1
|
Ojo OA, Shen H, Ingram JT, Bonner JA, Welner RS, Lacaud G, Zajac AJ, Shi LZ. Gfi1 controls the formation of effector-like CD8 + T cells during chronic infection and cancer. Nat Commun 2025; 16:4542. [PMID: 40374625 PMCID: PMC12081725 DOI: 10.1038/s41467-025-59784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/02/2025] [Indexed: 05/17/2025] Open
Abstract
During chronic infection and tumor progression, CD8+ T cells lose their effector functions and become exhausted. These exhausted CD8+ T cells are heterogeneous and comprised of progenitors that give rise to effector-like or terminally-exhausted cells. The precise cues and mechanisms directing subset formation are incompletely understood. Here, we show that growth factor independent-1 (Gfi1) is dynamically regulated in exhausted CD8+ T cells. During chronic LCMV Clone 13 infection, a previously under-described Ly108+CX3CR1+ subset expresses low levels of Gfi1 while other established subsets have high expression. Ly108+CX3CR1+ cells possess distinct chromatin profiles and represent a transitory subset that develops to effector-like and terminally-exhausted cells, a process dependent on Gfi1. Similarly, Gfi1 in tumor-infiltrating CD8+ T cells is required for the formation of terminally differentiated cells and endogenous as well as anti-CTLA-induced anti-tumor responses. Taken together, Gfi1 is a key regulator of the subset formation of exhausted CD8+ T cells.
Collapse
Affiliation(s)
- Oluwagbemiga A Ojo
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hongxing Shen
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer T Ingram
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Bonner
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert S Welner
- Department of Hematology & Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Allan J Zajac
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lewis Z Shi
- Department of Radiation Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Immunology Institute, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pharmacology and Toxicology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
GFI1 regulates hair cell differentiation by acting as an off-DNA transcriptional co-activator of ATOH1, and a DNA-binding repressor. Sci Rep 2022; 12:7793. [PMID: 35551236 PMCID: PMC9098437 DOI: 10.1038/s41598-022-11931-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
GFI1 is a zinc finger transcription factor that is necessary for the differentiation and survival of hair cells in the cochlea. Deletion of Gfi1 in mice significantly reduces the expression of hundreds of hair cell genes: this is a surprising result, as GFI1 normally acts as a transcriptional repressor by recruiting histone demethylases and methyltransferases to its targets. To understand the mechanisms by which GFI1 promotes hair cell differentiation, we used CUT&RUN to identify the direct targets of GFI1 and ATOH1 in hair cells. We found that GFI1 regulates hair cell differentiation in two distinct ways—first, GFI1 and ATOH1 can bind to the same regulatory elements in hair cell genes, but while ATOH1 directly binds its target DNA motifs in many of these regions, GFI1 does not. Instead, it appears to enhance ATOH1’s transcriptional activity by acting as part of a complex in which it does not directly bind DNA. Second, GFI1 can act in its more typical role as a direct, DNA-binding transcriptional repressor in hair cells; here it represses non-hair cell genes, including many neuronal genes. Together, our results illuminate the function of GFI1 in hair cell development and hair cell reprogramming strategies.
Collapse
|
3
|
PARP Traps Rescue the Pro-Inflammatory Response of Human Macrophages in the In Vitro Model of LPS-Induced Tolerance. Pharmaceuticals (Basel) 2021; 14:ph14020170. [PMID: 33671709 PMCID: PMC7926882 DOI: 10.3390/ph14020170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/29/2022] Open
Abstract
Secondary infections cause sepsis that lead to patient disability or death. Contact of macrophages with bacterial components (such as lipopolysaccharide—LPS) activates the intracellular signaling pathway downstream of Toll-like receptors (TLR), which initiate an immune proinflammatory response. However, the expression of nuclear factor-kappa B (NF-κB)-dependent proinflammatory cytokines significantly decreases after single high or multiple LPS stimulations. Knowing that poly(ADP-ribose) polymerase-1 (PARP1) serves as a cofactor of NF-κB, we aimed to verify a hypothesis of the possible contribution of PARP1 to the development of LPS-induced tolerance in human macrophages. Using TNF-α mRNA expression as a readout, we demonstrate that PARP1 interaction with the TNF-α promoter, controls macrophage immunoparalysis. We confirm that PARP1 is extruded from the gene promoter, whereas cell pretreatment with Olaparib maintains macrophage responsiveness to another LPS treatment. Furthermore, cell pretreatment with proteasome inhibitor MG132 completely abrogates the effect of Olaparib, suggesting that PARP1 acts with NF-κB in the same regulatory pathway, which controls pro-inflammatory cytokine transcription. Mechanistically, PARP1 trapping allows for the re-rebinding of p65 to the TNF-α promoter in LPS-stimulated cells. In conclusion, PARP traps prevent PARP1 extrusion from the TNF-α promoter upon macrophage stimulation, thereby maintaining chromatin responsiveness of TLR activation, allowing for the re-binding of p65 and TNF-α transcription.
Collapse
|
4
|
Möröy T, Khandanpour C. Role of GFI1 in Epigenetic Regulation of MDS and AML Pathogenesis: Mechanisms and Therapeutic Implications. Front Oncol 2019; 9:824. [PMID: 31508375 PMCID: PMC6718700 DOI: 10.3389/fonc.2019.00824] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/12/2019] [Indexed: 01/12/2023] Open
Abstract
Growth factor independence 1 (GFI1) is a DNA binding zinc finger protein, which can mediate transcriptional repression mainly by recruiting histone-modifying enzymes to its target genes. GFI1 plays important roles in hematopoiesis, in particular by regulating both the function of hematopoietic stem- and precursor cells and differentiation along myeloid and lymphoid lineages. In recent years, a number of publications have provided evidence that GFI1 is involved in the pathogenesis of acute myeloid leukemia (AML), its proposed precursor, myelodysplastic syndrome (MDS), and possibly also in the progression from MDS to AML. For instance, expression levels of the GFI1 gene correlate with patient survival and treatment response in both AML and MDS and can influence disease progression and maintenance in experimental animal models. Also, a non-synonymous single nucleotide polymorphism (SNP) of GFI1, GFI1-36N, which encodes a variant GFI1 protein with a decreased efficiency to act as a transcriptional repressor, was found to be a prognostic factor for the development of AML and MDS. Both the GFI1-36N variant as well as reduced expression of the GFI1 gene lead to genome-wide epigenetic changes at sites where GFI1 occupies target gene promoters and enhancers. These epigenetic changes alter the response of leukemic cells to epigenetic drugs such as HDAC- or HAT inhibitors, indicating that GFI1 expression levels and genetic variants of GFI1 are of clinical relevance. Based on these and other findings, specific therapeutic approaches have been proposed to treat AML by targeting some of the epigenetic changes that occur as a consequence of GFI1 expression. Here, we will review the well-known role of Gfi1 as a transcription factor and describe the more recently discovered functions of GFI1 that are independent of DNA binding and how these might affect disease progression and the choice of epigenetic drugs for therapeutic regimens of AML and MDS.
Collapse
Affiliation(s)
- Tarik Möröy
- Department of Hematopoiesis and Cancer, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
5
|
Hönes JM, Thivakaran A, Botezatu L, Patnana P, Castro SVDC, Al-Matary YS, Schütte J, Fischer KBI, Vassen L, Görgens A, Dührsen U, Giebel B, Khandanpour C. Enforced GFI1 expression impedes human and murine leukemic cell growth. Sci Rep 2017; 7:15720. [PMID: 29147018 PMCID: PMC5691148 DOI: 10.1038/s41598-017-15866-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/01/2017] [Indexed: 01/20/2023] Open
Abstract
The differentiation of haematopoietic cells is regulated by a plethora of so-called transcription factors (TFs). Mutations in genes encoding TFs or graded reduction in their expression levels can induce the development of various malignant diseases such as acute myeloid leukaemia (AML). Growth Factor Independence 1 (GFI1) is a transcriptional repressor with key roles in haematopoiesis, including regulating self-renewal of haematopoietic stem cells (HSCs) as well as myeloid and lymphoid differentiation. Analysis of AML patients and different AML mouse models with reduced GFI1 gene expression levels revealed a direct link between low GFI1 protein level and accelerated AML development and inferior prognosis. Here, we report that upregulated expression of GFI1 in several widely used leukemic cell lines inhibits their growth and decreases the ability to generate colonies in vitro. Similarly, elevated expression of GFI1 impedes the in vitro expansion of murine pre-leukemic cells. Using a humanized AML model, we demonstrate that upregulation of GFI1 expression leads to myeloid differentiation morphologically and immunophenotypically, increased level of apoptosis and reduction in number of cKit+ cells. These results suggest that increasing GFI1 level in leukemic cells with low GFI1 expression level could be a therapeutic approach.
Collapse
Affiliation(s)
- Judith M Hönes
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Aniththa Thivakaran
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lacramioara Botezatu
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Pradeep Patnana
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Symone Vitoriano da Conceição Castro
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, Brazil
| | - Yahya S Al-Matary
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Judith Schütte
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karen B I Fischer
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lothar Vassen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Cyrus Khandanpour
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
6
|
Costa A, Powell LM, Lowell S, Jarman AP. Atoh1 in sensory hair cell development: constraints and cofactors. Semin Cell Dev Biol 2017; 65:60-68. [DOI: 10.1016/j.semcdb.2016.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 11/28/2022]
|
7
|
Gfi1 Cre mice have early onset progressive hearing loss and induce recombination in numerous inner ear non-hair cells. Sci Rep 2017; 7:42079. [PMID: 28181545 PMCID: PMC5299610 DOI: 10.1038/srep42079] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
Studies of developmental and functional biology largely rely on conditional expression of genes in a cell type-specific manner. Therefore, the importance of specificity and lack of inherent phenotypes for Cre-driver animals cannot be overemphasized. The Gfi1Cre mouse is commonly used for conditional hair cell-specific gene deletion/reporter gene activation in the inner ear. Here, using immunofluorescence and flow cytometry, we show that the Gfi1Cre mice produce a pattern of recombination that is not strictly limited to hair cells within the inner ear. We observe a broad expression of Cre recombinase in the Gfi1Cre mouse neonatal inner ear, primarily in inner ear resident macrophages, which outnumber the hair cells. We further show that heterozygous Gfi1Cre mice exhibit an early onset progressive hearing loss as compared with their wild-type littermates. Importantly, vestibular function remains intact in heterozygotes up to 10 months, the latest time point tested. Finally, we detect minor, but statistically significant, changes in expression of hair cell-enriched transcripts in the Gfi1Cre heterozygous mice cochleae compared with their wild-type littermate controls. Given the broad use of the Gfi1Cre mice, both for gene deletion and reporter gene activation, these data are significant and necessary for proper planning and interpretation of experiments.
