1
|
Govaerts J, Van Breedam E, De Beuckeleer S, Goethals C, D'Incal CP, Di Stefano J, Van Calster S, Buyle-Huybrecht T, Boeren M, De Reu H, Paludan SR, Thiry M, Lebrun M, Sadzot-Delvaux C, Motaln H, Rogelj B, Van Weyenbergh J, De Vos WH, Vanden Berghe W, Ogunjimi B, Delputte P, Ponsaerts P. Varicella-zoster virus recapitulates its immune evasive behaviour in matured hiPSC-derived neurospheroids. Front Immunol 2024; 15:1458967. [PMID: 39351233 PMCID: PMC11439716 DOI: 10.3389/fimmu.2024.1458967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Varicella-zoster virus (VZV) encephalitis and meningitis are potential central nervous system (CNS) complications following primary VZV infection or reactivation. With Type-I interferon (IFN) signalling being an important first line cellular defence mechanism against VZV infection by the peripheral tissues, we here investigated the triggering of innate immune responses in a human neural-like environment. For this, we established and characterised 5-month matured hiPSC-derived neurospheroids (NSPHs) containing neurons and astrocytes. Subsequently, NSPHs were infected with reporter strains of VZV (VZVeGFP-ORF23) or Sendai virus (SeVeGFP), with the latter serving as an immune-activating positive control. Live cell and immunocytochemical analyses demonstrated VZVeGFP-ORF23 infection throughout the NSPHs, while SeVeGFP infection was limited to the outer NSPH border. Next, NanoString digital transcriptomics revealed that SeVeGFP-infected NSPHs activated a clear Type-I IFN response, while this was not the case in VZVeGFP-ORF23-infected NSPHs. Moreover, the latter displayed a strong suppression of genes related to IFN signalling and antigen presentation, as further demonstrated by suppression of IL-6 and CXCL10 production, failure to upregulate Type-I IFN activated anti-viral proteins (Mx1, IFIT2 and ISG15), as well as reduced expression of CD74, a key-protein in the MHC class II antigen presentation pathway. Finally, even though VZVeGFP-ORF23-infection seems to be immunologically ignored in NSPHs, its presence does result in the formation of stress granules upon long-term infection, as well as disruption of cellular integrity within the infected NSPHs. Concluding, in this study we demonstrate that 5-month matured hiPSC-derived NSPHs display functional innate immune reactivity towards SeV infection, and have the capacity to recapitulate the strong immune evasive behaviour towards VZV.
Collapse
Affiliation(s)
- Jonas Govaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Sarah De Beuckeleer
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Charlotte Goethals
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Claudio Peter D'Incal
- Cell Death Signaling - Epigenetics Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julia Di Stefano
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Siebe Van Calster
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Tamariche Buyle-Huybrecht
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Marlies Boeren
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), University of Antwerp, Antwerp, Belgium
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marc Thiry
- Laboratory of Cell and Tissue Biology, GIGA-Neurosciences, Cell Biology L3, University of Liège, Liege, Belgium
| | - Marielle Lebrun
- Laboratory of Virology and Immunology, GIGA-Infection, Inflammation and Immunity, University of Liège, Liège, Belgium
| | - Catherine Sadzot-Delvaux
- Laboratory of Virology and Immunology, GIGA-Infection, Inflammation and Immunity, University of Liège, Liège, Belgium
| | - Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Wim Vanden Berghe
- Cell Death Signaling - Epigenetics Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Infla-Med, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Wang Y, Ma C, Wang S, Wu H, Chen X, Ma J, Wang L, Qiu HJ, Sun Y. Advances in the immunoescape mechanisms exploited by alphaherpesviruses. Front Microbiol 2024; 15:1392814. [PMID: 38962133 PMCID: PMC11221368 DOI: 10.3389/fmicb.2024.1392814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Alphaherpesviruses, categorized as viruses with linear DNA composed of two complementary strands, can potentially to induce diseases in both humans and animals as pathogens. Mature viral particles comprise of a core, capsid, tegument, and envelope. While herpesvirus infection can elicit robust immune and inflammatory reactions in the host, its persistence stems from its prolonged interaction with the host, fostering a diverse array of immunoescape mechanisms. In recent years, significant advancements have been achieved in comprehending the immunoescape tactics employed by alphaherpesviruses, including pseudorabies virus (PRV), herpes simplex virus (HSV), varicella-zoster virus (VZV), feline herpesvirus (FeHV), equine herpesvirus (EHV), and caprine herpesvirus type I (CpHV-1). Researchers have unveiled the intricate adaptive mechanisms existing between viruses and their natural hosts. This review endeavors to illuminate the research advancements concerning the immunoescape mechanisms of alphaherpesviruses by delineating the pertinent proteins and genes involved in virus immunity. It aims to furnish valuable insights for further research on related mechanisms and vaccine development, ultimately contributing to virus control and containment efforts.
Collapse
Affiliation(s)
- Yimin Wang
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Caoyuan Ma
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shan Wang
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuanqi Chen
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Jinyou Ma
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Lei Wang
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan Sun
- Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
3
|
Gopinath D, Koe KH, Maharajan MK, Panda S. A Comprehensive Overview of Epidemiology, Pathogenesis and the Management of Herpes Labialis. Viruses 2023; 15:225. [PMID: 36680265 PMCID: PMC9867007 DOI: 10.3390/v15010225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/17/2023] Open
Abstract
Herpes labialis remains exceedingly prevalent and is one of the most common human viral infections throughout the world. Recurrent herpes labialis evolves from the initial viral infection by herpes simplex virus type 1 (HSV-1) which subsequently presents with or without symptoms. Reactivation of this virus is triggered by psychosocial factors such as stress, febrile environment, ultraviolet light susceptibility, or specific dietary inadequacy. This virus infection is also characterized by uninterrupted transitions between chronic-latent and acute-recurrent phases, allowing the virus to opportunistically avoid immunity and warrant the transmission to other vulnerable hosts simultaneously. This review comprehensively evaluates the current evidence on epidemiology, pathogenesis, transmission modes, clinical manifestations, and current management options of herpes labialis infections.
Collapse
Affiliation(s)
- Divya Gopinath
- Basic Medical and Dental Sciences Department, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Kim Hoe Koe
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia
| | | | - Swagatika Panda
- Department of Oral Pathology and Microbiology, Institute of Dental Sciences, Siksha‘O’Anusandhan Deemed to be University, Bhubaneswar 751030, India
| |
Collapse
|
4
|
Dickerson F, Katsafanas E, Origoni A, Newman T, Rowe K, Ziemann RS, Bhatia K, Severance E, Ford G, Yolken R. Cigarette smoking is associated with Herpesviruses in persons with and without serious mental illness. PLoS One 2023; 18:e0280443. [PMID: 36652488 PMCID: PMC9847975 DOI: 10.1371/journal.pone.0280443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Herpesviruses are recognized as major causes of human diseases. Following initial infection, Herpesviruses can undergo cycles of reactivation controlled largely by the immune system. Cigarette smoking is an important modulator of the immune system particularly in individuals with serious mental illness where smoking is associated with increased rates of cardiopulmonary diseases and mortality. However, the effect of smoking on Herpesviruses has not been extensively studied. METHODS In this nested cohort study, cigarette smoking was assessed in 1323 persons with serious mental illness or without a psychiatric disorder ascertained in a psychiatric health care system and the adjacent community. Participants provided a blood sample from which were measured IgG class antibodies to five human Herpesviruses: Cytomegalovirus (CMV), Epstein Barr Virus (EBV), Herpes Simplex Virus-Type 1 (HSV-1); Varicella Zoster Virus (VZV); and Human Herpes Virus-Type 6 (HHV-6). The associations between smoking variables and antibody levels to the Herpesviruses were analyzed among diagnostic groups in multiple regression models adjusted for age, sex, and race. RESULTS Current smoking was significantly associated with higher levels of antibodies to CMV (coefficient .183, 95% CI .049, .317, p<.001, q<.007) and the three EBV proteins (EBV NA -(coefficient .088, 95% CI .032, .143, p = .002, q<.014; EBV Virion - coefficient .100, 95% CI .037, .163, p = .002, q<.014; and EBV VCA - coefficient .119, 95% CI .061, .177, p = .00004, q<.0016). The amount of cigarettes smoked was also correlated with higher levels of antibodies to the three EBV proteins. Interaction analyses indicated that the association between cigarette smoking and levels of antibodies to CMV and EBV was independent of diagnostic group. Cigarette smoking was not significantly associated with the level of antibodies to HSV-1, VZV, or HHV-6. CONCLUSIONS Individuals who smoke cigarettes have increased levels of IgG antibodies to CMV and EBV. Cigarette smoking may be a contributory factor in the relationship between CMV, EBV and chronic somatic disorders associated with these viruses.
