1
|
Swart M, Redpath AN, Ogbechi J, Cardenas R, Topping L, Compeer EB, Goddard M, Chanalaris A, Williams R, Brewer DS, Smart N, Monaco C, Troeberg L. The extracellular heparan sulfatase SULF2 limits myeloid IFNβ signaling and Th17 responses in inflammatory arthritis. Cell Mol Life Sci 2024; 81:350. [PMID: 39141086 PMCID: PMC11335274 DOI: 10.1007/s00018-024-05333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
Heparan sulfate (HS) proteoglycans are important regulators of cellular responses to soluble mediators such as chemokines, cytokines and growth factors. We profiled changes in expression of genes encoding HS core proteins, biosynthesis enzymes and modifiers during macrophage polarisation, and found that the most highly regulated gene was Sulf2, an extracellular HS 6-O-sulfatase that was markedly downregulated in response to pro-inflammatory stimuli. We then generated Sulf2+/- bone marrow chimeric mice and examined inflammatory responses in antigen-induced arthritis, as a model of rheumatoid arthritis. Resolution of inflammation was impaired in myeloid Sulf2+/- chimeras, with elevated joint swelling and increased abundance of pro-arthritic Th17 cells in synovial tissue. Transcriptomic and in vitro analyses indicated that Sulf2 deficiency increased type I interferon signaling in bone marrow-derived macrophages, leading to elevated expression of the Th17-inducing cytokine IL6. This establishes that dynamic remodeling of HS by Sulf2 limits type I interferon signaling in macrophages, and so protects against Th17-driven pathology.
Collapse
Affiliation(s)
- Maarten Swart
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Andia N Redpath
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, OX1 3PT, UK
| | - Joy Ogbechi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Ryan Cardenas
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, UK
| | - Louise Topping
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Ewoud B Compeer
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Michael Goddard
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Anastasios Chanalaris
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Richard Williams
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Daniel S Brewer
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, UK
| | - Nicola Smart
- Department of Physiology, Anatomy & Genetics, University of Oxford, Sherrington Building, Oxford, OX1 3PT, UK
| | - Claudia Monaco
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Linda Troeberg
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK.
- Centre for Metabolic Health, Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Rosalind Franklin Road, Norwich, NR4 7UQ, UK.
| |
Collapse
|
2
|
Mousa AM, Nooman MU, Abbas SS, Gebril SM, Abdelraof M, Al-Kashef AS. Protective effects of microbial biosurfactants produced by Bacillus halotolerans and Candida parapsilosis on bleomycin-induced pulmonary fibrosis in mice: Impact of antioxidant, anti-inflammatory and anti-fibrotic properties via TGF-β1/Smad-3 pathway and miRNA-326. Toxicol Appl Pharmacol 2024; 486:116939. [PMID: 38643951 DOI: 10.1016/j.taap.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible disease which considered the most fatal pulmonary fibrosis. Pulmonary toxicity including IPF is the most severe adverse effect of bleomycin, the chemotherapeutic agent. Based on the fact that, exogenous surfactants could induce alveolar stabilization in many lung diseases, the aim of this study was to explore the effects of low cost biosurfactants, surfactin (SUR) and sophorolipids (SLs), against bleomycin-induced pulmonary fibrosis in mice due to their antioxidant, and anti-inflammatory properties. Surfactin and sophorolipids were produced by microbial conversion of frying oil and potato peel wastes using Bacillus halotolerans and Candida parapsilosis respectively. These biosurfactants were identified by FTIR, 1H NMR, and LC-MS/MS spectra. C57BL/6 mice were administered the produced biosurfactants daily at oral dose of 200 mg kg-1 one day after the first bleomycin dose (35 U/kg). We evaluated four study groups: Control, Bleomycin, Bleomycin+SUR, Bleomycin+SLs. After 30 days, lungs from each mouse were sampled for oxidative stress, ELISA, Western blot, histopathological, immunohistochemical analyses. Our results showed that the produced SUR and SLs reduced pulmonary oxidative stress and inflammatory response in the lungs of bleomycin induced mice as they suppressed SOD, CAT, and GST activities also reduced NF-κβ, TNF-α, and CD68 levels. Furthermore, biosurfactants suppressed the expression of TGF-β1, Smad-3, and p-JNK fibrotic signaling pathway in pulmonary tissues. Histologically, SUR and SLs protected against lung ECM deposition caused by bleomycin administration. Biosurfactants produced from microbial sources can inhibit the induced inflammatory and fibrotic responses in bleomycin-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Amria M Mousa
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Mohamed U Nooman
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Egypt.
| | - Sahar M Gebril
- Histology and Cell Biology Department, Faculty of Medicine, Sohag University, Egypt.
| | - Mohamed Abdelraof
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt.
| | - Amr S Al-Kashef
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Egypt.
| |
Collapse
|
3
|
Burgess JK, Weiss DJ, Westergren-Thorsson G, Wigen J, Dean CH, Mumby S, Bush A, Adcock IM. Extracellular Matrix as a Driver of Chronic Lung Diseases. Am J Respir Cell Mol Biol 2024; 70:239-246. [PMID: 38190723 DOI: 10.1165/rcmb.2023-0176ps] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
The extracellular matrix (ECM) is not just a three-dimensional scaffold that provides stable support for all cells in the lungs, but also an important component of chronic fibrotic airway, vascular, and interstitial diseases. It is a bioactive entity that is dynamically modulated during tissue homeostasis and disease, that controls structural and immune cell functions and drug responses, and that can release fragments that have biological activity and that can be used to monitor disease activity. There is a growing recognition of the importance of considering ECM changes in chronic airway, vascular, and interstitial diseases, including 1) compositional changes, 2) structural and organizational changes, and 3) mechanical changes and how these affect disease pathogenesis. As altered ECM biology is an important component of many lung diseases, disease models must incorporate this factor to fully recapitulate disease-driver pathways and to study potential novel therapeutic interventions. Although novel models are evolving that capture some or all of the elements of the altered ECM microenvironment in lung diseases, opportunities exist to more fully understand cell-ECM interactions that will help devise future therapeutic targets to restore function in chronic lung diseases. In this perspective article, we review evolving knowledge about the ECM's role in homeostasis and disease in the lung.
Collapse
Affiliation(s)
- Janette K Burgess
- Department of Pathology and Medical Biology
- Groningen Research Institute for Asthma and COPD, and
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont
| | | | - Jenny Wigen
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
- Centre for Pediatrics and Child Health, Imperial College and Royal Brompton Hospital, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| |
Collapse
|
4
|
Li Y, Jiang C, Zhu W, Lu S, Yu H, Meng L. Exploring therapeutic targets for molecular therapy of idiopathic pulmonary fibrosis. Sci Prog 2024; 107:368504241247402. [PMID: 38651330 PMCID: PMC11036936 DOI: 10.1177/00368504241247402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Idiopathic pulmonary fibrosis is a chronic and progressive interstitial lung disease with a poor prognosis. Idiopathic pulmonary fibrosis is characterized by repeated alveolar epithelial damage leading to abnormal repair. The intercellular microenvironment is disturbed, leading to continuous activation of fibroblasts and myofibroblasts, deposition of extracellular matrix, and ultimately fibrosis. Moreover, pulmonary fibrosis was also found as a COVID-19 complication. Currently, two drugs, pirfenidone and nintedanib, are approved for clinical therapy worldwide. However, they can merely slow the disease's progression rather than rescue it. These two drugs have other limitations, such as lack of efficacy, adverse effects, and poor pharmacokinetics. Consequently, a growing number of molecular therapies have been actively developed. Treatment options for IPF are becoming increasingly available. This article reviews the research platform, including cell and animal models involved in molecular therapy studies of idiopathic pulmonary fibrosis as well as the promising therapeutic targets and their development progress during clinical trials. The former includes patient case/control studies, cell models, and animal models. The latter includes transforming growth factor-beta, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factor, lysophosphatidic acid, interleukin-13, Rho-associated coiled-coil forming protein kinase family, and Janus kinases/signal transducers and activators of transcription pathway. We mainly focused on the therapeutic targets that have not only entered clinical trials but were publicly published with their clinical outcomes. Moreover, this work provides an outlook on some promising targets for further validation of their possibilities to cure the disease.
Collapse
Affiliation(s)
- Yue Li
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- First Department of Respiratory Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Congshan Jiang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - Shemin Lu
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| | - Hongchuan Yu
- First Department of Respiratory Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Liesu Meng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
5
|
Li X, Shan J, Chen X, Cui H, Wen G, Yu Y. Decellularized diseased tissues: current state-of-the-art and future directions. MedComm (Beijing) 2023; 4:e399. [PMID: 38020712 PMCID: PMC10661834 DOI: 10.1002/mco2.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 12/01/2023] Open
Abstract
Decellularized matrices derived from diseased tissues/organs have evolved in the most recent years, providing novel research perspectives for understanding disease occurrence and progression and providing accurate pseudo models for developing new disease treatments. Although decellularized matrix maintaining the native composition, ultrastructure, and biomechanical characteristics of extracellular matrix (ECM), alongside intact and perfusable vascular compartments, facilitates the construction of bioengineered organ explants in vitro and promotes angiogenesis and tissue/organ regeneration in vivo, the availability of healthy tissues and organs for the preparation of decellularized ECM materials is limited. In this paper, we review the research advancements in decellularized diseased matrices. Considering that current research focuses on the matrices derived from cancers and fibrotic organs (mainly fibrotic kidney, lungs, and liver), the pathological characterizations and the applications of these diseased matrices are mainly discussed. Additionally, a contrastive analysis between the decellularized diseased matrices and decellularized healthy matrices, along with the development in vitro 3D models, is discussed in this paper. And last, we have provided the challenges and future directions in this review. Deep and comprehensive research on decellularized diseased tissues and organs will promote in-depth exploration of source materials in tissue engineering field, thus providing new ideas for clinical transformation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianyang Shan
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Chen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
| | - Haomin Cui
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gen Wen
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
6
|
Evangelista-Leite D, Carreira ACO, Nishiyama MY, Gilpin SE, Miglino MA. The molecular mechanisms of extracellular matrix-derived hydrogel therapy in idiopathic pulmonary fibrosis models. Biomaterials 2023; 302:122338. [PMID: 37820517 DOI: 10.1016/j.biomaterials.2023.122338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/20/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a progressively debilitating lung condition characterized by oxidative stress, cell phenotype shifts, and excessive extracellular matrix (ECM) deposition. Recent studies have shown promising results using decellularized ECM-derived hydrogels produced through pepsin digestion in various lung injury models and even a human clinical trial for myocardial infarction. This study aimed to characterize the composition of ECM-derived hydrogels, assess their potential to prevent fibrosis in bleomycin-induced IPF models, and unravel their underlying molecular mechanisms of action. Porcine lungs were decellularized and pepsin-digested for 48 h. The hydrogel production process, including visualization of protein molecular weight distribution and hydrogel gelation, was characterized. Peptidomics analysis of ECM-derived hydrogel contained peptides from 224 proteins. Probable bioactive and cell-penetrating peptides, including collagen IV, laminin beta 2, and actin alpha 1, were identified. ECM-derived hydrogel treatment was administered as an early intervention to prevent fibrosis advancement in rat models of bleomycin-induced pulmonary fibrosis. ECM-derived hydrogel concentrations of 1 mg/mL and 2 mg/mL showed subtle but noticeable effects on reducing lung inflammation, oxidative damage, and protein markers related to fibrosis (e.g., alpha-smooth muscle actin, collagen I). Moreover, distinct changes were observed in macroscopic appearance, alveolar structure, collagen deposition, and protein expression between lungs that received ECM-derived hydrogel and control fibrotic lungs. Proteomic analyses revealed significant protein and gene expression changes related to cellular processes, pathways, and components involved in tissue remodeling, inflammation, and cytoskeleton regulation. RNA sequencing highlighted differentially expressed genes associated with various cellular processes, such as tissue remodeling, hormone secretion, cell chemotaxis, and cytoskeleton engagement. This study suggests that ECM-derived hydrogel treatment influence pathways associated with tissue repair, inflammation regulation, cytoskeleton reorganization, and cellular response to injury, potentially offering therapeutic benefits in preventing or mitigating lung fibrosis.
