1
|
Chu PC, Birhan YS, Zhao MH, Syu WJ, Chen PY, Lin YT, Lai PS. Size-controlled immunomodulatory and vaccine adjuvant potentials of self-assembled hyaluronic acid nanoparticles: Activation and recruitment of immune cells. Int J Biol Macromol 2025; 314:144265. [PMID: 40381765 DOI: 10.1016/j.ijbiomac.2025.144265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 05/02/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Immunotherapy has paramount importance in treating chronic immune diseases, and vaccine development. Hyaluronic acid (HA) has been shown to elicit molecular weight-related distinct immune responses. Nonetheless, the particle size-dependent immunomodulatory effects of hyaluronic acid nanoparticles (HA-NPs) remain blurred. Thus, the present study aimed at investigating the effect of polymer configuration and particle size of HA-NPs assembled from HA36K-ODA and HA360k-ODA analogs in modulating macrophage-related immune activities. In the in vitro experiments, HA-NPs of HA36k-ODA analogs garnered significantly enhanced nitrite production with low interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) secretion in macrophages. Furthermore, smaller (< 200 nm) HA36k-ODA NPs activated CD11b+ cells whereas a ∼ 130 nm HA36k-ODA15 NPs preferentially induced CD11c+ cells in vivo, indicating the influence of particle size on the antigen-presenting cells (APCs) recruitment. Interestingly, self-assembled HA36k-ODA15 NPs without ovalbumin (OVA) activated immature dendritic cells (DCs) and augmented their migration toward the lymph nodes (LNs). Notably, HA36k-ODA15-activated macrophages behaved like M1 phenotype macrophages. Overall, our findings garnered valuable insights about the design and application of HA-NPs for modulating the immune responses in nanoscale materials-based immunotherapy.
Collapse
Affiliation(s)
- Po-Cheng Chu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan; Basic Research and Development Department, Powin Biomedical Co. Ltd., Taichung 428, Taiwan
| | - Yihenew Simegniew Birhan
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan; Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | - Min-Han Zhao
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Wei-Jhe Syu
- Basic Research and Development Department, Powin Biomedical Co. Ltd., Taichung 428, Taiwan
| | - Po-Yen Chen
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, United States
| | - Yu-Tsen Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan; Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Zhang F, Li Q, Dai H, Li W, Chen X, Wu H, Lu S, Luo R, Li F, Lu G, Yu J, Mei L. Chimeric Nanozyme Bacterial Outer Membrane Vesicles Reprograming Tumor Microenvironment for Safe and Efficient Anticancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417712. [PMID: 40278503 DOI: 10.1002/advs.202417712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/04/2025] [Indexed: 04/26/2025]
Abstract
This study presents an innovative approach utilizing a biocompatible shell to shield bacterial outer membrane vesicles (OMVs) and incorporate Fe ions and ultrasmall Au nanoparticles to develop a combined tumor therapeutic strategy. These chimeric nanozyme shells effectively reduce the toxicity of OMVs during circulation and promote their accumulation in tumor tissues. In the tumor microenvironment, Au nanoparticles act as nanozymes, catalyzing glucose consumption and elevating H₂O₂ levels. The increased H₂O₂ subsequently reacts with the released Fe ions to induce immunogenic tumor cell death through iron-mediated chemodynamic mechanisms. Simultaneously, the release of tumor-associated antigens and OMVs synergistically stimulates the immune response. This cascade of nanozyme-catalyzed reactions, chemodynamic effects, and immune activation results in efficient tumor inhibition.
Collapse
Affiliation(s)
- Fan Zhang
- Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Qianqian Li
- Institute of Pharmaceutics, Shenzhen Campus of SunYat-sen University, Shenzhen, Guangdong, 518107, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Haibing Dai
- Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
| | - Weiqun Li
- Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
| | - Xiang Chen
- Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
| | - Huibin Wu
- Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
| | - Shanming Lu
- Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
| | - Ran Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Feng Li
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guihong Lu
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Jianbo Yu
- Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
3
|
He Y, Jin Z, Wang Y, Wu C, He X, Weng W, Cai X, Cheng K. Multifunctional Double-Loaded Oral Nanoplatform for Computed Tomography Imaging-Guided and Integrated Treatment of Inflammatory Bowel Disease. ACS NANO 2025; 19:14893-14913. [PMID: 40106686 DOI: 10.1021/acsnano.4c18865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Excessive reactive oxygen species, disruption of the epithelial barrier, immune dysregulation, and gut microbiota imbalance are key factors driving the onset of inflammatory bowel disease (IBD) and complicating its treatment. Prompt diagnosis of diseases and precise delivery of therapeutic agents to inflamed intestinal sites offer promising targeted strategies for effectively treating IBD. Here, a barium sulfate-based nanoplatform (BaSO4@PDA@CeO2/DSP, BPCD) for synergistic delivery of nanozymes and drugs was developed. With enhanced colonic retention after oral drug delivery, this nanoplatform enables precise and effective targeting of inflammatory sites and CT imaging guidance to address multiple factors contributing to IBD. A comprehensive therapeutic effect was achieved through the synergistic action of cerium oxide with the optimized Ce3+/Ce4+ ratio and sustained release of dexamethasone sodium phosphate. Benefiting from superior gastrointestinal stability, the nanoplatform is highly effective in treating IBD by alleviating oxidative stress, modulating macrophage polarization balance, gut flora composition, and repairing the epithelial barrier. BPCD inhibits the development of IBD through multiple mechanisms and has superior biocompatibility, emerging as a practical alternative to traditional IBD therapies.
Collapse
Affiliation(s)
- Yaoting He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Ziyang Jin
- Department of General Surgery, Minimally Invasive Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - YiFan Wang
- Department of General Surgery, Minimally Invasive Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chengwei Wu
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Xuzhao He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| | - Xiujun Cai
- Department of General Surgery, Minimally Invasive Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Gomaa S, Nassef M, Abu-Shafey A, Elwan M, Adwey A. Impacts of loading thymoquinone to gold or silver nanoparticles on the efficacy of anti-tumor treatments in breast cancer with or without chemotherapeutic cisplatin. BMC Biotechnol 2025; 25:26. [PMID: 40211258 PMCID: PMC11987408 DOI: 10.1186/s12896-025-00958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/17/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Nanotechnology has been greatly examined for tumor medication, as nanoparticles (NPs) serve a crucial role in drug delivery mechanisms for cancer therapy. In contrast to traditional cancer therapies, NPs-based drug delivery offers several benefits, including increased stability and biocompatibility, improved retention capabilities and permeability, as well as precise targeting. AIM The objective of this study was to examine the tumor-targeting efficacy of Thymoquinone (TQ)-loaded gold NPs (AuNPs/TQ conjugate) or TQ-loaded silver NPs (AgNPs/TQ conjugate) in conjunction with the conventional chemotherapy agent cisplatin (CP) in Ehrlich ascites carcinoma (EAC)-bearing mice. METHODS The loading capacity of synthesized conjugates was characterized by UV-Vis spectra and transmission electron microscope (TEM). We used CD-1 mice with a peritoneal EAC tumor xenograft model that received oral administration of TQ, AuNPs, AgNPs, AuNPs/TQ conjugate, and AgNPs/TQ conjugate. METHODS EAC-bearing mice received daily oral administration of one of the following treatments for six consecutive days: TQ, AuNPs, AgNPs, AuNPs/TQ, AgNPs/TQ, AuNPs/TQ + CP, or AgNPs/TQ + CP conjugates. Eleven days after EAC inoculations, assessments were conducted to evaluate the total number of tumor cells, splenocytes, white blood cells (WBCs), C-reactive protein (CRP) levels, flow cytometric analysis of apoptosis in EAC cells, as well as the functionality of the kidney and liver. RESULTS EAC-bearing mice that received treatment with TQ, AuNPs, AgNPs, AuNPs/TQ, and AgNPs/TQ exhibited significantly enhanced anti-tumor activity and improved therapeutic efficacy. Our results further revealed that the combined synergistic approach of TQ's anti-tumor properties, along with the efficient penetration abilities of AuNPs or AgNPs, led to a significant inhibition of the growth of tumor cells in EAC tumor-bearing mice. Moreover, the incorporation of CP into the AuNPs/TQ or AgNPs/TQ conjugates substantially augmented the anti-proliferative effects against EAC tumor cells, effectively overcoming resistance to chemotherapeutic agents. Furthermore, our data revealed that this combination resulted in an elevation of leukocyte counts, along with an increase in the absolute quantities of lymphocytes, neutrophils, and monocytes, thereby activating the immune system and reducing the inflammatory marker CRP. However, the restoration of splenocyte levels, which had been reduced due to EAC cell inoculation, required an extended period to return to baseline. Furthermore, the results indicated moderate alterations in the functionality of both the liver and kidney. CONCLUSION To conclude, AuNPs, AgNPs, AuNPs/TQ, and AgNPs/TQ may hold great promise as potential nanoparticle-based therapies for cancer treatment. Additionally, provides numerous benefits compared to conventional cancer therapies, such as selectivity and minimal side effects. Additionally, AuNPs, AuNPs/TQ, AuNPs/TQ + CP, AgNPs, AgNPs/TQ, or AgNPs/TQ + CP can specifically target tumor tissues, suppress tumor growth, extend the lifespan of tumor-bearing mice, and minimize cytotoxic effects on normal tissues, relative to the administration of free CP alone. More research is needed to understand the mechanisms of these nanoparticle-based therapies in clinical and optimize their use as cancer therapies.
Collapse
Affiliation(s)
- Soha Gomaa
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt.
| | - Mohamed Nassef
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt
| | - Ahlam Abu-Shafey
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt
| | - Mona Elwan
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt
| | - Asmaa Adwey
- Department of Zoology, Science Faculty, University of Tanta, Tanta, Egypt
| |
Collapse
|
5
|
Xie H, Huang X, Li B, Chen Y, Niu H, Yu T, Yang S, Gao S, Zeng Y, Yang T, Kang Y, Zhang K, Ding P. Biomimetic Nanoplatform for Targeted Rheumatoid Arthritis Therapy: Modulating Macrophage Niches Through Self-Sustaining Positive Feedback-Driven Drug Release Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416265. [PMID: 39985217 PMCID: PMC12005813 DOI: 10.1002/advs.202416265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/12/2025] [Indexed: 02/24/2025]
Abstract
The core strategies in treating rheumatoid arthritis (RA) now focus on ameliorating the inflammatory microenvironment and reversing macrophage phenotypes within the joint cavity. This study introduces a co-delivery system of integrating nanoenzymes and gene therapeutics sequentially modified with guanidinium-based polymers and macrophage membranes to achieve synergistic therapeutic effects. This co-delivery system is named MACP siTNF-α nanoparticles (NPs). MACP siTNF-α nanoparticles are designed for targeted delivery to the inflamed joint site, where they are preferentially internalized by M1-type macrophages and efficiently evade lysosomal degradation. Subsequently, the co-delivery system operates efficiently via a self-sustaining positive feedback drug release mechanism. The biomimetic nanoplatform reduces reactive oxygen species (ROS) levels and prevents glutathione (GSH) depletion. GSH degrades the polymers to release small interfering RNA (siRNA) and expose the Prussian blue (PB) nanoenzymes, which effectively scavenge ROS and restore GSH levels. This feedback loop significantly enhances the gene silencing capability and ROS scavenging efficiency of the co-delivery system. In summary, MACP siTNF-α NPs can reverse macrophage ecological niche in inflammatory soils through the dual mechanism of efficiently inhibiting the expression of tumor necrosis factor-alpha (TNF-α) the upstream pathway of the inflammatory response, and eliminating ROS, thus realizing efficient treatment of RA.
