissues, enhancing patient care, and improving quality of life.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany; Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany; Ingénierie des Matériaux Polymères (IMP), Université Claude Bernard Lyon 1, INSA de Lyon, Université Jean Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France.
| | - Lesly Dasilva Wandji Djouonkep
- College of Petroleum Engineering, Yangtze University, Wuhan 430100, China; Key Laboratory of Drilling and Production Engineering for Oil and Gas, Wuhan 430100, China
| | - Naomie Beolle Songwe Selabi
- Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
6
|
Attri K, Chudasama B, Mahajan RL, Choudhury D. Integrated insulin-iron nanoparticles: a multi-modal approach for receptor-specific bioimaging, reactive oxygen species scavenging, and wound healing. DISCOVER NANO 2024; 19:96. [PMID: 38814485 PMCID: PMC11139842 DOI: 10.1186/s11671-024-04024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
Metallic nanoparticles have emerged as a promising option for various biological applications, owing to their distinct characteristics such as small size, optical properties, and ability to exhibit luminescence. In this study, we have successfully employed a one-pot method to synthesize multifunctional insulin-protected iron [Fe(II)] nanoparticles denoted as [IFe(II)NPs]. The formation of IFe(II)NPs is confirmed by the presence of FTIR bonds at 447.47 and 798.28 cm-1, corresponding to Fe-O and Fe-N bonds, respectively. Detailed analysis of the HR-TEM-EDS-SAED data reveals that the particles are spherical in shape, partially amorphous in nature, and have a diameter of 28.6 ± 5.2 nm. Additionally, Metal Ion Binding (MIB) and Protein Data Bank (PDB) analyses affirm the binding of iron ions to the insulin hexamer. Our findings underscore the potential of IFe(II)NPs as a promising new platform for a variety of biomedical applications due to their high signal-to-noise ratio, and minimal background fluorescence. The particles are highly luminescent, biocompatible, and have a significant quantum yield (0.632). Exemplar applications covered in this paper include insulin receptor recognition and protection against reactive oxygen species (ROS), harmful molecules known to inflict damage on cells and DNA. The IFe(II)NPs effectively mitigate ROS-induced inflammation, which is a hinderance to wound recovery, thereby facilitating enhanced wound recovery.
Collapse
Affiliation(s)
- Komal Attri
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
- Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Bhupendra Chudasama
- Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Department of Physics and Material Sciences, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| | - Roop L Mahajan
- Department of Physics and Material Sciences, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Department of Mechanical Engineering, Department of Materials Science and Engineering Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Diptiman Choudhury
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
7
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
8
|
Choudhary P, Gupta A, Gupta SK, Dwivedi S, Singh S. Comparative evaluation of divergent concoction of NGF, BDNF, EGF, and FGF growth factor's role in enhancing neuronal differentiation of adipose-derived mesenchymal stem cells. Int J Biol Macromol 2024; 260:129561. [PMID: 38246449 DOI: 10.1016/j.ijbiomac.2024.129561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
MSCs (Mesenchymal Stem Cells) can differentiate into various lineages, including neurons and glial cells. In the past few decades, MSCs have been well explored in the context of neuronal differentiation and have been reported to have the immense potential to form distinct kinds of neurons. The distinguishing features of MSCs make them among the most desired cell sources for stem cell therapy. This study involved the trans-differentiation of Adipose-derived human Mesenchymal Stem Cells (ADMSCs) into neurons. The protocol employs a cocktail of chemical inducers in different combinations, including Brain-derived neurotrophic factor (BDNF), epidermal growth factor (EGF), and Nerve growth factor (NGF) Fibroblastic growth factor (FGF), in induction media. Both types have been successfully differentiated into neurons, confirmed by morphological aspects and the presence of neural-specific markers through RT-PCR (Reverse transcription polymerase chain reaction) studies and immunocytochemistry assay. They have shown excellent morphology with long neurites, synaptic connections, and essential neural markers to validate their identity. The results may significantly contribute to cell replacement therapy for neurological disorders.
Collapse
Affiliation(s)
- Princy Choudhary
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India
| | - Ayushi Gupta
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India
| | - Saurabh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Shrey Dwivedi
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India
| | - Sangeeta Singh
- Department of Applied Science, Indian Institute of Information Technology, Allahabad Devghat, Jhalwa, Prayagraj 211015, U.P., India.
| |
Collapse
|
9
|
Chiang MC, Yang YP, Nicol CJB, Wang CJ. Gold Nanoparticles in Neurological Diseases: A Review of Neuroprotection. Int J Mol Sci 2024; 25:2360. [PMID: 38397037 PMCID: PMC10888679 DOI: 10.3390/ijms25042360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
This review explores the diverse applications of gold nanoparticles (AuNPs) in neurological diseases, with a specific focus on Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The introduction highlights the pivotal role of neuroinflammation in these disorders and introduces the unique properties of AuNPs. The review's core examines the mechanisms by which AuNPs exert neuroprotection and anti-neuro-inflammatory effects, elucidating various pathways through which they manifest these properties. The potential therapeutic applications of AuNPs in AD are discussed, shedding light on promising avenues for therapy. This review also explores the prospects of utilizing AuNPs in PD interventions, presenting a hopeful outlook for future treatments. Additionally, the review delves into the potential of AuNPs in providing neuroprotection after strokes, emphasizing their significance in mitigating cerebrovascular accidents' aftermath. Experimental findings from cellular and animal models are consolidated to provide a comprehensive overview of AuNPs' effectiveness, offering insights into their impact at both the cellular and in vivo levels. This review enhances our understanding of AuNPs' applications in neurological diseases and lays the groundwork for innovative therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Ping Yang
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher J. B. Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
10
|
Rahman M, Mahady Dip T, Padhye R, Houshyar S. Review on electrically conductive smart nerve guide conduit for peripheral nerve regeneration. J Biomed Mater Res A 2023; 111:1916-1950. [PMID: 37555548 DOI: 10.1002/jbm.a.37595] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/29/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
At present, peripheral nerve injuries (PNIs) are one of the leading causes of substantial impairment around the globe. Complete recovery of nerve function after an injury is challenging. Currently, autologous nerve grafts are being used as a treatment; however, this has several downsides, for example, donor site morbidity, shortage of donor sites, loss of sensation, inflammation, and neuroma development. The most promising alternative is the development of a nerve guide conduit (NGC) to direct the restoration and renewal of neuronal axons from the proximal to the distal end to facilitate nerve regeneration and maximize sensory and functional recovery. Alternatively, the response of nerve cells to electrical stimulation (ES) has a substantial regenerative effect. The incorporation of electrically conductive biomaterials in the fabrication of smart NGCs facilitates the function of ES throughout the active proliferation state. This article overviews the potency of the various categories of electroactive smart biomaterials, including conductive and piezoelectric nanomaterials, piezoelectric polymers, and organic conductive polymers that researchers have employed latterly to fabricate smart NGCs and their potentiality in future clinical application. It also summarizes a comprehensive analysis of the recent research and advancements in the application of ES in the field of NGC.