Collapse
|
8
|
The role of the transcriptional repressor growth factor independent 1 in the formation of myeloid cells. Curr Opin Hematol 2017; 24:32-37. [DOI: 10.1097/moh.0000000000000295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Al-Matary YS, Botezatu L, Opalka B, Hönes JM, Lams RF, Thivakaran A, Schütte J, Köster R, Lennartz K, Schroeder T, Haas R, Dührsen U, Khandanpour C. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner. Haematologica 2016; 101:1216-1227. [PMID: 27390361 PMCID: PMC5046651 DOI: 10.3324/haematol.2016.143180] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/07/2016] [Indexed: 12/31/2022] Open
Abstract
The growth of malignant cells is not only driven by cell-intrinsic factors, but also by the surrounding stroma. Monocytes/Macrophages play an important role in the onset and progression of solid cancers. However, little is known about their role in the development of acute myeloid leukemia, a malignant disease characterized by an aberrant development of the myeloid compartment of the hematopoietic system. It is also unclear which factors are responsible for changing the status of macrophage polarization, thus supporting the growth of malignant cells instead of inhibiting it. We report herein that acute myeloid leukemia leads to the invasion of acute myeloid leukemia-associated macrophages into the bone marrow and spleen of leukemic patients and mice. In different leukemic mouse models, these macrophages support the in vitro expansion of acute myeloid leukemia cell lines better than macrophages from non-leukemic mice. The grade of macrophage infiltration correlates in vivo with the survival of the mice. We found that the transcriptional repressor Growth factor independence 1 is crucial in the process of macrophage polarization, since its absence impedes macrophage polarization towards a leukemia supporting state and favors an anti-tumor state both in vitro and in vivo These results not only suggest that acute myeloid leukemia-associated macrophages play an important role in the progression of acute myeloid leukemia, but also implicate Growth factor independence 1 as a pivotal factor in macrophage polarization. These data may provide new insights and opportunities for novel therapies for acute myeloid leukemia.
Collapse
Affiliation(s)
- Yahya S Al-Matary
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Lacramioara Botezatu
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Bertram Opalka
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Judith M Hönes
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Robert F Lams
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Aniththa Thivakaran
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Judith Schütte
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Renata Köster
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Klaus Lennartz
- Institute of cell biology (Tumor Research), University Hospital Essen, University of Duisburg-Essen
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University Düsseldorf, University Hospital, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University Düsseldorf, University Hospital, Germany
| | - Ulrich Dührsen
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Cyrus Khandanpour
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| |
Collapse
|
10
|
From cytopenia to leukemia: the role of Gfi1 and Gfi1b in blood formation. Blood 2015; 126:2561-9. [PMID: 26447191 DOI: 10.1182/blood-2015-06-655043] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022] Open
Abstract
The DNA-binding zinc finger transcription factors Gfi1 and Gfi1b were discovered more than 20 years ago and are recognized today as major regulators of both early hematopoiesis and hematopoietic stem cells. Both proteins function as transcriptional repressors by recruiting histone-modifying enzymes to promoters and enhancers of target genes. The establishment of Gfi1 and Gfi1b reporter mice made it possible to visualize their cell type-specific expression and to understand their function in hematopoietic lineages. We now know that Gfi1 is primarily important in myeloid and lymphoid differentiation, whereas Gfi1b is crucial for the generation of red blood cells and platelets. Several rare hematologic diseases are associated with acquired or inheritable mutations in the GFI1 and GFI1B genes. Certain patients with severe congenital neutropenia carry mutations in the GFI1 gene that lead to the disruption of the C-terminal zinc finger domains. Other mutations have been found in the GFI1B gene in families with inherited bleeding disorders. In addition, the Gfi1 locus is frequently found to be a proviral integration site in retrovirus-induced lymphomagenesis, and new, emerging data suggest a role of Gfi1 in human leukemia and lymphoma, underlining the role of both factors not only in normal hematopoiesis, but also in a wide spectrum of human blood diseases.
Collapse
|
11
|
Abstract
T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors; they also have developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in contrast to B cell gene networks, the T cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete T cell-like effector differentiation can proceed without T cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
12
|
Abstract
Tumor engraftment followed by monoclonal antibody (mAb) therapy targeting tumor antigens represents a gold standard for assessing the efficiency of mAbs to eliminate tumor cells. Mouse models have demonstrated that receptors for the Fc portion of immunoglobulin G (FcγRs) are critical determinants of mAb therapeutic efficacy, but the FcγR-expressing cell populations responsible remain elusive. We show that neutrophils are responsible for mAb-induced therapy of both subcutaneous syngeneic melanoma and human breast cancer xenografts. mAb-induced tumor reduction, abolished in neutropenic mice, could be restored in FcγR-deficient hosts upon transfer of FcγR+ neutrophils or upon human FcγRIIA/CD32A transgenic expression. Finally, conditional knockout mice unable to perform FcγR-mediated activation and phagocytosis specifically in neutrophils were resistant to mAb-induced therapy. Our work suggests that neutrophils are necessary and sufficient for mAb-induced therapy of subcutaneous tumors, and represent a new and critical focal point for optimizing mAb-induced immunotherapies that will impact on human cancer treatment.
Collapse
|
13
|
Liu Q, Dong F. Gfi-1 inhibits the expression of eosinophil major basic protein (MBP) during G-CSF-induced neutrophilic differentiation. Int J Hematol 2012; 95:640-7. [PMID: 22552881 DOI: 10.1007/s12185-012-1078-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
The zinc finger transcriptional repressor Gfi-1 has been shown to play a critical role in early granulopoiesis; however, its role in late neutrophilic development is poorly understood. We report here that forced expression of a dominant negative Gfi-1 mutant, N382S, resulted in augmented mRNA levels of eosinophil major basic protein (MBP) in myeloid cells induced with G-CSF to undergo terminal neutrophilic differentiation. MBP is a cytotoxic protein that is abundantly expressed in eosinophils, but not in neutrophils. Ectopic expression of MBP inhibited the proliferation and survival of differentiating myeloid cells in response to G-CSF. Significantly, while GFI-1 is upregulated during neutrophilic differentiation, it is rapidly downregulated upon induction of eosinophilic differentiation, which was associated with increased MBP expression. Knockdown of GFI-1 in eosinophilic cells also led to increased level of MBP mRNA. These results indicate that Gfi-1 functions to inhibit the expression of MBP and aberrant expression of MBP as a result of loss of Gfi-1 function may cause premature apoptosis of differentiating neutrophils. In contrast, the rapid downregulation of Gfi-1 during eosinophilic development may allow for abundant expression of MBP, a hallmark of eosinophilic differentiation.
Collapse
Affiliation(s)
- Qingquan Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | | |
Collapse
|
14
|
Ferrero GB, Picco G, Baldassarre G, Flex E, Isella C, Cantarella D, Corà D, Chiesa N, Crescenzio N, Timeus F, Merla G, Mazzanti L, Zampino G, Rossi C, Silengo M, Tartaglia M, Medico E. Transcriptional hallmarks of Noonan syndrome and Noonan-like syndrome with loose anagen hair. Hum Mutat 2012; 33:703-9. [PMID: 22253195 PMCID: PMC3332054 DOI: 10.1002/humu.22026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 01/04/2012] [Indexed: 11/29/2022]
Abstract
Noonan syndrome (NS) is among the most common nonchromosomal disorders affecting development and growth. NS is genetically heterogeneous, being caused by germline mutations affecting various genes implicated in the RAS signaling network. This network transduces extracellular signals into intracellular biochemical and transcriptional responses controlling cell proliferation, differentiation, metabolism, and senescence. To explore the transcriptional consequences of NS-causing mutations, we performed global mRNA expression profiling on peripheral blood mononuclear cells obtained from 23 NS patients carrying heterozygous mutations in PTPN11 or SOS1. Gene expression profiling was also resolved in five subjects with Noonan-like syndrome with loose anagen hair (NS/LAH), a condition clinically related to NS and caused by an invariant mutation in SHOC2. Robust transcriptional signatures were found to specifically discriminate each of the three mutation groups from 21 age- and sex-matched controls. Despite the only partial overlap in terms of gene composition, the three signatures showed a notable concordance in terms of biological processes and regulatory circuits affected. These data establish expression profiling of peripheral blood mononuclear cells as a powerful tool to appreciate differential perturbations driven by germline mutations of transducers involved in RAS signaling and to dissect molecular mechanisms underlying NS and other RASopathies. Hum Mutat 33:703–709, 2012. © 2012 Wiley Periodicals, Inc.