Collapse
Affiliation(s)
- Faith Dickerson
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
- * E-mail:
| | - Emily Katsafanas
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
| | - Andrea Origoni
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
| | - Theresa Newman
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
| | - Kelly Rowe
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
| | - Rita S. Ziemann
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
| | - Kamal Bhatia
- The Stanley Research Program at Sheppard Pratt, Baltimore, Maryland, United States of America
| | - Emily Severance
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Glen Ford
- VanPelt Biosciences, Rockville, Maryland, United States of America
| | - Robert Yolken
- The Stanley Neurovirology Laboratory, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
Xu M, Jin X, Zhang C, Liao H, Wang P, Zhou Y, Song Y, Xia L, Wang L. TLR2-mediated NF-κB signaling pathway is involved in PPV1-induced apoptosis in PK-15 cells. Vet Res Commun 2022; 47:397-407. [PMID: 35729483 PMCID: PMC9213050 DOI: 10.1007/s11259-022-09954-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022]
Abstract
Porcine parvovirus 1 (PPV1) mainly induces severe reproductive failure in pregnant swine, and causes huge economic losses to the swine industry. Cell apoptosis induced by PPV1 infection has been identified the major cause of reproductive failure. However, the molecular mechanism was not fully elucidated. In this study, the potential mechanism of PPV1 induced apoptosis in PK-15 cells was investigated. Our results showed that PPV1 induced apoptosis in PK-15 cells. Further studies revealed toll-like receptor 2 (TLR2) was involved in the PPV1-mediated apoptosis. TLR2 siRNA significantly decreased the apoptosis. Finally, our study showed NF-κB was activated by TLR2 during PPV1-induced apoptosis. The activation of NF-κB signaling was demonstrated by the phosphorylation of p65, p65 nuclear translocation and degradation of inhibitor of kappa B α (IκBα). Together, these results provided evidence that the recognition between PPV1 and PK-15 cells was mainly through TLR2, and then induction of the NF-κB signaling pathway activation, which further induces apoptosis. Our study could provide information to understand the molecular mechanisms of PPV1 infection.
Collapse
Affiliation(s)
- Menglong Xu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Xiaohui Jin
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Chi Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Hang Liao
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Pingli Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Yong Zhou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Yue Song
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Lu Xia
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| | - Linqing Wang
- Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou, 450044, Henan, China.
| |
Collapse
|
6
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Chiara M, Horner DS, Gissi C, Pesole G. Comparative Genomics Reveals Early Emergence and Biased Spatiotemporal Distribution of SARS-CoV-2. Mol Biol Evol 2021; 38:2547-2565. [PMID: 33605421 PMCID: PMC7928790 DOI: 10.1093/molbev/msab049] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Effective systems for the analysis of molecular data are fundamental for monitoring the spread of infectious diseases and studying pathogen evolution. The rapid identification of emerging viral strains, and/or genetic variants potentially associated with novel phenotypic features is one of the most important objectives of genomic surveillance of human pathogens and represents one of the first lines of defense for the control of their spread. During the COVID 19 pandemic, several taxonomic frameworks have been proposed for the classification of SARS-Cov-2 isolates. These systems, which are typically based on phylogenetic approaches, represent essential tools for epidemiological studies as well as contributing to the study of the origin of the outbreak. Here, we propose an alternative, reproducible, and transparent phenetic method to study changes in SARS-CoV-2 genomic diversity over time. We suggest that our approach can complement other systems and facilitate the identification of biologically relevant variants in the viral genome. To demonstrate the validity of our approach, we present comparative genomic analyses of more than 175,000 genomes. Our method delineates 22 distinct SARS-CoV-2 haplogroups, which, based on the distribution of high-frequency genetic variants, fall into four major macrohaplogroups. We highlight biased spatiotemporal distributions of SARS-CoV-2 genetic profiles and show that seven of the 22 haplogroups (and of all of the four haplogroup clusters) showed a broad geographic distribution within China by the time the outbreak was widely recognized—suggesting early emergence and widespread cryptic circulation of the virus well before its isolation in January 2020. General patterns of genomic variability are remarkably similar within all major SARS-CoV-2 haplogroups, with UTRs consistently exhibiting the greatest variability, with s2m, a conserved secondary structure element of unknown function in the 3′-UTR of the viral genome showing evidence of a functional shift. Although several polymorphic sites that are specific to one or more haplogroups were predicted to be under positive or negative selection, overall our analyses suggest that the emergence of novel types is unlikely to be driven by convergent evolution and independent fixation of advantageous substitutions, or by selection of recombined strains. In the absence of extensive clinical metadata for most available genome sequences, and in the context of extensive geographic and temporal biases in the sampling, many questions regarding the evolution and clinical characteristics of SARS-CoV-2 isolates remain open. However, our data indicate that the approach outlined here can be usefully employed in the identification of candidate SARS-CoV-2 genetic variants of clinical and epidemiological importance.
Collapse
Affiliation(s)
- Matteo Chiara
- Department of Biosciences, University of Milan, Milan, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - David S Horner
- Department of Biosciences, University of Milan, Milan, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Carmela Gissi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari A. Moro, Bari,Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari, Italy.,Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari A. Moro, Bari,Italy
| |
Collapse
|
8
|
Shi D, Chen M, Liu L, Wang Q, Liu S, Wang L, Wang R. Anti-influenza A virus mechanism of three representative compounds from Flos Trollii via TLRs signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112634. [PMID: 32004628 DOI: 10.1016/j.jep.2020.112634] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 01/08/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Flos Trollii is the dried flowers of Trollius chinensis. It has been used as a traditional herbal medicine for the treatment of upper respiratory tract infection, tonsillitis and pharyngitis in China for a long history. Veratric acid, vitexin, and trolline are the representative compounds of phenolic acids, flavonoids and alkaloids in this herbal medicine. All of these three compounds show antiviral activity which is related to the efficacy of Flos Trollii. AIM OF THE STUDY To investigate the anti-influenza A virus mechanism of the three representative compounds from the perspective of regulating TLRs signaling pathways, so as to understand the relevant efficacy of Flos Trollii. MATERIALS AND METHODS Influenza A virus A/FM/1/47 (H1N1) and mouse peritoneal macrophages (RAW264.7) were used in the whole process of investigation. MTT assay was conducted to select the appropriate experimental concentrations of the three compounds on RAW264.7 cells. Western blot, RT-PCR, and ELISA assays were performed to determine the protein and mRNA expression of key factors and related inflammatory factors of TLRs signaling pathways. Griess method was employed to detect the production of NO. RESULTS The three representative compounds reduced the inflammatory factors including NO, IL-6, and TNF-α and enhanced the production of IFN-β through dynamically regulating the TLRs 3, 4 and 7 pathways. Veratric acid significantly down-regulated the protein expression of TLR3 and IRF3 as well as the mRNA expression of TBK1 and TRIF. Vitexin significantly down-regulated the protein expression of TBK1 and IRF3 as well as the mRNA expression of TLR3, TBK1, TRIF and IRF3 while up-regulated the protein expression of TLR4 and IKKα. Trolline significantly down-regulated the protein expression of TLR7 whereas significantly up-regulated the protein expression of TLR4, IKKα and TAK1. CONCLUSIONS The three representative compounds from Flos Trollii play their parts in anti-H1N1 viral effect through partially down-regulating TLRs 3 and 7 pathways and up-regulating TLR4 pathway. They counteract the inflammatory injury caused by excessive production of NO, IL-1, IL-6, and TNF-α induced by virus infection and enhance the production of IFN-β so as to eliminate the virus.
Collapse
Affiliation(s)
- Duozhi Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Meng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Lijia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Qingqing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shuangyue Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Lingzhi Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Rufeng Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
9
|
Abstract
Herpes simplex virus 1 (HSV-1) can be responsible for life-threatening HSV encephalitis (HSE). The mortality rate of patients with HSE who do not receive antiviral treatment is 70%, with most survivors suffering from permanent neurological sequelae. The use of intravenous acyclovir together with improved diagnostic technologies such as PCR and magnetic resonance imaging has resulted in a reduction in the mortality rate to close to 20%. However, 70% of surviving patients still do not recover complete neurological functions. Thus, there is an urgent need to develop more effective treatments for a better clinical outcome. It is well recognized that cerebral damage resulting from HSE is caused by viral replication together with an overzealous inflammatory response. Both of these processes constitute potential targets for the development of innovative therapies against HSE. In this review, we discuss recent progress in therapy that may be used to ameliorate the outcome of patients with HSE, with a particular emphasis on immunomodulatory agents. Ideally, the administration of adjunctive immunomodulatory drugs should be initiated during the rise of the inflammatory response, and its duration should be limited in time to reduce undesired effects. This critical time frame should be optimized by the identification of reliable biomarkers of inflammation.