Collapse
Affiliation(s)
- Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Attri K, Chudasama B, Mahajan RL, Choudhury D. Therapeutic potential of lactoferrin-coated iron oxide nanospheres for targeted hyperthermia in gastric cancer. Sci Rep 2023; 13:17875. [PMID: 37857677 PMCID: PMC10587155 DOI: 10.1038/s41598-023-43725-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Lactoferrin (LF) is a non-heme iron-binding glycoprotein involved in the transport of iron in blood plasma. In addition, it has many biological functions, including antibacterial, antiviral, antimicrobial, antiparasitic, and, importantly, antitumor properties. In this study, we have investigated the potential of employing lactoferrin-iron oxide nanoparticles (LF-IONPs) as a treatment modality for gastric cancer. The study confirms the formation of LF-IONPs with a spherical shape and an average size of 5 ± 2 nm, embedded within the protein matrix. FTIR and Raman analysis revealed that the Fe-O bond stabilized the protein particle interactions. Further, we conducted hyperthermia studies to ascertain whether the proposed composite can generate a sufficient rise in temperature at a low frequency. The results confirmed that we can achieve a temperature rise of about 7 °C at 242.4 kHz, which can be further harnessed for gastric cancer treatment. The particles were further tested for their anti-cancer activity on AGS cells, with and without hyperthermia. Results indicate that LF-IONPs (10 µg/ml) significantly enhance cytotoxicity, resulting in the demise of 67.75 ± 5.2% of cells post hyperthermia, while also exhibiting an inhibitory effect on cell migration compared to control cells, with the most inhibition observed after 36 h of treatment. These findings suggest the potential of LF-IONPs in targeted hyperthermia treatment of gastric cancer.
Collapse
Affiliation(s)
- Komal Attri
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Bhupendra Chudasama
- School of Physics and Material Sciences, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| | - Roop L Mahajan
- Department of Mechanical Engineering, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
12
|
Dolatyar B, Zeynali B, Shabani I, Parvaneh Tafreshi A. High-efficient serum-free differentiation of trabecular meshwork mesenchymal stem cells into Schwann-like cells on polylactide electrospun nanofibrous scaffolds. Neurosci Lett 2023; 813:137417. [PMID: 37549866 DOI: 10.1016/j.neulet.2023.137417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Cell-based therapies of the peripheral nerve injury (PNI) have provided satisfactory outcomes among which Schwann cells (SCs) are the most reliable candidate to improve repair of the damaged nerve, however, it is difficult to obtain sufficient amount of SCs for clinical applications. Trabecular meshwork-derived mesenchymal stem cells (TM-MSCs) are newly introduced neural crest originated MSCs, which may have a desirable potential for Schwann-like differentiation due to their common lineage. On the other hand, one of the challenges of cell-based therapies is usage of serum containing media which is inappropriate for clinical applications. In the present study, we investigated the differentiation potential of TM-MSCs into Schwann-like cells on polylactide (PLA) nanofibrous scaffolds in the presence or absence of serum. Our results revealed that PLA nanofibers had no negative effects on the cell growth and proliferation of TM-MSCs, and improved Schwann-like differentiation compared with tissue culture plates (TCPs). More importantly, when the cells cultured on the scaffold in the presence of serum-free media (SFM), expression mRNA levels of SC markers (S100B, GAP43, GFAP and SOX10) were significantly increased compared with those of serum-rich groups. Immunostaining of TM-MSCs cultured on serum-free PLA nanofibrous scaffolds also showed significant expression of GAP43, GFAP and SOX10 compared to those of control, indicating the efficient role of SFM in the differentiation of TM-MSCs into SCs lineage. Overall, the findings of this study revealed the differentiation potential of TM-MSCs to SC fate for the first time, and also showed the beneficial effects of SFM and PLA nanofibrous scaffolds as a promising approach for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Banafsheh Dolatyar
- Developmental Biology Lab, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Bahman Zeynali
- Developmental Biology Lab, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Azita Parvaneh Tafreshi
- Department of Molecular Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
13
|
Sharda D, Choudhury D. Insulin-cobalt core-shell nanoparticles for receptor-targeted bioimaging and diabetic wound healing. RSC Adv 2023; 13:20321-20335. [PMID: 37425626 PMCID: PMC10323873 DOI: 10.1039/d3ra01473h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023] Open
Abstract
Diabetic wounds represent a major issue in medical care and need advanced therapeutic and tissue imaging systems for better management. The utilization of nano-formulations involving proteins like insulin and metal ions plays significant roles in controlling wound outcomes by decreasing inflammation or reducing microbial load. This work reports the easy one-pot synthesis of extremely stable, biocompatible, and highly fluorescent insulin-cobalt core-shell nanoparticles (ICoNPs) with enhanced quantum yield for their highly specific receptor-targeted bioimaging and normal and diabetic wound healing in vitro (HEKa cell line). The particles were characterized using physicochemical properties, biocompatibility, and wound healing applications. FTIR bands at 670.35 cm-1, 849.79, and 973.73 indicating the Co-O bending, CoO-OH bond, and Co-OH bending, respectively, confirm the protein-metal interactions, which is further supported by the Raman spectra. In silico studies indicate the presence of cobalt binding sites on the insulin chain B at 8 GLY, 9 SER, and 10 HIS positions. The particles exhibit a magnificent loading efficiency of 89.48 ± 0.049% and excellent release properties (86.54 ± 2.15% within 24 h). Further, based on fluorescent properties, the recovery process can be monitored under an appropriate setup, and the binding of ICoNPs to insulin receptors was confirmed by bioimaging. This work helps synthesize effective therapeutics with numerous wound-healing promoting and monitoring applications.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 Punjab India +91-8196949843