Collapse
Affiliation(s)
- Daniele Evangelista-Leite
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil; School of Medical Sciences, State University of Campinas, Campinas, São Paulo, 13083-970, Brazil.
| | - Ana C O Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil; NUCEL (Cell and Molecular Therapy Center), School of Medicine, University of São Paulo, São Paulo, 05360-130, Brazil; Center for Human and Natural Sciences, Federal University of ABC, Santo André, São Paulo, 09210-580, Brazil.
| | - Milton Y Nishiyama
- Laboratory of Applied Toxinology, Butantan Institute, São Paulo, 05503-900, Brazil.
| | - Sarah E Gilpin
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil.
| | - Maria A Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, 05508-010, Brazil.
| |
Collapse
|
7
|
Hoffman E, Song Y, Zhang F, Asarian L, Downs I, Young B, Han X, Ouyang Y, Xia K, Linhardt RJ, Weiss DJ. Regional and disease-specific glycosaminoglycan composition and function in decellularized human lung extracellular matrix. Acta Biomater 2023; 168:388-399. [PMID: 37433361 PMCID: PMC10528722 DOI: 10.1016/j.actbio.2023.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Decellularized lung scaffolds and hydrogels are increasingly being utilized in ex vivo lung bioengineering. However, the lung is a regionally heterogenous organ with proximal and distal airway and vascular compartments of different structures and functions that may be altered as part of disease pathogenesis. We previously described decellularized normal whole human lung extracellular matrix (ECM) glycosaminoglycan (GAG) composition and functional ability to bind matrix-associated growth factors. We now determine differential GAG composition and function in airway, vascular, and alveolar-enriched regions of decellularized lungs obtained from normal, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) patients. Significant differences were observed in heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid (HA) content and CS/HS compositions between both different lung regions and between normal and diseased lungs. Surface plasmon resonance demonstrated that HS and CS from decellularized normal and COPD lungs similarly bound fibroblast growth factor 2, but that binding was decreased in decellularized IPF lungs. Binding of transforming growth factor β to CS was similar in all three groups but binding to HS was decreased in IPF compared to normal and COPD lungs. In addition, cytokines dissociate faster from the IPF GAGs than their counterparts. The differences in cytokine binding features of IPF GAGs may result from different disaccharide compositions. The purified HS from IPF lung is less sulfated than that from other lungs, and the CS from IPF contains more 6-O-sulfated disaccharide. These observations provide further information for understanding functional roles of ECM GAGs in lung function and disease. STATEMENT OF SIGNIFICANCE: Lung transplantation remains limited due to donor organ availability and need for life-long immunosuppressive medication. One solution, the ex vivo bioengineering of lungs via de- and recellularization has not yet led to a fully functional organ. Notably, the role of glycosaminoglycans (GAGs) remaining in decellularized lung scaffolds is poorly understood despite their important effects on cell behaviors. We have previously investigated residual GAG content of native and decellularized lungs and their respective functionality, and role during scaffold recellularization. We now present a detailed characterization of GAG and GAG chain content and function in different anatomical regions of normal diseased human lungs. These are novel and important observations that further expand knowledge about functional GAG roles in lung biology and disease.
Collapse
Affiliation(s)
- Evan Hoffman
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA
| | - Yuefan Song
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Fuming Zhang
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Loredana Asarian
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA
| | - Isaac Downs
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA
| | - Brad Young
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA
| | - Xiaorui Han
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Yilan Ouyang
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Ke Xia
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Robert J Linhardt
- Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY, USA
| | - Daniel J Weiss
- Larner College of Medicine, University of Vermont, 149 Beaumont Avenue, Health Science Research Facility (HSRF) 226, Burlington, VT 05405, USA.
| |
Collapse
|
8
|
Kaur G, Harris NR. Endothelial glycocalyx in retina, hyperglycemia, and diabetic retinopathy. Am J Physiol Cell Physiol 2023; 324:C1061-C1077. [PMID: 36939202 PMCID: PMC10125029 DOI: 10.1152/ajpcell.00188.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
The endothelial glycocalyx (EG) is a meshlike network present on the apical surface of the endothelium. Membrane-bound proteoglycans, the major backbone molecules of the EG, consist of glycosaminoglycans attached to core proteins. In addition to maintaining the integrity of the endothelial barrier, the EG regulates inflammation and perfusion and acts as a mechanosensor. The loss of the EG can cause endothelial dysfunction and drive the progression of vascular diseases including diabetic retinopathy. Therefore, the EG presents a novel therapeutic target for treatment of vascular complications. In this review article, we provide an overview of the structure and function of the EG in the retina. Our particular focus is on hyperglycemia-induced perturbations in the glycocalyx structure in the retina, potential underlying mechanisms, and clinical trials studying protective treatments against degradation of the EG.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| |
Collapse
|
9
|
Rhodes AML, Ali S, Minnion M, Lee LH, Joseph BM, Ndzo J, Clarke NMP, Feelisch M, Aarvold A. An Explorative Study into the Aetiology of Developmental Dysplasia of the Hip Using Targeted Urine Metabolomics. Antioxidants (Basel) 2023; 12:antiox12030538. [PMID: 36978785 PMCID: PMC10045260 DOI: 10.3390/antiox12030538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Developmental dysplasia of the hip (DDH) is the most prevalent congenital musculoskeletal disorder, yet its cause remains unknown. Adequate nutrient provision and coordinated electron exchange (redox) processes are critical for foetal growth and tissue development. This novel study sought to explore specific biochemical pathways in skeletal development for potential involvement in the aetiology of DDH. Spot urine samples were collected from infants, aged 13–61 days, with and without DDH. Ion chromatography-mass spectrometry was used to quantify thiosulphate, sulphate, nitrate, and phosphate, whilst nitrite was quantified using high-performance liquid chromato-graphy. Thiobarbituric acid reactive substances (TBARS) were measured as markers of lipid peroxidation. Creatinine and osmolality were determined by a 96-well plate assay and micro-osmometer to potentially normalise values for renal function, lean body mass, and hydration status. Urine samples were analysed from 99 babies: 30 with DDH and 69 age-matched non-DDH controls. Thiosulphate, TBARS, and creatinine concentrations differed between the DDH group and the controls (p = 0.025, 0.015, and 0.004 respectively). Urine osmolality was significantly lower in DDH compared to the controls (p = 0.036), indicative of the production of a more diluted urine in DDH infants. Following adjustment for osmolality, significant differences became apparent in urinary sulphate levels in DDH (p = 0.035) whereas all other parameters were similar between the groups. This is the first study to assess the potential role of these inorganic anions in DDH. The higher levels of sulphate found in infants with DDH suggests either enhanced intake from milk, increased endogenous formation, or impaired renal reabsorption. This investigation demonstrates the power of urine metabolomics and highlights the importance of normalisation for hydration status to disentangle developmental disorders. Our results strongly suggest that DDH is a systemic disease associated with altered uptake, formation, or handling of sulphate. There is potential for new opportunities in the prevention or treatment of DDH via nutritional intervention.
Collapse
Affiliation(s)
- Amanda M. L. Rhodes
- Orthopaedic Surgery, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Sehrish Ali
- Clinical and Experimental Sciences, Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Magdalena Minnion
- Clinical and Experimental Sciences, Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Ling H. Lee
- Southampton Children’s Hospital, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Brijil M. Joseph
- Southampton Children’s Hospital, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Judwin Ndzo
- Southampton Children’s Hospital, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Nicholas M. P. Clarke
- Department of Paediatric Orthopaedics, University of Southampton, Southampton SO16 6YD, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, UK
- Correspondence: (M.F.); (A.A.)
| | - Alexander Aarvold
- Southampton Children’s Hospital, University Hospital Southampton, Southampton SO16 6YD, UK
- Correspondence: (M.F.); (A.A.)
| |
Collapse
|
10
|
Rende U, Ahn SB, Adhikari S, Moh ESX, Pollock CA, Saad S, Guller A. Deciphering the Kidney Matrisome: Identification and Quantification of Renal Extracellular Matrix Proteins in Healthy Mice. Int J Mol Sci 2023; 24:ijms24032827. [PMID: 36769148 PMCID: PMC9917693 DOI: 10.3390/ijms24032827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Precise characterization of a tissue's extracellular matrix (ECM) protein composition (matrisome) is essential for biomedicine. However, ECM protein extraction that requires organ-specific optimization is still a major limiting factor in matrisome studies. In particular, the matrisome of mouse kidneys is still understudied, despite mouse models being crucial for renal research. Here, we comprehensively characterized the matrisome of kidneys in healthy C57BL/6 mice using two ECM extraction methods in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS), protein identification, and label-free quantification (LFQ) using MaxQuant. We identified 113 matrisome proteins, including 22 proteins that have not been previously listed in the Matrisome Database. Depending on the extraction approach, the core matrisome (structural proteins) comprised 45% or 73% of kidney ECM proteins, and was dominated by glycoproteins, followed by collagens and proteoglycans. Among matrisome-associated proteins, ECM regulators had the highest LFQ intensities, followed by ECM-affiliated proteins and secreted factors. The identified kidney ECM proteins were primarily involved in cellular, developmental and metabolic processes, as well as in molecular binding and regulation of catalytic and structural molecules' activity. We also performed in silico comparative analysis of the kidney matrisome composition in humans and mice based on publicly available data. These results contribute to the first reference database for the mouse renal matrisome.
Collapse
Affiliation(s)
- Umut Rende
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Seong Beom Ahn
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Subash Adhikari
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Edward S. X. Moh
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Carol A. Pollock
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Sonia Saad
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Anna Guller
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- Correspondence:
| |
Collapse
|
11
|
Engelbrecht E, Kooistra T, Knipe RS. The Vasculature in Pulmonary Fibrosis. CURRENT TISSUE MICROENVIRONMENT REPORTS 2022; 3:83-97. [PMID: 36712832 PMCID: PMC9881604 DOI: 10.1007/s43152-022-00040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
Purpose of Review The current paradigm of idiopathic pulmonary fibrosis (IPF) pathogenesis involves recurrent injury to a sensitive alveolar epithelium followed by impaired repair responses marked by fibroblast activation and deposition of extracellular matrix. Multiple cell types are involved in this response with potential roles suggested by advances in single-cell RNA sequencing and lung developmental biology. Notably, recent work has better characterized the cell types present in the pulmonary endothelium and identified vascular changes in patients with IPF. Recent Findings Lung tissue from patients with IPF has been examined at single-cell resolution, revealing reductions in lung capillary cells and expansion of a population of vascular cells expressing markers associated with bronchial endothelium. In addition, pre-clinical models have demonstrated a fundamental role for aging and vascular permeability in the development of pulmonary fibrosis. Summary Mounting evidence suggests that the endothelium undergoes changes in the context of fibrosis, and these changes may contribute to the development and/or progression of pulmonary fibrosis. Additional studies will be needed to further define the functional role of these vascular changes.