Collapse
|
10
|
El-Asmi F, McManus FP, Brantis-de-Carvalho CE, Valle-Casuso JC, Thibault P, Chelbi-Alix MK. Cross-talk between SUMOylation and ISGylation in response to interferon. Cytokine 2020; 129:155025. [PMID: 32044670 DOI: 10.1016/j.cyto.2020.155025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/04/2023]
Abstract
Interferon (IFN) plays a central role in regulating host immune response to viral pathogens through the induction of IFN-Stimulated Genes (ISGs). IFN also enhances cellular SUMOylation and ISGylation, though the functional interplay between these modifications remains unclear. Here, we used a system-level approach to profile global changes in protein abundance in SUMO3-expressing cells stimulated by IFNα. These analyses revealed the stabilization of several ISG factors including SAMHD1, MxB, GBP1, GBP5, Tetherin/BST2 and members of IFITM, IFIT and IFI families. This process was correlated with enhanced IFNα-induced anti-HIV-1 and HSV-1 activities. Also IFNα upregulated protein ISGylation through increased abundance of E2 conjugating enzyme UBE2L6, and E3 ISG15 ligases TRIM25 and HERC5. Remarkably, TRIM25 depletion blocked SUMO3-dependent protein stabilization in response to IFNα. Our data identify a new mechanism by which SUMO3 regulates ISG product stability and reinforces the relevance of the SUMO pathway in controlling both the expression and functions of the restriction factors and IFN antiviral response.
Collapse
Affiliation(s)
- Faten El-Asmi
- INSERM UMR-S 1124, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris, France
| | | | | | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Québec, Canada; University of Montréal, Department of Chemistry, Québec, Canada.
| | - Mounira K Chelbi-Alix
- INSERM UMR-S 1124, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
11
|
Tormanen K, Wang S, Ghiasi H. CD80 Plays a Critical Role in Increased Inflammatory Responses in Herpes Simplex Virus 1-Infected Mouse Corneas. J Virol 2020; 94:e01511-19. [PMID: 31619558 PMCID: PMC6955247 DOI: 10.1128/jvi.01511-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/11/2019] [Indexed: 01/15/2023] Open
Abstract
We recently reported that herpes simplex virus 1 (HSV-1) infection suppresses CD80 but not CD86 expression in vitro and in vivo This suppression required the HSV-1 ICP22 gene. We also reported that overexpression of CD80 by HSV-1 exacerbated corneal scarring in BALB/c mice. We now show that this recombinant virus (HSV-CD80) expressed high levels of CD80 both in vitro in cultured rabbit skin cells and in vivo in infected mouse corneas. CD80 protein was detected on the surface of infected cells. The virulence of the recombinant HSV-CD80 virus was similar to that of the parental strain, and the replication of HSV-CD80 was similar to that of control virus in vitro and in vivo Transcriptome analysis detected 75 known HSV-1 genes in the corneas of mice infected with HSV-CD80 or parental virus on day 4 postinfection. Except for significantly higher CD80 expression in HSV-CD80-infected mice, levels of HSV-1 gene expression were similar in corneas from HSV-CD80-infected and parental virus-infected mice. The number of CD8+ T cells was higher, and the number of CD4+ T cells was lower, in the corneas of HSV-CD80-infected mice than in mice infected with parental virus. HSV-CD80-infected mice displayed a transient increase in dendritic cells. Transcriptome analysis revealed mild differences in dendritic cell maturation and interleukin-1 signaling pathways and increased expression of interferon-induced protein with tetratricopeptide repeats 2 (Ifit2). Together, these results suggest that increased CD80 levels promote increased CD8+ T cells, leading to exacerbated eye disease in HSV-1-infected mice.IMPORTANCE HSV-1 ocular infections are the leading cause of corneal blindness. Eye disease is the result of a prolonged immune response to the replicating virus. HSV-1, on the other hand, has evolved several mechanisms to evade clearance by the host immune system. We describe a novel mechanism of HSV-1 immune evasion via ICP22-dependent downregulation of the host T cell costimulatory molecule CD80. However, the exact role of CD80 in HSV-1 immune pathology is not clear. In this study, we show that eye disease is independent of the level of HSV-1 replication and that viral expression of CD80 has a detrimental role in corneal scarring, likely by increasing CD8+ T cell recruitment and activation.
Collapse
Affiliation(s)
- Kati Tormanen
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC-SSB3, Los Angeles, California, USA
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC-SSB3, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, CSMC-SSB3, Los Angeles, California, USA
| |
Collapse
|
12
|
A Subcellular Quantitative Proteomic Analysis of Herpes Simplex Virus Type 1-Infected HEK 293T Cells. Molecules 2019; 24:molecules24234215. [PMID: 31757042 PMCID: PMC6930547 DOI: 10.3390/molecules24234215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is widespread double-stranded DNA (dsDNA) virus that establishes life-long latency and causes diverse severe symptoms. The mechanisms of HSV-1 infection and HSV-1’s interactions with various host cells have been studied and reviewed extensively. Type I interferons were secreted by host cells upon HSV infection and play a vital role in controlling virus proliferation. A few studies, however, have focused on HSV-1 infection without the presence of interferon (IFN) signaling. In this study, HEK 293T cells with low toll-like receptor (TLR) and stimulator of interferon genes protein (STING) expression were infected with HSV-1 and subjected to a quantitative proteomic analysis. By using a subcellular fractionation strategy and high-performance mass spectrometry, a total of 6607 host proteins were quantified, of which 498 proteins were differentially regulated. A bioinformatics analysis indicated that multiple signaling pathways might be involved in HSV-1 infection. A further functional study indicated the role of Interferon-induced transmembrane protein 3 (IFITM3), Coiled-coil-helix-coiled-coil-helix domain-containing protein 2 (CHCHD2), and Tripartite motif-containing protein 27 (TRIM27) in inhibiting viral DNA replication and proliferation. Our data provide a global view of host responses to HSV-1 infection in HEK 293T cells and identify the proteins involved in the HSV-1 infection process.
Collapse
|
13
|
Matundan HH, Jaggi U, Wang S, Ghiasi H. Loss of ICP22 in HSV-1 Elicits Immune Infiltration and Maintains Stromal Keratitis Despite Reduced Primary and Latent Virus Infectivity. Invest Ophthalmol Vis Sci 2019; 60:3398-3406. [PMID: 31387116 PMCID: PMC6685448 DOI: 10.1167/iovs.19-27701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose We previously have reported that ICP22, an immediate early gene of herpes simplex virus type 1 (HSV-1), binds to the CD80 promoter to suppress CD80 expression in antigen-presenting cells, leading to reduced T-cell function and protection. In contrast, overexpression of CD80 exacerbates corneal scarring (CS) in ocularly infected mice. In this study we tested the hypothesis that the absence of ICP22 could increase disease severity. Methods To test our hypothesis, BALB/c mice were ocularly infected after corneal scarification with a recombinant HSV-1 lacking the ICP22 gene with its parental wild-type (WT) virus (KOS) as a control. Virus replication in the eye, CS, angiogenesis, latency, and reactivation between ICP22 null virus and WT KOS were determined. In addition, expression of IL-2, IL-4, IFN-γ, IFN-α, granzyme A, granzyme B, and perforin by CD4 and CD8 T cells in corneas of infected mice on days 3, 5, 7, 10, 14, 21, and 28 postinfection were determined by flow cytometry. Results We found similar levels of eye disease and angiogenesis in mice following corneal scarification and ocular infection with the ICP22 null virus or parental WT virus despite reduced virus replication in the eye and reduced latency and reactivation in mice ocularly infected with ICP22 null virus. The similar level of eye disease in ICP22 null virus- and WT virus-infected mice correlated with expression of various proinflammatory cytokines that infiltrated the eye after HSV-1 infection. Conclusions Our study identified a critical role for ICP22 in HSV-1 pathogenicity and suggests that HSV-1-associated CS is more dependent on host immune responses to infection than to virus replication in the eye. Thus, HSV-1 as means of survival uses ICP22 as a mechanism of immune escape that protects the host from increased pathology.