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 Punjab India +91-8196949843
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology Patiala Punjab-147004 India
| |
Collapse
|
14
|
Cheng WY, Yang MY, Yeh CA, Yang YC, Chang KB, Chen KY, Liu SY, Tang CL, Shen CC, Hung HS. Therapeutic Applications of Mesenchymal Stem Cell Loaded with Gold Nanoparticles for Regenerative Medicine. Pharmaceutics 2023; 15:1385. [PMID: 37242627 PMCID: PMC10222259 DOI: 10.3390/pharmaceutics15051385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
In the present study, the various concentrations of AuNP (1.25, 2.5, 5, 10 ppm) were prepared to investigate the biocompatibility, biological performances and cell uptake efficiency via Wharton's jelly mesenchymal stem cells and rat model. The pure AuNP, AuNP combined with Col (AuNP-Col) and FITC conjugated AuNP-Col (AuNP-Col-FITC) were characterized by Ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR) and Dynamic Light Scattering (DLS) assays. For in vitro examinations, we explored whether the Wharton's jelly MSCs had better viability, higher CXCR4 expression, greater migration distance and lower apoptotic-related proteins expression with AuNP 1.25 and 2.5 ppm treatments. Furthermore, we considered whether the treatments of 1.25 and 2.5 ppm AuNP could induce the CXCR4 knocked down Wharton's jelly MSCs to express CXCR4 and reduce the expression level of apoptotic proteins. We also treated the Wharton's jelly MSCs with AuNP-Col to investigate the intracellular uptake mechanisms. The evidence demonstrated the cells uptake AuNP-Col through clathrin-mediated endocytosis and the vacuolar-type H+-ATPase pathway with good stability inside the cells to avoid lysosomal degradation as well as better uptake efficiency. Additionally, the results from in vivo examinations elucidated the 2.5 ppm of AuNP attenuated foreign body responses and had better retention efficacy with tissue integrity in animal model. In conclusion, the evidence demonstrates that AuNP shows promise as a biosafe nanodrug delivery system for development of regenerative medicine coupled with Wharton's jelly MSCs.
Collapse
Affiliation(s)
- Wen-Yu Cheng
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
- Department of Physical Therapy, Hung Kuang University, Taichung 433304, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Meng-Yin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (C.-A.Y.); (K.-B.C.)
| | - Yi-Chin Yang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (C.-A.Y.); (K.-B.C.)
| | - Kai-Yuan Chen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Szu-Yuan Liu
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Chien-Lun Tang
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Chiung-Chyi Shen
- Department of Minimally Invasive Skull Base Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (M.-Y.Y.); (Y.-C.Y.); (K.-Y.C.); (S.-Y.L.); (C.-L.T.); (C.-C.S.)
| | - Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan; (C.-A.Y.); (K.-B.C.)
- Translational Medicine Research, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|
15
|
Qiao M, Tang W, Xu Z, Wu X, Huang W, Zhu Z, Wan Q. Gold nanoparticles: promising biomaterials for osteogenic/adipogenic regulation in bone repair. J Mater Chem B 2023; 11:2307-2333. [PMID: 36809480 DOI: 10.1039/d2tb02563a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Bone defects are a common bone disease, which are usually caused by accidents, trauma and tumors. However, the treatment of bone defects is still a great clinical challenge. In recent years, research on bone repair materials has continued with great success, but there are few reports on the repair of bone defects at a high lipid level. Hyperlipidemia is a risk factor in the process of bone defect repair, which has a negative impact on the process of osteogenesis, increasing the difficulty of bone defect repair. Therefore, it is necessary to find materials that can promote bone defect repair under the condition of hyperlipidemia. Gold nanoparticles (AuNPs) have been applied in the fields of biology and clinical medicine for many years and developed to modulate osteogenic differentiation and adipogenic differentiation. In vitro and vivo studies displayed that they promoted bone formation and inhibited fat accumulation. Further, the metabolism and mechanisms of AuNPs acting on osteogenesis/adipogenesis were partially revealed by researchers. This review further clarifies the role of AuNPs in osteogenic/adipogenic regulation during the process of osteogenesis and bone regeneration by summarizing the related in vitro and in vivo research, discussing the advantages and challenges of AuNPs and highlighting several possible directions for future research, with the aim to provide a new strategy for dealing with bone defects in hyperlipidemic patients.
Collapse
Affiliation(s)
- Mingxin Qiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China. .,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Wen Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China. .,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xiaoyue Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
| | - Wei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China.