Collapse
Affiliation(s)
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Cell-Specific Response of NSIP- and IPF-Derived Fibroblasts to the Modification of the Elasticity, Biological Properties, and 3D Architecture of the Substrate. Int J Mol Sci 2022; 23:ijms232314714. [PMID: 36499041 PMCID: PMC9738992 DOI: 10.3390/ijms232314714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
The fibrotic fibroblasts derived from idiopathic pulmonary fibrosis (IPF) and nonspecific interstitial pneumonia (NSIP) are surrounded by specific environments, characterized by increased stiffness, aberrant extracellular matrix (ECM) composition, and altered lung architecture. The presented research was aimed at investigating the effect of biological, physical, and topographical modification of the substrate on the properties of IPF- and NSIP-derived fibroblasts, and searching for the parameters enabling their identification. Soft and stiff polydimethylsiloxane (PDMS) was chosen for the basic substrates, the properties of which were subsequently tuned. To obtain the biological modification of the substrates, they were covered with ECM proteins, laminin, fibronectin, and collagen. The substrates that mimicked the 3D structure of the lungs were prepared using two approaches, resulting in porous structures that resemble natural lung architecture and honeycomb patterns, typical of IPF tissue. The growth of cells on soft and stiff PDMS covered with proteins, traced using fluorescence microscopy, confirmed an altered behavior of healthy and IPF- and NSIP-derived fibroblasts in response to the modified substrate properties, enabling their identification. In turn, differences in the mechanical properties of healthy and fibrotic fibroblasts, determined using atomic force microscopy working in force spectroscopy mode, as well as their growth on 3D-patterned substrates were not sufficient to discriminate between cell lines.
Collapse
|
13
|
Wang Q, Chi L. The Alterations and Roles of Glycosaminoglycans in Human Diseases. Polymers (Basel) 2022; 14:polym14225014. [PMID: 36433141 PMCID: PMC9694910 DOI: 10.3390/polym14225014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides which are composed of a repeating disaccharide unit. They are also linked to core proteins to form proteoglycans (PGs). GAGs/PGs are major components of the cell surface and the extracellular matrix (ECM), and they display critical roles in development, normal function, and damage response in the body. Some properties (such as expression quantity, molecular weight, and sulfation pattern) of GAGs may be altered under pathological conditions. Due to the close connection between these properties and the function of GAGs/PGs, the alterations are often associated with enormous changes in the physiological/pathological status of cells and organs. Therefore, these GAGs/PGs may serve as marker molecules of disease. This review aimed to investigate the structural alterations and roles of GAGs/PGs in a range of diseases, such as atherosclerosis, cancer, diabetes, neurodegenerative disease, and virus infection. It is hoped to provide a reference for disease diagnosis, monitoring, prognosis, and drug development.
Collapse
|
14
|
Sun C, Tian X, Jia Y, Yang M, Li Y, Fernig DG. Functions of exogenous FGF signals in regulation of fibroblast to myofibroblast differentiation and extracellular matrix protein expression. Open Biol 2022; 12:210356. [PMID: 36102060 PMCID: PMC9471990 DOI: 10.1098/rsob.210356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fibroblasts are widely distributed cells found in most tissues and upon tissue injury, they are able to differentiate into myofibroblasts, which express abundant extracellular matrix (ECM) proteins. Overexpression and unordered organization of ECM proteins cause tissue fibrosis in damaged tissue. Fibroblast growth factor (FGF) family proteins are well known to promote angiogenesis and tissue repair, but their activities in fibroblast differentiation and fibrosis have not been systematically reviewed. Here we summarize the effects of FGFs in fibroblast to myofibroblast differentiation and ECM protein expression and discuss the underlying potential regulatory mechanisms, to provide a basis for the clinical application of recombinant FGF protein drugs in treatment of tissue damage.
Collapse
Affiliation(s)
- Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Mingming Yang
- Department of Cardiology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yong Li
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - David G Fernig
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
15
|
Dooling LJ, Saini K, Anlaş AA, Discher DE. Tissue mechanics coevolves with fibrillar matrisomes in healthy and fibrotic tissues. Matrix Biol 2022; 111:153-188. [PMID: 35764212 PMCID: PMC9990088 DOI: 10.1016/j.matbio.2022.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
Fibrillar proteins are principal components of extracellular matrix (ECM) that confer mechanical properties to tissues. Fibrosis can result from wound repair in nearly every tissue in adults, and it associates with increased ECM density and crosslinking as well as increased tissue stiffness. Such fibrotic tissues are a major biomedical challenge, and an emerging view posits that the altered mechanical environment supports both synthetic and contractile myofibroblasts in a state of persistent activation. Here, we review the matrisome in several fibrotic diseases, as well as normal tissues, with a focus on physicochemical properties. Stiffness generally increases with the abundance of fibrillar collagens, the major constituent of ECM, with similar mathematical trends for fibrosis as well as adult tissues from soft brain to stiff bone and heart development. Changes in expression of other core matrisome and matrisome-associated proteins or proteoglycans contribute to tissue stiffening in fibrosis by organizing collagen, crosslinking ECM, and facilitating adhesion of myofibroblasts. Understanding how ECM composition and mechanics coevolve during fibrosis can lead to better models and help with antifibrotic therapies.
Collapse
Affiliation(s)
- Lawrence J Dooling
- Molecular and Cellular Biophysics Lab, University of Pennsylvania,Philadelphia, PA 19104, USA
| | - Karanvir Saini
- Molecular and Cellular Biophysics Lab, University of Pennsylvania,Philadelphia, PA 19104, USA
| | - Alişya A Anlaş
- Molecular and Cellular Biophysics Lab, University of Pennsylvania,Philadelphia, PA 19104, USA
| | - Dennis E Discher
- Molecular and Cellular Biophysics Lab, University of Pennsylvania,Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Kaur G, Song Y, Xia K, McCarthy K, Zhang F, Linhardt RJ, Harris NR. Effect of high glucose on glycosaminoglycans in cultured retinal endothelial cells and rat retina. Glycobiology 2022; 32:720-734. [PMID: 35552402 PMCID: PMC9280546 DOI: 10.1093/glycob/cwac029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The endothelial glycocalyx regulates vascular permeability, inflammation, and coagulation, and acts as a mechanosensor. The loss of glycocalyx can cause endothelial injury and contribute to several microvascular complications and, therefore, may promote diabetic retinopathy. Studies have shown a partial loss of retinal glycocalyx in diabetes, but with few molecular details of the changes in glycosaminoglycan (GAG) composition. Therefore, the purpose of our study was to investigate the effect of hyperglycemia on GAGs of the retinal endothelial glycocalyx. METHODS GAGs were isolated from rat retinal microvascular endothelial cells (RRMECs), media, and retinas, followed by liquid chromatography-mass spectrometry assays. Quantitative real-time polymerase chain reaction was used to study mRNA transcripts of the enzymes involved in GAG biosynthesis. RESULTS AND CONCLUSIONS Hyperglycemia significantly increased the shedding of heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid (HA). There were no changes to the levels of HS in RRMEC monolayers grown in high-glucose media, but the levels of CS and HA decreased dramatically. Similarly, while HA decreased in the retinas of diabetic rats, the total GAG and CS levels increased. Hyperglycemia in RRMECs caused a significant increase in the mRNA levels of the enzymes involved in GAG biosynthesis (including EXTL-1,2,3, EXT-1,2, ChSY-1,3, and HAS-2,3), with these increases potentially being compensatory responses to overall glycocalyx loss. Both RRMECs and retinas of diabetic rats exhibited glucose-induced alterations in the disaccharide compositions and sulfation of HS and CS, with the changes in sulfation including N,6-O-sulfation on HS and 4-O-sulfation on CS.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Yuefan Song
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin McCarthy
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
17
|
Orzechowska B, Awsiuk K, Wnuk D, Pabijan J, Stachura T, Soja J, Sładek K, Raczkowska J. Discrimination between NSIP- and IPF-Derived Fibroblasts Based on Multi-Parameter Characterization of Their Growth, Morphology and Physic-Chemical Properties. Int J Mol Sci 2022; 23:ijms23042162. [PMID: 35216278 PMCID: PMC8880018 DOI: 10.3390/ijms23042162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The aim of the research presented here was to find a set of parameters enabling discrimination between three types of fibroblasts, i.e., healthy ones and those derived from two disorders mimicking each other: idiopathic pulmonary fibrosis (IPF), and nonspecific interstitial pneumonia (NSIP). Methods: The morphology and growth of cells were traced using fluorescence microscopy and analyzed quantitatively using cell proliferation and substrate cytotoxicity indices. The viability of cells was recorded using MTS assays, and their stiffness was examined using atomic force microscopy (AFM) working in force spectroscopy (FS) mode. To enhance any possible difference in the examined parameters, experiments were performed with cells cultured on substrates of different elasticities. Moreover, the chemical composition of cells was determined using time-of-flight secondary ion mass spectrometry (ToF-SIMS), combined with sophisticated analytical tools, i.e., Multivariate Curve Resolution (MCR) and Principal Component Analysis (PCA). Results: The obtained results demonstrate that discrimination between cell lines derived from healthy and diseased patients is possible based on the analysis of the growth of cells, as well as their physical and chemical properties. In turn, the comparative analysis of the cellular response to altered stiffness of the substrates enables the identification of each cell line, including distinguishing between IPF- and NSIP-derived fibroblasts.
Collapse
Affiliation(s)
- Barbara Orzechowska
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (B.O.); (J.P.)
| | - Kamil Awsiuk
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Krakow, Poland;
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Joanna Pabijan
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (B.O.); (J.P.)
| | - Tomasz Stachura
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Jakubowskiego 2, 30-688 Krakow, Poland; (T.S.); (J.S.); (K.S.)
| | - Jerzy Soja
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Jakubowskiego 2, 30-688 Krakow, Poland; (T.S.); (J.S.); (K.S.)
| | - Krzysztof Sładek
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Jakubowskiego 2, 30-688 Krakow, Poland; (T.S.); (J.S.); (K.S.)
| | - Joanna Raczkowska
- The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Krakow, Poland;
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
- Correspondence:
| |
Collapse
|
18
|
Histone H4 induces heparan sulfate degradation by activating heparanase in chlorine gas-induced acute respiratory distress syndrome. Respir Res 2022; 23:14. [PMID: 35073921 PMCID: PMC8785471 DOI: 10.1186/s12931-022-01932-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Background Heparan sulfate (HS) degradation mediates pulmonary endothelial hyper-permeability and acute pulmonary edema during acute respiratory distress syndrome (ARDS). The aim of this study was to examine whether histone H4 induced HS degradation by activating heparanase (HPSE) in chlorine gas (Cl2)-induced ARDS. Methods Acute lung injury was induced by Cl2 exposure or histone H4 injection in C57BL/6 mice. Histone H4 in bronchoalveolar lavage fluid (BALF) and plasma was measured by ELISA. HS degradation was measured by immunostaining, ELISA, and flow cytometry. HPSE mRNA and protein were measured by real-time qPCR and western blot analysis, respectively, at preset timepoints. The HPSE inhibitor OGT2115 and specific siRNAs were used to study the role of HPSE during HS degradation caused by Cl2 exposure or histone H4 challenge. Blocking antibodies against TLR1, TLR2, TLR4, or TLR6 were used in vitro to investigate which signaling pathway was involved. The transcriptional regulation of HPSE was studied vis-à-vis NF-κB, which was assessed by nuclear translocation of NF-κB p65 and phosphorylation of I-κBα protein. Results Histone H4 in BALF and plasma increased evidently after Cl2 inhalation. Cl2 exposure or histone H4 challenge caused obvious acute lung injury in mice, and the pulmonary glycocalyx was degraded evidently as observed from endothelial HS staining and measurement of plasma HS fragments. Pretreatment with OGT2115, an HPSE inhibitor, relieved the acute lung injury and HS degradation caused by Cl2 exposure or histone H4 challenge. Targeted knockdown of HPSE by RNA interference (RNAi) significantly inhibited histone H4 induced HS degradation in HPMECs, as measured by immunofluorescence and flow cytometry. By inducing phosphorylation of I-κB α and nuclear translocation of NF-κB p65, histone H4 directly promoted mRNA transcription and protein expression of HPSE in a dose-dependent manner. Additionally, a blocking antibody against TLR4 markedly inhibited both activation of NF-κB and expression of HPSE induced by histone H4. Conclusions Histone H4 is a major pro-inflammatory mediator in Cl2-induced ARDS in mice, and induces HS degradation by activating HPSE via TLRs- and NF-κB-signaling pathways.
