1
|
Jiang H, Zhang Y, Ji P, Ming J, Li Y, Zhou Y. Surfactant protein D alleviates chondrocytes senescence by upregulating SIRT3/SOD2 pathway in osteoarthritis. Mol Med 2025; 31:161. [PMID: 40307686 PMCID: PMC12044875 DOI: 10.1186/s10020-025-01221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 04/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is an age-related degenerative disease that affects bones and joints. The hallmark pathogenesis of OA is associated with chondrocyte senescence. Surfactant protein D (SP-D) is a member of the innate immune proteins family, which can inhibit the immune inflammatory response of chondrocytes. However, the effect of SP-D on chondrocyte senescence phenotype is poorly studied. The present study investigated the phenotypic regulation of OA chondrocyte senescence mediated by SP-D and explored the underlying molecular mechanism. METHODS In this study, an in vitro senescence chondrocyte model was generated by subjecting chondrocytes to IL-1β treatment. Furthermore, the expression of aging-related biomarkers and mitochondrial functions in SP-D overexpressing chondrocytes was observed. Co-immunoprecipitation was conducted to verify the association between SP-D and the identifed proteins within chondrocytes. Moreover, a rat OA model was established by destabilization of the medial meniscus surgery, and the effect of SP-D on reversing the aging phenotype of OA cartilage was investigated. RESULTS The results indicated that SP-D significantly decreased senescence and enhanced mitochondrial functions in senescent chondrocytes. The RNA-sequencing analysis revealed that the SIRT3/SOD2 pathway predominantly modulated the effect of SP-D on alleviating senescence. In addition, SP-D overexpression mitigated chondrocyte senescence, suppressed senescence-associated secretory phenotype (SASP) secretion and ameliorated mitochondrial damage. In the rat OA model, SP-D inhibited aging-related pathological changes by upregulating SIRT3/SOD2 pathway, thereby protecting the cartilage tissue integrity. CONCLUSION These findings indicate that SP-D modulates the inhibition of chondrocyte senescence by upregulating SIRT3/SOD2 pathway. These data indicate that targeting SP-D and the SIRT3/SOD2 pathway might be a promising therapeutic strategy for OA.
Collapse
Affiliation(s)
- Huanyu Jiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yantao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Piyao Ji
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianghua Ming
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yaming Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Hu X, Xie J, Su J. Lacc1-engineered extracellular vesicles reprogram mitochondrial metabolism to alleviate inflammation and cartilage degeneration in TMJ osteoarthritis. J Nanobiotechnology 2025; 23:276. [PMID: 40186254 PMCID: PMC11971819 DOI: 10.1186/s12951-025-03355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a multifaceted degenerative disease characterized by progressive cartilage degradation, chronic pain, and functional limitations of the TMJ, significantly affecting patients' quality of life. Although metabolic homeostasis in chondrocytes is crucial for cartilage health, the mechanisms underlying metabolic dysregulation in TMJOA remain poorly characterized. This study aimed to investigate the metabolic imbalance in TMJOA cartilage and explore novel therapeutic strategies targeting metabolic reprogramming. RNA sequencing revealed a significant imbalance between glycolysis and oxidative phosphorylation (OXPHOS) in TMJOA cartilage, with a marked shift toward glycolysis, which is associated with inflammation and cartilage degradation. To counteract this imbalance, Laccase domain-containing 1 (Lacc1), a metabolic regulator involved in both inflammation and metabolic homeostasis, was selected for investigation, as its role in chondrocytes had not been explored. We engineered macrophage-derived extracellular vesicles (EVs) to overexpress Lacc1 (OE-EVs), aiming to restore metabolic balance and modulate inflammation in chondrocytes. In vitro, OE-EVs significantly reduced IL-1β-induced inflammation, inhibited glycolysis by decreasing key glycolytic enzymes, improved mitochondrial function by decreasing mitochondrial superoxide levels, and the restoration of normal mitochondrial structure. In vivo, micro-computed tomography (Micro-CT) and histological analyses demonstrated that OE-EVs effectively alleviated inflammation and promoted cartilage repair, as indicated by a 1.55-fold increase in toluidine blue-stained cartilage area compared to the TMJOA group, reflecting improved cartilage matrix integrity and proteoglycan retention. These findings highlight the therapeutic potential of Lacc1-engineered EVs to target mitochondrial metabolism, reestablish metabolic homeostasis, and reduce inflammation in TMJOA, offering a novel and promising strategy for improving clinical outcomes in TMJOA patients.
Collapse
Affiliation(s)
- Xiaofeng Hu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Dental School, Shanghai Tongji Stomatological Hospital, Tongji University, Shanghai, 200072, China
| | - Jian Xie
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Dental School, Shanghai Tongji Stomatological Hospital, Tongji University, Shanghai, 200072, China.
| | - Jiansheng Su
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Dental School, Shanghai Tongji Stomatological Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
3
|
Zhang WH, Xiang WY, Yi L, Fang R. The status and hotspot analysis of research on extracellular vesicles and osteoarthritis: a bibliometric analysis. Front Pharmacol 2025; 16:1484437. [PMID: 40230694 PMCID: PMC11994722 DOI: 10.3389/fphar.2025.1484437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Background Degenerative joint disease, known as osteoarthritis (OA), is characterized by pain, swelling, and decreased mobility. The illness has a major negative influence on patients' quality of life and is common around the world, especially among older people. Nevertheless, there are insufficient possibilities for early diagnosis and therapy. Extracellular vesicles, or EVs, control the immune response, tissue healing, and cellular communication. Methods This work offers a bibliometric representation of the areas of focus and correlations between extracellular vesicles and osteoarthritis. We searched for osteoarthritis and extracellular vesicles in publications in the Web of Science Core Collection (WoSCC) database. Bibliometrics, an R package, CiteSpace 6.1. R2, and VOSviewer 1.6.17 were used to perform bibliometric analyses of concentration fields, trends, and relevant factors. Results 944 papers from 59 nations were published; the countries that contributed the most to the field were China, the USA, and Italy. Professors Laura and Enrico are the top contributors. Sichuan University, Istituto Ortopedico Galeazzi, and Shanghai Jiao Tong University are the top three universities. The International Journal of Molecular Sciences is an excellent publication. Exosome, expression, knee osteoarthritis, extracellular vesicle, mesenchymal stem cell, osteoarthritis, and inflammation are the most often occurring keywords. Conclusion These results suggest areas of interest and focus for future research on EVs and OA. This trend suggests that the volume of literature on OA and EVs will continue to rise, with more research being published in the future. This study helps scholars understand current research hotspots in the field and may inspire future research.