Collapse
Affiliation(s)
- Huichao Xie
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen518060China
| | - Xiaoyu Huang
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016China
| | - Bao Li
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016China
| | - Yongfeng Chen
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016China
| | - Haoran Niu
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016China
| | - Tong Yu
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016China
| | - Shimei Yang
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
| | - Shuxin Gao
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
- School of PharmacyShenyang Pharmaceutical UniversityShenyang110016China
| | - Yutong Zeng
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
| | - Tianzhi Yang
- College of Pharmacy and Health SciencesWestern New England UniversitySpringfieldMA01119USA
| | - Yan Kang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical SchoolShenzhen518060China
| | - Keda Zhang
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
| | - Pingtian Ding
- College of PharmacyShenzhen Technology UniversityShenzhen518118China
| |
Collapse
|
6
|
Qian Z, Zhai Z, Ren M, Cheng Y, Cao M, Wang Y, Dong L, Li C, Cao H, Wang Y. Multi-functionalized probiotics through layer-by-layer coating with tannic acid-Mg 2+ and casein phosphopeptide complexes for preventing ulcerative colitis. Mater Today Bio 2025; 31:101621. [PMID: 40130038 PMCID: PMC11931251 DOI: 10.1016/j.mtbio.2025.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/07/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
Gut microbiota imbalance-induced inflammatory response and oxidative stress are two of the main reasons causing ulcerative colitis (UC). Probiotics show potent modulating effects on microbiota imbalance and have been considered as an optimal substitute of antibiotics for preventing UC. However, the harsh environment of the gastrointestinal tract is not conducive to the survival and persistence of probiotics. Herein, we developed an efficient surface coating strategy to overcome the delivery challenges of probiotics and also endow them with multiple functions through layer-by-layer coating with tannic acid (TA)-Mg2+ and casein phosphopeptide (CPP) complexes. Saccharomyces boulardii (SB), one of yeasts that have been widely applied in the food and pharmaceutical field, was used as a model probiotic for assessing the synergistic effects of this coating strategy on preventing UC. Multi-functionalized probiotic thus prepared (called SB@TA-Mg2+@CPP) had significantly enhanced stability under the simulated gastric and intestinal fluid conditions, and also displayed vigorous cell viability and potent antioxidant activity. In the mouse model of dextran sulfate sodium (DSS)-induced colitis, SB@TA-Mg2+@CPP exhibited strong antioxidant and anti-inflammatory effects, remarkably increased the abundance and diversity of gut microbiota, and maintained gut barrier integrity. Meanwhile, SB@TA-Mg2+@CPP notably improved the adsorption of Mg2+, which also contributed to enhance the preventive effect against DSS-induced colitis. In summary, this study provides an efficient coating strategy to develop multi-functionalized probiotics for preventing UC.
Collapse
Affiliation(s)
- Zhanyin Qian
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zihan Zhai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Mingjin Ren
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yuanyuan Cheng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Mingxin Cao
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Yue Wang
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Linyi Dong
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Chunyu Li
- Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Tianjin, 300070, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Yinsong Wang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
7
|
Zahmatkesh Roodsari R, Salehi Z, Parivar K, Mashayekhi F, Aminian K. The 7436-bp mitochondrial DNA deletion as a risk factor for ulcerative colitis in the Iranian population. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-11. [PMID: 40132088 DOI: 10.1080/15257770.2025.2484317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/08/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Ulcerative colitis (UC) is a chronic condition characterized by inflammation in the colon. Free radicals and oxidative stress play a significant role in the pathophysiology of UC. Excessive production of reactive oxygen species can damage the mitochondrial genome, leading to mutations such as the7436-bp deletion. The aim of this study was to identify the presence of the 7436-bp mtDNA deletion in patients with UC and its association with susceptibility to colon inflammation. This case-control study, included 195 patients with UC and 250 healthy individuals from the Iranian population. The Multiplex PCR method was used to detect the 7436-bp mtDNA deletion. Statistical analysis was performed using SPSS software. The frequency of 7436-bp mtDNA deletion in patients was 41.5% and 6.8% in healthy individuals. Statistical analysis showed a significant association between the frequency of the 7436-bp mtDNA deletion and UC (p = 0.016). Furthermore, a significant difference was found between the presence of this deletion and an increased risk of severe (p = 0.003) and extensive (p = 0.002) forms of UC. There was no statistically significant difference in the frequency of this deletion between younger patients and the control group. This study suggests that the presence of the 7436-bp mtDNA deletion is a risk factor for UC and plays a significant role in the pathogenesis of the disease. Further research involving larger and more diverse populations is necessary to validate or challenge these findings. Identifying these mutations can enhance our understanding of genetic factors influencing UC.
Collapse
Affiliation(s)
| | - Zivar Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Keyvan Aminian
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
8
|
Zhang Y, Huang Q, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Wang F. Exploring New Bioorthogonal Catalysts: Scaffold Diversity in Catalysis for Chemical Biology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404431. [PMID: 39921286 PMCID: PMC11884534 DOI: 10.1002/advs.202404431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/11/2025] [Indexed: 02/10/2025]
Abstract
Bioorthogonal catalysis has revolutionized the field of chemical biology by enabling selective and controlled chemical transformations within living systems. Research has converged on the development of innovative catalyst scaffolds, seeking to broaden the scope of bioorthogonal reactions, boost their efficiency, and surpass the limitations of conventional catalysts. This review provides a comprehensive overview of the latest advancements in bioorthogonal catalyst research based on different scaffold materials. Through an in-depth analysis of fabrication strategies and applications of bioorthogonal catalysts, this review discusses the design principles, mechanisms of action, and applications of these novel catalysts in chemical biology. Current challenges and future directions in exploring the scaffold diversity are also highlighted. The integration of diverse catalyst scaffolds offers exciting prospects for precise manipulation of biomolecules and the development of innovative therapeutic strategies in chemical biology. In addition, the review fills in the gaps in previous reviews, such as in fully summarizing the presented scaffold materials applied in bioorthogonal catalysts, emphasizing the potential impact on advancing bioorthogonal chemistry, and offering prospects for future development in this field.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Qizhen Huang
- School of Public HealthNantong UniversityNantong226019China
| | - Fang Lei
- School of Public HealthNantong UniversityNantong226019China
| | - Wanlong Qian
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Chengfeng Zhang
- Institute of Special Environmental MedicineNantong UniversityNantong226019China
| | - Qi Wang
- School of Public HealthNantong UniversityNantong226019China
| | - Chaoqun Liu
- School of PharmacyHenan UniversityKaifeng475004China
| | - Haiwei Ji
- School of Public HealthNantong UniversityNantong226019China
| | - Faming Wang
- School of Public HealthNantong UniversityNantong226019China
| |
Collapse
|
9
|
Talukdar PD, Pramanik K, Gatti P, Mukherjee P, Ghosh D, Roy H, Germain M, Chatterji U. Precise targeting of transcriptional co-activators YAP/TAZ annihilates chemoresistant brCSCs by alteration of their mitochondrial homeostasis. Signal Transduct Target Ther 2025; 10:61. [PMID: 39979255 PMCID: PMC11842803 DOI: 10.1038/s41392-025-02133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Persistence of drug-resistant breast cancer stem cells (brCSCs) after a chemotherapeutic regime correlates with disease recurrence and elevated mortality. Therefore, deciphering mechanisms that dictate their drug-resistant phenotype is imperative for designing targeted and more effective therapeutic strategies. The transcription factor SOX2 has been recognized as a protagonist in brCSC maintenance, and previous studies have confirmed that inhibition of SOX2 purportedly eliminated these brCSCs. However, pharmacological targeting of transcription factors like SOX2 is challenging due to their structural incongruities and intrinsic disorders in their binding interfaces. Therefore, transcriptional co-activators may serve as a feasible alternative for effectively targeting the brCSCs. Incidentally, transcriptional co-activators YAP/TAZ were found to be upregulated in CD44+/CD24-/ALDH+ cells isolated from patient breast tumors and CSC-enriched mammospheres. Interestingly, it was observed that YAP/TAZ exhibited direct physical interaction with SOX2 and silencing YAP/TAZ attenuated SOX2 expression in mammospheres, leading to significantly reduced sphere forming efficiency and cell viability. YAP/TAZ additionally manipulated redox homeostasis and regulated mitochondrial dynamics by restraining the expression of the mitochondrial fission marker, DRP1. Furthermore, YAP/TAZ inhibition induced DRP1 expression and impaired OXPHOS, consequently inducing apoptosis in mammospheres. In order to enhance clinical relevance of the study, an FDA-approved drug verteporfin (VP), was used for pharmacological inhibition of YAP/TAZ. Surprisingly, VP administration was found to reduce tumor-initiating capacity of the mammospheres, concomitant with disrupted mitochondrial homeostasis and significantly reduced brCSC population. Therefore, VP holds immense potential for repurposing and decisively eliminating the chemoresistant brCSCs, offering a potent strategy for managing tumor recurrence effectively.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Kunal Pramanik
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | - Priya Gatti
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Pritha Mukherjee
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Himansu Roy
- Department of Surgery, Medical College, Kolkata, India
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
10
|
Wang D, Jiang Q, Li P, Yu C, Yuan R, Dong Z, Meng T, Hu F, Wang J, Yuan H. Orally Administrated Precision Nanomedicine for Restoring the Intestinal Barrier and Alleviating Inflammation in Treatment of Inflammatory Bowel Disease. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10986-11001. [PMID: 39931937 DOI: 10.1021/acsami.4c19742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Inflammatory bowel disease (IBD) presents a significant challenge in healthcare, characterized by its chronicity and complex pathogenesis involving genetic, immune, and environmental factors. Current treatment modalities, including anti-inflammatory drugs, immunomodulators, and biologics, often lack sufficient efficacy and are accompanied by adverse effects, necessitating the urgent search for therapeutic approaches targeting mucosal barrier restoration and inflammation modulation. Precision nanomedicine emerges as a promising solution to directly address these challenges. This study introduces the development of a targeted sequential nanomedicine for precise IBD treatment. This innovative formulation combines a prodrug carrier containing quercetin to restore intestinal barrier integrity through the regulation of tight junctions and an anti-inflammatory agent dexamethasone acetate to alleviate inflammation. Surface modification with pectin enables colon-specific drug delivery, facilitated by degradation by colon-specific microbiota. Responsive drug release, controlled by reactive oxygen species-sensitive chemical bonds within the carrier, ensures both spatial and temporal accuracy. In vitro and in vivo investigations confirm the nanomedicine's favorable physicochemical properties, release kinetics, and therapeutic efficacy, elucidating potential underlying mechanisms. Oral administration of the nanomedicine shows promising results in restoring intestinal barrier function, reducing inflammation, and modulating the gut microbiota. Consequently, this study presents a promising nanomedicine candidate for advancing IBD treatment paradigms.
Collapse
Affiliation(s)
- Ding Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qi Jiang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Peirong Li
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Caini Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Renxiang Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhefan Dong
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
- Jinhua Institute of Zhejiang University, Jinhua 321299, P. R. China
| | - Jianwei Wang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, P. R. China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, P. R. China
- Jinhua Institute of Zhejiang University, Jinhua 321299, P. R. China
| |
Collapse
|
11
|
Mi L, Zhang K, Ma JX, Yao JF, Tong YL, Bao ZJ. Hollow cerium nanoparticles synthesized by one-step method for multienzyme activity to reduce colitis in mice. World J Gastroenterol 2025; 31:98732. [PMID: 39926211 PMCID: PMC11718602 DOI: 10.3748/wjg.v31.i5.98732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/08/2024] [Accepted: 12/04/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a common chronic intestinal inflammatory disease. High oxidative stress is a treatment target for IBD. Cerium oxide (CeO2) nanomaterials as nanozymes with antioxidant activity are potential drugs for the treatment of colitis. AIM To synthesize hollow cerium (H-CeO2) nanoparticles by one-step method and to validate the therapeutic efficacy of H-CeO2 in IBD. METHODS H-CeO2 was synthesized by one-step method and examined its characterization and nanoenzymatic activity. Subsequently, we constructed dextran sulfate sodium (DSS)-induced colitis in mice to observe the effects of H-CeO2 on colonic inflammation. The effects of H-CeO2 on colon inflammation and reactive oxygen species (ROS) levels in IBD mice were detected by hematoxylin and eosin staining and dichlorofluorescein diacetate staining, respectively. Finally, the biological safety of H-CeO2 on mice was evaluated by hematoxylin and eosin staining, blood routine, and blood biochemistry. RESULTS H-CeO2 nanoparticles prepared by the one-step method were uniform, monodisperse and hollow. H-CeO2 had a good ability to scavenge ROS, ∙OH and ∙OOH. H-CeO2 reduced DSS-induced decreases in body weight and colon length, colonic epithelial damage, inflammatory infiltration, and ROS accumulation. H-CeO2 administration reduced the disease activity index of DSS-induced animals from about 8 to 5. H-CeO2 had no significant effect on body weight, total platelet count, hemoglobin, white blood cell, and red blood cell counts in healthy mice. No significant damage to major organs was observed in healthy mice following H-CeO2 administration. CONCLUSION The one-step synthesis of H-CeO2 nanomaterials had good antioxidant activity, biosafety, and inhibited development of DSS-induced IBD in mice by scavenging ROS.