Collapse
|
19
|
Disease-specific glycosaminoglycan patterns in the extracellular matrix of human lung and brain. Carbohydr Res 2021; 511:108480. [PMID: 34837849 DOI: 10.1016/j.carres.2021.108480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022]
Abstract
A wide variety of diseases throughout the mammalian organism is characterized by abnormal deposition of various components of the extracellular matrix (ECM), including the heterogeneous family of glycosaminoglycans (GAGs), which contribute considerably to the ECM architecture as part of the so-called proteoglycans. The GAG's unique sulfation pattern, derived from highly dynamic and specific modification processes, has a massive impact on critical mediators such as cytokines and growth factors. Due to the strong connection between the specific sulfation pattern and GAG function, slight alterations of this pattern are often associated with enormous changes at the cell as well as at the organ level. This review aims to investigate the connection between modifications of GAG sulfation patterns and the wide range of pathological conditions, mainly focusing on a range of chronic diseases of the central nervous system (CNS) as well as the respiratory tract.
Collapse
|
20
|
Elowsson Rendin L, Löfdahl A, Kadefors M, Söderlund Z, Tykesson E, Rolandsson Enes S, Wigén J, Westergren-Thorsson G. Harnessing the ECM Microenvironment to Ameliorate Mesenchymal Stromal Cell-Based Therapy in Chronic Lung Diseases. Front Pharmacol 2021; 12:645558. [PMID: 34040521 PMCID: PMC8142268 DOI: 10.3389/fphar.2021.645558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
It is known that the cell environment such as biomechanical properties and extracellular matrix (ECM) composition dictate cell behaviour including migration, proliferation, and differentiation. Important constituents of the microenvironment, including ECM molecules such as proteoglycans and glycosaminoglycans (GAGs), determine events in both embryogenesis and repair of the adult lung. Mesenchymal stromal/stem cells (MSC) have been shown to have immunomodulatory properties and may be potent actors regulating tissue remodelling and regenerative cell responses upon lung injury. Using MSC in cell-based therapy holds promise for treatment of chronic lung diseases such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). However, so far clinical trials with MSCs in COPD have not had a significant impact on disease amelioration nor on IPF, where low cell survival rate and pulmonary retention time are major hurdles to overcome. Research shows that the microenvironment has a profound impact on transplanted MSCs. In our studies on acellular lung tissue slices (lung scaffolds) from IPF patients versus healthy individuals, we see a profound effect on cellular activity, where healthy cells cultured in diseased lung scaffolds adapt and produce proteins further promoting a diseased environment, whereas cells on healthy scaffolds sustain a healthy proteomic profile. Therefore, modulating the environmental context for cell-based therapy may be a potent way to improve treatment using MSCs. In this review, we will describe the importance of the microenvironment for cell-based therapy in chronic lung diseases, how MSC-ECM interactions can affect therapeutic output and describe current progress in the field of cell-based therapy.
Collapse
Affiliation(s)
- Linda Elowsson Rendin
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Clift CL, Drake RR, Mehta A, Angel PM. Multiplexed imaging mass spectrometry of the extracellular matrix using serial enzyme digests from formalin-fixed paraffin-embedded tissue sections. Anal Bioanal Chem 2021; 413:2709-2719. [PMID: 33206215 PMCID: PMC8012227 DOI: 10.1007/s00216-020-03047-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/08/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
We report a multiplexed imaging mass spectrometry method which spatially localizes and selectively accesses the extracellular matrix on formalin-fixed paraffin-embedded tissue sections. The extracellular matrix (ECM) consists of (1) fibrous proteins, post-translationally modified (PTM) via N- and O-linked glycosylation, as well as hydroxylation on prolines and lysines, and (2) glycosaminoglycan-decorated proteoglycans. Accessing all these components poses a unique analytical challenge. Conventional peptide analysis via trypsin inefficiently captures ECM peptides due to their low abundance, intra- and intermolecular cross-linking, and PTMs. In previous studies, we have developed matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) techniques to capture collagen peptides via collagenase type III digestion, both alone and after N-glycan removal via PNGaseF digest. However, in fibrotic tissues, the buildup of ECM components other than collagen-type proteins, including elastin and glycosaminoglycans, limits efficacy of any single enzyme to access the complex ECM. Here, we have developed a novel serial enzyme strategy to define the extracellular matrix, including PTMs, from a single tissue section for MALDI-IMS applications. Graphical Abstract.
Collapse
Affiliation(s)
- Cassandra L Clift
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Anand Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| |
Collapse
|
22
|
Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, Zinellu A, Mangoni AA, Pintus G. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci 2021; 78:2031-2057. [PMID: 33201251 PMCID: PMC7669490 DOI: 10.1007/s00018-020-03693-7] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia, is a progressive, irreversible, and typically lethal disease characterized by an abnormal fibrotic response involving vast areas of the lungs. Given the poor knowledge of the mechanisms underpinning IPF onset and progression, a better understanding of the cellular processes and molecular pathways involved is essential for the development of effective therapies, currently lacking. Besides a number of established IPF-associated risk factors, such as cigarette smoking, environmental factors, comorbidities, and viral infections, several other processes have been linked with this devastating disease. Apoptosis, senescence, epithelial-mesenchymal transition, endothelial-mesenchymal transition, and epithelial cell migration have been shown to play a key role in IPF-associated tissue remodeling. Moreover, molecules, such as chemokines, cytokines, growth factors, adenosine, glycosaminoglycans, non-coding RNAs, and cellular processes including oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, hypoxia, and alternative polyadenylation have been linked with IPF development. Importantly, strategies targeting these processes have been investigated to modulate abnormal cellular phenotypes and maintain tissue homeostasis in the lung. This review provides an update regarding the emerging cellular and molecular mechanisms involved in the onset and progression of IPF.
Collapse
Affiliation(s)
- Thị Hằng Giang Phan
- Department of Immunology and Pathophysiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
- Biomedical Research Center Qatar University, P.O Box 2713, Doha, Qatar.
| | - Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Arduino Aleksander Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates.
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
23
|
McQuitty CE, Williams R, Chokshi S, Urbani L. Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 2020; 11:574276. [PMID: 33262757 PMCID: PMC7686550 DOI: 10.3389/fimmu.2020.574276] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease when accompanied by underlying fibrosis, is characterized by an accumulation of extracellular matrix (ECM) proteins and chronic inflammation. Although traditionally considered as a passive and largely architectural structure, the ECM is now being recognized as a source of potent damage-associated molecular pattern (DAMP)s with immune-active peptides and domains. In parallel, the ECM anchors a range of cytokines, chemokines and growth factors, all of which are capable of modulating immune responses. A growing body of evidence shows that ECM proteins themselves are capable of modulating immunity either directly via ligation with immune cell receptors including integrins and TLRs, or indirectly through release of immunoactive molecules such as cytokines which are stored within the ECM structure. Notably, ECM deposition and remodeling during injury and fibrosis can result in release or formation of ECM-DAMPs within the tissue, which can promote local inflammatory immune response and chemotactic immune cell recruitment and inflammation. It is well described that the ECM and immune response are interlinked and mutually participate in driving fibrosis, although their precise interactions in the context of chronic liver disease are poorly understood. This review aims to describe the known pro-/anti-inflammatory and fibrogenic properties of ECM proteins and DAMPs, with particular reference to the immunomodulatory properties of the ECM in the context of chronic liver disease. Finally, we discuss the importance of developing novel biotechnological platforms based on decellularized ECM-scaffolds, which provide opportunities to directly explore liver ECM-immune cell interactions in greater detail.
Collapse
Affiliation(s)
- Claire E. McQuitty
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Luca Urbani
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
24
|
Meyer-Berg H, Zhou Yang L, Pilar de Lucas M, Zambrano A, Hyde SC, Gill DR. Identification of AAV serotypes for lung gene therapy in human embryonic stem cell-derived lung organoids. Stem Cell Res Ther 2020; 11:448. [PMID: 33097094 PMCID: PMC7582027 DOI: 10.1186/s13287-020-01950-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/24/2020] [Indexed: 02/26/2023] Open
Abstract
Gene therapy is being investigated for a range of serious lung diseases, such as cystic fibrosis and emphysema. Recombinant adeno-associated virus (rAAV) is a well-established, safe, viral vector for gene delivery with multiple naturally occurring and artificial serotypes available displaying alternate cell, tissue, and species-specific tropisms. Efficient AAV serotypes for the transduction of the conducting airways have been identified for several species; however, efficient serotypes for human lung parenchyma have not yet been identified. Here, we screened the ability of multiple AAV serotypes to transduce lung bud organoids (LBOs)—a model of human lung parenchyma generated from human embryonic stem cells. Microinjection of LBOs allowed us to model transduction from the luminal surface, similar to dosing via vector inhalation. We identified the naturally occurring rAAV2 and rAAV6 serotypes, along with synthetic rAAV6 variants, as having tropism for the human lung parenchyma. Positive staining of LBOs for surfactant proteins B and C confirmed distal lung identity and suggested the suitability of these vectors for the transduction of alveolar type II cells. Our findings establish LBOs as a new model for pulmonary gene therapy and stress the relevance of LBOs as a viral infection model of the lung parenchyma as relevant in SARS-CoV-2 research.
Collapse
Affiliation(s)
- Helena Meyer-Berg
- Gene Medicine Research Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lucia Zhou Yang
- Department of Biotechnology of Stem Cells and Organoids, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - María Pilar de Lucas
- Department of Cellular Biology, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Zambrano
- Department of Biotechnology of Stem Cells and Organoids, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Stephen C Hyde
- Gene Medicine Research Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Deborah R Gill
- Gene Medicine Research Group, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Effect of Substrate Stiffness on Physicochemical Properties of Normal and Fibrotic Lung Fibroblasts. MATERIALS 2020; 13:ma13204495. [PMID: 33050502 PMCID: PMC7600549 DOI: 10.3390/ma13204495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
The presented research aims to verify whether physicochemical properties of lung fibroblasts, modified by substrate stiffness, can be used to discriminate between normal and fibrotic cells from idiopathic pulmonary fibrosis (IPF). The impact of polydimethylsiloxane (PDMS) substrate stiffness on the physicochemical properties of normal (LL24) and IPF-derived lung fibroblasts (LL97A) was examined in detail. The growth and elasticity of cells were assessed using fluorescence microscopy and atomic force microscopy working in force spectroscopy mode, respectively. The number of fibroblasts, as well as their shape and the arrangement, strongly depends on the mechanical properties of the substrate. Moreover, normal fibroblasts remain more rigid as compared to their fibrotic counterparts, which may indicate the impairments of IPF-derived fibroblasts induced by the fibrosis process. The chemical properties of normal and IPF-derived lung fibroblasts inspected using time-of-flight secondary ion mass spectrometry, and analyzed complexly with principal component analysis (PCA), show a significant difference in the distribution of cholesterol and phospholipids. Based on the observed distinctions between healthy and fibrotic cells, the mechanical properties of cells may serve as prospective diagnostic biomarkers enabling fast and reliable identification of idiopathic pulmonary fibrosis (IPF).