Collapse
Affiliation(s)
- Wen Hao Zhang
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
| | - Wen Yuan Xiang
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
- Department of Orthopaedic, Institute of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Orthopaedic, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, China
- Department of orthopaedic, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lin Yi
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
- Department of Orthopaedic, Institute of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Orthopaedic, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, China
- Department of orthopaedic, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rui Fang
- The Fourth Clinical College of Xinjiang Medical University, Urumqi, China
- Department of Orthopaedic, Institute of Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
- Department of Orthopaedic, Xinjiang Uygur Autonomous Region Institute of Traditional Chinese Medicine, Urumqi, China
- Department of orthopaedic, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
4
|
Liu M, Wu C, Wu C, Zhou Z, Fang R, Liu C, Ning R. Immune cells differentiation in osteoarthritic cartilage damage: friends or foes? Front Immunol 2025; 16:1545284. [PMID: 40201177 PMCID: PMC11975574 DOI: 10.3389/fimmu.2025.1545284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Osteoarthritis (OA) is a chronic disease primarily characterized by degenerative changes in articular cartilage and synovitis, for which there are currently no targeted or curative therapies available in clinical practice. In recent years, the in-depth analysis of OA using single-cell sequencing and immunomics technologies has revealed the presence of multiple immune cell subsets, as well as different differentiation states within the same subset, in OA. Through immune-immune and immune-joint tissue interactions, these cells collectively promote or inhibit the progression of arthritis. This complex immune network, where "friends and foes coexist," has made targeted therapeutic strategies aimed at directly eliminating immune cells challenging, highlighting the urgent need for a detailed review of the composition, distribution, functional heterogeneity, therapeutic potential, and potential risks of immune subsets within the joint. Additionally, the similarities and differences between OA and rheumatoid arthritis (RA) in terms of diagnosis and immunotherapy need to be precisely understood, in order to draw lessons from or reject RA-based immunotherapies. To this end, this review summarizes the major triggers of inflammation in OA, the differentiation characteristics of key immune cell subsets, and compares the similarities and differences between OA and RA in diagnosis and treatment. It also outlines the current immunomodulatory strategies for OA and their limitations. Furthermore, we provide a detailed and focused discussion on immune cells that act as "friends or foes" in arthritis, covering the M1/M2 polarization of macrophages, functional heterogeneity of neutrophils, unique roles of dendritic cells at different maturation states, the balance between pro-inflammatory T cells and regulatory T cells (Tregs), and the diverse functions of B cells, plasma cells, and regulatory B cells (Bregs) in OA. By interpreting the roles of these immune cells, this review clarifies the dynamic changes and interactions of immune cells in OA joints, providing a theoretical foundation for more precise targeted interventions in future clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Chenfeng Liu
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), School of Life Science, Anhui Medical University, Hefei, Anhui, China
| | - Rende Ning
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University (The First People’s Hospital of Hefei), School of Life Science, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Yang JJ, He SQ, Huang B, Wang PX, Xu F, Lin X, Liu J. A bibliometric and visualized analysis of extracellular vesicles in degenerative musculoskeletal diseases (from 2006 to 2024). Front Pharmacol 2025; 16:1550208. [PMID: 40183074 PMCID: PMC11966045 DOI: 10.3389/fphar.2025.1550208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Background With the rapid development of extracellular vesicles (EVs) in regenerative medicine research, they have become a promising new direction in the mechanistic, diagnosis and treatment studies of degenerative musculoskeletal diseases (DMDs), and has attracted increasing attention. However, there is currently a lack of comprehensive and objective summary analysis to help researchers quickly and conveniently understand the development trajectory and future trends of this field. Method This study collected articles and reviews published from 2006 to 2024 on EVs in DMDs from the Web of Science database. Bibliometric and visual analysis was conducted using several tools, including Microsoft Excel Office, VOSviewer, CiteSpace, Pajek, and R packages. Results 1,182 publications were included in the analysis from 2006 to 2024. Notably, there was a rapid increase in the number of publications starting in 2016, suggesting that this field remains in a developmental stage. Co-authorship analysis revealed that China ranked first in terms of publications, whereas the United States led in citations. The journal with the highest number of publications was International Journal of Molecular Sciences (INT J MOL SCI). The most prolific authors were Ragni, E with 23 publications, while the most cited author was Toh, WS. Additionally, nine of the top 10 institutions were from China, with Shanghai Jiao Tong University leading in the number of publications. The most cited article was "MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity", authored by Zhang, S, and published in BIOMATERIALS in 2018. Conclusion This study, through bibliometric and visual analysis, clearly illustrates the collaborative relationships among countries, authors, institutions, and journals, providing valuable insights for researchers seeking academic collaboration opportunities. Moreover, the analysis of keywords and citations allows researchers to better understand key research hotspots and frontiers in this field, and points toward promising directions for future research. The growing interest in EV research in DMDs over recent years indicates increasing attention and a dynamic progression in this field.
Collapse
Affiliation(s)
- Jun-Jie Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Sha-Qi He
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Huang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Xin Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Department of Radiology Quality Control Center in Hunan Province, Changsha, China
| |
Collapse
|
6
|
Chen X, Tian B, Wang Y, Zheng J, Kang X. Potential and challenges of utilizing exosomes in osteoarthritis therapy (Review). Int J Mol Med 2025; 55:43. [PMID: 39791222 PMCID: PMC11759586 DOI: 10.3892/ijmm.2025.5484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Exosomes are integral to the pathophysiology of osteoarthritis (OA) due to their roles in mediating intercellular communication and regulating inflammatory processes. Exosomes are integral to the transport of bioactive molecules, such as proteins, lipids and nucleic acids, which can influence chondrocyte behavior and joint homeostasis. Given their properties of regeneration and ability to target damaged tissues, exosomes represent a promising therapeutic avenue for OA treatment. Exosomes have potential in promoting cartilage repair, reducing inflammation and improving overall joint function. However, several challenges remain, including the need for standardized isolation and characterization methods, variability in exosomal content, and regulatory hurdles. The present review aims to provide a comprehensive overview of the current understanding of exosome mechanisms in OA and their therapeutic potential, while also addressing the ongoing challenges faced in translating these findings into clinical practice. By consolidating existing research, the present review aims to pave the way for future studies aimed at optimizing exosome‑based therapies for effective OA management.
Collapse
Affiliation(s)
| | | | | | - Jiang Zheng
- Department of Joint Surgery, Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China
| | - Xin Kang
- Department of Joint Surgery, Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China
| |
Collapse
|
7
|
Wang X, Dai J, Xu L, Wu Z, Lou L, Xia C, Miao H, Fei W, Wang J. Mechanism of osteoarthritis treatment by exosomes. Chin Med J (Engl) 2025; 138:367-369. [PMID: 39439385 PMCID: PMC11771594 DOI: 10.1097/cm9.0000000000003325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Xiaofei Wang
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian Medical University, Dalian, Liaoning 116044, China
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Jihang Dai
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Lei Xu
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Zhimin Wu
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian Medical University, Dalian, Liaoning 116044, China
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Linbing Lou
- The Yangzhou School of Clinical Medicine of Dalian Medical University, Dalian Medical University, Dalian, Liaoning 116044, China
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Cunyi Xia
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Haixiang Miao
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Wenyong Fei
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Jingcheng Wang
- Department of Orthopedics, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China
| |
Collapse
|
8
|
Stocco E, Emmi A, De Caro R, Porzionato A, Macchi V. Knee adipose tissue: from its implication in osteoarthritis to its supposed role in tissue engineering. NPJ AGING 2025; 11:5. [PMID: 39900591 PMCID: PMC11790864 DOI: 10.1038/s41514-025-00195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025]
Affiliation(s)
- Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
- Department of Women's and Children's Health, University of Padova, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Aron Emmi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy.