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China. .,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China. .,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Xiang W, Cao H, Tao H, Jin L, Luo Y, Tao F, Jiang T. Applications of chitosan-based biomaterials: From preparation to spinal cord injury neuroprosthetic treatment. Int J Biol Macromol 2023; 230:123447. [PMID: 36708903 DOI: 10.1016/j.ijbiomac.2023.123447] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Spinal cord injury (SCI)-related disabilities are a serious problem in the modern society. Further, the treatment of SCI is highly challenging and is urgently required in clinical practice. Research on nerve tissue engineering is an emerging approach for improving the treatment outcomes of SCI. Chitosan (CS) is a cationic polysaccharide derived from natural biomaterials. Chitosan has been found to exhibit excellent biological properties, such as nontoxicity, biocompatibility, biodegradation, and antibacterial activity. Recently, chitosan-based biomaterials have attracted significant attention for SCI repair in nerve tissue engineering applications. These studies revealed that chitosan-based biomaterials have various functions and mechanisms to promote SCI repair, such as promoting neural cell growth, guiding nerve tissue regeneration, delivering nerve growth factors, and as a vector for gene therapy. Chitosan-based biomaterials have proven to have excellent potential for the treatment of SCI. This review aims to introduce the recent advances in chitosan-based biomaterials for SCI treatment and to highlight the prospects for further application.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yue Luo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - Ting Jiang
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
17
|
Wang X, Zheng W, Bai Z, Huang S, Jiang K, Liu H, Liu L. Mimicking bone matrix through coaxial electrospinning of core-shell nanofibrous scaffold for improving neurogenesis bone regeneration. BIOMATERIALS ADVANCES 2023; 145:213246. [PMID: 36549151 DOI: 10.1016/j.bioadv.2022.213246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/22/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
There is a significant clinical demand for bone repair materials with high efficacy. This study was designed to fabricate nanofibrous scaffolds to promote bone defect regeneration using magnesium doped mesoporous bioactive glass (MBG), a fusion protein Osteocalcin-Osteopontin-Biglycan (OOB), silk fibroin (SF) and nerve growth factor (NGF) for facilitating accelerated bone formation. We found that MBG adsorbed with OOB (OOB@MBG) as core, and SF adsorbed with NGF (SF@NGF) as shell to fabricate the nanofibrous scaffolds (OOB@MBG/NGF@SF) through coaxial electrospinning. OOB@MBG/NGF@SF scaffolds could effectively mimic the component and structure of bone matrix. Interestingly, we observed that OOB@MBG/NGF@SF scaffolds could substantially promote bone mesenchymal stem cells (BMSCs) osteogenesis through stimulating Erk1/2 activated Runx2 and mTOR pathway, and it could also activate the expression level of various osteogenic marker genes. Intriguingly, OOB@MBG/NGF@SF scaffolds could also enhance BMSCs induced neural differentiation cells differentiated into neuron, and activate the expression of the different neuron specific marker genes. Moreover, it was found that OOB@MBG/NGF@SF scaffolds accelerated bone regeneration with neurogenesis, and new neurons were formed in Haversian canal in vivo. Consistent with these observations, we found that Erk1/2 and mTOR signaling pathways also regulated osteogenesis with the neurogenesis process from RNA sequencing result. Overall, our findings provided novel evidence suggesting that OOB@MBG/NGF@SF scaffolds could function as a potential biomaterial in accelerating bone defect regeneration with neurogenesis, as well as in recovering the motor ability and improving the quality of life of patients.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China.
| | - Weijia Zheng
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Zhenzu Bai
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Shan Huang
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Kai Jiang
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Haoming Liu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Long Liu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan 410073, PR China
| |
Collapse
|
18
|
Sharifi M, Farahani MK, Salehi M, Atashi A, Alizadeh M, Kheradmandi R, Molzemi S. Exploring the Physicochemical, Electroactive, and Biodelivery Properties of Metal Nanoparticles on Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2023; 9:106-138. [PMID: 36545927 DOI: 10.1021/acsbiomaterials.2c01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the advances in the regeneration/rehabilitation field of damaged tissues, the functional recovery of peripheral nerves (PNs), especially in a long gap injury, is considered a great medical challenge. Recent progress in nanomedicine has provided great hope for PN regeneration through the strategy of controlling cell behavior by metal nanoparticles individually or loaded on scaffolds/conduits. Despite the confirmed toxicity of metal nanoparticles due to long-term accumulation in nontarget tissues, they play a role in the damaged PN regeneration based on the topography modification of scaffolds/conduits, enhancing neurotrophic factor secretion, the ion flow improvement, and the regulation of electrical signals. Determining the fate of neural progenitor cells would be a major achievement in PN regeneration, which seems to be achievable by metal nanoparticles through altering cell vital approaches and controlling their functions. Therefore, in this literature, an attempt was made to provide an overview of the effective activities of metal nanoparticles on the PN regeneration, until the vital clues of the PN regeneration and how they are changed by metal nanoparticles are revealed to the researcher.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Mohammad Kamalabadi Farahani
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Faculty of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Sahar Molzemi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| |
Collapse
|
19
|
Lee SY, Thow SY, Abdullah S, Ng MH, Mohamed Haflah NH. Advancement of Electrospun Nerve Conduit for Peripheral Nerve Regeneration: A Systematic Review (2016-2021). Int J Nanomedicine 2022; 17:6723-6758. [PMID: 36600878 PMCID: PMC9805954 DOI: 10.2147/ijn.s362144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/05/2022] [Indexed: 12/29/2022] Open
Abstract
Peripheral nerve injury (PNI) is a worldwide problem which hugely affects the quality of patients' life. Nerve conduits are now the alternative for treatment of PNI to mimic the gold standard, autologous nerve graft. In that case, with the advantages of electrospun micro- or nano-fibers nerve conduit, the peripheral nerve growth can be escalated, in a better way. In this systematic review, we focused on 39 preclinical studies of electrospun nerve conduit, which include the in vitro and in vivo evaluation from animal peripheral nerve defect models, to provide an update on the progress of the development of electrospun nerve conduit over the last 5 years (2016-2021). The physical characteristics, biocompatibility, functional and morphological outcomes of nerve conduits from different studies would be compared, to give a better strategy for treatment of PNI.
Collapse
Affiliation(s)
- Shin Yee Lee
- Centre of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Soon Yong Thow
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Shalimar Abdullah
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Min Hwei Ng
- Centre of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur
| | - Nor Hazla Mohamed Haflah
- Department of Orthopedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur,Correspondence: Nor Hazla Mohamed Haflah, Department of Orthopedic & Traumatology’s Faculty of Medicine, UKM, Cheras, Kuala Lumpur, Tel +6012-3031316, Email
| |
Collapse
|
20
|
The impact of electroconductive multifunctional composite nanofibrous scaffold on adipose-derived mesenchymal stem cells. Tissue Cell 2022; 78:101899. [DOI: 10.1016/j.tice.2022.101899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022]
|
21
|
Abstract
Neuroprosthetic devices that record and modulate neural activities have demonstrated immense potential for bypassing or restoring lost neurological functions due to neural injuries and disorders. However, implantable electrical devices interfacing with brain tissue are susceptible to a series of inflammatory tissue responses along with mechanical or electrical failures which can affect the device performance over time. Several biomaterial strategies have been implemented to improve device-tissue integration for high quality and stable performance. Ranging from developing smaller, softer, and more flexible electrode designs to introducing bioactive coatings and drug-eluting layers on the electrode surface, such strategies have shown different degrees of success but with limitations. With their hydrophilic properties and specific bioactivities, carbohydrates offer a potential solution for addressing some of the limitations of the existing biomolecular approaches. In this review, we summarize the role of polysaccharides in the central nervous system, with a primary focus on glycoproteins and proteoglycans, to shed light on their untapped potential as biomaterials for neural implants. Utilization of glycosaminoglycans for neural interface and tissue regeneration applications is comprehensively reviewed to provide the current state of carbohydrate-based biomaterials for neural implants. Finally, we will discuss the challenges and opportunities of applying carbohydrate-based biomaterials for neural tissue interfaces.