Collapse
|
26
|
Ricard-Blum S, Miele AE. Omic approaches to decipher the molecular mechanisms of fibrosis, and design new anti-fibrotic strategies. Semin Cell Dev Biol 2020; 101:161-169. [DOI: 10.1016/j.semcdb.2019.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
|
27
|
A Staphylococcus pro-apoptotic peptide induces acute exacerbation of pulmonary fibrosis. Nat Commun 2020; 11:1539. [PMID: 32210242 PMCID: PMC7093394 DOI: 10.1038/s41467-020-15344-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 03/03/2020] [Indexed: 11/08/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disease of unknown etiology; however, apoptosis of lung alveolar epithelial cells plays a role in disease progression. This intractable disease is associated with increased abundance of Staphylococcus and Streptococcus in the lungs, yet their roles in disease pathogenesis remain elusive. Here, we report that Staphylococcus nepalensis releases corisin, a peptide conserved in diverse staphylococci, to induce apoptosis of lung epithelial cells. The disease in mice exhibits acute exacerbation after intrapulmonary instillation of corisin or after lung infection with corisin-harboring S. nepalensis compared to untreated mice or mice infected with bacteria lacking corisin. Correspondingly, the lung corisin levels are significantly increased in human IPF patients with acute exacerbation compared to patients without disease exacerbation. Our results suggest that bacteria shedding corisin are involved in acute exacerbation of IPF, yielding insights to the molecular basis for the elevation of staphylococci in pulmonary fibrosis.
Collapse
|
28
|
Tykesson E, Maccarana M, Thorsson H, Liu J, Malmström A, Ellervik U, Westergren-Thorsson G. Recombinant dermatan sulfate is a potent activator of heparin cofactor II-dependent inhibition of thrombin. Glycobiology 2020; 29:446-451. [PMID: 30869126 PMCID: PMC7008404 DOI: 10.1093/glycob/cwz019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 02/02/2023] Open
Abstract
The glycosaminoglycan dermatan sulfate (DS) is a well-known activator of heparin cofactor II-dependent inactivation of thrombin. In contrast to heparin, dermatan sulfate has never been prepared recombinantly from material of non-animal origin. Here we report on the enzymatic synthesis of structurally well-defined DS with high anticoagulant activity. Using a microbial K4 polysaccharide and the recombinant enzymes DS-epimerase 1, dermatan 4-O-sulfotransferase 1, uronyl 2-O-sulfotransferase and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase, several new glycostructures have been prepared, such as a homogenously sulfated IdoA-GalNAc-4S polymer and its 2-O-, 6-O- and 2,6-O-sulfated derivatives. Importantly, the recombinant highly 2,4-O-sulfated DS inhibits thrombin via heparin cofactor II, approximately 20 times better than heparin, enabling manipulation of vascular and extravascular coagulation. The potential of this method can be extended to preparation of specific structures that are of importance for binding and activation of cytokines, and control of inflammation and metastasis, involving extravasation and migration.
Collapse
Affiliation(s)
- Emil Tykesson
- Department of Experimental Medical Science, BMC C12, Lund University, Lund, Sweden
| | - Marco Maccarana
- Department of Experimental Medical Science, BMC C12, Lund University, Lund, Sweden
| | - Hanna Thorsson
- Department of Experimental Medical Science, BMC C12, Lund University, Lund, Sweden
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Rm 303, Beard Hall, Chapel Hill, NC, USA
| | - Anders Malmström
- Department of Experimental Medical Science, BMC C12, Lund University, Lund, Sweden
| | - Ulf Ellervik
- Department of Chemistry, Lund University, Box 124, Lund, Sweden
| | | |
Collapse
|
29
|
Uhl FE, Zhang F, Pouliot RA, Uriarte JJ, Rolandsson Enes S, Han X, Ouyang Y, Xia K, Westergren-Thorsson G, Malmström A, Hallgren O, Linhardt RJ, Weiss DJ. Functional role of glycosaminoglycans in decellularized lung extracellular matrix. Acta Biomater 2020; 102:231-246. [PMID: 31751810 PMCID: PMC8713186 DOI: 10.1016/j.actbio.2019.11.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 01/17/2023]
Abstract
Despite progress in use of decellularized lung scaffolds in ex vivo lung bioengineering schemes, including use of gels and other materials derived from the scaffolds, the detailed composition and functional role of extracellular matrix (ECM) proteoglycans (PGs) and their glycosaminoglycan (GAG) chains remaining in decellularized lungs, is poorly understood. Using a commonly utilized detergent-based decellularization approach in human autopsy lungs resulted in disproportionate losses of GAGs with depletion of chondroitin sulfate/dermatan sulfate (CS/DS) > heparan sulfate (HS) > hyaluronic acid (HA). Specific changes in disaccharide composition of remaining GAGs were observed with disproportionate loss of NS and NS2S for HS groups and of 4S for CS/DS groups. No significant influence of smoking history, sex, time to autopsy, or age was observed in native vs. decellularized lungs. Notably, surface plasmon resonance demonstrated that GAGs remaining in decellularized lungs were unable to bind key matrix-associated growth factors FGF2, HGF, and TGFβ1. Growth of lung epithelial, pulmonary vascular, and stromal cells cultured on the surface of or embedded within gels derived from decellularized human lungs was differentially and combinatorially enhanced by replenishing specific GAGs and FGF2, HGF, and TGFβ1. In summary, lung decellularization results in loss and/or dysfunction of specific GAGs or side chains significantly affecting matrix-associated growth factor binding and lung cell metabolism. GAG and matrix-associated growth factor replenishment thus needs to be incorporated into schemes for investigations utilizing gels and other materials produced from decellularized human lungs. STATEMENT OF SIGNIFICANCE: Despite progress in use of decellularized lung scaffolds in ex vivo lung bioengineering schemes, including use of gels and other materials derived from the scaffolds, the detailed composition and functional role of extracellular matrix (ECM) proteoglycans (PGs) and their glycosaminoglycan (GAG) chains remaining in decellularized lungs, is poorly understood. In the current studies, we demonstrate that glycosaminoglycans (GAGs) are significantly depleted during decellularization and those that remain are dysfunctional and unable to bind matrix-associated growth factors critical for cell growth and differentiation. Systematically repleting GAGs and matrix-associated growth factors to gels derived from decellularized human lung significantly and differentially affects cell growth. These studies highlight the importance of considering GAGs in decellularized lungs and their derivatives.
Collapse
Affiliation(s)
- Franziska E Uhl
- University of Vermont, Larner College of Medicine, Burlington, VT, United States; Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Robert A Pouliot
- University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Juan J Uriarte
- University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Sara Rolandsson Enes
- University of Vermont, Larner College of Medicine, Burlington, VT, United States; Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Xiaorui Han
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yilan Ouyang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Anders Malmström
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oskar Hallgren
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Daniel J Weiss
- University of Vermont, Larner College of Medicine, Burlington, VT, United States.
| |
Collapse
|
30
|
Elowsson Rendin L, Löfdahl A, Åhrman E, Müller C, Notermans T, Michaliková B, Rosmark O, Zhou XH, Dellgren G, Silverborn M, Bjermer L, Malmström A, Larsson-Callerfelt AK, Isaksson H, Malmström J, Westergren-Thorsson G. Matrisome Properties of Scaffolds Direct Fibroblasts in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2019; 20:ijms20164013. [PMID: 31426504 PMCID: PMC6719040 DOI: 10.3390/ijms20164013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
In idiopathic pulmonary fibrosis (IPF) structural properties of the extracellular matrix (ECM) are altered and influence cellular responses through cell-matrix interactions. Scaffolds (decellularized tissue) derived from subpleural healthy and IPF lungs were examined regarding biomechanical properties and ECM composition of proteins (the matrisome). Scaffolds were repopulated with healthy fibroblasts cultured under static stretch with heavy isotope amino acids (SILAC), to examine newly synthesized proteins over time. IPF scaffolds were characterized by increased tissue density, stiffness, ultimate force, and differential expressions of matrisome proteins compared to healthy scaffolds. Collagens, proteoglycans, and ECM glycoproteins were increased in IPF scaffolds, however while specific basement membrane (BM) proteins such as laminins and collagen IV were decreased, nidogen-2 was also increased. Findings were confirmed with histology, clearly showing a disorganized BM. Fibroblasts produced scaffold-specific proteins mimicking preexisting scaffold composition, where 11 out of 20 BM proteins were differentially expressed, along with increased periostin and proteoglycans production. We demonstrate how matrisome changes affect fibroblast activity using novel approaches to study temporal differences, where IPF scaffolds support a disorganized BM and upregulation of disease-associated proteins. These matrix-directed cellular responses emphasize the IPF matrisome and specifically the BM components as important factors for disease progression.
Collapse
Affiliation(s)
- Linda Elowsson Rendin
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden.
| | - Anna Löfdahl
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | - Emma Åhrman
- Division of Infection Medicine Proteomics, Department Clinical Sciences, Lund University, Lund 221 84, Sweden
| | - Catharina Müller
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | - Thomas Notermans
- Department of Biomedical engineering, Lund University, Lund 221 84, Sweden
| | - Barbora Michaliková
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | - Oskar Rosmark
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | - Xiao-Hong Zhou
- Bioscience Department, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Mölndal 431 53, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
| | - Martin Silverborn
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund 221 85, Sweden
| | - Anders Malmström
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | | | - Hanna Isaksson
- Department of Biomedical engineering, Lund University, Lund 221 84, Sweden
| | - Johan Malmström
- Division of Infection Medicine Proteomics, Department Clinical Sciences, Lund University, Lund 221 84, Sweden
| | | |
Collapse
|
31
|
Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nat Commun 2019; 10:2987. [PMID: 31278260 PMCID: PMC6611870 DOI: 10.1038/s41467-019-10839-0] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease in which the intricate alveolar network of the lung is progressively replaced by fibrotic scars. Myofibroblasts are the effector cells that excessively deposit extracellular matrix proteins thus compromising lung structure and function. Emerging literature suggests a correlation between fibrosis and metabolic alterations in IPF. In this study, we show that the first-line antidiabetic drug metformin exerts potent antifibrotic effects in the lung by modulating metabolic pathways, inhibiting TGFβ1 action, suppressing collagen formation, activating PPARγ signaling and inducing lipogenic differentiation in lung fibroblasts derived from IPF patients. Using genetic lineage tracing in a murine model of lung fibrosis, we show that metformin alters the fate of myofibroblasts and accelerates fibrosis resolution by inducing myofibroblast-to-lipofibroblast transdifferentiation. Detailed pathway analysis revealed a two-arm mechanism by which metformin accelerates fibrosis resolution. Our data report an antifibrotic role for metformin in the lung, thus warranting further therapeutic evaluation. Idiopathic pulmonary fibrosis is associated with myofibroblast activation in the lungs and metabolic alterations. Here, the authors show that the antidiabetic drug metformin has antifibrotic effects in human-derived samples and mouse models, by modulating a number of metabolic pathways to induce lipogenic transdifferentiation of myofibroblasts.