Collapse
|
15
|
Khandanpour C, Kosan C, Gaudreau MC, Dührsen U, Hébert J, Zeng H, Möröy T. Growth factor independence 1 protects hematopoietic stem cells against apoptosis but also prevents the development of a myeloproliferative-like disease. Stem Cells 2011; 29:376-85. [PMID: 21732494 DOI: 10.1002/stem.575] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The regulation of gene transcription is elementary for the function of hematopoietic stem cells (HSCs). The transcriptional repressor growth factor independence 1 (Gfi1) restricts HSC proliferation and is essential to maintain their self-renewal capacity and multipotency after transplantation. In addition, Gfi1(-/-) HSCs are severely compromised in their ability to compete with wild-type (wt) HSCs after transplantation. We now report that Gfi1 protects HSCs against stress-induced apoptosis, probably, by repressing the proapoptotic target gene Bax, since irradiated Gfi1(-/-) HSCs display higher expression of Bax and show a higher rate of apoptosis than wt HSCs. This protective function of Gfi1 appears to be functionally relevant since Gfi1(-/-) HSCs that express Bcl-2, which antagonizes the effects of Bax, regain their ability to self renew and to initiate multilineage differentiation after transplantation. Surprisingly, Gfi1(-/-) xBcl-2 transgenic mice also show a strong, systemic expansion of Mac-1(+) Gr-1(-) myeloid cells in bone marrow and peripheral lymphoid organs. These cells express high levels of the proleukemogenic transcription factor Hoxa9 and, in older mice, appear as atypical monocytoid-blastoid cells in the peripheral blood. As a result of this massive expansion of myeloid cells, all Gfi1(-/-) xBcl-2 mice eventually succumb to a myeloproliferative-like disease resembling a preleukemic state. In summary, our data demonstrate that Gfi1's ability to protect against apoptosis is essential for HSC function. In addition, our finding show that Gfi1 prevents the development of myeloproliferative diseases and provides evidence how Gfi1 deficiency could be linked to myeloid leukemia.
Collapse
Affiliation(s)
- Cyrus Khandanpour
- Institut de recherches cliniques de Montréal (IRCM), Université de Montréal, Montréal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Pietschmann K, Buchwald M, Müller S, Knauer SK, Kögl M, Heinzel T, Krämer OH. Differential regulation of PML-RARα stability by the ubiquitin ligases SIAH1/SIAH2 and TRIAD1. Int J Biochem Cell Biol 2011; 44:132-8. [PMID: 22037423 DOI: 10.1016/j.biocel.2011.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/05/2011] [Accepted: 10/16/2011] [Indexed: 11/29/2022]
Abstract
The ubiquitin proteasome system plays an important role in normal and malignant hematopoiesis and relies on the concerted action of three enzyme families. The E2 ubiquitin conjugase UBCH8 (ubiquitin conjugating enzyme [human] 8) cooperates with the E3 ubiquitin ligases SIAH1 and SIAH2 (seven in absentia homolog 1/2) to mediate the proteasomal degradation of oncoproteins. One such protein is the leukemia fusion protein PML-RARα (promyelocytic leukemia-retinoic acid receptorα) that is associated with acute promyelocytic leukemia. A limited number of UBCH8 interaction partners that participate in the UBCH8-dependent depletion of cancer-relevant proteins are known. We report here that TRIAD1 (two RING fingers and DRIL [double RING finger linked] 1), an E3 ubiquitin ligase relevant for the clonogenic growth of myloid progenitors, binds UBCH8 as well as PML-RARα. Moreover, there is concurrent induction of TRIAD1 and UBCH8 upon combinatorial treatment of acute promyelocytic leukemia cells with the pro-apoptotic epigenetic modulator valproic acid and the differentiation inducing agent all-trans retinoic acid. However, in sharp contrast to SIAH1/SIAH2 and UBCH8, TRIAD1 binding to PML-RARα has no effect on its turnover. In summary, our data exclude TRIAD1 as crucial regulator of the leukemic determinant PML-RARα, but highlight the prominence of the UBCH8/SIAH axis in PML-RARα degradation.
Collapse
Affiliation(s)
- Kristin Pietschmann
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Department of Biochemistry, University of Jena, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Heyd F, Chen R, Afshar K, Saba I, Lazure C, Fiolka K, Möröy T. The p150 subunit of the histone chaperone Caf-1 interacts with the transcriptional repressor Gfi1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:255-61. [PMID: 21570500 DOI: 10.1016/j.bbagrm.2011.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/07/2011] [Accepted: 04/26/2011] [Indexed: 11/29/2022]
Abstract
Modification of histones is critically involved in regulating chromatin structure and gene expression. The zinc finger protein Gfi1 silences transcription by recruiting a complex of histone modifying enzymes such as LSD-1/CoRest and HDAC-1 to target gene promoters. Here we present evidence that Gfi1 forms a complex with the p150 subunit of the histone chaperone chromatin assembly factor-1 (Caf-1). Gfi1 and p150 interact at endogenous expression levels and co-localize in distinct sub-nuclear structures. We show that p150 enhances Gfi1-mediated transcriptional repression and that it occupies Gfi1 target gene promoters in transfected cells and primary murine T cells only in the presence of Gfi1. Finally, size exclusion chromatography shows a fraction of p150 to coelute with Gfi1, LSD-1 and HDAC-1 and thus provides evidence that p150 is part of the Gfi1 repression complex. Since p150 binds directly to histones H3 and H4, our findings suggest that p150 may link the DNA-bound Gfi1 repressor complex to histones enabling modifications required for transcriptional silencing.
Collapse
Affiliation(s)
- Florian Heyd
- Institut de recherches cliniques de Montréal (IRCM), H2W 1R7, Montréal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Kenth G, Puzhko S, Goodyer CG. Human growth hormone receptor gene expression is regulated by Gfi-1/1b and GAGA cis-elements. Mol Cell Endocrinol 2011; 335:135-47. [PMID: 21238539 DOI: 10.1016/j.mce.2011.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/20/2010] [Accepted: 01/07/2011] [Indexed: 12/15/2022]
Abstract
Human growth hormone receptor (hGHR) gene regulation is complex: mRNAs are transcribed from multiple variant (V) 5'UTR exons, several ubiquitously while others only in the postnatal hepatocyte. The liver-specific V1 exon promoter contains Gfi-1/1b repressor sites adjacent to a GAGA box, a GH response element (GHRE) in several mammalian genes. GAGA boxes are also present in the ubiquitously expressing V3 exon promoter. Heterologous sites in bovine, ovine and murine GHR genes suggest conserved roles. GAGA factor stimulated V1 and V3 promoters while Gfi-1/1b repressed basal and GAF-stimulated V1 transcription. HGH treatment of HepG2 cells resulted in a new complex forming with V3 GAGA elements, suggesting a functional GHRE. Data suggest liver-specific V1 transcription is regulated by inhibitory Gfi-1/1b and stimulatory GAGA cis-elements and Gfi-1/1b may control the lack of V1 expression in fetal liver, hepatic tumours and non-hepatic tissues. In addition, hGH may regulate hGHR expression through V3 GAGA boxes.
Collapse
Affiliation(s)
- Gurvinder Kenth
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
19
|
Evidence that growth factor independence 1b regulates dormancy and peripheral blood mobilization of hematopoietic stem cells. Blood 2010; 116:5149-61. [PMID: 20826720 DOI: 10.1182/blood-2010-04-280305] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Donor-matched transplantation of hematopoietic stem cells (HSCs) is widely used to treat hematologic malignancies but is associated with high mortality. The expansion of HSC numbers and their mobilization into the bloodstream could significantly improve therapy. We report here that adult mice conditionally deficient for the transcription Growth factor independence 1b (Gfi1b) show a significant expansion of functional HSCs in the bone marrow and blood. Despite this expansion, Gfi1b(ko/ko) HSCs retain their ability to self-renew and to initiate multilineage differentiation but are no longer quiescent and contain elevated levels of reactive oxygen species. Treatment of Gfi1b(ko/ko) mice with N-acetyl-cystein significantly reduced HSC numbers indicating that increased reactive oxygen species levels are at least partially responsible for the expansion of Gfi1b-deficient HSCs. Moreover, Gfi1b(-/-) HSCs show decreased expression of CXCR4 and Vascular cell adhesion protein-1, which are required to retain dormant HSCs in the endosteal niche, suggesting that Gfi1b regulates HSC dormancy and pool size without affecting their function. Finally, the additional deletion of the related Gfi1 gene in Gfi1b(ko/ko) HSCs is incompatible with the maintenance of HSCs, suggesting that Gfi1b and Gfi1 have partially overlapping functions but that at least one Gfi gene is essential for the generation of HSCs.
Collapse
|
20
|
Bjerknes M, Cheng H. Cell Lineage metastability in Gfi1-deficient mouse intestinal epithelium. Dev Biol 2010; 345:49-63. [PMID: 20599897 DOI: 10.1016/j.ydbio.2010.06.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 06/07/2010] [Accepted: 06/15/2010] [Indexed: 01/28/2023]
Abstract
Elucidating the mechanisms determining multipotent progenitor cell fate remains a fundamental project of contemporary biology. Various tissues of mice and men with defects in the zinc-finger transcriptional repressor Gfi1 have dramatic perturbations in the proportions of their differentiated cell types. In Gfi1-deficient intestinal epithelium there is a shift from mucous and Paneth towards enteroendocrine cells, leading to the proposal that Gfi1 functions in the allocation of the progeny derived from a hypothetical common granulocytic progenitor. However, studies of clones have yielded no evidence of such a common progenitor prompting us to investigate alternate mechanisms explaining the Gfi1-deficient phenotype. We report that mucous and Paneth but not enteroendocrine lineage cells normally express Gfi1. Sporadic mucous and Paneth lineage cells in the crypts of Gfi1-deficient mice aberrantly express the pro-enteroendocrine transcription factor Neurog3, indicating that stable repression of Neurog3 in these lineages requires Gfi1. Importantly, we also find mucous and Paneth lineage cells in various stages of cellular reprogramming into the enteroendocrine lineage in Gfi1-deficient mice. We propose that mucous and Paneth cell lineage metastability, rather than reallocation at the level of a hypothetical common granulocytic progenitor, is responsible for the shifts in cell type proportions observed in Gfi1-deficient intestinal epithelium.