Collapse
Affiliation(s)
- Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States
| | - Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States
| |
Collapse
|
14
|
Laing KJ, Ouwendijk WJD, Koelle DM, Verjans GMGM. Immunobiology of Varicella-Zoster Virus Infection. J Infect Dis 2018; 218:S68-S74. [PMID: 30247598 PMCID: PMC6151075 DOI: 10.1093/infdis/jiy403] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Varicella-zoster virus (VZV) causes clinically significant illness during acute and recurrent infection accompanied by robust innate and acquired immune responses. Innate immune cells in skin and ganglion secrete type I interferon (IFN-I) and proinflammatory cytokines to control VZV. Varicella-zoster virus subverts pattern recognition receptor sensing to modulate antigen presentation and IFN-I production. During primary infection, VZV hijacks T cells to disseminate to the skin and establishes latency in ganglia. Durable T- and B-cell memory formed within a few weeks of infection is boosted by reactivation or re-exposure. Antigen-specific T cells are recruited and potentially retained in VZV-infected skin to counteract reactivation. In latently VZV-infected ganglia, however, virus-specific T cells have not been recovered, suggesting that local innate immune responses control VZV latency. Antibodies prevent primary VZV infection, whereas T cells are fundamental to resolving disease, limiting severity, and preventing reactivation. In this study, we review current knowledge on the interactions between VZV and the human immune system.
Collapse
Affiliation(s)
- Kerry J Laing
- Department of Medicine, University of Washington, Seattle
- Department of Laboratory Medicine, University of Washington, Seattle
| | | | - David M Koelle
- Department of Laboratory Medicine, University of Washington, Seattle
- Department of Global Health, University of Washington, Seattle
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Benaroya Research Institute, Seattle, Washington
| | - Georges M G M Verjans
- Department of Laboratory Medicine, University of Washington, Seattle
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
15
|
MxB is an interferon-induced restriction factor of human herpesviruses. Nat Commun 2018; 9:1980. [PMID: 29773792 PMCID: PMC5958057 DOI: 10.1038/s41467-018-04379-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
The type I interferon (IFN) system plays an important role in controlling herpesvirus infections, but it is unclear which IFN-mediated effectors interfere with herpesvirus replication. Here we report that human myxovirus resistance protein B (MxB, also designated Mx2) is a potent human herpesvirus restriction factor in the context of IFN. We demonstrate that ectopic MxB expression restricts a range of herpesviruses from the Alphaherpesvirinae and Gammaherpesvirinae, including herpes simplex virus 1 and 2 (HSV-1 and HSV-2), and Kaposi’s sarcoma-associated herpesvirus (KSHV). MxB restriction of HSV-1 and HSV-2 requires GTPase function, in contrast to restriction of lentiviruses. MxB inhibits the delivery of incoming HSV-1 DNA to the nucleus and the appearance of empty capsids, but not the capsid delivery to the cytoplasm or tegument dissociation from the capsid. Our study identifies MxB as a potent pan-herpesvirus restriction factor which blocks the uncoating of viral DNA from the incoming viral capsid. MxB is an interferon-induced GTPase that inhibits HIV replication. Here, Crameri et al. show that MxB restricts replication of herpesviruses by inhibiting delivery of incoming viral DNA into the nucleus, and this antiviral activity depends on MxB’s GTPase activity.
Collapse
|
16
|
Herpes Simplex Virus 1 Serine Protease VP24 Blocks the DNA-Sensing Signal Pathway by Abrogating Activation of Interferon Regulatory Factor 3. J Virol 2016; 90:5824-5829. [PMID: 27076640 DOI: 10.1128/jvi.00186-16] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/05/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The interferon (IFN)-mediated antiviral response is a central aspect of host defense; however, viruses have evolved multiple strategies to counteract IFN-mediated responses in order to successfully infect the host. Herpes simplex virus 1 (HSV-1), a typical human-restricted DNA virus, is capable of counteracting host immune responses via several distinct viral proteins, thus establishing a lifelong latent infection. In this study, we demonstrate that the VP24 protein, a serine protease of HSV-1 essential for the formation and maturation of capsids, is a novel antagonist of the beta interferon (IFN-β) pathway. Here, VP24 was shown for the first time to dampen interferon stimulatory DNA (ISD)-triggered IFN-β production and inhibit IFN-β promoter activation induced by cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) and by STING, respectively. Further study demonstrated that ectopic expression of VP24 selectively blocked IFN regulatory factor 3 (IRF3) but not NF-κB promoter activation. In addition, VP24 was demonstrated to downregulate ISD-induced phosphorylation and dimerization of IRF3 during HSV-1 infection with a VP24 stable knockdown human foreskin fibroblast cell line. The underlying molecular mechanism is that VP24 abrogates the interaction between TANK-binding kinase 1 (TBK1) and IRF3, hence impairing IRF3 activation. These results illustrate that VP24 is able to block the production of IFN-β by inhibiting IRF3 activation, which may represent a critical adaptation to enable viral effective replication within the host. IMPORTANCE This study demonstrated that HSV-1 protein VP24 could inhibit IFN-β production and promoter activation triggered by ISD, cGAS and STING and by STING, respectively. VP24 selectively blocked IRF3 promoter activation and ISD-induced phosphorylation and dimerization of IRF3 without affecting the NF-κB promoter activation during viral infection. VP24 also inhibited IRF3 activation by impeding the interaction between TBK1 and IRF3 during viral infection. This study provides new insights into the immune evasion mediated by HSV-1 and identifies VP24 as a crucial effector for HSV-1 to evade the host DNA-sensing signal pathway.
Collapse
|
17
|
Green TJ, Rolland JL, Vergnes A, Raftos D, Montagnani C. OsHV-1 countermeasures to the Pacific oyster's anti-viral response. FISH & SHELLFISH IMMUNOLOGY 2015; 47:435-443. [PMID: 26384844 DOI: 10.1016/j.fsi.2015.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/06/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
The host-pathogen interactions between the Pacific oyster (Crassostrea gigas) and Ostreid herpesvirus type 1 (OsHV-1) are poorly characterised. Herpesviruses are a group of large, DNA viruses that are known to encode gene products that subvert their host's antiviral response. It is likely that OsHV-1 has also evolved similar strategies as its genome encodes genes with high homology to C. gigas inhibitors of apoptosis (IAPs) and an interferon-stimulated gene (termed CH25H). The first objective of this study was to simultaneously investigate the expression of C. gigas and OsHV-1 genes that share high sequence homology during an acute infection. Comparison of apoptosis-related genes revealed that components of the extrinsic apoptosis pathway (TNF) were induced in response to OsHV-1 infection, but we failed to observe evidence of apoptosis using a combination of biochemical and molecular assays. IAPs encoded by OsHV-1 were highly expressed during the acute stage of infection and may explain why we didn't observe evidence of apoptosis. However, C. gigas must have an alternative mechanism to apoptosis for clearing OsHV-1 from infected gill cells as we observed a reduction in viral DNA between 27 and 54 h post-infection. The reduction of viral DNA in C. gigas gill cells occurred after the up-regulation of interferon-stimulated genes (viperin, PKR, ADAR). In a second objective, we manipulated the host's anti-viral response by injecting C. gigas with a small dose of poly I:C at the time of OsHV-1 infection. This small dose of poly I:C was unable to induce transcription of known antiviral effectors (ISGs), but these oysters were still capable of inhibiting OsHV-1 replication. This result suggests dsRNA induces an anti-viral response that is additional to the IFN-like pathway.
Collapse
Affiliation(s)
- Timothy J Green
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia.
| | - Jean-Luc Rolland
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Agnes Vergnes
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - David Raftos
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia
| | - Caroline Montagnani
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| |
Collapse
|
18
|
Piret J, Boivin G. Innate immune response during herpes simplex virus encephalitis and development of immunomodulatory strategies. Rev Med Virol 2015. [PMID: 26205506 DOI: 10.1002/rmv.1848] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herpes simplex viruses are large double-stranded DNA viruses. These viruses have the ability to establish a lifelong latency in sensory ganglia and to invade and replicate in the CNS. Apart from relatively benign mucosal infections, HSV is responsible for severe illnesses including HSV encephalitis (HSE). HSE is the most common cause of sporadic, potentially fatal viral encephalitis in Western countries. If left untreated, the mortality rate associated with HSE is approximately 70%. Despite antiviral therapy, the mortality is still higher than 30%, and almost 60% of surviving individuals develop neurological sequelae. It is suggested that direct virus-related and indirect immune-mediated mechanisms contribute to the damages occurring in the CNS during HSE. In this manuscript, we describe the innate immune response to HSV, the development of HSE in mice knock-out for proteins of the innate immune system as well as inherited deficiencies in key components of the signaling pathways involved in the production of type I interferon that could predispose individuals to develop HSE. Finally, we review several immunomodulatory strategies aimed at modulating the innate immune response at a critical time after infection that were evaluated in mouse models and could be combined with antiviral therapy to improve the prognosis of HSE. In conclusion, the cerebral innate immune response that develops during HSE is a "double-edged sword" as it is critical to control viral replication in the brain early after infection, but, if left uncontrolled, may also result in an exaggerated inflammatory response that could be detrimental to the host.