Collapse
|
32
|
Wigén J, Elowsson-Rendin L, Karlsson L, Tykesson E, Westergren-Thorsson G. Glycosaminoglycans: A Link Between Development and Regeneration in the Lung. Stem Cells Dev 2019; 28:823-832. [PMID: 31062651 DOI: 10.1089/scd.2019.0009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
What can we learn from embryogenesis to increase our understanding of how regeneration of damaged adult lung tissue could be induced in serious lung diseases such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and asthma? The local tissue niche determines events in both embryogenesis and repair of the adult lung. Important constituents of the niche are extracellular matrix (ECM) molecules, including proteoglycans and glycosaminoglycans (GAGs). GAGs, strategically located in the pericellular and extracellular space, bind developmentally active growth factors (GFs) and morphogens such as fibroblast growth factors (FGFs), transforming growth factor-β (TGF-β), and bone morphogenetic proteins (BMPs) aside from cytokines. These interactions affect activities in many cells, including stem cells, important in development and tissue regeneration. Moreover, it is becoming clear that the "inherent code," such as sulfation of disaccharides of GAGs, is a strong determinant of cellular outcome. Sulfation patterns, deacetylations, and epimerizations of GAG chains function as tuning forks in gradient formation of morphogens, growth factors, and cytokines. Learning to tune these fine instruments, that is, interactions between GFs, chemokines, and cytokines with the specific disaccharide code of GAGs in the adult lung, could become the key to unlock inherent regenerative forces to override pathological remodeling. This review aims to provide an overview of the role GAGs play during development and similar events in regenerative efforts in the adult lung.
Collapse
Affiliation(s)
- Jenny Wigén
- Experimental Medical Sciences, Lung Biology, Lund, Sweden
| | | | - Lisa Karlsson
- Experimental Medical Sciences, Lung Biology, Lund, Sweden
| | - Emil Tykesson
- Experimental Medical Sciences, Lung Biology, Lund, Sweden
| | | |
Collapse
|
33
|
Xu J, Li W, Xu S, Gao W, Yu Z. Effect of dermatan sulphate on a C57-mouse model of pulmonary fibrosis. J Int Med Res 2019; 47:2655-2665. [PMID: 31006321 PMCID: PMC6567691 DOI: 10.1177/0300060519842048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To test the antifibrotic effect of dermatan sulphate in a bleomycin-induced mouse model of pulmonary fibrosis. METHODS C57 mice were randomly divided into four experimental groups: saline-treated control group, bleomycin-induced fibrosis group, prednisolone acetate group and dermatan sulphate group. Lungs were assessed using the lung index, and the extent of interstitial fibrosis was graded using histopathological observation of haematoxylin & eosin-stained lung tissue. Lung tissue hydroxyproline levels and blood fibrinogen levels were measured using a hydroxyproline colorimetric kit and the Clauss fibrinogen assay, respectively. Tissue-type plasminogen activator (tPA) was measured using a chromogenic tPA assay kit. RESULTS Lung index values were significantly lower in the dermatan sulphate group versus the fibrosis group. Histopathological analyses revealed that dermatan sulphate treatment ameliorated the increased inflammatory cell infiltration, and attenuated the reduction in interstitial thickening, associated with bleomycin-induced fibrosis. Hydroxyproline and fibrinogen levels were decreased in the dermatan sulphate group versus the fibrosis model group. Dermatan sulphate treatment was associated with increased tPA levels versus controls and the fibrosis group. CONCLUSIONS Damage associated with bleomycin-induced pulmonary fibrosis was alleviated by dermatan sulphate.
Collapse
Affiliation(s)
- Jianfeng Xu
- 1 Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Wei Li
- 1 Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Shufen Xu
- 1 Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Weiyang Gao
- 2 Treasury Department, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Zhenyu Yu
- 3 Department of Anaesthesiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
34
|
Heparan Sulfate Proteoglycan Synthesis Is Dysregulated in Human Osteoarthritic Cartilage. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:632-647. [DOI: 10.1016/j.ajpath.2018.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
|
35
|
Ferreras L, Moles A, Situmorang GR, El Masri R, Wilson IL, Cooke K, Thompson E, Kusche-Gullberg M, Vivès RR, Sheerin NS, Ali S. Heparan sulfate in chronic kidney diseases: Exploring the role of 3-O-sulfation. Biochim Biophys Acta Gen Subj 2019; 1863:839-848. [PMID: 30794825 DOI: 10.1016/j.bbagen.2019.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/07/2019] [Accepted: 02/16/2019] [Indexed: 01/03/2023]
Abstract
One of the main feature of chronic kidney disease is the development of renal fibrosis. Heparan Sulfate (HS) is involved in disease development by modifying the function of growth factors and cytokines and creating chemokine gradients. In this context, we aimed to understand the function of HS sulfation in renal fibrosis. Using a mouse model of renal fibrosis, we found that total HS 2-O-sulfation was increased in damaged kidneys, whilst, tubular staining of HS 3-O-sulfation was decreased. The expression of HS modifying enzymes significantly correlated with the development of fibrosis with HS3ST1 demonstrating the strongest correlation. The pro-fibrotic factors TGFβ1 and TGFβ2/IL1β significantly downregulated HS3ST1 expression in both renal epithelial cells and renal fibroblasts. To determine the implication of HS3ST1 in growth factor binding and signalling, we generated an in vitro model of renal epithelial cells overexpressing HS3ST1 (HKC8-HS3ST1). Heparin Binding EGF like growth factor (HB-EGF) induced rapid, transient STAT3 phosphorylation in control HKC8 cells. In contrast, a prolonged response was demonstrated in HKC8-HS3ST1 cells. Finally, we showed that both HS 3-O-sulfation and HB-EGF tubular staining were decreased with the development of fibrosis. Taken together, these data suggest that HS 3-O-sulfation is modified in fibrosis and highlight HS3ST1 as an attractive biomarker of fibrosis progression with a potential role in HB-EGF signalling.
Collapse
Affiliation(s)
- Laura Ferreras
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Anna Moles
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Gerhard R Situmorang
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Rana El Masri
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Imogen L Wilson
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Katie Cooke
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Emily Thompson
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK
| | - Marion Kusche-Gullberg
- University of Bergen, Department of Biomedicine, Jonas Lies vei 91, N-5009 Bergen, Norway
| | | | - Neil S Sheerin
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK; Newcastle upon Tyne Hospitals, NHS Foundation Trust, NIHR Newcastle Biomedical Research Centre, United Kingdom
| | - Simi Ali
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, NE2 4HH, UK.
| |
Collapse
|
36
|
Expression, activity and localization of lysosomal sulfatases in Chronic Obstructive Pulmonary Disease. Sci Rep 2019; 9:1991. [PMID: 30760748 PMCID: PMC6374378 DOI: 10.1038/s41598-018-37958-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death world-wide. Recently, we showed that COPD is associated with gene polymorphisms in SUMF1, a master regulator of sulfatases. Sulfatases are involved in extracellular matrix remodeling and activated by SUMF1, but their role in the lung is poorly described. We aimed to examine how sulfatases are affected in the airways of patients with COPD compared to ever smokers and never smokers. We observed that mRNA expression of the sulfatases GALNS, GNS and IDS was increased, while protein expression of many sulfatases was decreased in COPD fibroblasts. Several sulfatases, including GALNS, IDS, and SGSH, showed increased activity in COPD fibroblasts. Examination of different sulfatases by immunofluorescence showed that IDS, ARSB, GNS and SGSH in fibroblasts were localized to sites other than their reported destination. Using a master panel from different organs, RNA expression of all sulfatases could be observed in lung tissue. Additionally, immunohistochemistry on lung biopsies indicated differing expression of sulfatases in COPD patients. In conclusion, mRNA, protein expression, sulfatase activity levels, and localization of sulfatases are altered in lung fibroblasts and lung tissue from COPD patients and may be mechanistically important in COPD pathogenesis. This could contribute to the understanding of the disease mechanism in COPD and in the long run, to lead to more individualized therapies.
Collapse
|
37
|
Yanagihara T, Kolb M. Molecular breath analysis for IPF: Can we make a few breaths count? Respirology 2019; 24:404-405. [DOI: 10.1111/resp.13503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Toyoshi Yanagihara
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of MedicineMcMaster University Hamilton ON Canada
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of MedicineMcMaster University Hamilton ON Canada
| |
Collapse
|
38
|
Pudełko A, Wisowski G, Olczyk K, Koźma EM. The dual role of the glycosaminoglycan chondroitin-6-sulfate in the development, progression and metastasis of cancer. FEBS J 2019; 286:1815-1837. [PMID: 30637950 PMCID: PMC6850286 DOI: 10.1111/febs.14748] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/14/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022]
Abstract
The remarkable structural heterogeneity of chondroitin sulfate (CS) and dermatan sulfate (DS) generates biological information that can be unique to each of these glycosaminoglycans (GAGs), and changes in their composition are translated into alterations in the binding profiles of these molecules. CS/DS can bind to various cytokines and growth factors, cell surface receptors, adhesion molecules, enzymes and fibrillar glycoproteins of the extracellular matrix, thereby influencing both cell behavior and the biomechanical and biochemical properties of the matrix. In this review, we summarize the current knowledge concerning CS/DS metabolism in the human cancer stroma. The remodeling of the GAG profile in the tumor niche is manifested as a substantial increase in the CS content and a gradual decrease in the proportion between DS and CS. Furthermore, the composition of CS and DS is also affected, which results in a substantial increase in the 6‐O‐sulfated and/or unsulfated disaccharide content, which is concomitant with a decrease in the 4‐O‐sulfation level. Here, we discuss the possible impact of alterations in the CS/DS sulfation pattern on the binding capacity and specificity of these GAGs. Moreover, we propose potential consequences of the stromal accumulation of chondroitin‐6‐sulfate for the progression and metastasis of cancer.
Collapse
Affiliation(s)
- Adam Pudełko
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Grzegorz Wisowski
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Ewa Maria Koźma
- Department of Clinical Chemistry and Laboratory Diagnostics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
39
|
O'Dwyer DN, Gurczynski SJ, Moore BB. Pulmonary immunity and extracellular matrix interactions. Matrix Biol 2018; 73:122-134. [PMID: 29649546 PMCID: PMC6177325 DOI: 10.1016/j.matbio.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 12/18/2022]
Abstract
The lung harbors a complex immune system composed of both innate and adaptive immune cells. Recognition of infection and injury by receptors on lung innate immune cells is crucial for generation of antigen-specific responses by adaptive immune cells. The extracellular matrix of the lung, comprising the interstitium and basement membrane, plays a key role in the regulation of these immune systems. The matrix consists of several hundred assembled proteins that interact to form a bioactive scaffold. This template, modified by enzymes, acts to facilitate cell function and differentiation and changes dynamically with age and lung disease. Herein, we explore relationships between innate and adaptive immunity and the lung extracellular matrix. We discuss the interactions between extracellular matrix proteins, including glycosaminoglycans, with prominent effects on innate immune signaling effectors such as toll-like receptors. We describe the relationship of extracellular matrix proteins with adaptive immunity and leukocyte migration to sites of injury within the lung. Further study of these interactions will lead to greater knowledge of the role of matrix biology in lung immunity. The development of novel therapies for acute and chronic lung disease is dependent on a comprehensive understanding of these complex matrix-immunity interactions.