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padua, Italy.
| |
Collapse
|
9
|
Kong Y, Wang Y, Yang Y, Hou Y, Yu J, Liu M, Xie S, Song Y. Intra-articular injection of exosomes derived from different stem cells in animal models of osteoarthritis: a systematic review and meta- analysis. J Orthop Surg Res 2024; 19:834. [PMID: 39696589 DOI: 10.1186/s13018-024-05227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND In recent years, the increasing incidence of osteoarthritis (OA) has attracted widespread public attention; however, the available effective treatments are limited. As a result, new therapeutic approaches, including stem cell and exosome therapies, have been proposed and are gradually gaining popularity. Because exosomes are immunocompatible, there is thought to be more potential for their use in clinical settings. This study summarizes the efficacy of exosomes in the treatment of OA. METHODS In total, we conducted a comprehensive search of the PubMed, Web of Science, and Embase databases using medical subject headings terms to identify studies published from their inception until November 2023 that investigated the use of stem cell-derived exosomes in treating OA. We focused on specific outcomes including osteophyte score, chondrocyte count, pain level, qPCR and histological assessments such as the OARSI (Osteoarthritis research society international) score to measure cartilage degeneration. For data extraction, we used GetData Graph Digitizer to retrieve values from graphs, and the meta-analysis was conducted using RevMan 5.3 software. We chose mean difference (MD) as the primary effect measure since all included studies reported the same outcomes. Ultimately, 20 articles met the inclusion criteria and were included in the meta-analysis. RESULTS We evaluated 20 studies comprising a total of 400 subjects. Compared with control groups, the exosome-treated groups showed significantly improved histological outcomes, as measured by the OARSI score (n = 400; MD = -3.54; 95% CI = [-4.30, -2.79]; P < 0.00001; I2 = 98%). This indicates a marked reduction in cartilage degeneration and OA severity in the exosome-treated groups. Notably, exosome therapy was more effective when administered during the early stages of OA. Additionally, a once-weekly dosing schedule yielded better results compared to more frequent administrations. Of the three exosome isolation methods assessed, kit-based extraction demonstrated a trend toward superior therapeutic efficacy. CONCLUSIONS Exosome treatment improved OA compared to placebo treatment.
Collapse
Affiliation(s)
- Yajie Kong
- Department of Orthopedics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Yuzhong Wang
- Department of Orthopedics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
- Hebei Key Laboratory of Rare Disease, Shijiazhuang, 050000, Hebei Province, People's Republic of China
| | - Yujia Yang
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Yu Hou
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Jingjing Yu
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Meiling Liu
- Department of Orthopedics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Siyi Xie
- Department of Orthopedics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Yongzhou Song
- Department of Orthopedics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People's Republic of China.
- Hebei Key Laboratory of Rare Disease, Shijiazhuang, 050000, Hebei Province, People's Republic of China.
- Hebei Medical University National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, People's Republic of China.
| |
Collapse
|
10
|
Meskher H, Sharifianjazi F, Tavamaishvili K, Irandoost M, Nejadkoorki D, Makvandi P. Limitations, challenges and prospective solutions for bioactive glasses-based nanocomposites for dental applications: A critical review. J Dent 2024; 150:105331. [PMID: 39216818 DOI: 10.1016/j.jdent.2024.105331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Several nanomaterials have been recently used to overcome various challenges in the dental domain. Bioactive glasses, a class of bioceramics, with their outstanding properties including but not limited to their strong biocompatibility, antibacterial characteristics, and bioactivity inside the body's internal milieu have made them valuable biomaterials in a variety of dental domains. The utilization of nanomaterials has improved the performance of teeth, and the incorporation of bioactive glasses has the field of dentistry at an unsurpassed level in different categories such as esthetic and restorative dentistry, periodontics and dental implants, orthodontics, and endodontics. The current study discusses the most recent developments of the bioactive glasses' creation and implementation for dental applications, as well as the challenges and opportunities still facing the field. This work provides an overview of the current obstacles and potential future prospects for bioactive glasses-based nanocomposites to improve their dental uses. It also emphasizes the great potential synergistic effects of bioactive glasses used with other nanomaterials for dental applications.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Process Engineering, College of Science and Technology, Chadli Bendjedid University, 36000, Algeria
| | - Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Ketevan Tavamaishvili
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str, Tbilisi 0160, Georgia
| | - Maryam Irandoost
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India; Centre of Research Impact and Outcome, Chitkara UniversityInstitute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
11
|
Tang Z, Shu L, Cao Z, Xu Y, Li C. Osteoarthritis rat serum-derived extracellular vesicles aggravate osteoarthritis development by inducing NLRP3-mediated pyroptotic cell death and cellular inflammation. Hum Cell 2024; 37:1624-1637. [PMID: 39141224 DOI: 10.1007/s13577-024-01119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Osteoarthritis (OA), degenerative joint disease, is the most prevalent form of arthritis worldwide. Besides its substantial burden on society, the high OA morbidity greatly diminishes patients' quality of life. According to recent research, patients-derived serum extracellular vesicles (EVs) are critically involved in sustaining the corresponding disease progression. However, limited research has fully explored the specific functions and molecular mechanisms of OA serum-derived EVs in disease progression. Consequently, we aimed to investigate the underlying mechanism of OA rats-derived serum EVs in regulating OA progression. Before constructing the exosome-cell co-culture system, EVs were extracted from OA and control rat serum and co-cultured with bone marrow mesenchymal stem cells (BM-MSCs). Western blotting (WB), RT-qPCR, and enzyme-linked immunosorbent assay (ELISA) results revealed that OA rat serum-derived EVs upregulated cell pyroptosis-related markers, including nod-Like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein (ASC), gasdermin D (GSDMD), and cleaved caspase-1. The OA rat-EVs also induced the release of LDH and inflammatory cytokines, including interleukin (IL)-1β, IL-18, IL-6, and TNF-α. Additional experiments revealed that OA rat-EVs delivered miR-133a-3p to BM-MSCs and upregulated miR-133a-3p to degrade sirtuin 1 (SIRT1), and activating the downstream NF-κB signaling pathway. Furthermore, the rescuing experiments confirmed that silencing SIRT1 abrogated the miR-133a-3p-induced protective effects in OA-EVs-treated BM-MSCs. In conclusion, OA rats-derived miR-133a-3p-containing EVs modulated the downstream SIRT1/NF-κB pathway-mediated pyroptotic cell death and inflammation in OA. In other words, this study confirmed the role and underlying mechanisms by which OA-associated serum EVs regulate pyroptosis and inflammation response in OA development.
Collapse
Affiliation(s)
- Zhifang Tang
- Department of Orthopaedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Road, Xishan District, Kunming, 650032, Yunnan, China
| | - Longjun Shu
- The First People's Hospital of Dali City, Dali, 671000, China
| | - Zijian Cao
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Yongqing Xu
- Department of Orthopaedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Road, Xishan District, Kunming, 650032, Yunnan, China.
| | - Chuan Li
- Department of Orthopaedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Road, Xishan District, Kunming, 650032, Yunnan, China.