Collapse
Affiliation(s)
- Lin Mi
- Department of General Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Kai Zhang
- Department of General Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Jian-Xia Ma
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Jian-Feng Yao
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Yi-Li Tong
- Department of General Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Zhi-Jun Bao
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
12
|
Wang H, Zhou F, Shen M, Ma R, Yu Q. Classification of Nanomaterial Drug Delivery Systems for Inflammatory Bowel Disease. Int J Nanomedicine 2025; 20:1383-1399. [PMID: 39925683 PMCID: PMC11804237 DOI: 10.2147/ijn.s502546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, primarily arises from defects in the colonic barrier, imbalances of the gut microbiota, and immune response issues. These complex causes make it difficult to achieve a complete cure. Patients with IBD frequently experience recurrent abdominal pain and bloody diarrhea, while severe cases may result in intestinal obstruction, perforation, and cancer. Lifelong maintenance therapy may thus be needed to manage these symptoms; however, traditional IBD drugs, such as 5-aminosalicylic acid, glucocorticoids, immunosuppressants, and biological agents, are often associated with problems including poor solubility, instability, and ineffective targeting, as well as causing serious side effects in non-target tissues. Nanomaterial drug delivery systems (NDDS) have recently shown great promise in optimizing drug distribution, solubility through biocompatible coatings, enhancing bioavailability via PEGylation and reducing side effects. These formulations can enhance a drug's pharmacokinetics by modifying its properties, improve its ability to cross barriers, and boost bioavailability. In addition, NDDS can enable targeted delivery, increase local drug concentrations, improve efficacy, and reduce side effects, as well as protecting active drug molecules from immune recognition and protease degradation. The clinical use of these systems for treating IBD, however, requires further research. This review summarizes the classification of NDDS for IBD, and concludes that, despite ongoing challenges, NDDS may represent an effective treatment approach for IBD. In summary, NDDS enhance the targeted delivery of therapeutic agents to specific cells or tissues, thereby improving drug bioavailability and therapeutic efficacy. These systems effectively surmount biological barriers, facilitating efficient drug delivery to targeted sites, which is crucial for attaining optimal therapeutic outcomes. This review contributes to a deeper understanding of how the physicochemical properties of NDDS influence pharmacological behavior in vivo and can expedite their clinical translation.
Collapse
Affiliation(s)
- Haichen Wang
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Feifei Zhou
- Department of Gastroenterology, Suzhou City Wuzhong District Chengnan Street Community Health Service Center, Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Mengdan Shen
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Ronglin Ma
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215002, People’s Republic of China
| | - Qiang Yu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, 215002, People’s Republic of China
| |
Collapse
|
13
|
Chen A, Gong Y, Wu S, Du Y, Liu Z, Jiang Y, Li J, Miao YB. Navigating a challenging path: precision disease treatment with tailored oral nano-armor-probiotics. J Nanobiotechnology 2025; 23:72. [PMID: 39893419 PMCID: PMC11786591 DOI: 10.1186/s12951-025-03141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/19/2025] [Indexed: 02/04/2025] Open
Abstract
Oral probiotics have significant potential for preventing and treating many diseases. Yet, their efficacy is often hindered by challenges related to survival and colonization within the gastrointestinal tract. Nanoparticles emerge as a transformative solution, offering robust protection and enhancing the stability and bioavailability of these probiotics. This review explores the innovative application of nanoparticle-armored engineered probiotics for precise disease treatment, specifically addressing the physiological barriers associated with oral administration. A comprehensive evaluation of various nano-armor probiotics and encapsulation methods is provided, carefully analyzing their respective merits and limitations, alongside strategies to enhance probiotic survival and achieve targeted delivery and colonization within the gastrointestinal tract. Furthermore, the review explores the potential clinical applications of nano-armored probiotics in precision therapeutics, critically addressing safety and regulatory considerations, and proposing the innovative concept of 'probiotic intestinal colonization with nano armor' for brain-targeted therapies. Ultimately, this review aspires to guide the advancement of nano-armored probiotic therapies, driving progress in precision medicine and paving the way for groundbreaking treatment modalities.
Collapse
Affiliation(s)
- Anmei Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ying Gong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Shaoquan Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Ye Du
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Jiahong Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610041, China.
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China.
| |
Collapse
|
14
|
Talukdar PD, Roy H, Chatterji U. Targeting breast cancer stem cells in ER-positive breast cancer by repurposing the benzoporphyrin derivative verteporfin as a YAP/TAZ small molecule inhibitor. Mol Biol Rep 2025; 52:154. [PMID: 39853518 DOI: 10.1007/s11033-025-10264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Current treatment strategies for hormone-dependent breast cancers, including adjuvant endocrine therapy, often fail due to persistence of breast cancer stem cells (brCSCs), which are significant contributors to tumor recurrence and treatment resistance. Therefore, gaining deeper insights into the molecular regulators driving breast cancer aggressiveness is important. Moreover, given the complexities and expenses involved in developing new pharmacological agents, the strategic repurposing of existing FDA-approved drugs to target these key molecular pathways presents a compelling approach for identifying novel therapeutic interventions aimed at mitigating tumor refractoriness. METHODS The study employs survival analysis from TCGA database, protein expression analyses alongside aldefluor assays, sphere formation efficiency tests to evaluate cellular stemness, and DCFDA analysis combined with antioxidant enzyme assays to investigate redox imbalance in brCSCs. These analyses were conducted following the genetic deletion of YAP/TAZ and pharmacological treatment with verteporfin. RESULTS The study demonstrated that transcriptional co-activators YAP/TAZ are significantly upregulated in chemotreated ER+ patient breast tumors and MCF-7 mammospheres, where it was found to interact with the transcription factor SOX2 within the nuclear compartment. Genetic ablation and pharmacological inhibition of YAP/TAZ markedly impaired stemness properties and disrupted redox homeostasis in the mammospheres. Additionally, treatment with verteporfin led to a substantial reduction in the frequency and viability of brCSCs, suggesting their effective eradication. CONCLUSION This study highlights the potential of repurposing verteporfin, an FDA-approved drug originally formulated for age-related macular degeneration, as a therapeutic agent for targeting YAP/TAZ-mediated stemness and redox balance in brCSCs, thereby reducing their viability in ER-positive breast cancers.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Himansu Roy
- Department of Surgery, Medical College, Kolkata, 700073, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
15
|
Hu H, Wang Y, Zhao DG, Lu X. Oral Delivery of 5-Demethylnobiletin by Media-Milled Black Rice Particle-Stabilized Pickering Emulsion Alleviates Colitis in Mice: Synergistic Effects of Carrier and Loaded Bioactive. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1257-1272. [PMID: 39763118 DOI: 10.1021/acs.jafc.4c08558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Traditional colitis treatment strategies have issues such as side effects and poor lesion targeting. In this study, a milled black rice particle-stabilized Pickering emulsion (BR-5-DMN) has been developed as a delivery vehicle for 5-demethylnobiletin (5-DMN) to treat colitis. The alleviating effects of three 5-DMN delivery systems: BR-5-DMN, Tween 80 emulsion for upper gastrointestinal delivery, and soybean oil with most 5-DMN entering the colon were compared. BR-5-DMN exhibited superior effects, enhancing 5-DMN absorption and metabolic conversion. It also improved intestinal barrier function and microbiome homeostasis, restoring short-chain fatty acid synthesis, especially acetic acid, through releasing dietary fiber, bioactives from black rice, and 5-DMN in the colon. Black rice particles in BR-5-DMN promoted the growth of Bifidobacterium while inhibiting Ruminococcus, and both black rice particles and 5-DMN synergistically increased Akkermansia abundance. This study highlights the potential of milled grain particle-stabilized emulsions as effective vehicles for bioactives to treat colitis by regulating gastrointestinal release and synergistic interactions.
Collapse
Affiliation(s)
- Hong Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Guangzhou 510632, China
| | - Deng-Gao Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xuanxuan Lu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
- Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Guangzhou 510632, China
| |
Collapse
|
16
|
Zhuang H, Ren X, Li H, Zhang Y, Zhou P. Cartilage-targeting peptide-modified cerium oxide nanoparticles alleviate oxidative stress and cartilage damage in osteoarthritis. J Nanobiotechnology 2024; 22:784. [PMID: 39702137 DOI: 10.1186/s12951-024-03068-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease that leads to a substantial decline in the well-being of older individuals. Chondrocyte senescence and the resultant damage to cartilage tissue, induced by elevated levels of reactive oxygen species within the joint cavity, are significant causative factors in OA development. Cerium oxide nanoparticles (CeONPs) present a promising avenue for therapeutic investigation due to their exceptional antioxidant properties. However, the limited effectiveness of drugs in the joint cavity is often attributed to their rapid clearance by synovial fluid. METHODS Polyethylene glycol-packed CeONPs (PEG-CeONPs) were synthesized and subsequently modified with the cartilage-targeting peptide WYRGRLGK (WY-PEG-CeO). The antioxidant free radical activity and the mimetic enzyme activity of PEG-CeONPs and WY-PEG-CeO were detected. The impact of WY-PEG-CeO on chondrocytes oxidative stress, cellular senescence, and extracellular matrix degradation was assessed using in vitro assays. The cartilage targeting and protective effects were explored in animal models. RESULTS WY-PEG-CeO demonstrated significant efficacy in inhibiting oxidative stress, cellular senescence, and extracellular matrix degradation in OA chondrocytes. The underlying mechanism involves the inhibition of the PI3K/AKT and MAPK signaling pathways. Animal models further revealed that WY-PEG-CeO exhibited a prolonged residence time and enhanced penetration efficiency in cartilage tissue, leading to the attenuation of pathological changes in OA. CONCLUSIONS These findings suggest that WY-PEG-CeO exerts therapeutic effects in OA by inhibiting oxidative stress and suppressing the over-activation of PI3K/AKT and MAPK signaling pathways. This investigation served as a fundamental step towards the advancement of CeONPs-based interventions, providing potential strategies for the treatment of OA.
Collapse
Affiliation(s)
- Huangming Zhuang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xunshan Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huajie Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yuelong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
17
|
Ren Y, Chen Q, Lu Z, Su G, Wu C, Rao H, Wang Y, Wei X, Sun M. MnNi@PVP Nanoenzyme Based on Regulating Inflammation and Immune Homeostasis for the Therapy of Inflammatory Bowel Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64463-64475. [PMID: 39534949 DOI: 10.1021/acsami.4c11100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nanozymes exhibiting remarkable antioxidant capabilities represent an effective therapeutic approach for ulcerative colitis (UC). This study synthesized the MnNi@PVP nanoenzyme through high-temperature pyrolysis and the NaCl template method, which exhibited multienzyme activity comprising glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). This study investigated the therapeutic effect of MnNi@PVP on colitis caused by sodium dextran sulfate (DSS). The findings indicated that MnNi@PVP notably decreased the disease activity index (DAI) score, which encompasses weight loss, colon shortening, and histopathological changes. MnNi@PVP showed effectiveness in addressing oxidative damage and suppressing the levels of proinflammatory markers, such as tumor necrosis factor (TNF-α), inducible nitric oxide synthase (iNOS), and interleukin (IL)-6, by inactivating the TLR4 pathway and macrophages. In addition, MnNi@PVP demonstrated the ability to repair tight junction proteins (occludin and ZO-1) and restore the intestinal barrier. The transcriptome sequencing demonstrated that MnNi@PVP could regulate inflammatory factor expression pathways and immune processes. Additionally, negatively charged MnNi@PVP can selectively bind to inflamed colonic tissues through electrostatic interactions, endowing it with targeted reparative capabilities at the location of intestinal inflammation. The MnNi@PVP, which possesses the reactive oxygen and nitrogen species (RONS) clearance capability examined in this section, is expected to provide the basis for the targeted repair of intestinal function.