Collapse
Affiliation(s)
- David N O'Dwyer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Stephen J Gurczynski
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Bethany B Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, USA.
| |
Collapse
|
40
|
Åhrman E, Hallgren O, Malmström L, Hedström U, Malmström A, Bjermer L, Zhou XH, Westergren-Thorsson G, Malmström J. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. J Proteomics 2018; 189:23-33. [DOI: 10.1016/j.jprot.2018.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/05/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022]
|
41
|
Kwapiszewska G, Gungl A, Wilhelm J, Marsh LM, Thekkekara Puthenparampil H, Sinn K, Didiasova M, Klepetko W, Kosanovic D, Schermuly RT, Wujak L, Weiss B, Schaefer L, Schneider M, Kreuter M, Olschewski A, Seeger W, Olschewski H, Wygrecka M. Transcriptome profiling reveals the complexity of pirfenidone effects in idiopathic pulmonary fibrosis. Eur Respir J 2018; 52:13993003.00564-2018. [DOI: 10.1183/13993003.00564-2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/03/2018] [Indexed: 11/05/2022]
Abstract
Despite the beneficial effects of pirfenidone in treating idiopathic pulmonary fibrosis (IPF), it remains unclear if lung fibroblasts (FB) are the main therapeutic target.To resolve this question, we employed a comparative transcriptomic approach and analysed lung homogenates (LH) and FB derived from IPF patients treated with or without pirfenidone.In FB, pirfenidone therapy predominantly affected growth and cell division pathways, indicating a major cellular metabolic shift. In LH samples, pirfenidone treatment was mostly associated with inflammation-related processes. In FB and LH, regulated genes were over-represented in the Gene Ontology node “extracellular matrix”. We identified lower expression of cell migration-inducing and hyaluronan-binding protein (CEMIP) in both LH and FB from pirfenidone-treated IPF patients. Plasma levels of CEMIP were elevated in IPF patients compared to healthy controls and decreased after 7 months of pirfenidone treatment. CEMIP expression in FB was downregulated in a glioma-associated oncogene homologue-dependent manner and CEMIP silencing in IPF FB reduced collagen production and attenuated cell proliferation and migration.Cumulatively, our approach indicates that pirfenidone exerts beneficial effects via its action on multiple pathways in both FB and other pulmonary cells, through its ability to control extracellular matrix architecture and inflammatory reactions.
Collapse
|
42
|
Jones MG, Andriotis OG, Roberts JJ, Lunn K, Tear VJ, Cao L, Ask K, Smart DE, Bonfanti A, Johnson P, Alzetani A, Conforti F, Doherty R, Lai CY, Johnson B, Bourdakos KN, Fletcher SV, Marshall BG, Jogai S, Brereton CJ, Chee SJ, Ottensmeier CH, Sime P, Gauldie J, Kolb M, Mahajan S, Fabre A, Bhaskar A, Jarolimek W, Richeldi L, O'Reilly KM, Monk PD, Thurner PJ, Davies DE. Nanoscale dysregulation of collagen structure-function disrupts mechano-homeostasis and mediates pulmonary fibrosis. eLife 2018; 7:36354. [PMID: 29966587 PMCID: PMC6029847 DOI: 10.7554/elife.36354] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022] Open
Abstract
Matrix stiffening with downstream activation of mechanosensitive pathways is strongly implicated in progressive fibrosis; however, pathologic changes in extracellular matrix (ECM) that initiate mechano-homeostasis dysregulation are not defined in human disease. By integrated multiscale biomechanical and biological analyses of idiopathic pulmonary fibrosis lung tissue, we identify that increased tissue stiffness is a function of dysregulated post-translational collagen cross-linking rather than any collagen concentration increase whilst at the nanometre-scale collagen fibrils are structurally and functionally abnormal with increased stiffness, reduced swelling ratio, and reduced diameter. In ex vivo and animal models of lung fibrosis, dual inhibition of lysyl oxidase-like (LOXL) 2 and LOXL3 was sufficient to normalise collagen fibrillogenesis, reduce tissue stiffness, and improve lung function in vivo. Thus, in human fibrosis, altered collagen architecture is a key determinant of abnormal ECM structure-function, and inhibition of pyridinoline cross-linking can maintain mechano-homeostasis to limit the self-sustaining effects of ECM on progressive fibrosis. Idiopathic pulmonary fibrosis (IPF) is a devastating disease of the lung, which scars the tissue and gradually destroys the organ, ultimately leading to death. It is still unclear what exactly causes this scarring, but it is thought that increasing amounts of proteins in the space surrounding the cells of the lungs, the extracellular matrix, could play a role. These proteins, including collagen, normally form a ‘scaffold’ to stabilize cells, but if they accumulate uncontrollably, they can render tissues rigid. It has been assumed that these changes are a consequence of the disease. However, recent evidence suggests that the increased stiffness itself could stimulate cells to produce even more extracellular matrix, driving the progression of the disease. A better understanding of what exactly causes the tissue to become gradually stiffer may identify new ways to block the progression of IPF. Now, Jones et al. compared measurements of the tissue stiffness and the collagen structure taken from samples of patients with IPF. The results showed that the collagen fibres were faulty and had an abnormal shape. This suggests that these problems, rather than an increased amount of collagen, alter the flexibility of the lung tissue. Jones et al. also found that a specific family of proteins, which helps to connect the collagen fibres, was increased in the tissue of patients with IPF. When these proteins were blocked with a newly developed drug, the collagen structure returned to normal and the stiffness of the tissue decreased. As a consequence, the lung capacity improved. This suggests that treatment approaches that help to maintain a normal collagen structure, may in future prevent the stiffening of the lung tissue and so limit feed-forward mechanisms that drive progressive IPF. Moreover, it indicates that measurements of the structure of collagen rather than the its total concentration could serve as a more suitable indicator for the disease.
Collapse
Affiliation(s)
- Mark G Jones
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Orestis G Andriotis
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt, Austria
| | | | - Kerry Lunn
- Synairgen Research Ltd, Southampton, United Kingdom
| | | | - Lucy Cao
- Pharmaxis Ltd, Frenchs Forest, Australia
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, Canada
| | - David E Smart
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alessandra Bonfanti
- Aeronautics, Astronautics and Computational Engineering, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | - Peter Johnson
- Department of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,University Hospital Southampton, Southampton, United Kingdom
| | - Franco Conforti
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Regan Doherty
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chester Y Lai
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Benjamin Johnson
- CRUK and NIHR Experimental Cancer Medicine Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Konstantinos N Bourdakos
- Department of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Sophie V Fletcher
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,University Hospital Southampton, Southampton, United Kingdom
| | - Ben G Marshall
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,University Hospital Southampton, Southampton, United Kingdom
| | - Sanjay Jogai
- University Hospital Southampton, Southampton, United Kingdom
| | - Christopher J Brereton
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Serena J Chee
- University Hospital Southampton, Southampton, United Kingdom.,CRUK and NIHR Experimental Cancer Medicine Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Christian H Ottensmeier
- CRUK and NIHR Experimental Cancer Medicine Centre, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Patricia Sime
- Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, United States
| | - Jack Gauldie
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, Canada
| | - Martin Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, Canada
| | - Sumeet Mahajan
- Department of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Aurelie Fabre
- Department of Histopathology, St. Vincent's University Hospital & UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Atul Bhaskar
- Aeronautics, Astronautics and Computational Engineering, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | | | - Luca Richeldi
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Katherine Ma O'Reilly
- Mater Misericordiae University Hospital, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | - Philipp J Thurner
- Institute for Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt, Austria
| | - Donna E Davies
- NIHR Southampton Biomedical Research Centre, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
43
|
El Agha E, Schwind F, Ruppert C, Günther A, Bellusci S, Schermuly RT, Kosanovic D. Is the fibroblast growth factor signaling pathway a victim of receptor tyrosine kinase inhibition in pulmonary parenchymal and vascular remodeling? Am J Physiol Lung Cell Mol Physiol 2018; 315:L248-L252. [PMID: 29722558 DOI: 10.1152/ajplung.00140.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH), pulmonary hypertension (PH) due to lung disease and/or hypoxia and idiopathic pulmonary fibrosis (IPF) are increasingly recognized as important contributors to mortality and morbidity worldwide. Among others, the current treatment paradigm considers broad inhibition of receptor tyrosine kinases, a strategy that likely leads to collateral inhibition of signaling pathways that are critical for lung repair and regeneration. Fibroblast growth factor 7 (FGF7) and FGF10 signaling in the lung through FGF receptor 2 (FGFR2) are involved in epithelial cell protection and renewal, and mutations in their corresponding genes in humans are linked to increased susceptibility to lung pathologies, such as chronic obstructive pulmonary disease and bronchopulmonary dysplasia. In this report, we present data demonstrating significant upregulation of FGF7, FGF10, and FGFR2 in IPF and IPAH lungs compared with donor lungs. These ligands and their cognate receptor converged on the remodeled parenchyma and vasculature of IPF and IPAH lungs. Interestingly, the expression levels of FGFR1, which has been previously shown to play a pathological role in PH development, were not significantly changed in either disease state. Intriguingly, the expression levels of FGF7, FGF10, and FGFR2 were lower in IPF lung regions undergoing active remodeling, and inversely correlated with IPAH severity, indicating that increased expression might reflect lung repair rather than lung pathology, and warranting further research on the precise role of FGF signaling in pulmonary parenchymal and vascular remodeling.
Collapse
Affiliation(s)
- Elie El Agha
- Justus-Liebig University Giessen, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research , Giessen , Germany
| | - Felix Schwind
- Justus-Liebig University Giessen, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research , Giessen , Germany
| | - Clemens Ruppert
- Justus-Liebig University Giessen, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research , Giessen , Germany
| | - Andreas Günther
- Justus-Liebig University Giessen, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research , Giessen , Germany
| | - Saverio Bellusci
- Justus-Liebig University Giessen, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research , Giessen , Germany
| | - Ralph T Schermuly
- Justus-Liebig University Giessen, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research , Giessen , Germany
| | - Djuro Kosanovic
- Justus-Liebig University Giessen, Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research , Giessen , Germany
| |
Collapse
|
44
|
Hedström U, Hallgren O, Öberg L, DeMicco A, Vaarala O, Westergren-Thorsson G, Zhou X. Bronchial extracellular matrix from COPD patients induces altered gene expression in repopulated primary human bronchial epithelial cells. Sci Rep 2018; 8:3502. [PMID: 29472603 PMCID: PMC5823945 DOI: 10.1038/s41598-018-21727-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/09/2018] [Indexed: 11/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a serious global health problem characterized by chronic airway inflammation, progressive airflow limitation and destruction of lung parenchyma. Remodeling of the bronchial airways in COPD includes changes in both the bronchial epithelium and the subepithelial extracellular matrix (ECM). To explore the impact of an aberrant ECM on epithelial cell phenotype in COPD we developed a new ex vivo model, in which normal human bronchial epithelial (NHBE) cells repopulate and differentiate on decellularized human bronchial scaffolds derived from COPD patients and healthy individuals. By using transcriptomics, we show that bronchial ECM from COPD patients induces differential gene expression in primary NHBE cells when compared to normal bronchial ECM. The gene expression profile indicated altered activity of upstream mediators associated with COPD pathophysiology, including hepatocyte growth factor, transforming growth factor beta 1 and platelet-derived growth factor B, which suggests that COPD-related changes in the bronchial ECM contribute to the defective regenerative ability in the airways of COPD patients.