| |
Collapse
|
12
|
Wu J, Wu J, Xiang W, Gong Y, Feng D, Fang S, Wu Y, Liu Z, Li Y, Chen R, Zhang X, Li B, Chen L, Jin R, Li S, Zhang B, Zhang T, Yin L, Zhou Y, Huang S, Liu N, Xu H, Lian J, Wang Y, Zhou S, Ni Z. Engineering exosomes derived from TNF-α preconditioned IPFP-MSCs enhance both yield and therapeutic efficacy for osteoarthritis. J Nanobiotechnology 2024; 22:555. [PMID: 39261846 PMCID: PMC11391629 DOI: 10.1186/s12951-024-02795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The pathogenesis of osteoarthritis (OA) involves the progressive degradation of articular cartilage. Exosomes derived from mesenchymal stem cells (MSC-EXOs) have been shown to mitigate joint pathological injury by attenuating cartilage destruction. Optimization the yield and therapeutic efficacy of exosomes derived from MSCs is crucial for promoting their clinical translation. The preconditioning of MSCs enhances the therapeutic potential of engineered exosomes, offering promising prospects for application by enabling controlled and quantifiable external stimulation. This study aims to address these issues by employing pro-inflammatory preconditioning of MSCs to enhance exosome production and augment their therapeutic efficacy for OA. METHODS The exosomes were isolated from the supernatant of infrapatellar fat pad (IPFP)-MSCs preconditioned with a pro-inflammatory factor, TNF-α, and their production was subsequently quantified. The exosome secretion-related pathways in IPFP-MSCs were evaluated through high-throughput transcriptome sequencing analysis, q-PCR and western blot analysis before and after TNF-α preconditioning. Furthermore, exosomes derived from TNF-α preconditioned IPFP-MSCs (IPFP-MSC-EXOsTNF-α) were administered intra-articularly in an OA mouse model, and subsequent evaluations were conducted to assess joint pathology and gait alterations. The expression of proteins involved in the maintenance of cartilage homeostasis within the exosomes was determined through proteomic analysis. RESULTS The preconditioning with TNF-α significantly enhanced the exosome secretion of IPFP-MSCs compared to unpreconditioned MSCs. The potential mechanism involved the activation of the PI3K/AKT signaling pathway in IPFP-MSCs by TNF-α precondition, leading to an up-regulation of autophagy-related protein 16 like 1(ATG16L1) levels, which subsequently facilitated exosome secretion. The intra-articular administration of IPFP-MSC-EXOsTNF-α demonstrated superior efficacy in ameliorating pathological changes in the joints of OA mice. The preconditioning of TNF-α enhanced the up-regulation of low-density lipoprotein receptor-related protein 1 (LRP1) levels in IPFP-MSC-EXOsTNF-α, thereby exerting chondroprotective effects. CONCLUSION TNF-α preconditioning constitutes an effective and promising method for optimizing the therapeutic effects of IPFP-MSCs derived exosomes in the treatment of OA.
Collapse
Affiliation(s)
- Jiangyi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Jinhui Wu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Wei Xiang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yunquan Gong
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
- Department of Orthopedics, Shanghai Hospital, Wanzhou District, Chongqing, 40400, China
| | - Daibo Feng
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Shunzheng Fang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing, 400038, China
| | - Zheng Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yang Li
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Xiaoqi Zhang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Bingfei Li
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Lifeng Chen
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Runze Jin
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Song Li
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400000, China
| | - Bin Zhang
- Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400000, China
- Rehabilitation Center, Strategic Support Force Xingcheng Special Duty Sanatorium, Xingcheng, 125105, China
| | - Tongyi Zhang
- Department of General Practice, Chinese PLA General Hospital of the Central Theater Command, Wuhan, 430012, China
| | - Lin Yin
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Yizhao Zhou
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Shu Huang
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Ningning Liu
- Department of Laboratory Medicine, The Fifth Clinical Medical College of, Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China
| | - Hao Xu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Jiqin Lian
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing, 400038, China
| | - Yongqian Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China.
| | - Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China.
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China.
| |
Collapse
|
13
|
D'Arrigo D, Salerno M, De Marziani L, Boffa A, Filardo G. A call for standardization for secretome and extracellular vesicles in osteoarthritis: results show disease-modifying potential, but protocols are too heterogeneous-a systematic review. Hum Cell 2024; 37:1243-1275. [PMID: 38909330 DOI: 10.1007/s13577-024-01084-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024]
Abstract
The currently available osteoarthritis (OA) treatments offer symptoms' relief without disease-modifying effects. Increasing evidence supports the role of human mesenchymal stem cells (MSCs) to drive beneficial effects provided by their secretome and extracellular vesicles (EVs), which includes trophic and biologically active factors. Aim of this study was to evaluate the in vitro literature to understand the potential of human secretome and EVs for OA treatment and identify trends, gaps, and potential translational challenges. A systematic review was performed on PubMed, Embase, and Web-of-Science, identifying 58 studies. The effects of secretome and EVs were analysed on osteoarthritic cells regarding anabolic, anti-apoptotic/anti-inflammatory and catabolic/pro-inflammatory/degenerative activity, chondroinduction, and immunomodulation. The results showed that MSC-derived EVs elicit an increase in proliferation and migration, reduction of cell death and inflammation, downregulation of catabolic pathways, regulation of immunomodulation, and promotion of anabolic processes in arthritic cells. However, a high heterogeneity in several technical or more applicative aspects emerged. In conclusion, the use of human secretome and EVs as strategy to address OA processes has overall positive effects and disease-modifying potential. However, it is crucial to reduce protocol variability and strive toward a higher standardization, which will be essential for the translation of this promising OA treatment from the in vitro research setting to the clinical practice.
Collapse
Affiliation(s)
- Daniele D'Arrigo
- Regenerative Medicine Technologies Laboratory, EOC, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, 45 Rue des Saints Pères, 75006, Paris, France
- Abbelight, Cachan, 191 Av. Aristide Briand, 94230, Cachan, France
| | - Manuela Salerno
- Applied and Translational Research center, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - Luca De Marziani
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Angelo Boffa
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136, Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research center, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Via Tesserete 46, 6900, Lugano, Switzerland
- Università Della Svizzera Italiana, Faculty of Biomedical Sciences, Via Buffi 13, 6900, Lugano, Switzerland
| |
Collapse
|
14
|
Ding Y, Liang L, Guo Y, Zhu B. Bibliometric analysis of research on osteoarthritis and extracellular vesicles: Trends and frontiers. Heliyon 2024; 10:e36127. [PMID: 39224260 PMCID: PMC11366935 DOI: 10.1016/j.heliyon.2024.e36127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Extensive research has made significant progress in exploring the potential application of extracellular vesicles (EV) in the diagnosis and treatment of osteoarthritis (OA). However, there is current a lack of study on bibliometrics. In this study, we completed a novel bibliometric analysis of EV research in OA over the past two decades. Specifically, we identified a total of 354 relevant publications obtained between January 1, 2003 and December 31, 2022. We also provided a description of the distribution information regarding the countries or regions of publication, institutions involved, journals, authors, citations, and keywords. The primary research focuses encompassed the role of extracellular vesicles in the diagnosis of OA, delivery of active ingredients, treatment strategies, and cartilage repair. These findings highlight the latest research frontiers and emerging areas, providing valuable insights for further investigations on the application of extracellular vesicles in the context of osteoarthritis.
Collapse
Affiliation(s)
- Yongkang Ding
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| | - Lu Liang
- Central Clinical Medical College, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| | - Ye Guo
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| | - Bing Zhu
- Central Clinical Medical College, Baotou Medical College, Baotou, Inner Mongolia, 014040, China
| |
Collapse
|
15
|
Yang L, Li W, Zhao Y, Wang Y, Shang L. Stem cell recruitment polypeptide hydrogel microcarriers with exosome delivery for osteoarthritis treatment. J Nanobiotechnology 2024; 22:512. [PMID: 39192268 PMCID: PMC11348651 DOI: 10.1186/s12951-024-02765-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
With the accelerated aging tendency, osteoarthritis (OA) has become an intractable global public health challenge. Stem cells and their derivative exosome (Exo) have shown great potential in OA treatment. Research in this area tends to develop functional microcarriers for stem cell and Exo delivery to improve the therapeutic effect. Herein, we develop a novel system of Exo-encapsulated stem cell-recruitment hydrogel microcarriers from liquid nitrogen-assisted microfluidic electrospray for OA treatment. Benefited from the advanced droplet generation capability of microfluidics and mild cryogelation procedure, the resultant particles show uniform size dispersion and excellent biocompatibility. Moreover, acryloylated stem cell recruitment peptides SKPPGTSS are directly crosslinked within the particles by ultraviolet irradiation, thus simplifying the peptide coupling process and preventing its premature release. The SKPPGTSS-modified particles can recruit endogenous stem cells to promote cartilage repair and the released Exo from the particles further enhances the cartilage repair performance through synergistic effects. These features suggest that the proposed hydrogel microcarrier delivery system is a promising candidate for OA treatment.