Collapse
Affiliation(s)
- Jocelyne Piret
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
19
|
Schönrich G, Raftery MJ. Dendritic cells as Achilles' heel and Trojan horse during varicella zoster virus infection. Front Microbiol 2015; 6:417. [PMID: 26005438 PMCID: PMC4424880 DOI: 10.3389/fmicb.2015.00417] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022] Open
Abstract
Varicella zoster virus (VZV), a human alphaherpesvirus, causes varicella and subsequently establishes latency within sensory nerve ganglia. Later in life VZV can reactivate to cause herpes zoster. A reduced frequency of VZV-specific T cells is strongly associated with herpes zoster illustrating that these immune cells are central to control latency. Dendritic cells (DCs) are required for the generation of VZV-specific T cells. However, DCs can also be infected in vitro and in vivo allowing VZV to evade the antiviral immune response. Thus, DCs represent the immune systems' Achilles heel. Uniquely among the human herpesviruses, VZV infects both DCs and T cells, and exploits both as Trojan horses. During primary infection VZV-infected DCs traffic to the draining lymph nodes and tonsils, where the virus is transferred to T cells. VZV-infected T cells subsequently spread infection throughout the body to give the typical varicella skin rash. The delicate interplay between VZV and DCs and its consequences for viral immune evasion and viral dissemination will be discussed in this article.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin , Berlin, Germany
| |
Collapse
|
20
|
Kropp KA, Hsieh WY, Isern E, Forster T, Krause E, Brune W, Angulo A, Ghazal P. A temporal gate for viral enhancers to co-opt Toll-like-receptor transcriptional activation pathways upon acute infection. PLoS Pathog 2015; 11:e1004737. [PMID: 25856589 PMCID: PMC4391941 DOI: 10.1371/journal.ppat.1004737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/09/2015] [Indexed: 12/27/2022] Open
Abstract
Viral engagement with macrophages activates Toll-Like-Receptors (TLRs) and viruses must contend with the ensuing inflammatory responses to successfully complete their replication cycle. To date, known counter-strategies involve the use of viral-encoded proteins that often employ mimicry mechanisms to block or redirect the host response to benefit the virus. Whether viral regulatory DNA sequences provide an opportunistic strategy by which viral enhancer elements functionally mimic innate immune enhancers is unknown. Here we find that host innate immune genes and the prototypical viral enhancer of cytomegalovirus (CMV) have comparable expression kinetics, and positively respond to common TLR agonists. In macrophages but not fibroblasts we show that activation of NFκB at immediate-early times of infection is independent of virion-associated protein, M45. We find upon virus infection or transfection of viral genomic DNA the TLR-agonist treatment results in significant enhancement of the virus transcription-replication cycle. In macrophage time-course infection experiments we demonstrate that TLR-agonist stimulation of the viral enhancer and replication cycle is strictly delimited by a temporal gate with a determined half-maximal time for enhancer-activation of 6 h; after which TLR-activation blocks the viral transcription-replication cycle. By performing a systematic siRNA screen of 149 innate immune regulatory factors we identify not only anticipated anti-viral and pro-viral contributions but also new factors involved in the CMV transcription-replication cycle. We identify a central convergent NFκB-SP1-RXR-IRF axis downstream of TLR-signalling. Activation of the RXR component potentiated direct and indirect TLR-induced activation of CMV transcription-replication cycle; whereas chromatin binding experiments using wild-type and enhancer-deletion virus revealed IRF3 and 5 as new pro-viral host transcription factor interactions with the CMV enhancer in macrophages. In a series of pharmacologic, siRNA and genetic loss-of-function experiments we determined that signalling mediated by the TLR-adaptor protein MyD88 plays a vital role for governing the inflammatory activation of the CMV enhancer in macrophages. Downstream TLR-regulated transcription factor binding motif disruption for NFκB, AP1 and CREB/ATF in the CMV enhancer demonstrated the requirement of these inflammatory signal-regulated elements in driving viral gene expression and growth in cells as well as in primary infection of neonatal mice. Thus, this study shows that the prototypical CMV enhancer, in a restricted time-gated manner, co-opts through DNA regulatory mimicry elements, innate-immune transcription factors to drive viral expression and replication in the face of on-going pro-inflammatory antiviral responses in vitro and in vivo and; suggests an unexpected role for inflammation in promoting acute infection and has important future implications for regulating latency. Here we discover how inflammatory signalling may unintentionally promote infection, as a result of viruses evolving DNA sequences, known as enhancers, which act as a bait to prey on the infected cell transcription factors induced by inflammation. The major inflammatory transcription factors activated are part of the TLR-signalling pathway. We find the prototypical viral enhancer of cytomegalovirus can be paradoxically boosted by activation of inflammatory “anti-viral” TLR-signalling independent of viral structural proteins. This leads to an increase in viral gene expression and replication in cell-culture and upon infection of mice. We identify an axis of inflammatory transcription factors, acting downstream of TLR-signalling but upstream of interferon inhibition. Mechanistically, the central TLR-adapter protein MyD88 is shown to play a critical role in promoting viral enhancer activity in the first 6h of infection. The co-option of TLR-signalling exceeds the usage of NFκB, and we identify IRF3 and 5 as newly found viral-enhancer interacting inflammatory transcription factors. Taken together this study reveals how virus enhancers, employ a path of least resistance by directly harnessing within a short temporal window, the activation of anti-viral signalling in macrophages to drive viral gene expression and replication to an extent that has not been recognised before.
Collapse
Affiliation(s)
- Kai A. Kropp
- Division of Pathway Medicine, Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (KAK); (PG)
| | - Wei Yuan Hsieh
- Division of Pathway Medicine, Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Elena Isern
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Thorsten Forster
- Division of Pathway Medicine, Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
| | - Eva Krause
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ana Angulo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Peter Ghazal
- Division of Pathway Medicine, Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh, United Kingdom
- SynthSys, University of Edinburgh, The King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (KAK); (PG)
| |
Collapse
|
21
|
Lee JB, Tanikawa T, Hayashi K, Asagi M, Kasahara Y, Hayashi T. Characterization and biological effects of two polysaccharides isolated from Acanthopanax sciadophylloides. Carbohydr Polym 2015; 116:159-66. [DOI: 10.1016/j.carbpol.2014.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
|
22
|
Kawamura T, Ogawa Y, Aoki R, Shimada S. Innate and intrinsic antiviral immunity in skin. J Dermatol Sci 2014; 75:159-66. [PMID: 24928148 DOI: 10.1016/j.jdermsci.2014.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 01/11/2023]
Abstract
As the body's most exposed interface with the environment, the skin is constantly challenged by potentially pathogenic microbes, including viruses. To sense the invading viruses, various types of cells resident in the skin express many different pattern-recognition receptors (PRRs) such as C-type lectin receptors (CLRs), Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and cytosolic DNA sensors, that can detect the pathogen-associated molecular patterns (PAMPs) of the viruses. The detection of viral PAMPs initiates two major innate immune signaling cascades: the first involves the activation of the downstream transcription factors, such as interferon regulatory factors (IRFs), nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which cooperate to induce the transcription of type I interferons and pro-inflammatory cytokines. The second signaling pathway involves the caspase-1-mediated processing of IL-1β and IL-18 through the formation of an inflammasome complex. Cutaneous innate immunity including the production of the innate cytokines constitutes the first line of host defence that limits the virus dissemination from the skin, and also plays an important role in the activation of adaptive immune response, which represents the second line of defence. More recently, the third immunity "intrinsic immunity" has emerged, that provides an immediate and direct antiviral defense mediated by host intrinsic restriction factors. This review focuses on the recent advances regarding the antiviral immune systems, highlighting the innate and intrinsic immunity against the viral infections in the skin, and describes how viral components are recognized by cutaneous immune systems.