Collapse
Affiliation(s)
- Matthew Bjerknes
- Department of Medicine, Clinical Science Division, Medical Sciences Building, Room 6334, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | | |
Collapse
|
21
|
Zinc finger protein Gfi1 controls the endotoxin-mediated Toll-like receptor inflammatory response by antagonizing NF-kappaB p65. Mol Cell Biol 2010; 30:3929-42. [PMID: 20547752 DOI: 10.1128/mcb.00087-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endotoxin (bacterial lipopolysaccharide [LPS]) causes fatal septic shock via the Toll-like receptor 4 (TLR-4) protein present on innate immunity effector cells, which activates nuclear factor kappa B (NF-kappaB), inducing proinflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha). An early step in this process involves nuclear sequestration of the p65-RelA NF-kappaB subunit, enabling transcriptional activation of target inflammatory cytokine genes. Here, we analyzed the role of the nuclear zinc finger protein Gfi1 in the TLR response using primary bone marrow-derived macrophages. We show that upon LPS stimulation, expression of Gfi1 is induced with kinetics similar to those of nuclear translocation of p65 and that Gfi1 interacts with p65 and inhibits p65-mediated transcriptional transactivation by interfering with p65 binding to target gene promoter DNA. Gfi1-deficient macrophages show abnormally high mRNA levels of the TNF-alpha gene and many other p65 target genes and a higher rate of TNF promoter occupancy by p65 than wild-type cells after LPS stimulation, suggesting that Gfi1 functions as an antagonist of NF-kappaB activity at the level of promoter binding. Our findings identify a new function of Gfi1 as a general negative regulator of the endotoxin-initiated innate immune responses, including septic shock and possibly other severe inflammatory diseases.
Collapse
|
22
|
Liu Q, Basu S, Qiu Y, Tang F, Dong F. A role of Miz-1 in Gfi-1-mediated transcriptional repression of CDKN1A. Oncogene 2010; 29:2843-52. [PMID: 20190815 PMCID: PMC2869400 DOI: 10.1038/onc.2010.48] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 01/13/2010] [Accepted: 01/29/2010] [Indexed: 12/11/2022]
Abstract
Zinc-finger (ZF) transcriptional repressor growth factor independence 1 (Gfi-1) has an important role in hematopoiesis and inner ear development, and also functions as an oncoprotein that cooperates with c-Myc in lymphomagenesis. Gfi-1 represses transcription by directly binding to conserved sequences in the promoters of its target genes. CDKN1A encoding p21(Cip1) has been identified as a Gfi-1 target gene and has been shown to contain Gfi-1 binding sites in the upstream promoter region. We show here that Gfi-1 represses CDKN1A in a manner that is independent of its DNA binding activity. Gfi-1 interacts with POZ-ZF transcription factor Miz-1, originally shown to be a c-Myc-interacting partner, and through Miz-1 binds to the CDKN1A core promoter. Interestingly, Gfi-1 and c-Myc, through Miz-1, form a ternary complex on the CDKN1A promoter, and function in collaboration to repress CDKN1A. Gfi-1 knockdown results in enhanced levels of p21(Cip1) and attenuated cell proliferation. Notably, similar to c-Myc, the expression of Gfi-1 is downregulated by transforming growth factor-beta (TGFbeta) and the level of Gfi-1 influences the response of cells to the cytostatic effect of TGFbeta. Our data reveal an important mechanism by which Gfi-1 regulates cell proliferation and may also have implications for understanding the role of Gfi-1 in lymphomagenesis.
Collapse
Affiliation(s)
- Qingquan Liu
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Suchitra Basu
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Yaling Qiu
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Fangqiang Tang
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Fan Dong
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
23
|
Lee S, Doddapaneni K, Hogue A, McGhee L, Meyers S, Wu Z. Solution Structure of Gfi-1 Zinc Domain Bound to Consensus DNA. J Mol Biol 2010; 397:1055-66. [DOI: 10.1016/j.jmb.2010.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 01/29/2023]
|
24
|
Sahoo A, Im SH. Interleukin and Interleukin Receptor Diversity: Role of Alternative Splicing. Int Rev Immunol 2010; 29:77-109. [PMID: 20100083 DOI: 10.3109/08830180903349651] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Webb KJ, Norton WHJ, Trümbach D, Meijer AH, Ninkovic J, Topp S, Heck D, Marr C, Wurst W, Theis FJ, Spaink HP, Bally-Cuif L. Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. Genome Biol 2009; 10:R81. [PMID: 19646228 PMCID: PMC2728535 DOI: 10.1186/gb-2009-10-7-r81] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/16/2009] [Accepted: 07/31/2009] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Addiction is a pathological dysregulation of the brain's reward systems, determined by several complex genetic pathways. The conditioned place preference test provides an evaluation of the effects of drugs in animal models, allowing the investigation of substances at a biologically relevant level with respect to reward. Our lab has previously reported the development of a reliable conditioned place preference paradigm for zebrafish. Here, this test was used to isolate a dominant N-ethyl-N-nitrosourea (ENU)-induced mutant, no addiction (nad(dne3256)), which fails to respond to amphetamine, and which we used as an entry point towards identifying the behaviorally relevant transcriptional response to amphetamine. RESULTS Through the combination of microarray experiments comparing the adult brain transcriptome of mutant and wild-type siblings under normal conditions, as well as their response to amphetamine, we identified genes that correlate with the mutants' altered conditioned place preference behavior. In addition to pathways classically involved in reward, this gene set shows a striking enrichment in transcription factor-encoding genes classically involved in brain development, which later appear to be re-used within the adult brain. We selected a subset of them for validation by quantitative PCR and in situ hybridization, revealing that specific brain areas responding to the drug through these transcription factors include domains of ongoing adult neurogenesis. Finally, network construction revealed functional connections between several of these genes. CONCLUSIONS Together, our results identify a new network of coordinated gene regulation that influences or accompanies amphetamine-triggered conditioned place preference behavior and that may underlie the susceptibility to addiction.
Collapse
Affiliation(s)
- Katharine J Webb
- Department Zebrafish Neurogenetics, Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
- Center for Integrated Protein Science (Munich), Institute of Developmental Genetics, Technical University - Munich, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
| | - William HJ Norton
- Department Zebrafish Neurogenetics, Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
- Center for Integrated Protein Science (Munich), Institute of Developmental Genetics, Technical University - Munich, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
| | - Annemarie H Meijer
- Institute of Biology, University of Leiden, Leiden, 2300 RA The Netherlands
| | - Jovica Ninkovic
- Department Zebrafish Neurogenetics, Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
- Center for Integrated Protein Science (Munich), Institute of Developmental Genetics, Technical University - Munich, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
- Current address: Institute of Stem Cell Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
| | - Stefanie Topp
- Department Zebrafish Neurogenetics, Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
- Center for Integrated Protein Science (Munich), Institute of Developmental Genetics, Technical University - Munich, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
| | - Daniel Heck
- Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
| | - Carsten Marr
- Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
| | - Fabian J Theis
- Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
| | - Herman P Spaink
- Institute of Biology, University of Leiden, Leiden, 2300 RA The Netherlands
| | - Laure Bally-Cuif
- Department Zebrafish Neurogenetics, Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
- Center for Integrated Protein Science (Munich), Institute of Developmental Genetics, Technical University - Munich, Ingolstaedter Landstrasse, Neuherberg, 85764 Germany
| |
Collapse
|
26
|
Ichiyama K, Hashimoto M, Sekiya T, Nakagawa R, Wakabayashi Y, Sugiyama Y, Komai K, Saba I, Moroy T, Yoshimura A. Gfi1 negatively regulates Th17 differentiation by inhibiting ROR t activity. Int Immunol 2009; 21:881-9. [DOI: 10.1093/intimm/dxp054] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
27
|
Vassen L, Khandanpour C, Ebeling P, van der Reijden BA, Jansen JH, Mahlmann S, Dührsen U, Möröy T. Growth factor independent 1b (Gfi1b) and a new splice variant of Gfi1b are highly expressed in patients with acute and chronic leukemia. Int J Hematol 2009; 89:422-430. [PMID: 19360458 DOI: 10.1007/s12185-009-0286-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 01/23/2009] [Accepted: 02/23/2009] [Indexed: 10/20/2022]
Abstract
Gfi1b is a transcriptional repressor that is essential for erythroid cells and megakaryocytes, but is also expressed in hematopoietic stem cells and early myeloid progenitors. The chromosomal localization of the Gfi1b gene at 9q34 and its functional homology with the proto-oncogene Gfi1 were suggestive for a role of Gfi1b in malignant transformation and myeloid leukemia. We show here that the expression of Gfi1b is strongly elevated in CML and AML patients compared to normal healthy controls and that imatinib, a drug widely used to treat CML, further enhances Gfi1b expression in patients even after remission. Our data suggest that Gfi1b may be an important factor to establish or maintain myeloid leukemia and myeloproliferative diseases and that, high expression levels of Gfi1b might be associated with the emergence of Philadelphia chromosome negative myeloid malignancies after imatinib withdrawal or after the development of imatinib resistance.