Collapse
Affiliation(s)
- Lei Yang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Wenzhao Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, 225001, China.
| | - Luoran Shang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
Karoichan A, Boucenna S, Tabrizian M. Therapeutics of the future: Navigating the pitfalls of extracellular vesicles research from an osteoarthritis perspective. J Extracell Vesicles 2024; 13:e12435. [PMID: 38943211 PMCID: PMC11213691 DOI: 10.1002/jev2.12435] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 07/01/2024] Open
Abstract
Extracellular vesicles have gained wide momentum as potential therapeutics for osteoarthritis, a highly prevalent chronic disease that still lacks an approved treatment. The membrane-bound vesicles are secreted by all cells carrying different cargos that can serve as both disease biomarkers and disease modifiers. Nonetheless, despite a significant peak in research regarding EVs as OA therapeutics, clinical implementation seems distant. In addition to scalability and standardization challenges, researchers often omit to focus on and consider the proper tropism of the vesicles, the practicality and relevance of their source, their low native therapeutic efficacy, and whether they address the disease as a whole. These considerations are necessary to better understand EVs in a clinical light and have been comprehensively discussed and ultimately summarized in this review into a conceptualized framework termed the nanodiamond concept. Future perspectives are also discussed, and alternatives are presented to address some of the challenges and concerns.
Collapse
Affiliation(s)
- Antoine Karoichan
- Faculty of Dental Medicine and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Sarah Boucenna
- Faculty of Dental Medicine and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Maryam Tabrizian
- Faculty of Dental Medicine and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
17
|
Li M, Tian J, Yu K, Liu H, Yu X, Wang N, Gong Q, Li K, Shen Y, Wei X. A ROS-responsive hydrogel incorporated with dental follicle stem cell-derived small extracellular vesicles promotes dental pulp repair by ameliorating oxidative stress. Bioact Mater 2024; 36:524-540. [PMID: 39072284 PMCID: PMC11279300 DOI: 10.1016/j.bioactmat.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Pulpitis, an inflammatory disease of dental pulp tissues, ultimately results in the loss of pulp defense properties. Existing clinical modalities cannot effectively promote inflamed pulp repair. Oxidative stress is a major obstacle inhibiting pulp repair. Due to their powerful antioxidative capacity, mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) exhibit potential for treating oxidative stress-related disorders. However, whether MSC-sEVs shield dental pulp tissues from oxidative damage is largely unknown. Here, we showed that dental follicle stem cell-derived sEVs (DFSC-sEVs) have antioxidative and prohealing effects on a rat LPS-induced pulpitis model by enhancing the survival, proliferation and odontogenesis of H2O2-injured dental pulp stem cells (DPSCs). Additionally, DFSC-sEVs restored the oxidative/antioxidative balance in DPSC mitochondria and had comparable effects on ameliorating mitochondrial dysfunction with the mitochondrion-targeted antioxidant Mito-Tempo. To improve the efficacy of DFSC-sEVs, we fabricated an intelligent and injectable hydrogel to release DFSC-sEVs by combining sodium alginate (SA) and the ROS sensor RhB-AC. The newly formed SA-RhB hydrogel efficiently encapsulates DFSC-sEVs and exhibits controlled release of DFSC-sEVs in a HClO/ClO- concentration-dependent manner, providing a synergistic antioxidant effect with DFSC-sEVs. These results suggest that DFSC-sEVs-loaded SA-RhB is a promising minimally invasive treatment for pulpitis by enhancing tissue repair in the pulp wound microenvironment.
Collapse
Affiliation(s)
- Mengjie Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jun Tian
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Kangkang Yu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Nan Wang
- Department of Pharmaceutical Engineering, College of Food and Bioengineering, Xihua University, Chengdu, China
| | - Qimei Gong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
18
|
Xu J, Zhou K, Gu H, Zhang Y, Wu L, Bian C, Huang Z, Chen G, Cheng X, Yin X. Exosome miR-4738-3p-mediated regulation of COL1A2 through the NF-κB and inflammation signaling pathway alleviates osteoarthritis low-grade inflammation symptoms. BIOMOLECULES & BIOMEDICINE 2024; 24:520-536. [PMID: 38059912 PMCID: PMC11088901 DOI: 10.17305/bb.2023.9921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
This study aimed to elucidate the roles of microRNA (miR)-4738-3p and the collagen type I alpha 2 chain (COL1A2) gene in the pathogenesis of osteoarthritis (OA) through bioinformatics analysis and cellular assays. The GSE55235 dataset was analyzed using the weighted gene co-expression network analysis (WGCNA) method to identify gene modules associated with OA. Key overlapping genes were identified from these modules and the GSE55235-differential expressed genes (DEGs). The expression levels of selected genes were determined in C28/I2 cells using the quantitative real-time polymerase chain reaction (qRT-PCR). The interaction between miR-4738-3p and COL1A2 was examined in the context of interleukin 1 beta (IL-1β) induction. Exosome characterization was achieved through transmission electron microscopy (TEM), western blotting (WB), and other analyses. The study also investigated the functional relevance of miR-4738-3p in OA pathology through various molecular and cellular assays. Our findings revealed that the green module exhibited a strong correlation with the OA phenotype in the GSE55235 dataset, with COL1A2 emerging as a hub gene and miR-4738-3p as its key downstream target. IL-1β induction suggested that COL1A2 is involved in inflammation and apoptosis, while miR-4738-3p appeared to play an antagonistic role. The analysis of exosomes underscored the significance of miR-4738-3p in cellular communication, with an enhanced level of exo-miR-4738-3p antagonizing IL-1β-induced inflammation and promoting cell survival. Conversely, a reduction in exo-miR-4738-3p led to increased cell damage. This study established a clear regulatory relationship between miR-4738-3p and COL1A2, with the nuclear factor kappa B (NF-κB) signaling pathway playing a central role in this regulation. The miR-4738-3p significantly influences the OA-associated inflammation, primarily through modulation of COL1A2 and the NF-κB pathway. Therefore, targeting miR-4738-3p offers a potential therapeutic approach for OA, with exosome miR-4738-3p presenting a promising strategy.
Collapse
Affiliation(s)
- Jun Xu
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Kaifeng Zhou
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Huijie Gu
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Liang Wu
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Chong Bian
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhongyue Huang
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Guangnan Chen
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiangyang Cheng
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaofan Yin
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Juma SN, Liao J, Huang Y, Vlashi R, Wang Q, Wu B, Wang D, Wu M, Chen G. Osteoarthritis versus psoriasis arthritis: Physiopathology, cellular signaling, and therapeutic strategies. Genes Dis 2024; 11:100986. [PMID: 38292181 PMCID: PMC10825447 DOI: 10.1016/j.gendis.2023.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/15/2023] [Indexed: 02/01/2024] Open
Abstract
Osteoarthritis and psoriasis arthritis are two degenerative forms of arthritis that share similar yet also different manifestations at the histological, cellular, and clinical levels. Rheumatologists have marked them as two entirely distinct arthropathies. Given recent discoveries in disease initiation and progression, potential mechanisms, cellular signaling pathways, and ongoing clinical therapeutics, there are now more opportunities for discovering osteoarthritis drugs. This review summarized the osteoarthritis and psoriasis arthritis signaling pathways, crosstalk between BMP, WNT, TGF-β, VEGF, TLR, and FGF signaling pathways, biomarkers, and anatomical pathologies. Through bench research, we demonstrated that regenerative medicine is a promising alternative for treating osteoarthritis by highlighting significant scientific discoveries on entheses, multiple signaling blockers, and novel molecules such as immunoglobulin new antigen receptors targeted for potential drug evaluation. Furthermore, we offered valuable therapeutic approaches with a multidisciplinary strategy to treat patients with osteoarthritis or psoriasis arthritis in the coming future in the clinic.