Collapse
Affiliation(s)
- Yingying Ren
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Qiushu Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Xing Wei
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| |
Collapse
|
18
|
Long Y, Yang J, Ji H, Han X, Fan Y, Dai K, Ji H, Yu J. Preparation Process Optimization of Glycolipids from Dendrobium officinale and the Difference in Antioxidant Effects Compared with Ascorbic Acid. Nutrients 2024; 16:3664. [PMID: 39519497 PMCID: PMC11547321 DOI: 10.3390/nu16213664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background:Dendrobium officinale glycolipids (DOG), often left as residues after hot water extraction for polysaccharide production, are often discarded. METHODS This study investigates the optimal extraction of DOG using response surface methodology, focusing on liquid-solid ratios, ethanol concentrations, extraction temperatures, and extraction times, while preliminarily analyzing DOG's structural properties. Additionally, the differences in antioxidant effects between DOG and ascorbic acid based on intestinal flora metabolism were further evaluated. RESULTS The optimal parameters for DOG extraction were determined as follows: liquid-solid ratio of 20 mL/g, ethanol concentration of 70%, extraction temperature of 70 °C, and extraction time of 2.5 h, yielding 2.64 ± 0.18%. In addition, DOG was identified as a diglyceride, mainly composed of glucose, mannose, linoleic acid, 9,12,15-octadecatrienoic acid, and presented certain direct free radicals scavenging effects. In animal experiments, unlike the direct free scavenging effects of ascorbic acid, DOG increased intestinal Bacteroides acidifaciens abundance in mice, up-regulated piceatannol expression, and down-regulated 1-naphthol expression, which contributed to antioxidant effects by enhancing the activities of SOD and GSH-Px while reducing MDA content. CONCLUSIONS DOG was a diglyceride isolated from D. officinale residues after hot water extraction, and presented strong antioxidant effects by regulating intestinal flora metabolism. These findings could promote the efficient utilization of D. officinale and support further development of DOG in functional food applications.
Collapse
Affiliation(s)
- Yan Long
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (Y.L.); (J.Y.); (H.J.); (X.H.); (Y.F.); (H.J.)
| | - Jiajing Yang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (Y.L.); (J.Y.); (H.J.); (X.H.); (Y.F.); (H.J.)
| | - Hongfei Ji
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (Y.L.); (J.Y.); (H.J.); (X.H.); (Y.F.); (H.J.)
| | - Xiao Han
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (Y.L.); (J.Y.); (H.J.); (X.H.); (Y.F.); (H.J.)
| | - Yuting Fan
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (Y.L.); (J.Y.); (H.J.); (X.H.); (Y.F.); (H.J.)
| | - Keyao Dai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Haiyu Ji
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (Y.L.); (J.Y.); (H.J.); (X.H.); (Y.F.); (H.J.)
| | - Juan Yu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China; (Y.L.); (J.Y.); (H.J.); (X.H.); (Y.F.); (H.J.)
| |
Collapse
|
19
|
Chi X, Chen T, Luo F, Zhao R, Li Y, Hu S, Li Y, Jiang W, Chen L, Wu D, Du Y, Hu J. Targeted no-releasing L-arginine-induced hesperetin self-assembled nanoparticles for ulcerative colitis intervention. Acta Biomater 2024:S1742-7061(24)00628-7. [PMID: 39461688 DOI: 10.1016/j.actbio.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Overproduction of reactive oxygen species (ROS) plays a crucial role in initiating and advancing ulcerative colitis (UC), and the persistent cycle between ROS and inflammation accelerates disease development. Therefore, developing strategies that can effectively scavenge ROS and provide targeted intervention are crucial for the management of UC. In this study, we synthesized natural carrier-free nanoparticles (HST-Arg NPs) using the Mannich reaction and π-π stacking for the intervention of UC. HST-Arg NPs are an oral formulation that exhibit good antioxidant capabilities and gastrointestinal stability. Benefiting from the negatively charged characteristics, HST-Arg NPs can specifically accumulate in positively charged inflamed regions of the colon. Furthermore, in the oxidative microenvironment of colonic inflammation, HST-Arg NPs respond to ROS by releasing nitric oxide (NO). In mice model of UC induced by dextran sulfate sodium (DSS), HST-Arg NPs significantly mitigated colonic injury by modulating oxidative stress, lowering pro-inflammatory cytokines, and repairing intestinal barrier integrity. In summary, this convenient and targeted oral nanoparticle can effectively scavenge ROS at the site of inflammation and achieve gas intervention, offering robust theoretical support for the development of subsequent oral formulations in related inflammatory interventions. STATEMENT OF SIGNIFICANCE: Nanotechnology has been extensively explored in the biomedical field, but the application of natural carrier-free nanotechnology in this area remains relatively rare. In this study, we developed a natural nanoparticle system based on hesperetin (HST), L-arginine (L-Arg), and vanillin (VA) to scavenge ROS and alleviate inflammation. In the context of ulcerative colitis (UC), the synthesized nanoparticles exhibited excellent intervention effects, effectively protecting the colon from damage. Consequently, these nanoparticles provide a promising and precise nutritional intervention strategy by addressing both oxidative stress and inflammatory pathways simultaneously, demonstrating significant potential for application.
Collapse
Affiliation(s)
- Xuesong Chi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fengxian Luo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yangjing Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shumeng Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wen Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - LiHang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yinan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
20
|
Chen T, Chi X, Li Y, Li Y, Zhao R, Chen L, Wu D, Hu JN. Orally Deliverable Microalgal-Based Carrier with Selenium Nanozymes for Alleviation of Inflammatory Bowel Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50212-50228. [PMID: 39266250 DOI: 10.1021/acsami.4c08020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Excessive reactive oxygen species (ROS) is a hallmark of both the onset and progression of inflammatory bowel disease (IBD), where a continuous cycle of ROS and inflammation drives the progression of diseases. The design of oral antioxidant nanoenzymes for scavenging ROS has emerged as a promising strategy to intervene in IBD. However, the practical application of these nanoenzymes is limited due to their single catalytical property and significantly impacted by substantial leakage in the upper gastrointestinal tract. This study introduces a novel oral delivery system, SP@CS-SeNPs, combining natural microalgae Spirulina platensis (SP), which possesses superoxide dismutase (SOD)-like activity, with chitosan-functionalized selenium nanoparticles (CS-SeNPs) that exhibit catalase-like activity. The SP@CS-SeNPs system leverages the dual catalytic capabilities of these components to initiate a cascade reaction that first converts superoxide anion radicals (O2•-) into hydrogen peroxide (H2O2), and then catalyzes the decomposition of H2O2 into water and oxygen. This system not only utilizes the resistance of the microalgae carrier to gastric acid and its efficient capture by intestinal villi, thereby enhancing intestinal distribution and retention but also demonstrates significant anti-inflammatory effects and effective repair of the damaged intestinal barrier in a colitis mice model. These results demonstrate that this oral delivery system successfully combines the features of microalgae and nanozymes, exhibits excellent biocompatibility, and offers a novel approach for antioxidant nanozyme intervention in IBD.
Collapse
Affiliation(s)
- Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xuesong Chi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yangjing Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
21
|
Senobari F, Abolmaali SS, Farahavr G, Tamaddon AM. Targeting inflammation with hyaluronic acid-based micro- and nanotechnology: A disease-oriented review. Int J Biol Macromol 2024; 280:135923. [PMID: 39322155 DOI: 10.1016/j.ijbiomac.2024.135923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Inflammation is a pivotal immune response in numerous diseases and presents therapeutic challenges. Traditional anti-inflammatory drugs and emerging cytokine inhibitors encounter obstacles such as limited bioavailability, poor tissue distribution, and adverse effects. Hyaluronic acid (HA), a versatile biopolymer, is widely employed to deliver therapeutic agents, including anti-inflammatory drugs, genes, and cell therapies owing to its unique properties, such as hydrophilicity, biodegradability, and safety. HA interacts with cell receptors to initiate processes such as angiogenesis, cell proliferation, and immune regulation. HA-based drug delivery systems offer dual strategies for effective inflammation management, capitalizing on passive and active mechanisms. This synergy permits the mitigation of inflammation by lowering the doses of anti-inflammatory drugs and their off-target adverse effects. A diverse array of micro- and nanotechnology techniques enable the fabrication of tailored HA-engineered systems, including hydrogels, microgels, nanogels, microneedles, nanofibers, and 3D-printed scaffolds, for diverse formulations and administration routes. This review explores recent insights into HA pharmacology in inflammatory conditions, material design, and fabrication methods, as well as its applications across a spectrum of inflammatory diseases, such as atherosclerosis, psoriasis, dermatitis, wound healing, rheumatoid arthritis, osteoarthritis, inflammatory bowel disease, and colitis, highlighting its potential for clinical translation.
Collapse
Affiliation(s)
- Fatemeh Senobari
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Associate Professor, Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ghazal Farahavr
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ali Mohammad Tamaddon
- Professor, Pharmaceutics and Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| |
Collapse
|
22
|
Weng MT, Hsiung CY, Wei SC, Chen Y. Nanotechnology for Targeted Inflammatory Bowel Disease Therapy: Challenges and Opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1999. [PMID: 39439396 DOI: 10.1002/wnan.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a complex and recurring inflammatory disorder that affects the gastrointestinal tract and is influenced by genetic predisposition, immune dysregulation, the gut microbiota, and environmental factors. Advanced therapies, such as biologics and small molecules, target diverse immune pathways to manage IBD. Nanoparticle (NP)-based drugs have emerged as effective tools, offering controlled drug release and targeted delivery. This review highlights NP modifications for anti-inflammatory purposes, utilizing changes such as those in size, charge, redox reactions, and ligand-receptor interactions in drug delivery systems. By using pathological and microenvironmental cues to guide NP design, precise targeting can be achieved. In IBD, a crucial aspect of NP intervention is targeting specific types of cells, such as immune and epithelial cells, to address compromised intestinal barrier function and reduce overactive immune responses. This review also addresses current challenges and future prospects, with the goal of advancing the development of NP-mediated strategies for IBD treatment.
Collapse
Affiliation(s)
- Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chia-Yueh Hsiung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
23
|
Xiao R, Liu J, Shi L, Zhang T, Liu J, Qiu S, Ruiz M, Dupuis J, Zhu L, Wang L, Wang Z, Hu Q. Au-modified ceria nanozyme prevents and treats hypoxia-induced pulmonary hypertension with greatly improved enzymatic activity and safety. J Nanobiotechnology 2024; 22:492. [PMID: 39160624 PMCID: PMC11331617 DOI: 10.1186/s12951-024-02738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Despite recent advances the prognosis of pulmonary hypertension remains poor and warrants novel therapeutic options. Extensive studies, including ours, have revealed that hypoxia-induced pulmonary hypertension is associated with high oxidative stress. Cerium oxide nanozyme or nanoparticles (CeNPs) have displayed catalytic activity mimicking both catalase and superoxide dismutase functions and have been widely used as an anti-oxidative stress approach. However, whether CeNPs can attenuate hypoxia-induced pulmonary vascular oxidative stress and pulmonary hypertension is unknown. RESULTS In this study, we designed a new ceria nanozyme or nanoparticle (AuCeNPs) exhibiting enhanced enzyme activity. The AuCeNPs significantly blunted the increase of reactive oxygen species and intracellular calcium concentration while limiting proliferation of pulmonary artery smooth muscle cells and pulmonary vasoconstriction in a model of hypoxia-induced pulmonary hypertension. In addition, the inhalation of nebulized AuCeNPs, but not CeNPs, not only prevented but also blunted hypoxia-induced pulmonary hypertension in rats. The benefits of AuCeNPs were associated with limited increase of intracellular calcium concentration as well as enhancement of extracellular calcium-sensing receptor (CaSR) activity and expression in rat pulmonary artery smooth muscle cells. Nebulised AuCeNPs showed a favorable safety profile, systemic arterial pressure, liver and kidney function, plasma Ca2+ level, and blood biochemical parameters were not affected. CONCLUSION We conclude that AuCeNPs is an improved reactive oxygen species scavenger that effectively prevents and treats hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Ting Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Jie Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Shuyi Qiu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of medicine, Université de Montréal, Montréal, Québec, Canada
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, HUST, Wuhan, China.