Collapse
Affiliation(s)
- Lothar Vassen
- Institut für Zellbiologie (Tumorforschung), IFZ, Universitätsklinikum Essen, Virchowstrasse 173, 45122, Essen, Germany.,Institut de recherches cliniques de Montreal, IRCM, 110 Avenue des Pins West, Montreal, QC, H2W 1R7, Canada
| | - Cyrus Khandanpour
- Institut für Zellbiologie (Tumorforschung), IFZ, Universitätsklinikum Essen, Virchowstrasse 173, 45122, Essen, Germany.,Institut de recherches cliniques de Montreal, IRCM, 110 Avenue des Pins West, Montreal, QC, H2W 1R7, Canada
| | - Peter Ebeling
- Department for Internal Medicine, Center for Cancer Research, Universitätsklinikum Essen, 45122, Essen, Germany
| | - Bert A van der Reijden
- Central Hematology Laboratory, Radboud University Nijmegen Medical Centre for Molecular Life Sciences (NCMLS), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Joop H Jansen
- Central Hematology Laboratory, Radboud University Nijmegen Medical Centre for Molecular Life Sciences (NCMLS), PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Stefan Mahlmann
- Department of Internal Medicine and Hematology, Universitätsklinikum Essen, 45122, Essen, Germany
| | - Ulrich Dührsen
- Department of Internal Medicine and Hematology, Universitätsklinikum Essen, 45122, Essen, Germany
| | - Tarik Möröy
- Institut für Zellbiologie (Tumorforschung), IFZ, Universitätsklinikum Essen, Virchowstrasse 173, 45122, Essen, Germany. .,Institut de recherches cliniques de Montreal, IRCM, 110 Avenue des Pins West, Montreal, QC, H2W 1R7, Canada. .,Departement de Microbiologie et Immunologie, Université de Montréal, Montréal, Canada.
| |
Collapse
|
28
|
Gfi-1 represses CDKN2B encoding p15INK4B through interaction with Miz-1. Proc Natl Acad Sci U S A 2009; 106:1433-8. [PMID: 19164764 DOI: 10.1073/pnas.0804863106] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gfi-1 is a nuclear zinc finger (ZF) transcriptional repressor that plays an important role in hematopoiesis and inner ear development, and has been implicated in lymphomagenesis. Gfi-1 represses transcription by directly binding to the consensus DNA sequence in the promoters of its target genes. We report here an alternative mechanism by which Gfi-1 represses CDKN2B encoding p15(INK4B). Gfi-1 does not directly bind to CDKN2B, but interacts with Miz-1 and, via Miz-1, is recruited to the core promoter of CDKN2B. Miz-1 is a POZ-ZF transcription factor that has been shown to mediate transcriptional repression by c-Myc. Like c-Myc, upon recruitment to the CDKN2B promoter, Gfi-1 represses transcriptional activation of CDKN2B by Miz-1 and in response to TGFbeta. Consistent with its role in repressing CDKN2B transcription, knockdown of Gfi-1 in human leukemic cells or deficiency of Gfi-1 in mouse bone marrow cells results in augmented expression of p15(INK4B). Notably, Gfi-1 and c-Myc are both recruited to the CDKN2B core promoter and act in collaboration to repress CDKN2B. Our data reveal a mechanism of transcriptional repression by Gfi-1 and may have important implications for understanding the roles of Gfi-1 in normal development and tumorigenesis.
Collapse
|
29
|
Igwe E, Kosan C, Khandanpour C, Sharif-Askari E, Brüne B, Möröy T. The zinc finger protein Gfi1 is implicated in the regulation of IgG2b production and the expression of Igamma2b germline transcripts. Eur J Immunol 2009; 38:3004-14. [PMID: 18991277 DOI: 10.1002/eji.200838251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gfi1 is a zinc finger transcription factor that is undetectable in B lymphocytes but its expression rises rapidly upon antigenic stimulation or treatment with lipopolysaccharide (LPS). Here we show that Gfi1(-/-) mice have higher serum levels of gamma isotype immunoglobulin than WT animals. When challenged with antigen, Gfi1(-/-) mice react with accelerated formation of PNA+/CD19+ germinal center B cells and an increased production of antigen-specific IgG2a and IgG2b. Moreover, Gfi1(-/-) B cells secrete more IgG2a and IgG2b than WT cells and produce higher levels of Igamma2b sterile germline transcripts when cultured with LPS. While the proliferative response to stimulation with anti-IgM antibodies and plasma cell differentiation was normal in Gfi1(-/-) B cells, we found that mRNA and protein levels of TGFbeta1 were significantly increased in the absence of Gfi1. TGFbeta1 has been shown to be essential for the regulation of IgG subclass production and was previously found to selectively stimulate IgG2b secretion. Our findings reveal a new function of Gfi1 in the control of IgG isotype production.
Collapse
Affiliation(s)
- Emeka Igwe
- Institut für Zellbiologie Tumorforschung, IFZ, Universitätsklinikum Essen, Essen, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Prox1 interacts with Atoh1 and Gfi1, and regulates cellular differentiation in the inner ear sensory epithelia. Dev Biol 2008; 322:33-45. [PMID: 18652815 DOI: 10.1016/j.ydbio.2008.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/28/2008] [Accepted: 07/01/2008] [Indexed: 01/14/2023]
Abstract
Inner ear hair cells and supporting cells arise from common precursors and, in mammals, do not show phenotypic conversion. Here, we studied the role of the homeodomain transcription factor Prox1 in the inner ear sensory epithelia. Adenoviral-mediated Prox1 transduction into hair cells in explant cultures led to strong repression of Atoh1 and Gfi1, two transcription factors critical for hair cell differentiation and survival. Luciferase assays showed that Prox1 can repress transcriptional activity of Gfi1 independently of Atoh1. Prox1 transduction into cochlear outer hair cells resulted in degeneration of these cells, consistent with the known phenotype of Gfi1-deficient mice. These results together with the widespread expression of endogenous Prox1 within the population of inner ear supporting cells point to the role for Prox1 in antagonizing the hair cell phenotype in these non-sensory cells. Further, in vivo analyses of hair cells from Gfi1-deficient mice suggest that the cyclin-dependent kinase inhibitor p57(Kip2) mediates the differentiation- and survival-promoting functions of Gfi1. These data reveal novel gene interactions and show that these interactions regulate cellular differentiation within the inner ear sensory epithelia. The data point to the tight regulation of phenotypic characteristics of hair cells and supporting cells.
Collapse
|
31
|
Chandele A, Joshi NS, Zhu J, Paul WE, Leonard WJ, Kaech SM. Formation of IL-7Ralphahigh and IL-7Ralphalow CD8 T cells during infection is regulated by the opposing functions of GABPalpha and Gfi-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:5309-19. [PMID: 18390712 PMCID: PMC2792750 DOI: 10.4049/jimmunol.180.8.5309] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IL-7 is essential for the survival of naive and memory T cells, and IL-7 receptor alpha-chain (IL-7Ralpha) expression is dynamically regulated in activated CD8 T cells during acute viral and bacterial infections. Most virus-specific CD8 T cells become IL-7Ralpha(low) and are relatively short-lived, but some escape IL-7Ralpha repression (referred to as IL-7Ralpha(high) memory precursor effector cells) and preferentially enter the memory CD8 T cell pool. How antiviral effector CD8 T cells regulate IL-7Ralpha expression in an "on and off" fashion remains to be characterized. During lymphocytic choriomeningitis virus infection, we found that opposing actions of the transcription factors GABPalpha (GA binding protein alpha) and Gfi-1 (growth factor independence 1) control IL-7Ralpha expression in effector CD8 T cells. Specifically, GABPalpha was required for IL-7Ralpha expression in memory precursor effector cells, and this correlated with hyperacetylation of the Il7ra promoter. In contrast, Gfi-1 was required for stable IL-7Ralpha repression in effector CD8 T cells and acted by antagonizing GABPalpha binding and recruiting histone deacetylase 1, which deacetylated the Il7ra promoter. Thus, Il7ra promoter acetylation and activity was dependent on the reciprocal binding of GABPalpha and Gfi-1, and these data provide a biochemical mechanism for the generation of stable IL-7Ralpha(high) and IL-7Ralpha(low) states in virus-specific effector CD8 T cells.
Collapse
Affiliation(s)
- Anmol Chandele
- Dept of Immunobiology, Yale Medical School, TAC S640, 300 Cedar Street, New Haven, CT 06511
| | - Nikhil S Joshi
- Dept of Immunobiology, Yale Medical School, TAC S640, 300 Cedar Street, New Haven, CT 06511
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - William E. Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Warren J. Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Susan M Kaech
- Dept of Immunobiology, Yale Medical School, TAC S640, 300 Cedar Street, New Haven, CT 06511
| |
Collapse
|
32
|
The zinc finger protein and transcriptional repressor Gfi1 as a regulator of the innate immune response. Immunobiology 2008; 213:341-52. [PMID: 18406379 DOI: 10.1016/j.imbio.2007.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/25/2007] [Accepted: 11/02/2007] [Indexed: 12/13/2022]
Abstract
Gfi1 is a transcriptional repressor with a molecular weight between 47 and 55kDa. The protein has six C-terminal C(2)H(2)-type zinc finger domains and a characteristic stretch of 20 amino acids, called the SNAG-domain, at its N-terminus. Expression of Gfi1 ranges from the hematopoietic and lymphoid system to sensory epithelia, lung and parts of the CNS. Gene knockout studies revealed that Gfi1 is essential for the development of granulocytes and plays a role in macrophage-dependent cytokine production, indicating that this protein shares the responsibility for different lines of defense against pathogens. Strikingly, Gfi1-deficient mice are highly sensitive to both endotoxin and bacterial infections and die rapidly after an experimental application of endotoxin or induction of infection with symptoms of septic shock. This sensitivity is mediated by an overproduction of tumor necrosis factor (TNF) and other inflammatory cytokines. The lung could be identified as the principal organ in which the accelerated inflammatory reactions take place in challenged Gfi1-deficient mice. Several lines of experimental evidence support a role of Gfi1 as a regulator of the Toll-like receptor (TLR) pathways, and, in general, as an essential modulator preventing an overshooting of the inflammatory response.