Collapse
Affiliation(s)
- Salma Nassor Juma
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qingwan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bocong Wu
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Dan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
20
|
Yue Y, Dai W, Wei Y, Cao S, Liao S, Li A, Liu P, Lin J, Zeng H. Unlocking the potential of exosomes: a breakthrough in the theranosis of degenerative orthopaedic diseases. Front Bioeng Biotechnol 2024; 12:1377142. [PMID: 38699435 PMCID: PMC11064847 DOI: 10.3389/fbioe.2024.1377142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Degenerative orthopaedic diseases pose a notable worldwide public health issue attributable to the global aging population. Conventional medical approaches, encompassing physical therapy, pharmaceutical interventions, and surgical methods, face obstacles in halting or reversing the degenerative process. In recent times, exosome-based therapy has gained widespread acceptance and popularity as an effective treatment for degenerative orthopaedic diseases. This therapeutic approach holds the potential for "cell-free" tissue regeneration. Exosomes, membranous vesicles resulting from the fusion of intracellular multivesicles with the cell membrane, are released into the extracellular matrix. Addressing challenges such as the rapid elimination of natural exosomes in vivo and the limitation of drug concentration can be effectively achieved through various strategies, including engineering modification, gene overexpression modification, and biomaterial binding. This review provides a concise overview of the source, classification, and preparation methods of exosomes, followed by an in-depth analysis of their functions and potential applications. Furthermore, the review explores various strategies for utilizing exosomes in the treatment of degenerative orthopaedic diseases, encompassing engineering modification, gene overexpression, and biomaterial binding. The primary objective is to provide a fresh viewpoint on the utilization of exosomes in addressing bone degenerative conditions and to support the practical application of exosomes in the theranosis of degenerative orthopaedic diseases.
Collapse
Affiliation(s)
- Yaohang Yue
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Wei Dai
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yihao Wei
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Siyang Cao
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shuai Liao
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Aikang Li
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Peng Liu
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jianjing Lin
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hui Zeng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- National and Local Joint Engineering Research Centre of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Zhuang Y, Jiang S, Deng X, Lao A, Hua X, Xie Y, Jiang L, Wang X, Lin K. Energy metabolism as therapeutic target for aged wound repair by engineered extracellular vesicle. SCIENCE ADVANCES 2024; 10:eadl0372. [PMID: 38608014 PMCID: PMC11014449 DOI: 10.1126/sciadv.adl0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/08/2024] [Indexed: 04/14/2024]
Abstract
Aging skin, vulnerable to age-related defects, is poor in wound repair. Metabolic regulation in accumulated senescent cells (SnCs) with aging is essential for tissue homeostasis, and adequate ATP is important in cell activation for aged tissue repair. Strategies for ATP metabolism intervention hold prospects for therapeutic advances. Here, we found energy metabolic changes in aging skin from patients and mice. Our data show that metformin engineered EV (Met-EV) can enhance aged mouse skin repair, as well as ameliorate cellular senescence and restore cell dysfunctions. Notably, ATP metabolism was remodeled as reduced glycolysis and enhanced OXPHOS after Met-EV treatment. We show Met-EV rescue senescence-induced mitochondria dysfunctions and mitophagy suppressions, indicating the role of Met-EV in remodeling mitochondrial functions via mitophagy for adequate ATP production in aged tissue repair. Our results reveal the mechanism for SnCs rejuvenation by EV and suggest the disturbed energy metabolism, essential in age-related defects, to be a potential therapeutic target for facilitating aged tissue repair.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shengjie Jiang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaoling Deng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - An Lao
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaolin Hua
- Obstetrics Department, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyong Jiang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
22
|
Wang Y, Wen J, Lu T, Han W, Jiao K, Li H. Mesenchymal Stem Cell-Derived Extracellular Vesicles in Bone-Related Diseases: Intercellular Communication Messengers and Therapeutic Engineering Protagonists. Int J Nanomedicine 2024; 19:3233-3257. [PMID: 38601346 PMCID: PMC11005933 DOI: 10.2147/ijn.s441467] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024] Open
Abstract
Extracellular vesicles (EVs) can deliver various bioactive molecules among cells, making them promising diagnostic and therapeutic alternatives in diseases. Mesenchymal stem cell-derived EVs (MSC-EVs) have shown therapeutic potential similar to MSCs but with drawbacks such as lower yield, reduced biological activities, off-target effects, and shorter half-lives. Improving strategies utilizing biotechniques to pretreat MSCs and enhance the properties of released EVs, as well as modifying MSC-EVs to enhance targeting abilities and achieve controlled release, shows potential for overcoming application limitations and enhancing therapeutic effects in treating bone-related diseases. This review focuses on recent advances in functionalizing MSC-EVs to treat bone-related diseases. Firstly, we underscore the significance of MSC-EVs in facilitating crosstalk between cells within the skeletal environment. Secondly, we highlight strategies of functional-modified EVs for treating bone-related diseases. We explore the pretreatment of stem cells using various biotechniques to enhance the properties of resulting EVs, as well as diverse approaches to modify MSC-EVs for targeted delivery and controlled release. Finally, we address the challenges and opportunities for further research on MSC-EVs in bone-related diseases.
Collapse
Affiliation(s)
- Yanyi Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Juan Wen
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Tong Lu
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Wei Han
- Medical School of Nanjing University, Nanjing, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Medical School of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
23
|
Penna F, Garcia-Castillo L, Costelli P. Extracellular Vesicles and Exosomes in the Control of the Musculoskeletal Health. Curr Osteoporos Rep 2024; 22:257-265. [PMID: 38424339 PMCID: PMC11061004 DOI: 10.1007/s11914-024-00866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW The present review will highlight recent reports supporting the relevance of extracellular vesicles to the musculoskeletal system in health and disease. RECENT FINDINGS Preserving the health of the musculoskeletal system is important to maintain a good quality of life, and the bone-muscle crosstalk is crucial in this regard. This latter is largely mediated by extracellular vesicles released by the different cell populations residing in muscle and bone, which deliver cargoes, microRNAs, and proteins being the most relevant ones, to target cells. Extracellular vesicles could be exploited as therapeutic tools, in view of their resistance to destruction in the biological fluid and of the possibility to be functionalized according to the need. Extracellular vesicles are recognized as crucial players in the bone-muscle cross-talk. Additional studies however are required to refine their use as biomarkers of early alterations of the musculoskeletal system, and as potential therapeutic tools.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy
| | - Lorena Garcia-Castillo
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy.
| |
Collapse
|
24
|
Yang S, Jing S, Wang S, Jia F. From drugs to biomaterials: a review of emerging therapeutic strategies for intervertebral disc inflammation. Front Cell Infect Microbiol 2024; 14:1303645. [PMID: 38352058 PMCID: PMC10861683 DOI: 10.3389/fcimb.2024.1303645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic low back pain (LBP) is an increasingly prevalent issue, especially among aging populations. A major underlying cause of LBP is intervertebral disc degeneration (IDD), often triggered by intervertebral disc (IVD) inflammation. Inflammation of the IVD is divided into Septic and Aseptic inflammation. Conservative therapy and surgical treatment often fail to address the root cause of IDD. Recent advances in the treatment of IVD infection and inflammation range from antibiotics and small-molecule drugs to cellular therapies, biological agents, and innovative biomaterials. This review sheds light on the complex mechanisms of IVD inflammation and physiological and biochemical processes of IDD. Furthermore, it provides an overview of recent research developments in this area, intending to identify novel therapeutic targets and guide future clinical strategies for effectively treating IVD-related conditions.