Collapse
Affiliation(s)
- Tatsuyoshi Kawamura
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Japan
| | - Youichi Ogawa
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Japan
| | - Rui Aoki
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Japan.
| | - Shinji Shimada
- Department of Dermatology, Faculty of Medicine, University of Yamanashi, Japan
| |
Collapse
|
23
|
Soboll Hussey G, Ashton LV, Quintana AM, Lunn DP, Goehring LS, Annis K, Landolt G. Innate immune responses of airway epithelial cells to infection with Equine herpesvirus-1. Vet Microbiol 2014; 170:28-38. [DOI: 10.1016/j.vetmic.2014.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 11/16/2022]
|
24
|
The carboxy terminal region of the human cytomegalovirus immediate early 1 (IE1) protein disrupts type II inteferon signaling. Viruses 2014; 6:1502-24. [PMID: 24699362 PMCID: PMC4014707 DOI: 10.3390/v6041502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 12/21/2022] Open
Abstract
Interferons (IFNs) activate the first lines of defense against viruses, and promote innate and adaptive immune responses to viruses. We report that the immediate early 1 (IE1) protein of human cytomegalovirus (HCMV) disrupts signaling by IFNγ. The carboxyl-terminal region of IE1 is required for this function. We found no defect in the initial events in IFNγ signaling or in nuclear accumulation of signal transducer and activator of transcription 1 (STAT1) in IE1-expressing cells. Moreover, we did not observe an association between disruption of IFNγ signaling and nuclear domain 10 (ND10) disruption. However, there is reduced binding of STAT1 homodimers to target gamma activated sequence (GAS) elements in the presence of IE1. Co-immunoprecipitation studies failed to support a direct interaction between IE1 and STAT1, although these studies revealed that the C-terminal region of IE1 was required for interaction with STAT2. Together, these results indicate that IE1 disrupts IFNγ signaling by interfering with signaling events in the nucleus through a novel mechanism.
Collapse
|
25
|
Kimura H, Yoshizumi M, Ishii H, Oishi K, Ryo A. Cytokine production and signaling pathways in respiratory virus infection. Front Microbiol 2013; 4:276. [PMID: 24062733 PMCID: PMC3774987 DOI: 10.3389/fmicb.2013.00276] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/26/2013] [Indexed: 12/13/2022] Open
Abstract
It has been confirmed that respiratory virus infections can induce abberant cytokine production in the host. These cytokines may be associated with both elimination of the virus and complications in the host, such as virus-induced asthma. Representative host defense mechanisms against pathogens, including bacteria and viruses, are mediated by the innate immune system. Cells of the innate immune system express essential molecules, namely pattern recognition receptors (PRRs), such as Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and retinoic acid-inducible gene-I-like receptors. These PRRs can recognize components of pathogens such as bacterial lipopolysaccharide, viral antigens, and their genomes (DNA and RNA). Furthermore, PRRs activate various signaling pathways resulting in cytokine production against pathogen infection. However, the exact mechanisms remain unknown. In this review, we mainly focus on the representative mechanisms of cytokine production through PRRs and signaling pathways due to virus infections, including respiratory virus infections. In addition, we describe the relationships between respiratory infections and virus-induced asthma.
Collapse
Affiliation(s)
- Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases Tokyo, Japan ; Gunma Prefectural Institute of Public Health and Environmental Sciences Gunma, Japan ; Department of Molecular Biodefence Research, Graduate School of Medicine, Yokohama City University Kanagawa, Japan
| | | | | | | | | |
Collapse
|
26
|
Dey M, Auffinger B, Lesniak MS, Ahmed AU. Antiglioma oncolytic virotherapy: unattainable goal or a success story in the making? Future Virol 2013; 8:675-693. [PMID: 24910708 DOI: 10.2217/fvl.13.47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Initial observations from as early as the mid-1800s suggested that patients suffering from hematological malignancies would transiently go into remission upon naturally contracting viral infections laid the foundation for the oncolytic virotherapy research field. Since then, research focusing on anticancer oncolytic virotherapy has rapidly evolved. Today, oncolytic viral vectors have been engineered to stimulate and manipulate the host immune system, selectively targeting tumor tissues while sparing non-neoplastic cells. Glioblastoma multiforme, the most common adult primary brain tumor, has a disasterous history. It is one of the most deadly cancers known to humankind. Over the last century our understanding of this disease has grown exponentially. However, the median survival of patients suffering from this disease has only been extended by a few months. Even with the best, most aggressive modern therapeutic approaches available, malignant gliomas are still virtually 100% fatal. Motivated by the desperate need to find effective treatment strategies, more investments have been applied to oncolytic virotherapy preclinical and clinical studies. In this review we will discuss the antiglioma oncolytic virotherapy research field. We will survey its history and the principles laid down to serve as basis for preclinical works. We will also debate the variety of viral vectors used, their clinical applications, the lessons learned from clinical trials and possible future directions.
Collapse
Affiliation(s)
- Mahua Dey
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | - Brenda Auffinger
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | - Maciej S Lesniak
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | - Atique U Ahmed
- The Brain Tumor Center, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| |
Collapse
|
27
|
Abstract
AbstractBovine herpesvirus 1 (BHV-1) causes a variety of diseases and is globally distributed. It infects via mucosal epithelium, leading to rapid lytic replication and latent infection, primarily in sensory ganglia. Large amounts of virus can be excreted by the host on primary infection or upon recrudescence of latent infection, resulting in disease spread. The bovine immune response to BHV-1 is rapid, robust, balanced, and long-lasting. The innate immune system is the first to respond to the infection, with type I interferons (IFNs), inflammatory cytokines, killing of infected host cells, and priming of a balanced adaptive immune response. The virus possesses a variety of immune evasion strategies, including inhibition of type I IFN production, chemokine and complement binding, infection of macrophages and neutrophils, and latency. BHV-1 immune suppression contributes to the severity of its disease manifestations and to the bovine respiratory disease complex, the leading cause of cattle death loss in the USA.
Collapse
|
28
|
Both TRIF and IPS-1 adaptor proteins contribute to the cerebral innate immune response against herpes simplex virus 1 infection. J Virol 2013; 87:7301-8. [PMID: 23596298 DOI: 10.1128/jvi.00591-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors (TLRs) and RNA helicases (RLHs) are important cell sensors involved in the immunological control of viral infections through production of type I interferon (IFN). The impact of a deficiency in the TRIF and IPS-1 adaptor proteins, respectively, implicated in TLR3 and RLH signaling pathways, was investigated during herpes simplex virus 1 (HSV-1) encephalitis. TRIF(-/-), IPS-1(-/-), and C57BL/6 wild-type (WT) mice were infected intranasally with 7.5 × 10(5) PFU of HSV-1. Mice were monitored for neurological signs and survival over 20 days. Groups of mice were sacrificed on days 3, 5, 7, 9, and 11 postinfection for determination of brain viral replication by quantitative PCR (qPCR), plaque assay, and immunohistochemistry and for alpha/beta interferon (IFN-α/β) levels and phosphorylation of interferon regulatory factors 3 and 7 (IRF-3 and -7) in brain homogenates by enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. TRIF(-/-) and IPS-1(-/-) mice had higher mortality rates than WT mice (P = 0.02 and P = 0.09, respectively). Viral antigens were more disseminated throughout the brain, correlating with a significant increase in brain viral load for TRIF(-/-) (days 5 to 9) and IPS-1(-/-) (days 7 and 9) mice compared to results for the WT. IFN-β production was reduced in brain homogenates of TRIF(-/-) and IPS-1(-/-) mice on day 5 compared to results for the WT, whereas IFN-α levels were increased on day 7 in TRIF(-/-) mice. Phosphorylation levels of IRF-3 and IRF-7 were decreased in TRIF(-/-) and IPS-1(-/-) mice, respectively. These data suggest that both the TRIF and IPS-1 signaling pathways are important for the control of HSV replication in the brain and survival through IFN-β production.