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| |
Collapse
|
24
|
Li Y, Fan Y, Ye S, Xu L, Wang G, Lu Y, Huang S, Zhang Y. Biomedical application of microalgal-biomaterials hybrid system. Biotechnol J 2024; 19:e2400325. [PMID: 39167555 DOI: 10.1002/biot.202400325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Microalgae are a group of microorganisms containing chlorophyll A, which are highly photosynthetic and rich in nutrients. And they can produce multiple bioactive substances (peptides, proteins, polysaccharides, and fatty acids) for biomedical applications. Despite the unique advantages of microalgae-based biotherapy, the insufficient treatment efficiency limits its further application. With the development of nanotechnology, the combination of microalgae and biomaterials can improve therapeutic efficacies, which has attracted increasing attention. In this microalgal-biomaterials hybrid system, biomaterials with excellent optical and magnetic properties play an important role in biological therapy. Microalgae, as a natural vehicle, can increase oxygen content and alleviate hypoxia in diseased areas, further enhancing therapeutic effects. In this review, the synergistic therapeutic effects of microalgal-biomaterials hybrid system in different diseases (cancer, myocardial infarction, ischemia stroke, chronic infection, and intestinal diseases) are comprehensively summarized.
Collapse
Affiliation(s)
- Yize Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Yali Fan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Shuo Ye
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Lingyun Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Gezhen Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Yuli Lu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Suxiang Huang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
25
|
Deljavan Ghodrati A, Comoglu T. An overview on recent approaches for colonic drug delivery systems. Pharm Dev Technol 2024; 29:566-581. [PMID: 38813948 DOI: 10.1080/10837450.2024.2362353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Colon-targeted drug delivery systems have garnered significant interest as potential solutions for delivering various medications susceptible to acidic and catalytic degradation in the gastrointestinal (GI) tract or as a means of treating colonic diseases naturally with fewer overall side effects. The increasing demand for patient-friendly drug administration underscores the importance of colonic drug delivery, particularly through noninvasive methods like nanoparticulate drug delivery technologies. Such systems offer improved patient compliance, cost reduction, and therapeutic advantages. This study places particular emphasis on formulations and discusses recent advancements in various methods for designing colon-targeted drug delivery systems and their medicinal applications.
Collapse
Affiliation(s)
- Aylin Deljavan Ghodrati
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Tansel Comoglu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| |
Collapse
|
26
|
Liu X, Peng S, Pei Y, Huo Y, Zong Y, Ren J, Zhao J. Facile fabrication of chitosan/hyaluronic acid hydrogel-based wound closure material Co-loaded with gold nanoparticles and fibroblast growth factor to improve anti-microbial and healing efficiency in diabetic wound healing and nursing care. Regen Ther 2024; 26:1018-1029. [PMID: 39553541 PMCID: PMC11565426 DOI: 10.1016/j.reth.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Generally, diabetic wounds heal very slowly and inefficiently with an increasing risk of infections. Recent nanotechnology and biomaterial advances elaborate developed multi-functional hydrogels and nanoparticles offer promising solutions to accelerate wound healing for diabetic patients. This research work demonstrates to use of solvent diffusion method to develop hydrogel nanocomposites composed of chitosan (CS), hyaluronic acid (HA), gold (Au), and fibroblast growth factors (FGF). The biological analysis of nanocomposites exhibited enhanced wound healing efficiency by incorporating bioactive molecules like FGF and bioactive Au nanoparticles. In vitro, cell compatibility analysis (MTT assay) of prepared hydrogel nanocomposites was studied on fibroblast cell lines NIH-3T3-L1 and L929 and exhibited greater cell survival ability (>90 %), cell proliferation and migration ability, which demonstrated the suitability of nanocomposite for wound healing treatment. In vitro, anti-bacterial analyses established that FGF-Au@CS/HA has strong antibacterial effectiveness against gram-positive and gram-negative pathogens. The observation of the present research revealed that prepared FGF-Au@CS/HA hydrogel composites could be a suitable biomaterial for diabetic wound care, potentially improving its antibacterial and healing efficacies.
Collapse
Affiliation(s)
- Xin Liu
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Shengwei Peng
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yongju Pei
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yuanyuan Huo
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yadi Zong
- Department of Pediatric Surgery, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jianwei Ren
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jing Zhao
- Department of Respiratory Intensive Care Unit, Henan Provincial Key Medicine Laboratory of Nursing, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| |
Collapse
|
27
|
Uthaman S, Parvinroo S, Mathew AP, Jia X, Hernandez B, Proctor A, Sajeevan KA, Nenninger A, Long MJ, Park IK, Chowdhury R, Phillips GJ, Wannemuehler MJ, Bardhan R. Inhibiting the cGAS-STING Pathway in Ulcerative Colitis with Programmable Micelles. ACS NANO 2024; 18:12117-12133. [PMID: 38648373 DOI: 10.1021/acsnano.3c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ulcerative colitis is a chronic condition in which a dysregulated immune response contributes to the acute intestinal inflammation of the colon. Current clinical therapies often exhibit limited efficacy and undesirable side effects. Here, programmable nanomicelles were designed for colitis treatment and loaded with RU.521, an inhibitor of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. STING-inhibiting micelles (SIMs) comprise hyaluronic acid-stearic acid conjugates and include a reactive oxygen species (ROS)-responsive thioketal linker. SIMs were designed to selectively accumulate at the site of inflammation and trigger drug release in the presence of ROS. Our in vitro studies in macrophages and in vivo studies in a murine model of colitis demonstrated that SIMs leverage HA-CD44 binding to target sites of inflammation. Oral delivery of SIMs to mice in both preventive and delayed therapeutic models ameliorated colitis's severity by reducing STING expression, suppressing the secretion of proinflammatory cytokines, enabling bodyweight recovery, protecting mice from colon shortening, and restoring colonic epithelium. In vivo end points combined with metabolomics identified key metabolites with a therapeutic role in reducing intestinal and mucosal inflammation. Our findings highlight the significance of programmable delivery platforms that downregulate inflammatory pathways at the intestinal mucosa for managing inflammatory bowel diseases.
Collapse
Affiliation(s)
- Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Shadi Parvinroo
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Ansuja Pulickal Mathew
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Xinglin Jia
- Department of Mathematics, Iowa State University, Ames, Iowa 50011, United States
| | - Belen Hernandez
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Alexandra Proctor
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Karuna Anna Sajeevan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Ariel Nenninger
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Mary-Jane Long
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Gregory J Phillips
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Michael J Wannemuehler
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| |
Collapse
|
28
|
Li Y, Xia X, Niu Z, Wang K, Liu J, Li X. hCeO 2@ Cu 5.4O nanoparticle alleviates inflammatory responses by regulating the CTSB-NLRP3 signaling pathway. Front Immunol 2024; 15:1344098. [PMID: 38711511 PMCID: PMC11070469 DOI: 10.3389/fimmu.2024.1344098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/25/2024] [Indexed: 05/08/2024] Open
Abstract
Inflammatory responses, especially chronic inflammation, are closely associated with many systemic diseases. There are many ways to treat and alleviate inflammation, but how to solve this problem at the molecular level has always been a hot topic in research. The use of nanoparticles (NPs) as anti-inflammatory agents is a potential treatment method. We synthesized new hollow cerium oxide nanomaterials (hCeO2 NPs) doped with different concentrations of Cu5.4O NPs [the molar ratio of Cu/(Ce + Cu) was 50%, 67%, and 83%, respectively], characterized their surface morphology and physicochemical properties, and screened the safe concentration of hCeO2@Cu5.4O using the CCK8 method. Macrophages were cultured, and P.g-lipopolysaccharide-stimulated was used as a model of inflammation and co-cultured with hCeO2@Cu5.4O NPs. We then observe the effect of the transcription levels of CTSB, NLRP3, caspase-1, ASC, IL-18, and IL-1β by PCR and detect its effect on the expression level of CTSB protein by Western blot. The levels of IL-18 and IL-1β in the cell supernatant were measured by enzyme-linked immunosorbent assay. Our results indicated that hCeO2@Cu5.4O NPs could reduce the production of reactive oxygen species and inhibit CTSB and NLRP3 to alleviate the damage caused by the inflammatory response to cells. More importantly, hCeO2@Cu5.4O NPs showed stronger anti-inflammatory effects as Cu5.4O NP doping increased. Therefore, the development of the novel nanomaterial hCeO2@Cu5.4O NPs provides a possible new approach for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zhaojun Niu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ke Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Jie Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
29
|
Bai J, Wang Y, Li F, Wu Y, Chen J, Li M, Wang X, Lv B. Research advancements and perspectives of inflammatory bowel disease: A comprehensive review. Sci Prog 2024; 107:368504241253709. [PMID: 38778725 PMCID: PMC11113063 DOI: 10.1177/00368504241253709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease with increasing incidence, such as Crohn's disease and ulcerative colitis. The accurate etiology and pathogenesis of IBD remain unclear, and it is generally believed that it is related to genetic susceptibility, gut microbiota, environmental factors, immunological abnormalities, and potentially other factors. Currently, the mainstream therapeutic drugs are amino salicylic acid agents, corticosteroids, immunomodulators, and biological agents, but the remission rates do not surpass 30-60% of patients in a real-life setting. As a consequence, there are many studies focusing on emerging drugs and bioactive ingredients that have higher efficacy and long-term safety for achieving complete deep healing. This article begins with a review of the latest, systematic, and credible summaries of the pathogenesis of IBD. In addition, we provide a summary of the current treatments and drugs for IBD. Finally, we focus on the therapeutic effects of emerging drugs such as microRNAs and lncRNAs, nanoparticles-mediated drugs and natural products on IBD and their mechanisms of action.
Collapse
Affiliation(s)
- Junyi Bai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ying Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Fuhao Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueyao Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Meng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
Wu A, Li M, Chen Y, Zhang W, Li H, Chen J, Gu K, Wang X. Multienzyme Active Manganese Oxide Alleviates Acute Liver Injury by Mimicking Redox Regulatory System and Inhibiting Ferroptosis. Adv Healthc Mater 2024; 13:e2302556. [PMID: 38238011 DOI: 10.1002/adhm.202302556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Drug-induced liver injury (DILI) is a severe condition characterized by impaired liver function and the excessive activation of ferroptosis. Unfortunately, there are limited options currently available for preventing or treating DILI. In this study, MnO2 nanoflowers (MnO2Nfs) with remarkable capabilities of mimicking essential antioxidant enzymes, including catalase, superoxide dismutase (SOD), and glutathione peroxidase are successfully synthesized, and SOD is the dominant enzyme among them by density functional theory. Notably, MnO2Nfs demonstrate high efficiency in effectively eliminating diverse reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), superoxide anion (O2 •-), and hydroxyl radical (•OH). Through in vitro experiments, it is demonstrated that MnO2Nfs significantly enhance the recovery of intracellular glutathione content, acting as a potent inhibitor of ferroptosis even in the presence of ferroptosis activators. Moreover, MnO2Nfs exhibit excellent liver accumulation properties, providing robust protection against oxidative damage. Specifically, they attenuate acetaminophen-induced ferroptosis by inhibiting ferritinophagy and activating the P62-NRF2-GPX4 antioxidation signaling pathways. These findings highlight the remarkable ROS scavenging ability of MnO2Nfs and hold great promise as an innovative and potential clinical therapy for DILI and other ROS-related liver diseases.