Collapse
Affiliation(s)
- Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Neural Differentiation Potential of Mesenchymal Stem Cells Enhanced by Biocompatible Chitosan-Gold Nanocomposites. Cells 2022; 11:cells11121861. [PMID: 35740991 PMCID: PMC9221394 DOI: 10.3390/cells11121861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/28/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chitosan (Chi) is a natural polymer that has been demonstrated to have potential as a promoter of neural regeneration. In this study, Chi was prepared with various amounts (25, 50, and 100 ppm) of gold (Au) nanoparticles for use in in vitro and in vivo assessments. Each as-prepared material was first characterized by UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and Dynamic Light Scattering (DLS). Through the in vitro experiments, Chi combined with 50 ppm of Au nanoparticles demonstrated better biocompatibility. The platelet activation, monocyte conversion, and intracellular ROS generation was remarkably decreased by Chi–Au 50 pm treatment. Furthermore, Chi–Au 50 ppm could facilitate colony formation and strengthen matrix metalloproteinase (MMP) activation in mesenchymal stem cells (MSCs). The lower expression of CD44 in Chi–Au 50 ppm treatment demonstrated that the nanocomposites could enhance the MSCs undergoing differentiation. Chi–Au 50 ppm was discovered to significantly induce the expression of GFAP, β-Tubulin, and nestin protein in MSCs for neural differentiation, which was verified by real-time PCR analysis and immunostaining assays. Additionally, a rat model involving subcutaneous implantation was used to evaluate the superior anti-inflammatory and endothelialization abilities of a Chi–Au 50 ppm treatment. Capsule formation and collagen deposition were decreased. The CD86 expression (M1 macrophage polarization) and leukocyte filtration (CD45) were remarkably reduced as well. In summary, a Chi polymer combined with 50 ppm of Au nanoparticles was proven to enhance the neural differentiation of MSCs and showed potential as a biosafe nanomaterial for neural tissue engineering.
Collapse
|
23
|
Escobar A, Reis RL, Oliveira JM. Nanoparticles for neurotrophic factor delivery in nerve guidance conduits for peripheral nerve repair. Nanomedicine (Lond) 2022; 17:477-494. [DOI: 10.2217/nnm-2021-0413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries are a major source of disabilities, and treatment of long nerve gap autografts is the gold standard. However, due to poor availability and donor-site morbidity, research is directed towards the development of regenerative strategies based on the use of artificial nerve guidance conduits (NGCs). Several properties and characteristics of the NGCs can be fine-tuned, such as the architecture of the conduit, the surface topography and the addition of bioactive molecules and cells to speed up nerve regeneration. In this review, US FDA-approved NGCs are described. The recent works, in which polymeric, magnetic, silica-based and lipidic NPs are employed to introduce growth factors (GFs) to NGCs, are overviewed and discussed in depth herein.
Collapse
Affiliation(s)
- Ane Escobar
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco GMR, 4805-017, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Luís Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco GMR, 4805-017, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco GMR, 4805-017, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
24
|
Cao S, Deng Y, Zhang L, Aleahmad M. Chitosan nanoparticles, as biological macromolecule-based drug delivery systems to improve the healing potential of artificial neural guidance channels: A review. Int J Biol Macromol 2022; 201:569-579. [PMID: 35031319 DOI: 10.1016/j.ijbiomac.2022.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
The healing potential of artificial neural guidance channels (NGCs) can be improved by various approaches such as seeding them with supporting cells, the incorporation of various cues, and modification with different fabrication methods. Recently, the therapeutic appeal towards the use of drug-delivering NGCs has increased. In this framework, neuroprotective agents are incorporated into the structure of NGCs using different techniques. Among available methods, nanoparticle-based drug carriers offer numerous advantages over other formulations such as controlled drug release, targeted delivery, high encapsulation efficacy, and high surface to volume ratio. Chitosan nanoparticles have different interesting features for drug delivery applications. These nanocarriers are biocompatible, biodegradable, non-immunogenic, stable, and possess tunable properties. In the current review, applications, challenges, and future perspectives of drug-loaded chitosan nanoparticles to augment the healing potential of NGCs will be discussed.
Collapse
Affiliation(s)
- Shuang Cao
- Department of Neuroelectrophysiology, Jinan Children's Hospital, Jinan 250022, Shandong, China
| | - Yang Deng
- School of Public Health and Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China.
| | - Le Zhang
- School of Public Health and Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, Shandong, China.
| | - Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Balogh M, Janjic JM, Shepherd AJ. Targeting Neuroimmune Interactions in Diabetic Neuropathy with Nanomedicine. Antioxid Redox Signal 2022; 36:122-143. [PMID: 34416821 PMCID: PMC8823248 DOI: 10.1089/ars.2021.0123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Significance: Diabetes is a major source of neuropathy and neuropathic pain that is set to continue growing in prevalence. Diabetic peripheral neuropathy (DPN) and pain associated with diabetes are not adequately managed by current treatment regimens. Perhaps the greatest difficulty in treating DPN is the complex pathophysiology, which involves aspects of metabolic disruption and neurotrophic deficits, along with neuroimmune interactions. There is, therefore, an urgent need to pursue novel therapeutic options targeting the key cellular and molecular players. Recent Advances: To that end, cellular targeting becomes an increasingly compelling drug delivery option as our knowledge of neuroimmune interactions continues to mount. These nanomedicine-based approaches afford a potentially unparalleled specificity and longevity of drug targeting, using novel or established compounds, all while minimizing off-target effects. Critical Issues: The DPN therapeutics directly targeted at the nervous system make up the bulk of currently available treatment options. However, there are significant opportunities based on the targeting of non-neuronal cells and neuroimmune interactions in DPN. Future Directions: Nanomedicine-based agents represent an exciting opportunity for the treatment of DPN with the goals of improving the efficacy and safety profile of analgesia, as well as restoring peripheral neuroregenerative capacity. Antioxid. Redox Signal. 36, 122-143.