Collapse
Affiliation(s)
- Ulf Hedström
- Bioscience Regeneration Department, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.,Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oskar Hallgren
- Division of Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Division of Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lisa Öberg
- Bioscience Immunity Department, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Amy DeMicco
- Bioscience Regeneration Department, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Outi Vaarala
- Bioscience Immunity Department, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | - Xiaohong Zhou
- Bioscience Regeneration Department, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
45
|
Lord MS, Tang F, Rnjak-Kovacina J, Smith JGW, Melrose J, Whitelock JM. The multifaceted roles of perlecan in fibrosis. Matrix Biol 2018; 68-69:150-166. [PMID: 29475023 DOI: 10.1016/j.matbio.2018.02.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
Abstract
Perlecan, or heparan sulfate proteoglycan 2 (HSPG2), is a ubiquitous heparan sulfate proteoglycan that has major roles in tissue and organ development and wound healing by orchestrating the binding and signaling of mitogens and morphogens to cells in a temporal and dynamic fashion. In this review, its roles in fibrosis are reviewed by drawing upon evidence from tissue and organ systems that undergo fibrosis as a result of an uncontrolled response to either inflammation or traumatic cellular injury leading to an over production of a collagen-rich extracellular matrix. This review focuses on examples of fibrosis that occurs in lung, liver, kidney, skin, kidney, neural tissues and blood vessels and its link to the expression of perlecan in that particular organ system.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Fengying Tang
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| | | | - James G W Smith
- University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia; Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
46
|
Kang I, Chang MY, Wight TN, Frevert CW. Proteoglycans as Immunomodulators of the Innate Immune Response to Lung Infection. J Histochem Cytochem 2018; 66:241-259. [PMID: 29328866 DOI: 10.1369/0022155417751880] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteoglycans (PGs) are complex, multifaceted molecules that participate in diverse interactions vital for physiological and pathological processes. As structural components, they provide a scaffold for cells and structural organization that helps define tissue architecture. Through interactions with water, PGs enable molecular and cellular movement through tissues. Through selective ionic interactions with growth factors, chemokines, cytokines, and proteases, PGs facilitate the ability of these soluble ligands to regulate intracellular signaling events and to influence the inflammatory response. In addition, recent findings now demonstrate that PGs can activate danger-associated molecular patterns (DAMPs) and other signaling pathways to influence production of many of these soluble ligands, indicating a more direct role for PGs in influencing the immune response and tissue inflammation. This review will focus on PGs that are selectively expressed during lung inflammation and will examine the novel emerging concept of PGs as immunomodulatory regulators of the innate immune responses in lungs.
Collapse
Affiliation(s)
- Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Mary Y Chang
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, Division of Pulmonary/Critical Care Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
47
|
Lorè NI, Veraldi N, Riva C, Sipione B, Spagnuolo L, De Fino I, Melessike M, Calzi E, Bragonzi A, Naggi A, Cigana C. Synthesized Heparan Sulfate Competitors Attenuate Pseudomonas aeruginosa Lung Infection. Int J Mol Sci 2018; 19:ijms19010207. [PMID: 29315274 PMCID: PMC5796156 DOI: 10.3390/ijms19010207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/19/2022] Open
Abstract
Several chronic respiratory diseases are characterized by recurrent and/or persistent infections, chronic inflammatory responses and tissue remodeling, including increased levels of glycosaminoglycans which are known structural components of the airways. Among glycosaminoglycans, heparan sulfate (HS) has been suggested to contribute to excessive inflammatory responses. Here, we aim at (i) investigating whether long-term infection by Pseudomonas aeruginosa, one of the most worrisome threat in chronic respiratory diseases, may impact HS levels, and (ii) exploring HS competitors as potential anti-inflammatory drugs during P. aeruginosa pneumonia. P. aeruginosa clinical strains and ad-hoc synthesized HS competitors were used in vitro and in murine models of lung infection. During long-term chronic P. aeruginosa colonization, infected mice showed higher heparin/HS levels, evaluated by high performance liquid chromatography-mass spectrometry after selective enzymatic digestion, compared to uninfected mice. Among HS competitors, an N-acetyl heparin and a glycol-split heparin dampened leukocyte recruitment and cytokine/chemokine production induced by acute and chronic P. aeruginosa pneumonia in mice. Furthermore, treatment with HS competitors reduced bacterial burden during chronic murine lung infection. In vitro, P. aeruginosa biofilm formation decreased upon treatment with HS competitors. Overall, these findings support further evaluation of HS competitors as a novel therapy to counteract inflammation and infection during P. aeruginosa pneumonia.
Collapse
Affiliation(s)
- Nicola Ivan Lorè
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
- Vita-Salute San Raffaele University, Milano 20132, Italy.
| | - Noemi Veraldi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Milano 20133, Italy.
| | - Camilla Riva
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Barbara Sipione
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Lorenza Spagnuolo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Ida De Fino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Medede Melessike
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Elisa Calzi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Milano 20133, Italy.
| | - Alessandra Bragonzi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Annamaria Naggi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Milano 20133, Italy.
| | - Cristina Cigana
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| |
Collapse
|
48
|
Garlíková Z, Silva AC, Rabata A, Potěšil D, Ihnatová I, Dumková J, Koledová Z, Zdráhal Z, Vinarský V, Hampl A, Pinto-do-Ó P, Nascimento DS. Generation of a Close-to-Native In Vitro System to Study Lung Cells-Extracellular Matrix Crosstalk. Tissue Eng Part C Methods 2017; 24:1-13. [PMID: 28895470 DOI: 10.1089/ten.tec.2017.0283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Extracellular matrix (ECM) is an essential component of the tissue microenvironment, actively shaping cellular behavior. In vitro culture systems are often poor in ECM constituents, thus not allowing for naturally occurring cell-ECM interactions. This study reports on a straightforward and efficient method for the generation of ECM scaffolds from lung tissue and its subsequent in vitro application using primary lung cells. Mouse lung tissue was subjected to decellularization with 0.2% sodium dodecyl sulfate, hypotonic solutions, and DNase. Resultant ECM scaffolds were devoid of cells and DNA, whereas lung ECM architecture of alveolar region and blood and airway networks were preserved. Scaffolds were predominantly composed of core ECM and ECM-associated proteins such as collagens I-IV, nephronectin, heparan sulfate proteoglycan core protein, and lysyl oxidase homolog 1, among others. When homogenized and applied as coating substrate, ECM supported the attachment of lung fibroblasts (LFs) in a dose-dependent manner. After ECM characterization and biocompatibility tests, a novel in vitro platform for three-dimensional (3D) matrix repopulation that permits live imaging of cell-ECM interactions was established. Using this system, LFs colonized the ECM scaffolds, displaying a close-to-native morphology in intimate interaction with the ECM fibers, and showed nuclear translocation of the mechanosensor yes-associated protein (YAP), when compared with cells cultured in two dimensions. In conclusion, we developed a 3D-like culture system, by combining an efficient decellularization method with a live-imaging culture platform, to replicate in vitro native lung cell-ECM crosstalk. This is a valuable system that can be easily applied to other organs for ECM-related drug screening, disease modeling, and basic mechanistic studies.
Collapse
Affiliation(s)
- Zuzana Garlíková
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic .,2 FNUSA-ICRC-International Clinical Research Center of St. Anne University Hospital Brno , Brno, Czech Republic
| | - Ana Catarina Silva
- 3 i3S-Instituto de Investigação e Inovação em Saúde , Porto, Portugal .,4 INEB-Instituto Nacional de Engenharia Biomédica , Porto, Portugal .,5 ICBAS-Instituto de Ciências Biomédicas de Abel Salazar , Porto, Portugal .,6 Gladstone Institutes, University of California San Francisco , San Francisco, California
| | - Anas Rabata
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | - David Potěšil
- 7 CEITEC-Central European Institute for Technology, Research Group Proteomics, Masaryk University , Brno, Czech Republic
| | - Ivana Ihnatová
- 7 CEITEC-Central European Institute for Technology, Research Group Proteomics, Masaryk University , Brno, Czech Republic
| | - Jana Dumková
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | - Zuzana Koledová
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | - Zbyněk Zdráhal
- 7 CEITEC-Central European Institute for Technology, Research Group Proteomics, Masaryk University , Brno, Czech Republic
| | - Vladimír Vinarský
- 2 FNUSA-ICRC-International Clinical Research Center of St. Anne University Hospital Brno , Brno, Czech Republic
| | - Aleš Hampl
- 1 Department of Histology and Embryology, Faculty of Medicine, Masaryk University , Brno, Czech Republic .,2 FNUSA-ICRC-International Clinical Research Center of St. Anne University Hospital Brno , Brno, Czech Republic
| | - Perpétua Pinto-do-Ó
- 3 i3S-Instituto de Investigação e Inovação em Saúde , Porto, Portugal .,4 INEB-Instituto Nacional de Engenharia Biomédica , Porto, Portugal .,5 ICBAS-Instituto de Ciências Biomédicas de Abel Salazar , Porto, Portugal
| | - Diana Santos Nascimento
- 3 i3S-Instituto de Investigação e Inovação em Saúde , Porto, Portugal .,4 INEB-Instituto Nacional de Engenharia Biomédica , Porto, Portugal
| |
Collapse
|
49
|
Walton KL, Johnson KE, Harrison CA. Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Front Pharmacol 2017; 8:461. [PMID: 28769795 PMCID: PMC5509761 DOI: 10.3389/fphar.2017.00461] [Citation(s) in RCA: 421] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/27/2017] [Indexed: 01/18/2023] Open
Abstract
Fibrosis occurs when there is an imbalance in extracellular matrix (ECM) deposition and degradation. Excessive ECM deposition results in scarring and thickening of the affected tissue, and interferes with tissue and organ homeostasis – mimicking an exaggerated “wound healing” response. Many transforming growth factor-β (TGF-β) ligands are potent drivers of ECM deposition, and additionally, have a natural affinity for the ECM, creating a concentrated pool of pro-fibrotic factors at the site of injury. Consequently, TGF-β ligands are upregulated in many human fibrotic conditions and, as such, are attractive targets for fibrosis therapy. Here, we will discuss the contribution of TGF-β proteins in the pathogenesis of fibrosis, and promising anti-fibrotic approaches that target TGF-β ligands.
Collapse
Affiliation(s)
- Kelly L Walton
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| | - Katharine E Johnson
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| | - Craig A Harrison
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| |
Collapse
|
50
|
Yan Y, Du S, Ji Y, Su N, Wang Y, Mei X, Zhu W, He D, Lu Y, Zhang C, Xing XH. Discovery of enzymatically depolymerized heparins capable of treating Bleomycin-induced pulmonary injury and fibrosis in mice. Carbohydr Polym 2017; 174:82-88. [PMID: 28821136 DOI: 10.1016/j.carbpol.2017.05.102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022]
Abstract
Heparin has recently been shown to slow down idiopathic pulmonary fibrosis (IPF) process and improve survival of patients in some cases. To improve the anti-IPF function while minimizing their side effects, we developed heparin libraries with different structures depolymerized by single or combined heparinases, and systematically screened the efficacy of the different heparins for treatment of Bleomycin-induced pulmonary injury and fibrosis using mice model. Then we characterized the structural properties of the components capable of treating pulmonary injury and fibrosis by use of chip-based amide hydrophilic interaction chromatography (HILIC)-fourier transform (FT)-ESI-MS, polyacrylamide gel electrophoresis (PAGE), and high performance liquid chromatography (HPLC). Our results showed that the depolymerized heparins with relative higher molecular weight (I-2 and III-2) by the respective heparinase I and III protected mice from the induced pulmonary injury and fibrosis. In addition, the selected depolymerized heparins inhibited high-mobility group protein B1 (HMGB-1) expression, prevented E-cadhesin from downregulation, and reduced fibroblasts accumulation in the mouse lung tissue. Our study suggested that the depolymerized heparins of I-2 and III-2 with the most significant efficacy might target several pathways in alleviating the induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Yishu Yan
- MOE Key Laboratory of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Shanshan Du
- MOE Key Laboratory of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Yang Ji
- MOE Key Laboratory of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Nan Su
- MOE Key Laboratory of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Yi Wang
- MOE Key Laboratory of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China; School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Xiang Mei
- Bio-Cell Co. Ltd, Beijing 100000, People's Republic of China
| | - Wenming Zhu
- MOE Key Laboratory of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Dong He
- MOE Key Laboratory of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Yuan Lu
- MOE Key Laboratory of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Chong Zhang
- MOE Key Laboratory of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China; Centre for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Xin-Hui Xing
- MOE Key Laboratory of Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China; Centre for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China.
| |
Collapse
|