Collapse
Affiliation(s)
- Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Min Li
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yinyin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoran Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junzhou Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ke Gu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
31
|
Xin X, Liu J, Liu X, Xin Y, Hou Y, Xiang X, Deng Y, Yang B, Yu W. Melatonin-Derived Carbon Dots with Free Radical Scavenging Property for Effective Periodontitis Treatment via the Nrf2/HO-1 Pathway. ACS NANO 2024; 18:8307-8324. [PMID: 38437643 DOI: 10.1021/acsnano.3c12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Periodontitis is a chronic inflammatory disease closely associated with reactive oxygen species (ROS) involvement. Eliminating ROS to control the periodontal microenvironment and alleviate the inflammatory response could potentially serve as an efficacious therapy for periodontitis. Melatonin (MT), renowned for its potent antioxidant and anti-inflammatory characteristics, is frequently employed as an ROS scavenger in inflammatory diseases. However, the therapeutic efficacy of MT remains unsatisfactory due to the low water solubility and poor bioavailability. Carbon dots have emerged as a promising and innovative nanomaterial with facile synthesis, environmental friendliness, and low cost. In this study, melatonin-derived carbon dots (MT-CDs) were successfully synthesized via the hydrothermal method. The MT-CDs have good water solubility and biocompatibility and feature excellent ROS-scavenging capacity without additional modification. The in vitro experiments proved that MT-CDs efficiently regulated intracellular ROS, which maintained mitochondrial homeostasis and suppressed the production of inflammatory mediators. Furthermore, findings from the mouse model of periodontitis indicated that MT-CDs significantly inhibited the deterioration of alveolar bone and reduced osteoclast activation and inflammation, thereby contributing to the regeneration of damaged tissue. In terms of the mechanism, MT-CDs may scavenge ROS, thereby preventing cellular damage and the production of inflammatory factors by regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. The findings will offer a vital understanding of the advancement of secure and effective ROS-scavenging platforms for more biomedical applications.
Collapse
Affiliation(s)
- Xirui Xin
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Junjun Liu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, P. R. China
| | - Xinchan Liu
- VIP Integrated Department of Stomatological Hospital of Jilin University, Changchun 130021, P. R. China
| | - Yu Xin
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yubo Hou
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xingchen Xiang
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yu Deng
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Weixian Yu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
32
|
Ahmad S, Ahmad S, Xu Q, Khan I, Cao X, Yang R, Yan H. Green synthesis of gold and silver nanoparticles using crude extract of Aconitum violaceum and evaluation of their antibacterial, antioxidant and photocatalytic activities. Front Bioeng Biotechnol 2024; 11:1320739. [PMID: 38268939 PMCID: PMC10807692 DOI: 10.3389/fbioe.2023.1320739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Green synthesis of metal nanoparticles (NPs) has received extensive attention over other conventional approaches due to their non-toxic nature and more biocompatibility. Herein we report gold and silver NPs (AuNPs@AV and AgNPs@AV) prepared by employing a green approach using crude extract of Aconitum violaceum Jacquem. ex Stapf. The synthesized NPs were characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX), X-ray Diffraction (XRD), UV/Visible spectroscopy, Fourier Transform Infrared (FTIR), X-ray Photoelectron Spectroscopy (XPS), and Zeta Potential. Morphological analysis showed spherical and triangular shapes of the NPs with average size of <100 nm. The AuNPs@AV and AgNPs@AV exhibited effective antibacterial activities, with minimum inhibitory concentrations (MICs) of 95 and 70 μg/mL against Lactobacillus acidophilus (L. acidophilus) and 90 and 65 μg/mL against Escherichia coli (E. coli), respectively. Strong antioxidant effect of AuNPs@AV and AgNPs@AV were reported against DPPH radical and PTIO within range of IC50 values; 161-80 μg/ml as compared to the standard (23-11 μg/mL) respectively. Moreover, the AuNPs@AV and AgNPs@AV showed efficient photocatalytic activity and degraded 89.88% and 93.7% methylene blue (MB) dye under UV light, respectively.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Idrees Khan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Xiaoyu Cao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Ruimin Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
33
|
Li Q, Lin L, Zhang C, Zhang H, Ma Y, Qian H, Chen XL, Wang X. The progression of inorganic nanoparticles and natural products for inflammatory bowel disease. J Nanobiotechnology 2024; 22:17. [PMID: 38172992 PMCID: PMC10763270 DOI: 10.1186/s12951-023-02246-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
There is a growing body of evidence indicating a close association between inflammatory bowel disease (IBD) and disrupted intestinal homeostasis. Excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with an increase in M1 proinflammatory macrophage infiltration during the activation of intestinal inflammation, plays a pivotal role in disrupting intestinal homeostasis in IBD. The overabundance of ROS/RNS can cause intestinal tissue damage and the disruption of crucial gut proteins, which ultimately compromises the integrity of the intestinal barrier. The proliferation of M1 macrophages contributes to an exaggerated immune response, further compromising the intestinal immune barrier. Currently, intestinal nanomaterials have gained widespread attention in the context of IBD due to their notable characteristics, including the ability to specifically target regions of interest, clear excess ROS/RNS, and mimic biological enzymes. In this review, we initially elucidated the gut microenvironment in IBD. Subsequently, we delineate therapeutic strategies involving two distinct types of nanomedicine, namely inorganic nanoparticles and natural product nanomaterials. Finally, we present a comprehensive overview of the promising prospects associated with the application of nanomedicine in future clinical settings for the treatment of IBD (graphic abstract). Different classes of nanomedicine are used to treat IBD. This review primarily elucidates the current etiology of inflammatory bowel disease and explores two prominent nanomaterial-based therapeutic approaches. First, it aims to eliminate excessive reactive oxygen species and reactive nitrogen species. Second, they focus on modulating the polarization of inflammatory macrophages and reducing the proportion of pro-inflammatory macrophages. Additionally, this article delves into the treatment of inflammatory bowel disease using inorganic metal nanomaterials and natural product nanomaterials.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Cong Zhang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Ma
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Haisheng Qian
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Xianwen Wang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|
34
|
Zhao Y, Wang S, Yao S, Wan X, Hu Q, Zheng M, Wang Z, Li L. Piezoelectric Ba 0.85 Sr 0.15 TiO 3 Nanosonosensitizer with Nitric Oxide Delivery for Boosting Cancer Therapy. SMALL METHODS 2024; 8:e2301134. [PMID: 37840374 DOI: 10.1002/smtd.202301134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The efficacy of sonodynamic therapy (SDT) mainly relies on the sonosensitizers, which generate reactive oxygen species (ROS) upon ultrasound (US) stimulation. However, the limited availability of high-efficiency sonosensitizers hampers the therapeutic effectiveness of SDT as a standalone modality. In this work, a robust sonodynamic and gas cancer therapeutic platform is constructed based on strontium (Sr) doped barium titanate (BST) piezoelectric nanoparticles functionalized with L-arginine (BST@LA). The doping of Sr into A site of the ABO3 piezoelectric nanocrystals not only introduces oxygen vacancies into the nanoparticles and enhance the intrinsic piezoelectricity, but also narrows the semiconductor band gap and enhances charge carrier migration, all of which facilitate the sonodynamic production of superoxide anion (•O2 - ) and hydroxyl radical (•OH). In addition, the generated ROS promotes the decomposition of the surface-tethered LA, enabling the controlled release of nitric oxide (NO) gas at the tumor site, thereby achieving a combination therapeutic effect. In vivo experiments exhibit remarkable tumor suppression rate (89.5%) in 4T1 tumor mice model, demonstrating the effectiveness of this strategy. The ion doping and oxygen vacancy engineering to improve sonosensitizers, along with the synergistic combination of sonodynamic and gas therapy, provides promising avenues for improving cancer therapy.
Collapse
Affiliation(s)
- Yunchao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Shaobo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Quanhong Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Minjia Zheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
35
|
Xu Y, Wang XC, Jiang W, Chen LH, Chen T, Wu D, Hu JN. Porphyra haitanensis polysaccharide-functionalized selenium nanoparticles for effective alleviation of ulcerative colitis. Int J Biol Macromol 2023; 253:127570. [PMID: 37866556 DOI: 10.1016/j.ijbiomac.2023.127570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Exacerbated intestinal inflammation, oxidative stress imbalance, and damage to intestinal mucosal barrier are closely related to the pathogenesis and progression of ulcerative colitis (UC). Selenium nanoparticles (Se NPs) have demonstrated promising potential to alleviate UC symptoms, however, their poor solubility and stability leading to aggregation and large precipitates have significantly limit their clinical application. In this study, we aimed to enhance the performance of Se NPs by functionalizing them with Porphyra haitanensis polysaccharide, yielding PHP-Se NPs. As expected, these PHP-Se NPs exhibited reduced particle size (70.51 ± 2.92 nm), enhanced cellular uptake compared to native Se NPs, and preferential accumulation in the colonic tissue, providing targeted UC treatment. In vivo animal experiments revealed that PHP-Se NPs significantly improved weight loss, shortened colon length, and higher disease activity index (DAI) scores in DSS-induced UC mice. Moreover, PHP-Se NPs significantly inhibited the levels of inflammatory factors in colitis tissues and oxidative stress in serum of UC mice, improved histological damage in colitis tissues, and restored the intestinal mucosal barrier. Taken together, our study offers an innovative approach to augment the bioavailability of Se NPs, presenting a promising strategy for the effective prevention and management of UC.
Collapse
Affiliation(s)
- Yu Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin-Chuang Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wen Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
36
|
Liu H, Zhang M, Meng F, Su C, Li J. Polysaccharide-based gold nanomaterials: Synthesis mechanism, polysaccharide structure-effect, and anticancer activity. Carbohydr Polym 2023; 321:121284. [PMID: 37739497 DOI: 10.1016/j.carbpol.2023.121284] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based gold nanomaterials have attracted great interest in biomedical fields such as cancer therapy and immunomodulation due to their prolonged residence time in vivo and enhanced immune response. This review aims to provide an up-to-date and comprehensive summary of polysaccharide-based Au NMs synthesis, including mechanisms, polysaccharide structure-effects, and anticancer activity. Firstly, research progress on the synthesis mechanism of polysaccharide-based Au NMs was addressed, which included three types based on the variety of polysaccharides and reaction environment: breaking of glycosidic bonds via Au (III) or base-mediated production of highly reduced intermediates, reduction of free hydroxyl groups in polysaccharide molecules, and reduction of free amino groups in polysaccharide molecules. Then, the potential effects of polysaccharide structure characteristics (molecular weight, composition of monosaccharides, functional groups, glycosidic bonds, and chain conformation) and reaction conditions (the reaction temperature, reaction time, pH, concentration of gold precursor and polysaccharides) on the size and shape of Au NMs were explored. Finally, the current status of polysaccharide-based Au NMs cancer therapy was summarized before reaching our conclusions and perspectives.
Collapse
Affiliation(s)
- Haoqiang Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Chenyi Su
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
37
|
Min K, Sahu A, Jeon SH, Tae G. Emerging drug delivery systems with traditional routes - A roadmap to chronic inflammatory diseases. Adv Drug Deliv Rev 2023; 203:115119. [PMID: 37898338 DOI: 10.1016/j.addr.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Inflammation is prevalent and inevitable in daily life but can generally be accommodated by the immune systems. However, incapable self-healing and persistent inflammation can progress to chronic inflammation, leading to prevalent or fatal chronic diseases. This review comprehensively covers the topic of emerging drug delivery systems (DDSs) for the treatment of chronic inflammatory diseases (CIDs). First, we introduce the basic biology of the chronic inflammatory process and provide an overview of the main CIDs of the major organs. Next, up-to-date information on various DDSs and the associated strategies for ensuring targeted delivery and stimuli-responsiveness applied to CIDs are discussed extensively. The implementation of traditional routes of drug administration to maximize their therapeutic effects against CIDs is then summarized. Finally, perspectives on future DDSs against CIDs are presented.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
38
|
Fu W, Xu L, Chen Z, Kan L, Ma Y, Qian H, Wang W. Recent advances on emerging nanomaterials for diagnosis and treatment of inflammatory bowel disease. J Control Release 2023; 363:149-179. [PMID: 37741461 DOI: 10.1016/j.jconrel.2023.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic idiopathic inflammatory disorder that affects the entire gastrointestinal tract and is associated with an increased risk of colorectal cancer. Mainstream clinical testing methods are time-consuming, painful for patients, and insufficiently sensitive to detect early symptoms. Currently, there is no definitive cure for IBD, and frequent doses of medications with potentially severe side effects may affect patient response. In recent years, nanomaterials have demonstrated considerable potential for IBD management due to their diverse structures, composition, and physical and chemical properties. In this review, we provide an overview of the advances in nanomaterial-based diagnosis and treatment of IBD in recent five years. Multi-functional bio-nano platforms, including contrast agents, near-infrared (NIR) fluorescent probes, and bioactive substance detection agents have been developed for IBD diagnosis. Based on a series of pathogenic characteristics of IBD, the therapeutic strategies of antioxidant, anti-inflammatory, and intestinal microbiome regulation of IBD based on nanomaterials are systematically introduced. Finally, the future challenges and prospects in this field are presented to facilitate the development of diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Zetong Chen
- School of Stomatology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| |
Collapse
|
39
|
Sun A, Liu H, Sun M, Yang W, Liu J, Lin Y, Shi X, Sun J, Liu L. Emerging nanotherapeutic strategies targeting gut-X axis against diseases. Biomed Pharmacother 2023; 167:115577. [PMID: 37757494 DOI: 10.1016/j.biopha.2023.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota can coordinate with different tissues and organs to maintain human health, which derives the concept of the gut-X axis. Conversely, the dysbiosis of gut microbiota leads to the occurrence and development of various diseases, such as neurological diseases, liver diseases, and even cancers. Therefore, the modulation of gut microbiota offers new opportunities in the field of medicines. Antibiotics, probiotics or other treatments might restore unbalanced gut microbiota, which effects do not match what people have expected. Recently, nanomedicines with the high targeting ability and reduced toxicity make them an appreciative choice for relieving disease through targeting gut-X axis. Considering this paradigm-setting trend, the current review summarizes the advancements in gut microbiota and its related nanomedicines. Specifically, this article introduces the immunological effects of gut microbiota, summarizes the gut-X axis-associated diseases, and highlights the nanotherapeutics-mediated treatment via remolding the gut-X axis. Moreover, this review also discusses the challenges in studies related to nanomedicines targeting the gut microbiota and offers the future perspective, thereby aiming at charting a course toward clinic.