Collapse
Affiliation(s)
- Mihály Balogh
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jelena M. Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Andrew J. Shepherd
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
26
|
Gupta A, Singh S. Potential Role of Growth Factors Controlled Release in Achieving Enhanced Neuronal Trans-differentiation from Mesenchymal Stem Cells for Neural Tissue Repair and Regeneration. Mol Neurobiol 2021; 59:983-1001. [PMID: 34816381 DOI: 10.1007/s12035-021-02646-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
With an increase in the incidence of neurodegenerative diseases, a need to replace incapable conventional methods has arisen. To overcome this burden, stem cells therapy has emerged as an efficient treatment option. Endeavours to accomplish this have paved the path to neural regeneration through efficient neuronal transdifferentiation. Despite their potential, the use of stem cells still entails several limitations, such as low differentiation efficiency and difficulties in guiding differentiation. The process of neural differentiation through the stem cells is achieved through the use of chemical inducers or growth factors and their direct introduction reduces their bioavailability in the system. To address these limitations, neural regeneration ventures require growth factors to be effectively implemented on stem cells in order to produce functional neuronal precursor cells. An efficient technique to achieve it is through the delivery of growth factors via microcarriers for their sustained release. It ensures the presence of commensurable concentration even at later stages of neuronal transdifferentiation. Nanofibers and nanoparticles, along with liposomes and such, have been used to implement this. The interaction between such carriers and the growth factors is mainly electrostatic. Such interaction enables them to form a stable assembly through immobilisation of the growth factor either onto their surfaces or within the core of their structures. The rate of sustained release depends upon the release kinetics associated with the polymeric structure employed and its interaction with the encapsulated growth factor. The sustained release ensures that the stem cells immerse under the effect of the growth factors for a prolonged period, ultimately aiding in the formation of cells showing ample characteristics of neuron precursors. This review analyses the various carriers that have been employed for the release of growth factors in an orderly fashion and their constituents, along with the advantages and the limitations they pose in delivering the growth factors for facilitating the process of neuronal transdifferentiation.
Collapse
Affiliation(s)
- Ayushi Gupta
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Sangeeta Singh
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
27
|
Mitra S, Gera R, Linderoth B, Lind G, Wahlberg L, Almqvist P, Behbahani H, Eriksdotter M. A Review of Techniques for Biodelivery of Nerve Growth Factor (NGF) to the Brain in Relation to Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:167-191. [PMID: 34453298 DOI: 10.1007/978-3-030-74046-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Age-dependent progressive neurodegeneration and associated cognitive dysfunction represent a serious concern worldwide. Currently, dementia accounts for the fifth highest cause of death, among which Alzheimer's disease (AD) represents more than 60% of the cases. AD is associated with progressive cognitive dysfunction which affects daily life of the affected individual and associated family. The cognitive dysfunctions are at least partially due to the degeneration of a specific set of neurons (cholinergic neurons) whose cell bodies are situated in the basal forebrain region (basal forebrain cholinergic neurons, BFCNs) but innervate wide areas of the brain. It has been explicitly shown that the delivery of the neurotrophic protein nerve growth factor (NGF) can rescue BFCNs and restore cognitive dysfunction, making NGF interesting as a potential therapeutic substance for AD. Unfortunately, NGF cannot pass through the blood-brain barrier (BBB) and thus peripheral administration of NGF protein is not viable therapeutically. NGF must be delivered in a way which will allow its brain penetration and availability to the BFCNs to modulate BFCN activity and viability. Over the past few decades, various methodologies have been developed to deliver NGF to the brain tissue. In this chapter, NGF delivery methods are discussed in the context of AD.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.
| | - Ruchi Gera
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Linderoth
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Göran Lind
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Almqvist
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Homira Behbahani
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Karolinska Universitets laboratoriet (LNP5), Karolinska University Hospital, Stockholm, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
28
|
Biomaterials and Adipose-Derived Mesenchymal Stem Cells for Regenerative Medicine: A Systematic Review. MATERIALS 2021; 14:ma14164641. [PMID: 34443163 PMCID: PMC8400778 DOI: 10.3390/ma14164641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
The use of biological templates for the suitable growth of adipose-derived mesenchymal stem cells (AD-MSC) and “neo-tissue” construction has exponentially increased over the last years. The bioengineered scaffolds still have a prominent and biocompatible framework playing a role in tissue regeneration. In order to supply AD-MSCs, biomaterials, as the stem cell niche, are more often supplemented by or stimulate molecular signals that allow differentiation events into several strains, besides their secretion of cytokines and effects of immunomodulation. This systematic review aims to highlight the details of the integration of several types of biomaterials used in association with AD-MSCs, collecting notorious and basic data of in vitro and in vivo assays, taking into account the relevance of the interference of the cell lineage origin and handling cell line protocols for both the replacement and repairing of damaged tissues or organs in clinical application. Our group analyzed the quality and results of the 98 articles selected from PubMed, Scopus and Web of Science. A total of 97% of the articles retrieved demonstrated the potential in clinical applications. The synthetic polymers were the most used biomaterials associated with AD-MSCs and almost half of the selected articles were applied on bone regeneration.