Collapse
|
33
|
Xie B, Charlton-Perkins M, McDonald E, Gebelein B, Cook T. Senseless functions as a molecular switch for color photoreceptor differentiation in Drosophila. Development 2007; 134:4243-53. [PMID: 17978002 DOI: 10.1242/dev.012781] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A major question in development is how different specialized cell types arise from a common progenitor. In the adult Drosophila compound eye, color discrimination is achieved by UV-, blue- and green-sensitive photoreceptors (PRs). These different PR subsets arise from neuronal precursors called R7 and R8 cells. Recent studies have demonstrated that R7-based UV-sensitive PRs require the repression of R8-based blue/green-sensitive PR characteristics to properly develop. This repression is mediated by the transcription factor Prospero (Pros). Here, we report that Senseless (Sens), a Drosophila ortholog of the vertebrate Gfi1 transcription factor, plays an opposing role to Pros by both negatively regulating R7-based features and positively enforcing R8-based features during terminal differentiation. In addition, we demonstrate that Pros and Sens function together with the transcription factor Orthodenticle (Otd) to oppositely regulate R7 and R8 PR Rhodopsin gene expression in vitro. These data show that sens, previously shown to be essential for neuronal specification, also controls differentiation of specific neuronal subtypes in the retina. Interestingly, Pros has recently been shown to function as a tumor suppressor, whereas Gfi1 is a well-characterized oncogene. Thus, we propose that sens/pros antagonism is important for regulating many biological processes.
Collapse
Affiliation(s)
- Baotong Xie
- Department of Pediatric Ophthalmology, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
34
|
Marteijn JAF, van der Meer LT, van Emst L, van Reijmersdal S, Wissink W, de Witte T, Jansen JH, Van der Reijden BA. Gfi1 ubiquitination and proteasomal degradation is inhibited by the ubiquitin ligase Triad1. Blood 2007; 110:3128-35. [PMID: 17646546 DOI: 10.1182/blood-2006-11-058602] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Growth factor independence 1 (Gfi1) is a transcriptional repressor essential for the function and development of many different hematopoietic lineages. The Gfi1 protein expression is regulated by the ubiquitin-proteasome system. In granulocytes, Gfi1 is rapidly degraded by the proteasome, while it is more stable in monocytes. How the ubiquitination and degradation of Gfi1 is regulated is unclear. Here, we show that the ubiquitin ligase Triad1 interacts with the DNA-binding domain of Gfi1. Unexpectedly, we found that Triad1 inhibited Gfi1 ubiquitination, resulting in a prolonged half-life. Down-regulation of endogenous Triad1 by siRNAs resulted in increased Gfi1 ubiquitination. In U937 cells, Triad1 caused an increase in endogenous Gfi1 protein levels and slowed cell proliferation in a similar manner when Gfi1 itself was expressed. A Triad1 mutant that lacks the Gfi1-binding domain did not affect Gfi1 levels and proliferation. Because neither proteasome-ubiquitin nor Triad1 ubiquitin ligase activity was required for the inhibition of Gfi1 ubiquitination, these data suggest that Triad1 competes for Gfi1 binding with as yet to be identified E3 ubiquitin ligases that do mark Gfi1 for proteasomal degradation. The fine-tuning of Gfi1 protein levels regulated by Triad1 defines an unexpected role for this protein in hematopoiesis.
Collapse
Affiliation(s)
- Jurgen A F Marteijn
- Central Hematology Laboratory, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, 6500 HB Nijmegen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Initiation of T lymphocyte development depends on balanced regulatory inputs from multiple essential transcription factors. This review highlights contributions of E2A, hematopoietic transcription factor PU.1, growth factor independence (Gfi)-1, T cell factor (TCF)-1, and Runx factors and their interactions with the Notch pathway to promote T cell development. RECENT FINDINGS E2A and Runx family factors have been implicated in establishing competent precursors in which Notch signaling can induce the T cell program. An early role was also indicated for PU.1. Later PU.1 activities are antagonistic to pro-T cell factors, however, including E proteins, Myb, Gfi-1, and TCF-1. Diversion to a non-T lineage can be promoted by PU.1, CCAAT/enhancer binding protein, or even GATA and TCF, but these diversion mechanisms are blocked by Notch signaling. An emergent gene network summarizes the cross-regulatory relationships among these factors. SUMMARY Entry into the T-cell pathway is controlled by a dynamic balance among essential regulatory factors that depend on Notch signaling not only to trigger initiation of the T-cell program but also to maintain the lineage fidelity of their collective action.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| |
Collapse
|
36
|
Ip JY, Tong A, Pan Q, Topp JD, Blencowe BJ, Lynch KW. Global analysis of alternative splicing during T-cell activation. RNA (NEW YORK, N.Y.) 2007; 13:563-72. [PMID: 17307815 PMCID: PMC1831861 DOI: 10.1261/rna.457207] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The role of alternative splicing (AS) in eliciting immune responses is poorly understood. We used quantitative AS microarray profiling to survey changes in AS during activation of Jurkat cells, a leukemia-derived T-cell line. Our results indicate that approximately 10-15% of the profiled alternative exons undergo a >10% change in inclusion level during activation. The majority of the genes displaying differential AS levels are distinct from the set of genes displaying differential transcript levels. These two gene sets also have overlapping yet distinct functional roles. For example, genes that show differential AS patterns during T-cell activation are often closely associated with cell-cycle regulation, whereas genes with differential transcript levels are highly enriched in functions associated more directly with immune defense and cytoskeletal architecture. Previously unknown AS events were detected in genes that have important roles in T-cell activation, and these AS level changes were also observed during the activation of normal human peripheral CD4+ and CD8+ lymphocytes. In summary, by using AS microarray profiling, we have discovered many new AS changes associated with T-cell activation. Our results suggest an extensive role for AS in the regulation of the mammalian immune response.
Collapse
Affiliation(s)
- Joanna Y Ip
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ONT, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Wu J, Apontes P, Song L, Liang P, Yang L, Li F. Molecular mechanism of upregulation of survivin transcription by the AT-rich DNA-binding ligand, Hoechst33342: evidence for survivin involvement in drug resistance. Nucleic Acids Res 2007; 35:2390-402. [PMID: 17392340 PMCID: PMC1874665 DOI: 10.1093/nar/gkm149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 02/22/2007] [Accepted: 02/26/2007] [Indexed: 02/02/2023] Open
Abstract
We have previously shown that hedamycin, a GC-rich DNA-binding antitumor agent, downregulates survivin transcription (Wu et al. (2005) Molecular mechanism of inhibition of survivin transcription by the GC-rich sequence selective DNA-binding antitumor agent, hedamycin: evidence of survivin downregulation associated with drug sensitivity. J. Biol. Chem., 280, 9745-9751). Here, we report that treatment of cancer cells with Hoechst33342, an AT-rich DNA-binding ligand, upregulated survivin protein, mRNA and promoter activity. Functional analysis of survivin promoter-luciferase constructs followed by in vivo footprinting experiments identified a 28-bp AT-rich DNA element (-908 to -881, designated as H369W) that mediates a major effect of Hoechst33342 on the upregulation of survivin promoter activity. Electrophoresis mobility shift assay (EMSA) experiments showed that Hoechst33342 binds to H369W and abrogates H369W-protein interactions. Intriguingly, there is a highly conserved DNA-binding motif for growth factor independence 1 (Gfi-1), a transcriptional repressor protein, in the H369W DNA element. Accordingly, EMSA experiments demonstrated that either the cold canonical Gfi-1-binding DNA oligonucleotide or the cold H369W specifically competes with H369W-protein complexes. Consistently, anti-Gfi-1 antibody is able to supershift the H369W-protein complex on the EMSA gel. Lastly, our data reveal that upregulation of survivin by Hoechst33342 is involved in cancer drug resistance. We propose that hindrance of H369W-Gfi-1 interactions in the survivin promoter, initiated by Hoechst33342, contributes to upregulation of survivin transcription, and as a consequence, hampers Hoechst33342's cytotoxicity.
Collapse
Affiliation(s)
- Jianguo Wu
- Departments of Pharmacology & Therapeutics, Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Surgery, Emory University School of Medicine, Atlanta, GA 20322, USA
| | - Pasha Apontes
- Departments of Pharmacology & Therapeutics, Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Surgery, Emory University School of Medicine, Atlanta, GA 20322, USA
| | - Lei Song
- Departments of Pharmacology & Therapeutics, Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Surgery, Emory University School of Medicine, Atlanta, GA 20322, USA
| | - Ping Liang
- Departments of Pharmacology & Therapeutics, Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Surgery, Emory University School of Medicine, Atlanta, GA 20322, USA
| | - Lily Yang
- Departments of Pharmacology & Therapeutics, Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Surgery, Emory University School of Medicine, Atlanta, GA 20322, USA
| | - Fengzhi Li
- Departments of Pharmacology & Therapeutics, Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Surgery, Emory University School of Medicine, Atlanta, GA 20322, USA
| |
Collapse
|
38
|
Khanna-Gupta A, Sun H, Zibello T, Lee HM, Dahl R, Boxer LA, Berliner N. Growth factor independence-1 (Gfi-1) plays a role in mediating specific granule deficiency (SGD) in a patient lacking a gene-inactivating mutation in the C/EBPepsilon gene. Blood 2007; 109:4181-90. [PMID: 17244686 PMCID: PMC1885490 DOI: 10.1182/blood-2005-05-022004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neutrophil-specific granule deficiency (SGD) is a rare congenital disorder marked by recurrent bacterial infections. Neutrophils from SGD patients lack secondary and tertiary granules and their content proteins and lack normal neutrophil functions. Gene-inactivating mutations in the C/EBPepsilon gene have been identified in 2 SGD patients. Our studies on a third SGD patient revealed a heterozygous mutation in the C/EBPepsilon gene. However, we demonstrate elevated levels of C/EBPepsilon and PU.1 proteins in the patient's peripheral blood neutrophils. The expression of the transcription factor growth factor independence-1 (Gfi-1), however, was found to be markedly reduced in our SGD patient despite the absence of an obvious mutation in this gene. This may explain the elevated levels of both C/EBPepsilon and PU.1, which are targets of Gfi-1 transcriptional repression. We have generated a growth factor-dependent EML cell line from the bone marrow of Gfi-1(+/-) and Gfi-1(+/+) mice as a model for Gfi-1-deficient SGD, and demonstrate that lower levels of Gfi-1 expression in the Gfi-1(+/-) EML cells is associated with reduced levels of secondary granule protein (SGP) gene expression. Furthermore, we demonstrate a positive role for Gfi-1 in SGP expression, in that Gfi-1 binds to and up-regulates the promoter of neutrophil collagenase (an SGP gene), in cooperation with wild-type but not with mutant C/EBPepsilon. We hypothesize that decreased Gfi-1 levels in our SGD patient, together with the mutant C/EBPepsilon, block SGP expression, thereby contributing to the underlying etiology of the disease in our patient.