Collapse
Affiliation(s)
- Ao Sun
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hongyu Liu
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, Liaoning Province, China; Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, China Medical University, Ministry of Education, Shenyang, Liaoning Province, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, PR China
| | - Weiguang Yang
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jiaxin Liu
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yi Lin
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, PR China.
| | - Linlin Liu
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
40
|
Cheng J, Zhang Y, Ma L, Du W, Zhang Q, Gao R, Zhao X, Chen Y, Jiang L, Li X, Li B, Zhou Y. Macrophage-Derived Extracellular Vesicles-Coated Palladium Nanoformulations Modulate Inflammatory and Immune Homeostasis for Targeting Therapy of Ulcerative Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304002. [PMID: 37807805 PMCID: PMC10667822 DOI: 10.1002/advs.202304002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/27/2023] [Indexed: 10/10/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease mainly involving the colon and rectum, which features recurrent mucosal inflammation. The excessive production of reactive oxygen species (ROS) is a trigger for pathological changes such as cell apoptosis and disordered immune microenvironments, which are crucial for the progression of UC and can be a promising therapeutic target. Nowadays, the development of targeted therapeutic strategies for UC is still in its infancy. Thus, developing effective therapies based on ROS scavenging and elucidating their molecular pathways are urgently needed. Herein, a biomimetic nanoformulation (Pd@M) with cubic palladium (Pd) as the core and macrophage-derived extracellular vesicles (MEVs) as the shell is synthesized for the treatment of UC. These Pd@M nanoformulations exhibit multienzyme-like activities for effective ROS scavenging, excellent targeting ability as well as good biocompatibility. It is verified that Pd@M can regulate the polarization state of macrophages by inhibiting glycolysis, and decrease neutrophil infiltration and recruitment. In this way, the colonic inflammatory and immune microenvironment is remodeled, and apoptosis is prevented, ultimately improving colonic mucosal barrier function and alleviating colitis in the mouse model. This finding provides a promising alternative option for the treatment of UC patients.
Collapse
Affiliation(s)
- Jiahui Cheng
- Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 160, Pujian Road, Pudong DistrictShanghai200127China
| | - Yiming Zhang
- Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 160, Pujian Road, Pudong DistrictShanghai200127China
| | - Liang Ma
- Department of RadiologyNational Children's Medical CenterChildren's Hospital of Fudan UniversityNo. 399, Wanyuan Road, Minhang DistrictShanghai201102China
| | - Wenxian Du
- Institute of Diagnostic and Interventional RadiologyShanghai Sixth People's HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 600, Yishan Road, Xuhui DistrictShanghai200233China
| | - Qiang Zhang
- Institute of Diagnostic and Interventional RadiologyShanghai Sixth People's HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 600, Yishan Road, Xuhui DistrictShanghai200233China
| | - Rifeng Gao
- Department of CardiologyZhongshan HospitalFudan UniversityNo. 180, Fenglin Road, Xuhui DistrictShanghai200025China
| | - Xinxin Zhao
- Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 160, Pujian Road, Pudong DistrictShanghai200127China
| | - Yujie Chen
- Morphology and Spatial Multi‐Omics Technology PlatformShanghai Institute of Nutrition and HealthChinese Academy of SciencesNo. 320, Yueyang RoadShanghai200031China
| | - Lixian Jiang
- Department of Ultrasound in MedicineShanghai Sixth People's HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 600, Yishan Road, Xuhui DistrictShanghai200233China
| | - Xiaoyang Li
- Department of Food Science and TechnologySchool of Agriculture and BiologyShanghai Jiao Tong UniversityNo. 800, Dongchuan Road, Minhang DistrictShanghai200240China
| | - Bo Li
- Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 160, Pujian Road, Pudong DistrictShanghai200127China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationNo. 160, Pujian Road, Pudong DistrictShanghai200127China
| | - Yan Zhou
- Department of RadiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityNo. 160, Pujian Road, Pudong DistrictShanghai200127China
- College of Health Science and TechnologyShanghai Jiao Tong University School of MedicineNo. 227, Chongqingnan RoadHuangpu DistrictShanghai200025China
| |
Collapse
|
41
|
Hassanien HA, Alrashada YN, Abbas AO, Abdelwahab AM. Dietary propolis complementation relieves the physiological and growth deterioration induced by Flavobacterium columnare infection in juveniles of common carp (Cyprinus carpio). PLoS One 2023; 18:e0292976. [PMID: 37831671 PMCID: PMC10575500 DOI: 10.1371/journal.pone.0292976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The current study was proposed to explore the role of dietary propolis (PR) supplementation in alleviating the negative effects of columnaris disease (CD) challenge on the growth performance, plasma biochemicals, antioxidant activity, stress indicators, and immunological reactions of common carp (Cyprinus carpio) fish. Five hundred forty common carp juveniles were evenly placed in thirty-six 100-L tanks and stocked for acclimatization to the lab conditions with a control diet within a started period of 14 days. Fish (average initial weight of 7.11±0.06 g) were randomly distributed into one of six treatment groups (6 replicate tanks × 15 fish per tank in each treatment group). Fish in the first group was assigned as a negative control without CD challenge or PR supplementation. Fish in the other five groups were challenged with CD by immersion of fish for 60 min into a 10-L water bath supplemented with 6×106 CFU/mL (median lethal dose, LD50) of pathogenic F. columnare bacteria. After infection, the fish were restored to their tanks and fed on a basal diet supplemented with PR at 0, 3, 6, 9, or 12 g/kg diet. The experimental period continued for 6 consecutive weeks in which the feed was introduced twice a day (8:00 and 15:00 h) at a rate of 2% of the fish biomass. Ten percent of water was siphoned and renewed after each meal every day, in addition to 50% of water refreshment after cleaning the tank every three days. The tanks were continuously aerated and provided with standard rearing conditions for carp fish (24.0±1.12°C, 7.7±0.22 pH, 6.3±0.16 mg/L O2, and 14L/10D photoperiod). The growth performance traits such as feed intake (FI), weight gain (WG), final weight (FW), specific growth rate (SGR), feed efficiency (FE), and cumulative mortality rates (CM) were recorded during the experimental period. At the end of the trial, blood samples were obtained from the fish to evaluate some plasma biochemicals, including aspartate aminotransaminase (AST), alanine aminotransferase (ALT), creatinine (CRE), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH), antioxidant biomarkers, including total antioxidant capacity (TAOC), total superoxide dismutase (TSOD), reduced glutathione (rGSH), and catalase (CAT), stress indicators, including heterophil to lymphocyte (H/L) ratio, cortisol (COR), malondialdehyde (MDA), and myeloperoxidase (MPO), and immunological reactions, including peripheral blood leukocyte proliferation (PBLP), phagocytosis activity (PHG), lysozyme activity (LYS), alternative complement hemolytic action (ACH50), and total immunoglobulin concentration (TIG). In addition, samples of infected fish gills were taken to quantify the number of F. columnare in the PR-supplemented groups using the quantitative real-time polymerase chain reaction (qPCR) technique. The results showed that incorporating PR into the dietary ingredients of common carp has a protective effect against the challenge with F. columnare infection. There were linear and quadratic positive trends (P < 0.05) in most parameters of growth performance, plasma biochemicals, antioxidant activity, stress indicators, and immunological reactions with the increased PR-supplemented levels in the diet of infected fish. The best results were obtained when using PR at 9 g/kg in the diet, while higher levels (12 g/kg PR) showed an adverse trend in the evaluated parameters. The FI, WG, FW, SGR, and FE were improved by approximately 37, 104, 34, 73, and 49% in the fish treated with 9 g/kg PR compared to none-PR-infected fish. In addition, adding PR at the 9 g/kg diet level was the best dose that reduced the H/L ratio, COR, MDA, and MPO by about 14, 52, 48, and 29%, respectively, in the infected fish. Furthermore, the mortality rate was reduced by 94%, and the number of pathogenic bacteria cells adherent to the fish gills was lowered by 96% in the infected fish treated with 9 g/kg PR compared to none-PR infected fish. Our results concluded that dietary supplementation with 9 g/kg PR could be a promising nutritional approach for improving the growth performance, physiological profile, and health status of common carp fish, particularly when challenged with F. columnare or similar bacterial infections.
Collapse
Affiliation(s)
- Hesham A. Hassanien
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Yousof N. Alrashada
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
| | - Ahmed O. Abbas
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdelwahab M. Abdelwahab
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Department of Animal Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| |
Collapse
|
42
|
Li S, Wu T, Wu J, Zhou J, Yang H, Chen L, Chen W, Zhang D. Cyclosporine A-Encapsulated pH/ROS Dual-Responsive Nanoformulations for the Targeted Treatment of Colitis in Mice. ACS Biomater Sci Eng 2023; 9:5737-5746. [PMID: 37733924 DOI: 10.1021/acsbiomaterials.3c01191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Inflammatory bowel disease (IBD) is a frequently occurring disease that seriously influences the patient's quality of life. To decrease adverse effects and improve efficacy of therapeutics, nanomedicines have been widely used to treat IBD. However, how to thoroughly release payloads under an inflammatory microenvironment and synergistic therapy of IBD need to be further investigated. To address this issue, cyclosporine A (CsA)-loaded, folic acid (FA)-modified, pH and reactive oxygen species (ROS) dual-responsive nanoparticles (FA-CsA NPs) were fabricated using pH/ROS-responsive material as carrier. The prepared FA-CsA NPs had spherical shape and uniform size distribution and could smartly release their payloads under acid and/or ROS microenvironment. In vitro experiments demonstrated that FA-CsA NPs can be effectively internalized by activated macrophages, and the internalized NPs could down-regulate the expression of proinflammatory cytokines compared to free drug or nontargeted NPs. In vivo experiments verified that FA-CsA NPs significantly accumulated at inflammatory colon tissues and the accumulated NPs obviously improved the symptoms of colitis in mice without obvious adverse effects. In conclusion, our results provided a candidate for the targeted treatment of IBD.
Collapse
Affiliation(s)
- Shan Li
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jiangling Zhou
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Hong Yang
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Lei Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
43
|
Liu C, Wang Q, Wu YL. Recent Advances in Nanozyme-Based Materials for Inflammatory Bowel Disease. Macromol Biosci 2023; 23:e2300157. [PMID: 37262405 DOI: 10.1002/mabi.202300157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic inflammatory disorder that interferes with the patient's lifestyle and, in extreme situations, can be deadly. Fortunately, with the ever-deepening understanding of the pathological cause of IBD, recent studies using nanozyme-based materials have indicated the potential toward effective IBD treatment. In this review, the recent advancement of nanozymes for the treatment of enteritis is summarized from the perspectives of the structural design of nanozyme-based materials and therapeutic strategies, intending to serve as a reference to produce effective nanozymes for moderating inflammation in the future. Last but not least, the potential and current restrictions for using nanozymes in IBD will also be discussed. In short, this review may provide a guidance for the development of innovative enzyme-mimetic nanomaterials that offer a novel and efficient approach toward the effective treatment of IBD.