Collapse
Affiliation(s)
- Shuhan Yang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shanxi Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Fajing Jia
- Department of General Practice, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
25
|
Jia Z, Zhang S, Li W. Harnessing Stem Cell-Derived Extracellular Vesicles for the Regeneration of Degenerative Bone Conditions. Int J Nanomedicine 2023; 18:5561-5578. [PMID: 37795043 PMCID: PMC10546935 DOI: 10.2147/ijn.s424731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023] Open
Abstract
Degenerative bone disorders such as intervertebral disc degeneration (IVDD), osteoarthritis (OA), and osteoporosis (OP) pose significant health challenges for aging populations and lack effective treatment options. The field of regenerative medicine holds promise in addressing these disorders, with a focus on utilizing extracellular vesicles (EVs) derived from stem cells as an innovative therapeutic approach. EVs have shown great potential in stimulating biological responses, making them an attractive candidate for rejuvenating degenerative bone disorders. However, a comprehensive review summarizing the current state of this field and providing a clear assessment of EV-based therapies in degenerative bone disorders is currently deficient. In this review, we aim to fill the existing gap by outlining the current knowledge on the role of EVs derived from different types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells, in bone regeneration. Furthermore, we discuss the therapeutic potential of EV-based treatments for IVDD, OA, and OP. By substantiating the use of stem cell-derived EVs, we highlight their promising potential as a cell-free strategy to improve degenerative bone disorders.
Collapse
Affiliation(s)
- Zhiwei Jia
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 101100, People’s Republic of China
| | - Shunxin Zhang
- Department of Ultrasound, 2nd Medical Center of PLA General Hospital, Beijing, 100853, People’s Republic of China
| | - Wei Li
- Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing, 100048, People’s Republic of China
| |
Collapse
|
26
|
Wu S, Zhang H, Wang S, Sun J, Hu Y, Liu H, Liu J, Chen X, Zhou F, Bai L, Wang X, Su J. Ultrasound-triggered in situ gelation with ROS-controlled drug release for cartilage repair. MATERIALS HORIZONS 2023; 10:3507-3522. [PMID: 37255101 DOI: 10.1039/d3mh00042g] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cartilage defects are usually caused by acute trauma and chronic degeneration. However, it is still a great challenge to improve the repair of articular cartilage defects due to the limited self-regeneration capacity of such defects. Herein, a novel ROS-responsive in situ nanocomposite hydrogel loaded with kartogenin (KGN) and bone marrow-derived stem cells (BMSCs) was designed and constructed via the enzymatic reaction of fibrinogen and thrombin. Meanwhile, a ROS-responsive thioketal (TK)-based liposome was synthesized to load the chondrogenesis-inducing factor KGN, the bioenzyme thrombin and an ultrasound-sensitive agent PpIX. Under ultrasound stimulation, the TK-based liposome was destroyed, followed by in situ gelation of fibrinogen and thrombin. Moreover, sustained release of KGN was realized by regulating the ultrasound conditions. Importantly, ROS generation and KGN release within the microenvironment of the in situ fibrin hydrogel significantly promoted chondrogenic differentiation of BMSCs via the Smad5/mTOR signalling pathway and effectively improved cartilage regeneration in a rat articular cartilage defect model. Overall, the novel in situ nanocomposite hydrogel with ROS-controlled drug release has great potential for efficient cartilage repair.
Collapse
Affiliation(s)
- Shunli Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Jinru Sun
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Shaoxing Institute of Technology at Shanghai University, Shaoxing, 312000, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
27
|
Wei J, Ou Z, Tong B, Liao Z, Yang C. Engineered extracellular vesicles as therapeutics of degenerative orthopedic diseases. Front Bioeng Biotechnol 2023; 11:1162263. [PMID: 37362216 PMCID: PMC10289007 DOI: 10.3389/fbioe.2023.1162263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Degenerative orthopedic diseases, as a global public health problem, have made serious negative impact on patients' quality of life and socio-economic burden. Traditional treatments, including chemical drugs and surgical treatments, have obvious side effects and unsatisfactory efficacy. Therefore, biological therapy has become the focus of researches on degenerative orthopedic diseases. Extracellular vesicles (EVs), with superior properties of immunoregulatory, growth support, and drug delivery capabilities, have emerged as a new cell-free strategy for the treatment of many diseases, including degenerative orthopedic diseases. An increasing number of studies have shown that EVs can be engineered through cargo loading, surface modification, and chemical synthesis to improve efficiency, specificity, and safety. Herein, a comprehensive overview of recent advances in engineering strategies and applications of engineered EVs as well as related researches in degenerative orthopedic diseases, including osteoarthritis (OA), osteoporosis (OP), intervertebral disc degeneration (IDD) and osteonecrosis of the femoral head (ONFH), is provided. In addition, we analyze the potential and challenges of applying engineered EVs to clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Cao Yang
- *Correspondence: Zhiwei Liao, ; Cao Yang,
| |
Collapse
|
28
|
Mishra A, Kumar R, Mishra SN, Vijayaraghavalu S, Tiwari NK, Shukla GC, Gurusamy N, Kumar M. Differential Expression of Non-Coding RNAs in Stem Cell Development and Therapeutics of Bone Disorders. Cells 2023; 12:cells12081159. [PMID: 37190068 PMCID: PMC10137108 DOI: 10.3390/cells12081159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Stem cells' self-renewal and multi-lineage differentiation are regulated by a complex network consisting of signaling factors, chromatin regulators, transcription factors, and non-coding RNAs (ncRNAs). Diverse role of ncRNAs in stem cell development and maintenance of bone homeostasis have been discovered recently. The ncRNAs, such as long non-coding RNAs, micro RNAs, circular RNAs, small interfering RNA, Piwi-interacting RNAs, etc., are not translated into proteins but act as essential epigenetic regulators in stem cells' self-renewal and differentiation. Different signaling pathways are monitored efficiently by the differential expression of ncRNAs, which function as regulatory elements in determining the fate of stem cells. In addition, several species of ncRNAs could serve as potential molecular biomarkers in early diagnosis of bone diseases, including osteoporosis, osteoarthritis, and bone cancers, ultimately leading to the development of new therapeutic strategies. This review aims to explore the specific roles of ncRNAs and their effective molecular mechanisms in the growth and development of stem cells, and in the regulation of osteoblast and osteoclast activities. Furthermore, we focus on and explore the association of altered ncRNA expression with stem cells and bone turnover.