Collapse
Affiliation(s)
- Arati Khanna-Gupta
- Section of Hematology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Pepple KL, Anderson AE, Frankfort BJ, Mardon G. A genetic screen in Drosophila for genes interacting with senseless during neuronal development identifies the importin moleskin. Genetics 2006; 175:125-41. [PMID: 17110483 PMCID: PMC1774993 DOI: 10.1534/genetics.106.065680] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Senseless (Sens) is a conserved transcription factor required for normal development of the Drosophila peripheral nervous system. In the Drosophila retina, sens is necessary and sufficient for differentiation of R8 photoreceptors and interommatidial bristles (IOBs). When Sens is expressed in undifferentiated cells posterior to the morphogenetic furrow, ectopic IOBs are formed. This phenotype was used to identify new members of the sens pathway in a dominant modifier screen. Seven suppressor and three enhancer complementation groups were isolated. Three groups from the screen are the known genes Delta, lilliputian, and moleskin/DIM-7 (msk), while the remaining seven groups represent novel genes with previously undefined functions in neural development. The nuclear import gene msk was identified as a potent suppressor of the ectopic interommatidial bristle phenotype. In addition, msk mutant adult eyes are extremely disrupted with defects in multiple cell types. Reminiscent of the sens mutant phenotype, msk eyes demonstrate reductions in the number of R8 photoreceptors due to an R8 to R2,5 fate switch, providing genetic evidence that Msk is a component of the sens pathway. Interestingly, in msk tissue, the loss of R8 fate occurs earlier than with sens and suggests a previously unidentified stage of R8 development between atonal and sens.
Collapse
Affiliation(s)
- Kathryn L Pepple
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
40
|
Vassen L, Okayama T, Möröy T. Gfi1b:green fluorescent protein knock-in mice reveal a dynamic expression pattern of Gfi1b during hematopoiesis that is largely complementary to Gfi1. Blood 2006; 109:2356-64. [PMID: 17095621 DOI: 10.1182/blood-2006-06-030031] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gfi1b and Gfi1 are 37- and 55-kDa transcriptional repressors that share common features such as a 20-amino acid (aa) N-terminal SNAG domain, a nonconserved intermediary domain, and 6 highly conserved C-terminal zinc fingers. Both gene loci are under autoregulatory and cross-regulatory feedback control. We have generated a reporter mouse strain by inserting the cDNA for green fluorescent protein (GFP) into the Gfi1b gene locus which allowed us to follow Gfi1b expression during hematopoiesis and lymphopoiesis by measuring green fluorescence. We found highly dynamic expression patterns of Gfi1b in erythroid cells, megakaryocytes, and their progenitor cells (MEPS) where Gfi1 is not detected. Vice versa, Gfi1b could not be found in granulocytes, activated macrophages, or their granulomonocytic precursors (GMPs) or in mature naive or activated lymphocytes where Gfi1 is expressed, suggesting a complementary regulation of both loci during hematopoiesis. However, Gfi1b was found to be up-regulated in early stages of B-cell and in a subset of early T-cell development, where Gfi1 is also present, suggesting that cross-regulation of both loci exists but is cell-type specific.
Collapse
Affiliation(s)
- Lothar Vassen
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Germany
| | | | | |
Collapse
|
41
|
Heyd F, ten Dam G, Möröy T. Auxiliary splice factor U2AF26 and transcription factor Gfi1 cooperate directly in regulating CD45 alternative splicing. Nat Immunol 2006; 7:859-67. [PMID: 16819553 DOI: 10.1038/ni1361] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 06/07/2006] [Indexed: 11/08/2022]
Abstract
By alternative splicing, different isoforms of the transmembrane tyrosine phosphatase CD45 are generated that either enhance or limit T cell receptor signaling. We report here that CD45 alternative splicing is regulated by cooperative action of the splice factor U2AF26 and the transcription factor Gfi1. U2AF26 promoted formation of the less-active CD45RO by facilitating exon exclusion. Gfi1 antagonized that process by directly interacting with U2AF26, identifying a previously unknown link between a transcription factor and alternative splicing. The presence of Gfi1 led to formation of the more-active CD45RB, whereas loss of Gfi1 favored CD45RO production. We propose that the relative abundance of U2AF26 and Gfi1 determines the ratio of CD45 isoforms, thereby regulating T cell activation.
Collapse
Affiliation(s)
- Florian Heyd
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Virchowstrasse 173, D-45122 Essen, Germany
| | | | | |
Collapse
|
42
|
Vassen L, Fiolka K, Möröy T. Gfi1b alters histone methylation at target gene promoters and sites of gamma-satellite containing heterochromatin. EMBO J 2006; 25:2409-19. [PMID: 16688220 PMCID: PMC1478184 DOI: 10.1038/sj.emboj.7601124] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 04/11/2006] [Indexed: 01/30/2023] Open
Abstract
Gfi1b is a 37 kDa nuclear protein with six C2H2 zinc-finger domains that can silence transcription upon binding to specific target gene promoters. Here we show by using a chromatin immunoprecipitation and cloning protocol that Gfi1b also binds to gamma-satellite sequences that mainly occur in pericentric heterochromatin. Immuno-FISH experiments demonstrated that Gfi1b is localized at foci of pericentric heterochromatin identified by DAPI staining. Elevated levels of Gfi1b correlated with increased histone H3 lysine 9 dimethylation at sites neighboring gamma-satellite sequences but also at Gfi1b target gene promoters. In Gfi1b-deficient cells, however, a decrease of histone H3 lysine 9 trimethylation and a loss of heterochromatic structures was observed. Strikingly, we found that Gfi1b binds to both SUV39H1 and G9A histone methyl transferases, which provides a direct link between histone methylation and Gfi1b at heterochromatic and euchromatic sites. We propose that Gfi1b functions in heterochromatin formation and silencing of euchromatic transcription by recruiting histone methyl transferases to either gamma-satellite sequences or specific target gene promoters.
Collapse
Affiliation(s)
- Lothar Vassen
- Institut für Zellbiologie (Tumorforschung), IFZ, Universitätsklinikum Essen, Essen, Germany
| | - Katharina Fiolka
- Institut für Zellbiologie (Tumorforschung), IFZ, Universitätsklinikum Essen, Essen, Germany
| | - Tarik Möröy
- Institut für Zellbiologie (Tumorforschung), IFZ, Universitätsklinikum Essen, Essen, Germany
- Present address: Institut de recherches cliniques de Montréal (IRCM), 110, avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7. E-mail:
- Institut für Zellbiologie (Tumorforschung), IFZ, Universitätsklinikum Essen, Virchowstrasse 173, 45122 Essen, Germany. Tel.: +49 201 723 3380; Fax: +49 201 723 5904; E-mail:
| |
Collapse
|
43
|
Jafar-Nejad H, Tien AC, Acar M, Bellen HJ. Senseless and Daughterless confer neuronal identity to epithelial cells in the Drosophila wing margin. Development 2006; 133:1683-92. [PMID: 16554363 DOI: 10.1242/dev.02338] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The basic helix-loop-helix (bHLH) proneural proteins Achaete and Scute cooperate with the class I bHLH protein Daughterless to specify the precursors of most sensory bristles in Drosophila. However, the mechanosensory bristles at the Drosophila wing margin have been reported to be unaffected by mutations that remove Achaete and Scute function. Indeed, the proneural gene(s) for these organs is not known. Here, we show that the zinc-finger transcription factor Senseless, together with Daughterless, plays the proneural role for the wing margin mechanosensory precursors, whereas Achaete and Scute are required for the survival of the mechanosensory neuron and support cells in these lineages. We provide evidence that Senseless and Daughterless physically interact and synergize in vivo and in transcription assays. Gain-of-function studies indicate that Senseless and Daughterless are sufficient to generate thoracic sensory organs (SOs) in the absence of achaete-scute gene complex function. However, analysis of senseless loss-of-function clones in the thorax implicates Senseless not in the primary SO precursor (pI) selection, but in the specification of pI progeny. Therefore, although Senseless and bHLH proneural proteins are employed during the development of all Drosophila bristles, they play fundamentally different roles in different subtypes of these organs. Our data indicate that transcription factors other than bHLH proteins can also perform the proneural function in the Drosophila peripheral nervous system.
Collapse
Affiliation(s)
- Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
44
|
Zhuang D, Qiu Y, Kogan SC, Dong F. Increased CCAAT enhancer-binding protein epsilon (C/EBPepsilon) expression and premature apoptosis in myeloid cells expressing Gfi-1 N382S mutant associated with severe congenital neutropenia. J Biol Chem 2006; 281:10745-51. [PMID: 16500901 DOI: 10.1074/jbc.m510924200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Granulocyte-colony-stimulating factor (G-CSF) stimulates the activation of multiple signaling pathways, leading to alterations in the activities of transcription factors. Gfi-1 is a zinc finger transcriptional repressor that is required for granulopoiesis. How Gfi-1 acts in myeloid cells is poorly understood. We show here that the expression of Gfi-1 was up-regulated during G-CSF-induced granulocytic differentiation in myeloid 32D cells. Truncation of the carboxyl terminus of the G-CSF receptor, as seen in patients with acute myeloid leukemia evolving from severe congenital neutropenia, disrupted Gfi-1 up-regulation by G-CSF. Ectopic expression of a dominant negative Gfi-1 mutant, N382S, which was associated with severe congenital neutropenia, resulted in premature apoptosis and reduced proliferation of cells induced to differentiate with G-CSF. The expression of neutrophil elastase (NE) and CCAAT enhancer-binding protein epsilon (C/EBPepsilon) was significantly increased in 32D cells expressing N382S. In contrast, overexpression of wild type Gfi-1 abolished G-CSF-induced up-regulation of C/EBPepsilon but had no apparent effect on NE up-regulation by G-CSF. Notably, G-CSF-dependent proliferation and survival were inhibited upon overexpression of C/EBPepsilon but not NE. These data indicate that Gfi-1 down-regulates C/EBPepsilon expression and suggest that increased expression of C/EBPepsilon as a consequence of loss of Gfi-1 function may be deleterious to the proliferation and survival of early myeloid cells.