Collapse
Affiliation(s)
- Chuyi Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
44
|
Ye J, Li Q, Zhang Y, Su Q, Feng Z, Huang P, Zhang C, Zhai Y, Wang W. ROS scavenging and immunoregulative EGCG@Cerium complex loaded in antibacterial polyethylene glycol-chitosan hydrogel dressing for skin wound healing. Acta Biomater 2023; 166:155-166. [PMID: 37230435 DOI: 10.1016/j.actbio.2023.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The elevation of oxidative stress and inflammatory response after injury remains a substantial challenge that can deteriorate the wound microenvironment and compromise the success of wound healing. Herein, the assembly of naturally derived epigallocatechin-3-gallate (EGCG) and Cerium microscale complex (EGCG@Ce) was prepared as reactive oxygen species (ROS) scavenger, which was further loaded in antibacterial hydrogels as wound dressing. EGCG@Ce shows superior antioxidation capacity towards various ROS including free radical, O2- and H2O2 through superoxide dismutase-like or catalase-mimicking catalytic activity. Importantly, EGCG@Ce could provide mitochondrial protective effect against oxidative stress damages, reverse the polarization of M1 macrophages and reduce the secretion of pro-inflammatory cytokines. Furtherly, EGCG@Ce was loaded into the PEG-chitosan hydrogel with dynamic, porous, injectable and antibacterial properties as wound dressing, which accelerated the regeneration of both epidermal layer and dermis, resulting in improved healing process of full-thickness skin wounds in vivo. Mechanistically, EGCG@Ce re-shaped the detrimental tissue microenvironment and augmented the pro-reparative response through reducing ROS accumulation, alleviating inflammatory response, enhancing the M2 macrophage polarization and angiogenesis. Collectively, antioxidative and immunomodulatory metal-organic complex-loaded hydrogel is a promising multifunctional dressing for the repair and regeneration of cutaneous wounds without additional drugs, exogenous cytokines, or cells. STATEMENT OF SIGNIFICANCE: (1) We reported an effective antioxidant through self-assembly coordination of EGCG and Cerium for managing the inflammatory microenvironment at the wound site, which not only showed high catalytic capacity towards multiple ROS, but also could provide mitochondrial protective effect against oxidative stress damage, reverse the polarization of M1 macrophages and downregulate pro-inflammatory cytokines. EGCG@Ce was further loaded into porous and bactericidal PEG-chitosan (PEG-CS) hydrogel as a versatile wound dressing, which accelerated wound healing and angiogenesis. (2) The applicability of alleviating sustainable inflammation and regulating macrophage polarization through ROS scavenging is a promising strategy for tissue repair and regeneration without additional drugs, cytokines, or cells.
Collapse
Affiliation(s)
- Jing Ye
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qinghua Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yushan Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Qi Su
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
45
|
Wang J, Ni R, Jiang T, Peng D, Ming Y, Cui H, Liu Y. The applications of functional materials-based nano-formulations in the prevention, diagnosis and treatment of chronic inflammation-related diseases. Front Pharmacol 2023; 14:1222642. [PMID: 37593176 PMCID: PMC10427346 DOI: 10.3389/fphar.2023.1222642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Chronic inflammation, in general, refers to systemic immune abnormalities most often caused by the environment or lifestyle, which is the basis for various skin diseases, autoimmune diseases, cardiovascular diseases, liver diseases, digestive diseases, cancer, and so on. Therapeutic strategies have focused on immunosuppression and anti-inflammation, but conventional approaches have been poor in enhancing the substantive therapeutic effect of drugs. Nanomaterials continue to attract attention for their high flexibility, durability and simplicity of preparation, as well as high profitability. Nanotechnology is used in various areas of clinical medicine, such as medical diagnosis, monitoring and treatment. However, some related problems cannot be ignored, including various cytotoxic and worsening inflammation caused by the nanomaterials themselves. This paper provides an overview of functional nanomaterial formulations for the prevention, diagnosis and treatment of chronic inflammation-related diseases, with the intention of providing some reference for the enhancement and optimization of existing therapeutic approaches.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| | - Rui Ni
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Tingting Jiang
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
| | - Yao Liu
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
46
|
Zhang Y, Lei H, Wang P, Zhou Q, Yu J, Leng X, Ma R, Wang D, Dong K, Xing J, Dong Y. Restoration of dysregulated intestinal barrier and inflammatory regulation through synergistically ameliorating hypoxia and scavenging reactive oxygen species using ceria nanozymes in ulcerative colitis. Biomater Res 2023; 27:75. [PMID: 37507801 PMCID: PMC10375752 DOI: 10.1186/s40824-023-00412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) overproduction and excessive hypoxia play pivotal roles in the initiation and progression of ulcerative colitis (UC). Synergistic ROS scavenging and generating O2 could be a promising strategy for UC treatment. METHODS Ceria nanozymes (PEG-CNPs) are fabricated using a modified reverse micelle method. We investigate hypoxia attenuating and ROS scavenging of PEG-CNPs in intestinal epithelial cells and RAW 264.7 macrophages and their effects on pro-inflammatory macrophages activation. Subsequently, we investigate the biodistribution, pharmacokinetic properties and long-term toxicity of PEG-CNPs in mice. PEG-CNPs are administered intravenously to mice with 2,4,6-trinitrobenzenesulfonic acid-induced colitis to test their colonic tissue targeting and assess their anti-inflammatory activity and mucosal healing properties in UC. RESULTS PEG-CNPs exhibit multi-enzymatic activity that can scavenge ROS and generate O2, promote intestinal epithelial cell healing and inhibit pro-inflammatory macrophage activation, and have good biocompatibility. After intravenous administration of PEG-CNPs to colitis mice, they can enrich at the site of colonic inflammation, and reduce hypoxia-induced factor-1α expression in intestinal epithelial cells by scavenging ROS to generate O2, thus further promoting disrupted intestinal mucosal barrier restoration. Meanwhile, PEG-CNPs can effectively scavenge ROS in impaired colon tissues and relieve colonic macrophage hypoxia to suppress the pro-inflammatory macrophages activation, thereby preventing UC occurrence and development. CONCLUSION This study has provided a paradigm to utilize metallic nanozymes, and suggests that further materials engineering investigations could yield a facile method based on the pathological characteristics of UC for clinically managing UC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hengyu Lei
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Pengchong Wang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qinyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jie Yu
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xue Leng
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ruirui Ma
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Danyang Wang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kai Dong
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Jianfeng Xing
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
47
|
Aldrich JL, Panicker A, Ovalle R, Sharma B. Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:1044. [PMID: 37513955 PMCID: PMC10383173 DOI: 10.3390/ph16071044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is an important, but elusive, therapeutic target for osteoarthritis (OA). Antioxidant strategies that target oxidative stress through the elimination of reactive oxygen species (ROS) have been widely evaluated for OA but are limited by the physiological characteristics of the joint. Current hallmarks in antioxidant treatment strategies include poor bioavailability, poor stability, and poor retention in the joint. For example, oral intake of exogenous antioxidants has limited access to the joint space, and intra-articular injections require frequent dosing to provide therapeutic effects. Advancements in ROS-scavenging nanomaterials, also known as nanozymes, leverage bioactive material properties to improve delivery and retention. Material properties of nanozymes can be tuned to overcome physiological barriers in the knee. However, the clinical application of these nanozymes is still limited, and studies to understand their utility in treating OA are still in their infancy. The objective of this review is to evaluate current antioxidant treatment strategies and the development of nanozymes as a potential alternative to conventional small molecules and enzymes.
Collapse
Affiliation(s)
| | | | | | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.L.A.)
| |
Collapse
|
48
|
Wang J, Hu D, Chen Q, Liu T, Zhou X, Xu Y, Zhou H, Gu D, Gao C. Intracellular hydrogelation of macrophage conjugated probiotics for hitchhiking delivery and combined treatment of colitis. Mater Today Bio 2023; 20:100679. [PMID: 37273799 PMCID: PMC10232887 DOI: 10.1016/j.mtbio.2023.100679] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023] Open
Abstract
Immune cell membrane coated nanomedicine was developed to neutralize cytokines via receptor-ligand interaction, which showed potential for the treatment of inflammatory bowel disease (IBD). However, cell membrane isolation and re-assembly process involved protein loss and spatial disorder, which reduced the sequestration efficiency towards cytokines. In addition, oral administration of probiotics was accepted for IBD treatment via gut microbiota modulation, but most probiotics showed weak adhesion to intestine mucosa and were quickly expelled from gastrointestinal tract. Herein, an intracellular hydrogelation technology was proposed to construct gelated peritoneal macrophage (GPM) with intact membrane structure, resulting from the avoidance of membrane isolation and re-assembly process. GPM efficiently neutralized multiple cytokines in vitro and in vivo to ameliorate inflammatory Caco-2 cells and colitis rats by regulating oxidative stress, inflammation level and intestinal barrier repair. Moreover, the probiotics (Nissle1917, EcN) were easily attached on GPM surface through specific recognition, to construct GPM-EcN conjugate for GPM hitchhiking delivery to colitis tissue. Conjugation process of GPM and EcN showed no damage on bacterial physiological function. Due to the chemical attachment on inflammatory cells, GPM carried the attached EcN hand-in-hand to accumulate in the colitis tissue of IBD rat, and enhanced intestine retention time of EcN in comparison to free EcN, which improved bacterial diversity, and shifted the microbiota community and acid metabolites to an anti-inflammatory phenotype. This study transferred the hydrogel synthesis from in vitro to intracellular cytoplasm, and came to a new insight of conjugating strategy of GPM and probiotics for hitchhiking delivery and combined anti-IBD treatment.
Collapse
Affiliation(s)
- Jingzhe Wang
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Dini Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Tonggong Liu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Xiaoting Zhou
- Yulin Center for Food and Drug Control, Yulin, 719000, China
| | - Yong Xu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Hongzhong Zhou
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Cheng Gao
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| |
Collapse
|
49
|
Ionescu RE. Updates on the Biofunctionalization of Gold Nanoparticles for the Rapid and Sensitive Multiplatform Diagnosis of SARS-CoV-2 Virus and Its Proteins: From Computational Models to Validation in Human Samples. Int J Mol Sci 2023; 24:ijms24119249. [PMID: 37298201 DOI: 10.3390/ijms24119249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Since the outbreak of the pandemic respiratory virus SARS-CoV-2 (COVID-19), academic communities and governments/private companies have used several detection techniques based on gold nanoparticles (AuNPs). In this emergency context, colloidal AuNPs are highly valuable easy-to-synthesize biocompatible materials that can be used for different functionalization strategies and rapid viral immunodiagnosis. In this review, the latest multidisciplinary developments in the bioconjugation of AuNPs for the detection of SARS-CoV-2 virus and its proteins in (spiked) real samples are discussed for the first time, with reference to the optimal parameters provided by three approaches: one theoretical, via computational prediction, and two experimental, using dry and wet chemistry based on single/multistep protocols. Overall, to achieve high specificity and low detection limits for the target viral biomolecules, optimal running buffers for bioreagent dilutions and nanostructure washes should be validated before conducting optical, electrochemical, and acoustic biosensing investigations. Indeed, there is plenty of room for improvement in using gold nanomaterials as stable platforms for ultrasensitive and simultaneous "in vitro" detection by the untrained public of the whole SARS-CoV-2 virus, its proteins, and specific developed IgA/IgM/IgG antibodies (Ab) in bodily fluids. Hence, the lateral flow assay (LFA) approach is a quick and judicious solution to combating the pandemic. In this context, the author classifies LFAs according to four generations to guide readers in the future development of multifunctional biosensing platforms. Undoubtedly, the LFA kit market will continue to improve, adapting researchers' multidetection platforms for smartphones with easy-to-analyze results, and establishing user-friendly tools for more effective preventive and medical treatments.
Collapse
Affiliation(s)
- Rodica Elena Ionescu
- Light, Nanomaterials and Nanotechnology (L2n) Laboratory, CNRS EMR 7004, University of Technology of Troyes, 12 Rue Marie Curie, CS 42060, CEDEX, 10004 Troyes, France
| |
Collapse
|