Collapse
|
29
|
Amsler L, Malouli D, DeFilippis V. The inflammasome as a target of modulation by DNA viruses. Future Virol 2013; 8:357-370. [PMID: 24955107 DOI: 10.2217/fvl.13.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cellular innate immune response represents the initial reaction of a host against infecting pathogens. Host cells detect incoming microbes by way of a large and expanding array of receptors that react with evolutionarily conserved molecular patterns exhibited by microbial intruders. These receptors are responsible for initiating signaling that leads to both transcriptional activation of immunologically important genes as well as protease-dependent processing of cellular proteins. The inflammasome refers to a protein complex that functions as an activation platform for the cysteine protease caspase-1, which then processes inflammatory molecules such as IL-1β and IL-18 into functional forms. Assembly of this complex is triggered following receptor-mediated detection of pathogen-associated molecules. Receptors have been identified that are essential to inflammasome activation in response to numerous molecular patterns including virus-associated molecules such as DNA. In fact, the importance of cytoplasmic DNA as an immune stimulus is exemplified by the existence of at least nine distinct cellular receptors capable of initiating innate reactivity in response to this molecule. Viruses that employ DNA as genomic material include herpesviruses, poxviruses and adenoviruses. Each has been described as capable of inducing inflammasome-mediated activity. Interestingly, however, the cellular molecules responsible for these responses appear to vary according to host species, cell type and even viral strain. Secretion of IL-1β and IL-18 are important components of antimicrobial immunity and, as a result, pathogens have evolved factors to evade or counteract this response. This includes DNA-based viruses, many of which encode multiple redundant counteractive molecules. However, it is clear that such phenotypes are only beginning to be uncovered. The purpose of this review is to describe what is known regarding the activation of inflammasome-mediated processes in response to infection with well-examined families of DNA viruses and to discuss characterized mechanisms of manipulation and neutralization of inflammasome-dependent activity. This review aims to shed light on the biologically important phenomena regarding this virus-host interaction and to highlight key areas where important information is lacking.
Collapse
Affiliation(s)
- Lisi Amsler
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505, NW 185th Avenue, Beaverton, OR 97006, USA
| | - Daniel Malouli
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505, NW 185th Avenue, Beaverton, OR 97006, USA
| | - Victor DeFilippis
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, 505, NW 185th Avenue, Beaverton, OR 97006, USA
| |
Collapse
|
30
|
Stanberry LR. Genital and Perinatal Herpes Simplex Virus Infections. Sex Transm Dis 2013. [DOI: 10.1016/b978-0-12-391059-2.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Abstract
Oncolytic virotherapy is an emerging treatment modality that uses replication-competent viruses to destroy cancers. Recent advances include preclinical proof of feasibility for a single-shot virotherapy cure, identification of drugs that accelerate intratumoral virus propagation, strategies to maximize the immunotherapeutic action of oncolytic viruses and clinical confirmation of a critical viremic threshold for vascular delivery and intratumoral virus replication. The primary clinical milestone has been completion of accrual in a phase 3 trial of intratumoral herpes simplex virus therapy using talimogene laherparepvec for metastatic melanoma. Key challenges for the field are to select 'winners' from a burgeoning number of oncolytic platforms and engineered derivatives, to transiently suppress but then unleash the power of the immune system to maximize both virus spread and anticancer immunity, to develop more meaningful preclinical virotherapy models and to manufacture viruses with orders-of-magnitude higher yields than is currently possible.
Collapse
|
32
|
Xing J, Wang S, Lin R, Mossman KL, Zheng C. Herpes simplex virus 1 tegument protein US11 downmodulates the RLR signaling pathway via direct interaction with RIG-I and MDA-5. J Virol 2012; 86:3528-40. [PMID: 22301138 PMCID: PMC3302539 DOI: 10.1128/jvi.06713-11] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/17/2012] [Indexed: 12/24/2022] Open
Abstract
The interferon (IFN)-mediated antiviral response is a major defense of the host immune system. In order to complete their life cycle, viruses must modulate host IFN-mediated immune responses. Herpes simplex virus 1 (HSV-1) is a large DNA virus containing more than 80 genes, many of which encode proteins that are involved in virus-host interactions and show immune modulatory capabilities. In this study, we demonstrate that the US11 protein, an RNA binding tegument protein of HSV-1, is a novel antagonist of the beta IFN (IFN-β) pathway. US11 significantly inhibited Sendai virus (SeV)-induced IFN-β production, and its double-stranded RNA (dsRNA) binding domain was indispensable for this inhibition activity. Additionally, wild-type HSV-1 coinfection showed stronger inhibition than US11 mutant HSV-1 in SeV-induced IFN-β production. Coimmunoprecipitation analysis demonstrated that the US11 protein in HSV-1-infected cells interacts with endogenous RIG-I and MDA-5 through its C-terminal RNA-binding domain, which was RNA independent. Expression of US11 in both transfected and HSV-1-infected cells interferes with the interaction between MAVS and RIG-I or MDA-5. Finally, US11 dampens SeV-mediated IRF3 activation. Taken together, the combined data indicate that HSV-1 US11 binds to RIG-I and MDA-5 and inhibits their downstream signaling pathway, preventing the production of IFN-β, which may contribute to the pathogenesis of HSV-1 infection.
Collapse
Affiliation(s)
- Junji Xing
- Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shuai Wang
- Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rongtuan Lin
- The Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Karen L. Mossman
- The Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Chunfu Zheng
- Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
33
|
Abstract
Nearly all human beings, by the time they reach adolescence, are infected with multiple herpesviruses. At any given time, this family of viruses accounts for 35-40 billion human infections worldwide, making herpesviruses among the most prevalent pathogens known to exist. Compared to most other viruses, herpesviruses are also unique in that infection lasts the life of the host. Remarkably, despite their prevalence and persistence, little is known about how these viruses interact with their hosts, especially during the clinically asymptomatic phase of infection referred to as latency. This review explores data in human and animal systems that reveal the ability of latent herpesviruses to modulate the immune response to self and environmental antigens. From the perspective of the host, there are both potentially detrimental and surprisingly beneficial effects of this lifelong interaction. The realization that latent herpesvirus infection modulates immune responses in asymptomatic hosts forces us to reconsider what constitutes a 'normal' immune system in a healthy individual.
Collapse
Affiliation(s)
- Douglas W. White
- Division of Rheumatology, Gundersen Lutheran Medical Center, La Crosse, WI, USA
| | - R. Suzanne Beard
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Microbiology & Immunology, Wake Forest University School of Medicine, Winston-Salem NC, USA
| | - Erik S. Barton
- Department of Microbiology & Immunology, Wake Forest University School of Medicine, Winston-Salem NC, USA
| |
Collapse
|
34
|
Viral interferon regulatory factors are critical for delay of the host immune response against rhesus macaque rhadinovirus infection. J Virol 2011; 86:2769-79. [PMID: 22171275 DOI: 10.1128/jvi.05657-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related gamma-2 herpesvirus rhesus macaque (RM) rhadinovirus (RRV) are the only known viruses to encode viral homologues of the cellular interferon (IFN) regulatory factors (IRFs). Recent characterization of a viral IRF (vIRF) deletion clone of RRV (vIRF-knockout RRV [vIRF-ko RRV]) demonstrated that vIRFs inhibit induction of type I and type II IFNs during RRV infection of peripheral blood mononuclear cells. Because the IFN response is a key component to a host's antiviral defenses, this study has investigated the role of vIRFs in viral replication and the development of the immune response during in vivo infection in RMs, the natural host of RRV. Experimental infection of RMs with vIRF-ko RRV resulted in decreased viral loads and diminished B cell hyperplasia, a characteristic pathology during acute RRV infection that often develops into more severe lymphoproliferative disorders in immune-compromised animals, similar to pathologies in KSHV-infected individuals. Moreover, in vivo infection with vIRF-ko RRV resulted in earlier and sustained production of proinflammatory cytokines and earlier induction of an anti-RRV T cell response compared to wild-type RRV infection. These findings reveal the broad impact that vIRFs have on pathogenesis and the immune response in vivo and are the first to validate the importance of vIRFs during de novo infection in the host.