Collapse
|
29
|
Alastra G, Aloe L, Baldassarro VA, Calzà L, Cescatti M, Duskey JT, Focarete ML, Giacomini D, Giardino L, Giraldi V, Lorenzini L, Moretti M, Parmeggiani I, Sannia M, Tosi G. Nerve Growth Factor Biodelivery: A Limiting Step in Moving Toward Extensive Clinical Application? Front Neurosci 2021; 15:695592. [PMID: 34335170 PMCID: PMC8319677 DOI: 10.3389/fnins.2021.695592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Nerve growth factor (NGF) was the first-discovered member of the neurotrophin family, a class of bioactive molecules which exerts powerful biological effects on the CNS and other peripheral tissues, not only during development, but also during adulthood. While these molecules have long been regarded as potential drugs to combat acute and chronic neurodegenerative processes, as evidenced by the extensive data on their neuroprotective properties, their clinical application has been hindered by their unexpected side effects, as well as by difficulties in defining appropriate dosing and administration strategies. This paper reviews aspects related to the endogenous production of NGF in healthy and pathological conditions, along with conventional and biomaterial-assisted delivery strategies, in an attempt to clarify the impediments to the clinical application of this powerful molecule.
Collapse
Affiliation(s)
- Giuseppe Alastra
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | | | - Vito Antonio Baldassarro
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Laura Calzà
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- IRET Foundation, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Jason Thomas Duskey
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Letizia Focarete
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Daria Giacomini
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- IRET Foundation, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Valentina Giraldi
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Irene Parmeggiani
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Sannia
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Giovanni Tosi
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
30
|
Wang D, Mehrabi Nasab E, Athari SS. Study effect of Baicalein encapsulated/loaded Chitosan-nanoparticle on allergic Asthma pathology in mouse model. Saudi J Biol Sci 2021; 28:4311-4317. [PMID: 34354413 PMCID: PMC8324934 DOI: 10.1016/j.sjbs.2021.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 12/01/2022] Open
Abstract
Asthma as chronic airway disease has high prevalence in children and imbalance of Th1/Th2 is a critical mechanism in pathogenesis of the asthma. Baicalein as a cell protective and anti-inflammatory flavonoid may have anti-asthma effect. Therefore, for better using lung, baicalein was used in chitosan-nanoparticle as anti-asthma treatment. Baicalein was loaded and encapsulated in chitosan nanoparticle. The morphology, physical characters (particle size, zeta potential and FT-IR) were analyzed. Drug encapsulation and loading capacity, accumulative release-time were studied. After asthma model producing, the mice were treated with L-B-NP and E-B-NP. At least, MCh challenge test, Cytokines measurement and Lung Histopathology were done. Nanoparticles had average size 285 ± 25 nm with negative charge −2.5 mV. The L-B-NP decreased penh value and E-B-NP decreased inflammation. Both nanoparticles increased IL-12 and decreased IL-5. Also, L-B-NP decreased mucus secretion in bronchi. L-B-NP and E-B-NP control immune-allergo-inflammatory response of asthma. L-B-NP controlled AHR and E-B-NP controlled inflammation that can be used as controlling anti-asthma drug.
Collapse
Key Words
- AB, alcian blue
- AHR, airway hyperresponsiveness
- AP-1, activator protein 1
- Airway
- BALf, bronchoalveolar lavage fluid
- BBB, blood–brain barrier
- COX, cyclooxygenase
- E-B-NP, encapsulated-Baicalein-nanoparticles
- ELISA, the enzyme-linked immunosorbent assay
- FT-IR, fourier-transform infrared spectroscopy
- Flavonoid
- H&E, hematoxylin and eosin
- IL, interleukin
- IP, intraperitoneal
- IT, intratracheal
- Inflammation
- L-B-NP, loaded-Baicalein-nanoparticles
- MAP, mitogen-activated protein
- MCh, methacholine
- MTT, The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
- NF-κB, the nuclear factor-κB
- Nano
- OVA, ovalbumin
- PAS, periodic acid–schiff
- PG, prostaglandin
- TNF, tumor necrosis factor
- Th, T lymphocyte helper
- iNOS, inducible nitric oxide synthase
- mV, millivolt
- nm, nanometer
Collapse
Affiliation(s)
- Dong Wang
- Department of Internal Medicine of Traditional Chinese Medicine, People's Hospital of Yanting County, Sichuan 621600, China
| | - Entezar Mehrabi Nasab
- Cardiologist, Department of Cardiology, School of Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
31
|
Zha K, Yang Y, Tian G, Sun Z, Yang Z, Li X, Sui X, Liu S, Zhao J, Guo Q. Nerve growth factor (NGF) and NGF receptors in mesenchymal stem/stromal cells: Impact on potential therapies. Stem Cells Transl Med 2021; 10:1008-1020. [PMID: 33586908 PMCID: PMC8235142 DOI: 10.1002/sctm.20-0290] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are promising for the treatment of degenerative diseases and traumatic injuries. However, MSC engraftment is not always successful and requires a strong comprehension of the cytokines and their receptors that mediate the biological behaviors of MSCs. The effects of nerve growth factor (NGF) and its two receptors, TrkA and p75NTR, on neural cells are well studied. Increasing evidence shows that NGF, TrkA, and p75NTR are also involved in various aspects of MSC function, including their survival, growth, differentiation, and angiogenesis. The regulatory effect of NGF on MSCs is thought to be achieved mainly through its binding to TrkA. p75NTR, another receptor of NGF, is regarded as a novel surface marker of MSCs. This review provides an overview of advances in understanding the roles of NGF and its receptors in MSCs as well as the effects of MSC‐derived NGF on other cell types, which will provide new insight for the optimization of MSC‐based therapy.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, People's Republic of China.,Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China.,School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Yu Yang
- Department of Othopaedics, Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, People's Republic of China.,Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China.,School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, People's Republic of China.,Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China.,School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, People's Republic of China.,Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China.,School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China
| | - Jinmin Zhao
- Department of Othopaedics, Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma and War Injuries, PLA, Beijing, People's Republic of China
| |
Collapse
|
32
|
Jahromi M, Razavi S, Seyedebrahimi R, Reisi P, Kazemi M. Regeneration of Rat Sciatic Nerve Using PLGA Conduit Containing Rat ADSCs with Controlled Release of BDNF and Gold Nanoparticles. J Mol Neurosci 2020; 71:746-760. [PMID: 33029736 DOI: 10.1007/s12031-020-01694-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Implantation of a nerve guidance conduit (NGC) carrying neuroprotective factors is promising for repairing peripheral nerve injury. Here, we developed a novel strategy for repairing peripheral nerve injury by gold nanoparticles (AuNPs) and brain-derived neurotrophic factor (BDNF)-encapsulated chitosan in laminin-coated nanofiber of Poly(l-lactide-co-glycolide) (PLGA) conduit and transplantation of rat adipose-derived stem cells (r-ADSCs) suspended in alginate. Then, the beneficial effect of AuNPs, BDNF, and r-ADSCs on nerve regeneration was evaluated in rat sciatic nerve transection model. In vivo experiments showed that the combination of AuNPs- and BDNF-encapsulated chitosan nanoparticles in laminin-coated nanofiber of PLGA conduit with r-ADSCs could synergistically facilitate nerve regeneration. Furthermore, the in vivo histology, immunohistochemistry, and behavioral results demonstrated that the AuNPs- and BDNF-encapsulated chitosan nanoparticles in NGC could significantly reinforce the repair performance of r-ADSCs, which may also contribute to the therapeutic outcome of the AuNPs, BDNF, and r-ADSCs strategies. In this study, we found that the combination of AuNPs and BDNF releases in NGC with r-ADSCs may represent a new potential strategy for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Maliheh Jahromi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744176, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744176, Iran.