Collapse
Affiliation(s)
- Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Satya Narayan Mishra
- Maa Gayatri College of Pharmacy, Dr. APJ Abdul Kalam Technical University, Prayagraj 211009, India
| | | | - Neeraj Kumar Tiwari
- Department of IT-Satellite Centre, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Girish C Shukla
- Department of Biological, Geological, and Environmental Sciences, 2121 Euclid Ave., Cleveland, OH 44115, USA
- Center for Gene Regulation in Health and Disease, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
29
|
Cardamonin alleviates chondrocytes inflammation and cartilage degradation of osteoarthritis by inhibiting ferroptosis via p53 pathway. Food Chem Toxicol 2023; 174:113644. [PMID: 36731815 DOI: 10.1016/j.fct.2023.113644] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease, mainly presented by the deterioration of articular cartilage. Amounts of data demonstrated this deterioration is composed of oxidative stress, pro-inflammation and chondrocyte death events. Ferroptosis is a novel form of cell death that differs from apoptosis and autophagy, recent studies have shown that chondrocyte ferroptosis contributes to the development of osteoarthritis. Cardamonin (CAD) has been demonstrated to possess antioxidant and anti-inflammatory properties in several diseases, whether CAD may influence the OA progression is still obscure. Therefore, we aimed to determine whether CAD alleviates chondrocyte ferroptosis and its effect on OA with potential mechanism. In this study, we found that inflammation, cartilage degradation and ferroptosis induced by interleukin-1β (IL-1β) were significantly alleviated by CAD. Moreover, the administration of the ferroptosis inhibitor, Deferoxamine (DFO) reversed the inflammatory and cartilage degradation effects of IL-1β as well. Chondrocyte mitochondrial morphology and function were alleviated by both CAD and DFO. We found that CAD increased collagen II, p53, SLC7A11 GPX4 expression and decreased MMP13, iNOS, COX2 expression in chondrocytes, further investigation showed that the P53 signaling pathway was involved. In vivo, intra-articular injection of CAD significantly ameliorated cartilage damage in a rat OA model, induced collagen II and SLC7A11 expression by immunohistochemistry. Our study proves that CAD ameliorated OA cartilage degradation by regulating ferroptosis via P53 signaling pathway, suggesting a potential role of CAD in OA treatment.
Collapse
|
30
|
Liu Z, Wu J, Xiang W, Wu J, Huang S, Zhou Y, Xia H, Ni Z, Liu B. Correlation between the Signal Intensity Alteration of Infrapatellar Fat Pad and Knee Osteoarthritis: A Retrospective, Cross-Sectional Study. J Clin Med 2023; 12:jcm12041331. [PMID: 36835867 PMCID: PMC9965223 DOI: 10.3390/jcm12041331] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Infrapatellar fat pad (IPFP) inflammation is a common pathological manifestation in knee osteoarthritis (OA). However, the significance of IPFP signal intensity alteration for clinical diagnosis and treatment of knee OA needs further research. We assessed IPFP signal intensity alteration (0-3), IPFP maximum cross-sectional area (CSA) and IPFP depth, meniscus injury, bone marrow edema, and cartilage injury from magnetic-resonance imaging (MRI) in 41 non-KOA patients (K-L grade 0 and grade I) and 68 KOA patients (K-L grade 2,3 and 4). We found that IPFP signaling was altered in all patients with KOA whose alteration was closely related to the K-L grading. We found that the IPFP signal intensity was increased in most OA patients, especially the ones in the late stage. There were significant differences in IPFP maximum CSA and IPFP depth between groups in KOA and non-KOA patients. Moreover, Spearman correlation analysis showed that IPFP signal intensity was moderately positively correlated with age, meniscal injury, cartilage injury, and bone marrow edema, and negatively correlated with height, while not correlated with visual analogue scale (VAS) scoring and body mass index (BMI). In addition, women have higher IPFP inflammation scores on MRI than men. In conclusion, IPFP signal intensity alteration is associated with joint damage in knee OA, which may have clinical significance for diagnosing and treating KOA.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Joint Surgery and Sport Medicine, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Jiangyi Wu
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Wei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jinhui Wu
- Department of Joint Surgery and Sport Medicine, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Shu Huang
- Department of Joint Surgery and Sport Medicine, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Yizhao Zhou
- Department of Joint Surgery and Sport Medicine, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Hui Xia
- Surgery Department I, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing 400042, China
- Correspondence: (Z.N.); (B.L.)
| | - Baorong Liu
- Department of Joint Surgery and Sport Medicine, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
- Correspondence: (Z.N.); (B.L.)
| |
Collapse
|
31
|
Chen Y, Zhu M, Huang B, Jiang Y, Su J. Advances in cell membrane-coated nanoparticles and their applications for bone therapy. BIOMATERIALS ADVANCES 2023; 144:213232. [PMID: 36502750 DOI: 10.1016/j.bioadv.2022.213232] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Due to the specific structure of natural bone, most of the therapeutics are incapable to be delivered into the targeted site with effective concentrations. Nanotechnology has provided a good way to improve this issue, cell membrane mimetic nanoparticles (NPs) have been emerging as an ideal nanomaterial which integrates the advantages of natural cell membranes with synthetic NPs to significantly improve the biocompatibility as well as achieving long-lasting circulation and targeted delivery. In addition, functionalized modifications of the cell membrane facilitate more precise targeting and therapy. Here, an overview of the preparation of cell membrane-coated NPs and the properties of cell membranes from different cell sources has been given to expatiate their function and potential applications. Strategies for functionalized modification of cell membranes are also briefly described. The application of cell membrane-coated NPs for bone therapy is then presented according to the function of cell membranes. Moreover, the prospects and challenges of cell membrane-coated NPs for translational medicine have also been discussed.
Collapse
Affiliation(s)
- Yutong Chen
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China; School of Medicine, Shanghai University, Shanghai 200444, PR China; School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mengru Zhu
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China; School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Biaotong Huang
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China; Wenzhou Institute of Shanghai University, Wenzhou 325000, PR China.
| | - Yingying Jiang
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China.
| | - Jiacan Su
- Organoid Research Centre, Institute of Translational Medicine, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
32
|
Yang B, Li X, Fu C, Cai W, Meng B, Qu Y, Kou X, Zhang Q. Extracellular vesicles in osteoarthritis of peripheral joint and temporomandibular joint. Front Endocrinol (Lausanne) 2023; 14:1158744. [PMID: 36950682 PMCID: PMC10025484 DOI: 10.3389/fendo.2023.1158744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoarthritis (OA) is a disabling disease with significant morbidity worldwide. OA attacks the large synovial joint, including the peripheral joints and temporomandibular joint (TMJ). As a representative of peripheral joint OA, knee OA shares similar symptoms with TMJ OA. However, these two joints also display differences based on their distinct development, anatomy, and physiology. Extracellular vesicles (EVs) are phospholipid bilayer nanoparticles, including exosomes, microvesicles, and apoptotic bodies. EVs contain proteins, lipids, DNA, micro-RNA, and mRNA that regulate tissue homeostasis and cell-to-cell communication, which play an essential role in the progression and treatment of OA. They are likely to partake in mechanical response, extracellular matrix degradation, and inflammatory regulation during OA. More evidence has shown that synovial fluid and synovium-derived EVs may serve as OA biomarkers. More importantly, mesenchymal stem cell-derived EV shows a therapeutic effect on OA. However, the different function of EVs in these two joints is largely unknown based on their distinct biological characteristic. Here, we reviewed the effects of EVs in OA progression and compared the difference between the knee joint and TMJ, and summarized their potential therapeutic role in the treatment of OA.
Collapse
Affiliation(s)
- Benyi Yang
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xin Li
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
| | - Chaoran Fu
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Wenyi Cai
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
| | - Bowen Meng
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Yan Qu
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
| | - Xiaoxing Kou
- Guangdong Provincial Key Laboratory of Stomatology Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangzhou, China
- *Correspondence: Qingbin Zhang, ; Xiaoxing Kou,
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou, China
- *Correspondence: Qingbin Zhang, ; Xiaoxing Kou,
| |
Collapse
|