Collapse
|
35
|
Mandal P, Krueger BE, Oldenburg D, Andry KA, Beard RS, White DW, Barton ES. A gammaherpesvirus cooperates with interferon-alpha/beta-induced IRF2 to halt viral replication, control reactivation, and minimize host lethality. PLoS Pathog 2011; 7:e1002371. [PMID: 22114555 PMCID: PMC3219715 DOI: 10.1371/journal.ppat.1002371] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023] Open
Abstract
The gammaherpesviruses, including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), establish latency in memory B lymphocytes and promote lymphoproliferative disease in immunocompromised individuals. The precise immune mechanisms that prevent gammaherpesvirus reactivation and tumorigenesis are poorly defined. Murine gammaherpesvirus 68 (MHV68) is closely related to EBV and KSHV, and type I (alpha/beta) interferons (IFNαβ) regulate MHV68 reactivation from both B cells and macrophages by unknown mechanisms. Here we demonstrate that IFNβ is highly upregulated during latent infection, in the absence of detectable MHV68 replication. We identify an interferon-stimulated response element (ISRE) in the MHV68 M2 gene promoter that is bound by the IFNαβ-induced transcriptional repressor IRF2 during latency in vivo. The M2 protein regulates B cell signaling to promote establishment of latency and reactivation. Virus lacking the M2 ISRE (ISREΔ) overexpresses M2 mRNA and displays uncontrolled acute replication in vivo, higher latent viral load, and aberrantly high reactivation from latency. These phenotypes of the ISREΔ mutant are B-cell-specific, require IRF2, and correlate with a significant increase in virulence in a model of acute viral pneumonia. We therefore identify a mechanism by which a gammaherpesvirus subverts host IFNαβ signaling in a surprisingly cooperative manner, to directly repress viral replication and reactivation and enforce latency, thereby minimizing acute host disease. Since we find ISREs 5′ to the major lymphocyte latency genes of multiple rodent, primate, and human gammaherpesviruses, we propose that cooperative subversion of IFNαβ-induced IRFs to promote latent infection is an ancient strategy that ensures a stable, minimally-pathogenic virus-host relationship. Herpesviruses establish life-long infection in a non-replicating state termed latency. During immune compromise, herpesviruses can reactivate and cause severe disease, including cancer. We investigated mechanisms by which interferons alpha/beta (IFNαβ), a family of antiviral immune genes, inhibit reactivation of murine gammaherpesvirus 68 (MHV68). MHV68 is related to Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, human gammaherpesviruses associated with multiple cancers. We made the surprising discovery that during latency, MHV68 cooperates with IFNαβ to inhibit its own replication. Specifically, a viral gene required for reactivation has evolved to be directly repressed by an IFNαβ-induced transcription factor, IRF2. Once virus replication has triggered sufficient IFNαβ production, expression of this viral gene is reduced and reactivation efficiency decreases. This strategy safeguards the health of the host, since a mutant virus that cannot respond to IRF2 replicates uncontrollably and is more virulent. Viral sensing of IFNαβ is also potentially subversive, since it allows MHV68 to detect periods of localized immune quiescence during which it can reactivate and spread to a new host. Thus, we highlight a novel path of virus-host coevolution, toward cooperative subversion of the antiviral immune response. These observations may illuminate new targets for drugs to inhibit herpesvirus reactivation or eliminate herpesvirus-associated tumors.
Collapse
Affiliation(s)
- Pratyusha Mandal
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Bridgette E. Krueger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Darby Oldenburg
- Department of Health Professions, University of Wisconsin La Crosse, La Crosse, Wisconsin, United States of America
- Rheumatology Research Laboratory, Gundersen Lutheran Medical Center, La Crosse, Wisconsin, United States of America
| | - Katherine A. Andry
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - R. Suzanne Beard
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Douglas W. White
- Rheumatology Research Laboratory, Gundersen Lutheran Medical Center, La Crosse, Wisconsin, United States of America
- Department of Microbiology, University of Wisconsin La Crosse, La Crosse, Wisconsin, United States of America
| | - Erik S. Barton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
Gaajetaan GR, Bruggeman CA, Stassen FR. The type I interferon response during viral infections: a "SWOT" analysis. Rev Med Virol 2011; 22:122-37. [PMID: 21971992 PMCID: PMC7169250 DOI: 10.1002/rmv.713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/26/2011] [Accepted: 08/31/2011] [Indexed: 12/24/2022]
Abstract
The type I interferon (IFN) response is a strong and crucial moderator for the control of viral infections. The strength of this system is illustrated by the fact that, despite some temporary discomfort like a common cold or diarrhea, most viral infections will not cause major harm to the healthy immunocompetent host. To achieve this, the immune system is equipped with a wide array of pattern recognition receptors and the subsequent coordinated type I IFN response orchestrated by plasmacytoid dendritic cells (pDCs) and conventional dendritic cells (cDCs). The production of type I IFN subtypes by dendritic cells (DCs), but also other cells is crucial for the execution of many antiviral processes. Despite this coordinated response, morbidity and mortality are still common in viral disease due to the ability of viruses to exploit the weaknesses of the immune system. Viruses successfully evade immunity and infection can result in aberrant immune responses. However, these weaknesses also open opportunities for improvement via clinical interventions as can be seen in current vaccination and antiviral treatment programs. The application of IFNs, Toll-like receptor ligands, DCs, and antiviral proteins is now being investigated to further limit viral infections. Unfortunately, a common threat during stimulation of immunity is the possible initiation or aggravation of autoimmunity. Also the translation from animal models to the human situation remains difficult. With a Strengths-Weaknesses-Opportunities-Threats ("SWOT") analysis, we discuss the interaction between host and virus as well as (future) therapeutic options, related to the type I IFN system.
Collapse
Affiliation(s)
- Giel R Gaajetaan
- Department of Medical Microbiology, Maastricht University Medical Center, The Netherlands
| | | | | |
Collapse
|
37
|
CD11c controls herpes simplex virus 1 responses to limit virus replication during primary infection. J Virol 2011; 85:9945-55. [PMID: 21775452 DOI: 10.1128/jvi.05208-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CD11c is expressed on the surface of dendritic cells (DCs) and is one of the main markers for identification of DCs. DCs are the effectors of central innate immune responses, but they also affect acquired immune responses to infection. However, how DCs influence the efficacy of adaptive immunity is poorly understood. Here, we show that CD11c(+) DCs negatively orchestrate both adaptive and innate immunity against herpes simplex virus type 1 (HSV-1) ocular infection. The effectiveness and quantity of virus-specific CD8(+) T cell responses are increased in CD11c-deficient animals. In addition, the levels of CD83, CD11b, alpha interferon (IFN-α), and IFN-β, but not IFN-γ, were significantly increased in CD11c-deficient animals. Higher levels of IFN-α, IFN-β, and CD8(+) T cells in the CD11c-deficient mice may have contributed to lower virus replication in the eye and trigeminal ganglia (TG) during the early period of infection than in wild-type mice. However, the absence of CD11c did not influence survival, severity of eye disease, or latency. Our studies provide for the first time evidence that CD11c expression may abrogate the ability to reduce primary virus replication in the eye and TG via higher activities of type 1 interferon and CD8(+) T cell responses.
Collapse
|
38
|
Vandevenne P, Lebrun M, El Mjiyad N, Ote I, Di Valentin E, Habraken Y, Dortu E, Piette J, Sadzot-Delvaux C. The varicella-zoster virus ORF47 kinase interferes with host innate immune response by inhibiting the activation of IRF3. PLoS One 2011; 6:e16870. [PMID: 21347389 PMCID: PMC3036730 DOI: 10.1371/journal.pone.0016870] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/17/2011] [Indexed: 12/24/2022] Open
Abstract
The innate immune response constitutes the first line of host defence that limits viral spread and plays an important role in the activation of adaptive immune response. Viral components are recognized by specific host pathogen recognition receptors triggering the activation of IRF3. IRF3, along with NF-κB, is a key regulator of IFN-β expression. Until now, the role of IRF3 in the activation of the innate immune response during Varicella-Zoster Virus (VZV) infection has been poorly studied. In this work, we demonstrated for the first time that VZV rapidly induces an atypical phosphorylation of IRF3 that is inhibitory since it prevents subsequent IRF3 homodimerization and induction of target genes. Using a mutant virus unable to express the viral kinase ORF47p, we demonstrated that (i) IRF3 slower-migrating form disappears; (ii) IRF3 is phosphorylated on serine 396 again and recovers the ability to form homodimers; (iii) amounts of IRF3 target genes such as IFN-β and ISG15 mRNA are greater than in cells infected with the wild-type virus; and (iv) IRF3 physically interacts with ORF47p. These data led us to hypothesize that the viral kinase ORF47p is involved in the atypical phosphorylation of IRF3 during VZV infection, which prevents its homodimerization and subsequent induction of target genes such as IFN-β and ISG15.
Collapse
Affiliation(s)
- Patricia Vandevenne
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
| | - Marielle Lebrun
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
| | - Nadia El Mjiyad
- Laboratory of Molecular Oncology (LOM), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Isabelle Ote
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
| | - Emmanuel Di Valentin
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
| | - Yvette Habraken
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
| | - Estelle Dortu
- Department of Pathology, University of Liege, Liege, Belgium
| | - Jacques Piette
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
| | - Catherine Sadzot-Delvaux
- GIGA-Research, Laboratory of Virology and Immunology, University of Liege, Liege, Belgium
- * E-mail:
| |
Collapse
|