| | - Reihaneh Seyedebrahimi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81744176, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
33
|
Seyedebrahimi R, Razavi S, Varshosaz J, Vatankhah E, Kazemi M. Beneficial effects of biodelivery of brain-derived neurotrophic factor and gold nanoparticles from functionalized electrospun PLGA scaffold for nerve tissue engineering. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01822-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Sabourian P, Ji J, Lotocki V, Moquin A, Hanna R, Frounchi M, Maysinger D, Kakkar A. Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery. J Mater Chem B 2020; 8:7275-7287. [DOI: 10.1039/d0tb00772b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chitosan is functionalized with oxidative stress-sensitive thioketal entities in a one-pot methodology, and self-assembled into drugs or protein loaded dual stimuli responsive nanoparticles, which kill glioblastoma cells and increase nerve outgrowth.
Collapse
Affiliation(s)
- Parinaz Sabourian
- Department of Chemistry
- McGill University
- Montréal
- Canada
- Department of Chemical and Petroleum Engineering
| | - Jeff Ji
- Department of Pharmacology and Therapeutics
- McGill University
- Montréal
- Canada
| | | | - Alexandre Moquin
- Department of Chemistry
- McGill University
- Montréal
- Canada
- Department of Pharmacology and Therapeutics
| | - Ramez Hanna
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Masoud Frounchi
- Department of Chemical and Petroleum Engineering
- Sharif University of Technology
- Tehran
- Iran
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics
- McGill University
- Montréal
- Canada
| | - Ashok Kakkar
- Department of Chemistry
- McGill University
- Montréal
- Canada
| |
Collapse
|
35
|
Green and Facile Synthesis of Dendritic and Branched Gold Nanoparticles by Gelatin and Investigation of Their Biocompatibility on Fibroblast Cells. Processes (Basel) 2019. [DOI: 10.3390/pr7090631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this work, gold nanostar (AuNPs) and gold nanodendrites were synthesized by one-pot and environmentally friendly approach in the presence of gelatin. Influence of gelatin concentrations and reaction conditions on the growth of branched (AuNPs) were investigated further. Interestingly, the conversion of morphology between dendritic and branched nanostructure can be attained by changing the pH value of gelatin solution. The role of gelatin as a protecting agent through the electrostatic and steric interaction was also revealed. Branched nanoparticles were characterized by surface plasmon resonance spectroscopy (SPR), transmission electron microscopy (TEM), XRD, dynamic light scattering (DLS) and zeta-potential. The chemical interaction of gelatin with branched gold nanoparticles was analyzed by Fourier transform infrared spectroscopy (FT-IT) technique. Ultraviolet visible spectroscopy results indicated the formation of branched gold nanoparticles with the maximum surface plasmon resonance peak at 575–702 nm. The structure of both nanodendrites and nanostars were determined by TEM. The crystal sizes of nano-star ranged from 42 to 55 nm and the nanodendrites sizes were about 75–112 nm. Based on the characterizations, a growth mechanism could be proposed to explain morphology evolutions of branched AuNPs. Moreover, the branched AuNPs is high viability at 100 μg/mL concentration when performed by the SRB assay with human foreskin fibroblast cells.
Collapse
|
36
|
Poisonous Caterpillar-Inspired Chitosan Nanofiber Enabling Dual Photothermal and Photodynamic Tumor Ablation. Pharmaceutics 2019; 11:pharmaceutics11060258. [PMID: 31159476 PMCID: PMC6631857 DOI: 10.3390/pharmaceutics11060258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/16/2022] Open
Abstract
As caterpillars detect the presence of predators and secrete poison, herein, we show an innovative and highly effective cancer therapeutic system using biocompatible chitosan nanofiber (CNf) installed with a pH-responsive motif that senses tumor extracellular pH, pHe, prior to delivering dual-modal light-activatable materials for tumor reduction. The filamentous nanostructure of CNf is dynamic during cell interaction and durable in blood circulation. Due to its amine group, CNf uptakes a large amount of photothermal gold nanoparticles (AuNPs, >25 wt %) and photodynamic chlorin e6 (Ce6, >5 wt %). As the innovative CNf approaches tumors, cationic CNf effectively discharges AuNPs connected to the pH-responsive motif via electrostatic repulsion and selectively binds to tumor cells that are generally anionic, via the electrostatic attraction accompanied by CNf. We demonstrated via these actions that the endocytosed Ce6 (on CNf) and AuNPs (free from CNf) significantly elicited tumor cell death under light irradiation. As a result, the synergistic interplay of thermogenesis and photodynamic action was observed to switch on at the pHe, resulting in a striking reduction in tumor formation and growth rate upon light exposure.
Collapse
|