Collapse
Affiliation(s)
- Dazhong Zhuang
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606, USA
| | | | | | | |
Collapse
|
45
|
Jin J, Zeng H, Schmid KW, Toetsch M, Uhlig S, Möröy T. The zinc finger protein Gfi1 acts upstream of TNF to attenuate endotoxin-mediated inflammatory responses in the lung. Eur J Immunol 2006; 36:421-30. [PMID: 16402406 DOI: 10.1002/eji.200535155] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gfi1 is a 55-kD nuclear zinc finger protein that is differentially expressed in lymphoid and myeloid cells. Gfi1(-/-) mice show a very strong systemic response to the endotoxin LPS and die rapidly within 36 h with symptoms of septic shock. Here we report that the pathohysiological processes for this exaggerated inflammatory response take place in the lung. After LPS treatment, lungs of Gfi1(-/-) mice showed a rapid accumulation of mononuclear cells and a significant overproduction of inflammatory cytokines such as TNF, IL-1beta and IL-6. Increased cytokine production was also observed in blood-free perfused lungs from Gfi1(-/-) mice exposed to either LPS or overventilation. Alveolar macrophages but not airway epithelial cells from Gfi1(-/-) mice were found to be responsible for the enhanced cytokine production. Strikingly, when the TNF gene was deleted, Gfi1(-/-) animals were completely rescued from LPS hypersensitivity and had significantly lower IL-1beta and IL-6 levels. We conclude that the unrestrained endotoxin response of Gfi1(-/-) mice occurs mainly in the lung and that Gfi1 represents a novel factor limiting the inflammatory immune response of this organ, and propose that Gfi1 exerts its regulatory function in alveolar macrophages downstream of the LPS receptor (TLR4) and upstream of TNF.
Collapse
Affiliation(s)
- Jianmin Jin
- Institut für Zellbiologie, Tumorforschung, IFZ, Universitätsklinikum Essen, D-45122 Essen, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Fiolka K, Hertzano R, Vassen L, Zeng H, Hermesh O, Avraham KB, Dührsen U, Möröy T. Gfi1 and Gfi1b act equivalently in haematopoiesis, but have distinct, non-overlapping functions in inner ear development. EMBO Rep 2006; 7:326-33. [PMID: 16397623 PMCID: PMC1456886 DOI: 10.1038/sj.embor.7400618] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/29/2005] [Accepted: 11/30/2005] [Indexed: 11/08/2022] Open
Abstract
Gfi1 is a transcriptional repressor essential for haematopoiesis and inner ear development. It shares with its paralogue Gfi1b an amino-terminal SNAG repressor domain and six carboxy-terminal zinc-finger motifs, but differs from Gfi1b in sequences separating these domains. Here, we describe two knock-in mouse models, in which the N-terminal SNAG repressor domain was mutated or in which the Gfi1 coding region was replaced by Gfi1b. Mouse mutants without an intact SNAG domain show the full phenotype of Gfi1 null mice. However, Gfi1:Gfi1b knock-in mice show almost normal pre-T-cell and neutrophil development, but lack properly formed inner ear hair cells. Hence, our findings show that an intact SNAG domain is essential for all functions of Gfi1 and that Gfi1b can replace Gfi1 functionally in haematopoiesis but, surprisingly, not in inner ear hair cell development, demonstrating that Gfi1 and Gfi1b have equivalent and domain-dependent, cell type-specific functions.
Collapse
Affiliation(s)
- Katharina Fiolka
- Institut für Zellbiologie (Tumorforschung), IFZ, Universitätsklinikum Essen, Virchowstraße 173, 45122 Essen, Germany
| | - Ronna Hertzano
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lothar Vassen
- Institut für Zellbiologie (Tumorforschung), IFZ, Universitätsklinikum Essen, Virchowstraße 173, 45122 Essen, Germany
| | - Hui Zeng
- Institut für Zellbiologie (Tumorforschung), IFZ, Universitätsklinikum Essen, Virchowstraße 173, 45122 Essen, Germany
| | - Orit Hermesh
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Karen B Avraham
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ulrich Dührsen
- Klinik für Hämatologie, Universitätsklinikum Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Tarik Möröy
- Institut für Zellbiologie (Tumorforschung), IFZ, Universitätsklinikum Essen, Virchowstraße 173, 45122 Essen, Germany
- Tel: +49 201 723 3380; Fax: +49 201 723 5904; E-mail:
| |
Collapse
|
47
|
Duan Z, Zarebski A, Montoya-Durango D, Grimes HL, Horwitz M. Gfi1 coordinates epigenetic repression of p21Cip/WAF1 by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. Mol Cell Biol 2005; 25:10338-51. [PMID: 16287849 PMCID: PMC1291230 DOI: 10.1128/mcb.25.23.10338-10351.2005] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The growth factor independent 1 (Gfi1) transcriptional regulator oncoprotein plays a crucial role in hematopoietic, inner ear, and pulmonary neuroendocrine cell development and governs cell processes as diverse as self-renewal of hematopoietic stem cells, proliferation, apoptosis, differentiation, cell fate specification, and oncogenesis. However, the molecular basis of its transcriptional functions has remained elusive. Here we show that Gfi1 recruits the histone lysine methyltransferase G9a and the histone deacetylase 1 (HDAC1) in order to modify the chromatin of genes targeted for repression by Gfi1. G9a and HDAC1 are both in a repressive complex assembled by Gfi1. Endogenous Gfi1 colocalizes with G9a, HDAC1, and K9-dimethylated histone H3. Gfi1 associates with G9a and HDAC1 on the promoter of the cell cycle regulator p21Cip/WAF1, resulting in an increase in K9 dimethylation at histone H3. Silencing of Gfi1 expression in myeloid cells reverses G9a and HDAC1 recruitment to p21Cip/WAF1 and elevates its expression. These findings highlight the role of epigenetics in the regulation of development and oncogenesis by Gfi1.
Collapse
Affiliation(s)
- Zhijun Duan
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
48
|
Schuh AH, Tipping AJ, Clark AJ, Hamlett I, Guyot B, Iborra FJ, Rodriguez P, Strouboulis J, Enver T, Vyas P, Porcher C. ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis. Mol Cell Biol 2005; 25:10235-50. [PMID: 16287841 PMCID: PMC1291220 DOI: 10.1128/mcb.25.23.10235-10250.2005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 05/07/2005] [Accepted: 09/14/2005] [Indexed: 12/19/2022] Open
Abstract
Lineage specification and cellular maturation require coordinated regulation of gene expression programs. In large part, this is dependent on the activator and repressor functions of protein complexes associated with tissue-specific transcriptional regulators. In this study, we have used a proteomic approach to characterize multiprotein complexes containing the key hematopoietic regulator SCL in erythroid and megakaryocytic cell lines. One of the novel SCL-interacting proteins identified in both cell types is the transcriptional corepressor ETO-2. Interaction between endogenous proteins was confirmed in primary cells. We then showed that SCL complexes are shared but also significantly differ in the two cell types. Importantly, SCL/ETO-2 interacts with another corepressor, Gfi-1b, in red cells but not megakaryocytes. The SCL/ETO-2/Gfi-1b association is lost during erythroid differentiation of primary fetal liver cells. Genetic studies of erythroid cells show that ETO-2 exerts a repressor effect on SCL target genes. We suggest that, through its association with SCL, ETO-2 represses gene expression in the early stages of erythroid differentiation and that alleviation/modulation of the repressive state is then required for expression of genes necessary for terminal erythroid maturation to proceed.
Collapse
Affiliation(s)
- Anna H Schuh
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vassen L, Fiolka K, Mahlmann S, Möröy T. Direct transcriptional repression of the genes encoding the zinc-finger proteins Gfi1b and Gfi1 by Gfi1b. Nucleic Acids Res 2005; 33:987-98. [PMID: 15718298 PMCID: PMC549408 DOI: 10.1093/nar/gki243] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Gfi1b is a 37 kDa transcriptional repressor with six zinc-finger domains that is differentially expressed during hemato- and lymphopoiesis. We show here that transcription from the Gfi1b gene locus is silenced in the spleen but not in the bone marrow of transgenic mice that constitutively express Gfi1b under the control of the pan-hematopoietic vav promoter. Sequence analysis of the Gfi1b promoter showed the presence of potential Gfi1/Gfi1b-binding sites close to the mRNA start site. The expression of reporter gene constructs containing the Gfi1b core promoter appended to the luciferase gene were strongly repressed in the presence of exogenous Gfi1b. Moreover, analysis of combinatorial mutant mice that carry the vav-Gfi1b transgene and a green fluorescent protein-tagged Gfi1 gene locus demonstrated that the Gfi1 gene can be repressed by Gfi1b. Direct binding of Gfi1b and Gfi1 to the potential binding sites in the Gfi1b promoter could be demonstrated by gel-shift analyses in vitro. Chromatin-immunoprecipitation experiments showed that both the Gfi1b and the Gfi1 promoter are indeed occupied by Gfi1b in vivo. Hence, we conclude from our data that Gfi1b can auto-repress its own expression, but, in addition, is also able to cross-repress expression of the Gfi1 gene most likely in a cell type specific manner.
Collapse
Affiliation(s)
| | | | | | - Tarik Möröy
- To whom correspondence should be addressed. Tel: 49 201 723 3380; Fax: 49 201 723 5904;
| |
Collapse
|