1
|
Heydarzadeh S, Moshtaghie AA, Daneshpour M, Pishdad R, Farahani A, Hedayati M. The toxicological role of Myricetin in the progression of human anaplastic thyroid cancer SW1736 cell line. Food Chem Toxicol 2025; 195:115137. [PMID: 39581298 DOI: 10.1016/j.fct.2024.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
AIMS AND BACKGROUND Anaplastic thyroid cancer cells lack the capacity to effectively accumulate iodine and are therefore unresponsive to treatment with radioactive iodine. The main objective of this study was to examine the possible therapeutic effects of Myricetin on the SW1736 ATC cell line. In this study, we assessed the influence of Myricetin on iodide absorption, sodium iodide symporter gene expression, and apoptosis induction. MATERIAL METHODS The interaction between the 7UUY protein of NIS and Myricetin was investigated using AutoDock Vina. Assessment of cell viability was conducted with the MTT assay, whereas cell apoptosis was evaluated by flow cytometry using the Annexin V-FITC Apoptosis Detection kit. A spectrophotometric test based on the Sandell-Kolthoff reaction was conducted to assess the absorption of iodide by SW1736 cells. QRT-PCR analyses were used to assess the expression levels of NIS mRNA in SW1736 cells. RESULTS The hydrogen bond interaction pattern created by PyMOL revealed the interactions between the target and ligand molecules. The results demonstrated that Myricetin-induced cell death is dependent on apoptosis in this type of thyroid cancer cell line. QRT-PCR analyses revealed significantly higher NIS mRNA (P < 0.001) levels in the Myricetin-treated group than in the non-treated group. Furthermore, Myricetin treatment significantly increased iodide uptake (P value = 0.0053) in the SW1736 thyroid cancer cell line compared to the control group. CONCLUSION These findings suggest that Myricetin has potential as a therapeutic agent by promoting growth inhibition, enhancing NIS gene expression, and increasing iodide uptake in SW1736 cells. Additional research is necessary to clarify the fundamental mechanisms and to evaluate the efficacy of Myricetin in preclinical and clinical settings.
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Moshtaghie
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Pishdad
- Division of Endocrinology, Diabetes, and Metabolism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amin Farahani
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mohamed DA, Mabrok HB, Ramadan AA, Elbakry HF. The potential role of alkaline diets in prevention of calcium oxalate kidney stone formation. Food Funct 2024; 15:12033-12046. [PMID: 39563640 DOI: 10.1039/d4fo03567d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Formation of kidney stones is considered a major global problem. Diet plays an important role in the management of kidney stone formation. The main goal of the present research was to evaluate the protective role of fruit and vegetable mixtures as models of an alkaline diet on formation of kidney stones in rats and to conduct molecular docking study. The chemical compositions, phenolic compound profile, β-carotene content, vitamin C and antioxidant activity of both mixtures were assessed. Fruit (-42.419 ) and vegetable (-11.13) mixtures recorded a negative potential renal acid load in the presence of macro-/micro-nutrients, β-carotene and phenolic compounds; chlorogenic acid was the major content in both mixtures. Both mixtures exhibited high antioxidant activity. Molecular docking study proved that rutin displayed the highest binding affinities for glycolate oxidase (-11.8 kcal mol-1) and lactate dehydrogenase (-10.1 kcal mol-1). The kidney stone model in rats exhibited metabolic acidosis in the urinary profile through reduction of citrate; Ca, Mg and K excretion and elevation of oxalate, creatinine, creatinine clearance, uric acid, urea and protein. Additionally, there was a significant reduction in plasma Ca, Mg and K levels, while liver and kidney function parameters improved significantly. Fruit and vegetable mixtures as models of an alkaline diet proved improvement in all the parameters. Histopathological examination of kidney sections of the kidney stone model showed crystal deposition, inflammation, and severe necrosis. Kidney sections of alkaline diet models indicated mild and moderate changes. Conclusion: The results of this study proved that both alkaline diet models were effective in protecting against kidney stone formation in vivo and in molecular docking studies.
Collapse
Affiliation(s)
- Doha A Mohamed
- Nutrition and Food Sciences Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Hoda B Mabrok
- Nutrition and Food Sciences Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Asmaa A Ramadan
- Nutrition and Food Sciences Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt.
| | - Hagar F Elbakry
- Nutrition and Food Sciences Department, Food Industries and Nutrition Institute, National Research Centre, Dokki 12622, Cairo, Egypt.
| |
Collapse
|
3
|
Bhattacharjya D, Sivalingam N. Mechanism of 5-fluorouracil induced resistance and role of piperine and curcumin as chemo-sensitizers in colon cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8445-8475. [PMID: 38878089 DOI: 10.1007/s00210-024-03189-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 10/30/2024]
Abstract
Among cancer-related deaths worldwide, colorectal cancer ranks second, accounting for 1.2% of deaths in those under 50 years and 0.6% of deaths in those between 50 and 54 years. The anticancer drug 5-fluorouracil is widely used to treat colorectal cancer. Due to a better understanding of the drug's mechanism of action, its anticancer activity has been increased through a variety of therapeutic alternatives. Clinical use of 5-FU has been severely restricted due to drug resistance. The chemoresistance mechanism of 5-FU is challenging to overcome because of the existence of several drug efflux transporters, DNA repair enzymes, signaling cascades, classical cellular processes, cancer stem cells, metastasis, and angiogenesis. Curcumin, a potent phytocompound derived from Curcuma longa, functions as a nuclear factor (NF)-κB inhibitor and sensitizer to numerous chemotherapeutic drugs. Piperine, an alkaloid found in Piper longum, inhibits cancer cell growth, causing cell cycle arrest and apoptosis. This review explores the mechanism of 5-FU-induced chemoresistance in colon cancer cells and the role of curcumin and piperine in enhancing the sensitivity of 5-FU-based chemotherapy. CLINICAL TRIAL REGISTRATION: Not applicable.
Collapse
Affiliation(s)
- Dorothy Bhattacharjya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
4
|
Nguyen MH, Nguyen TYN, Le THN, Le TNT, Chau NTN, Le TMH, Huy Nguyen BQ. Medicinal plants as a potential resource for the discovery of novel structures towards cancer drug resistance treatment. Heliyon 2024; 10:e39229. [PMID: 39492898 PMCID: PMC11530815 DOI: 10.1016/j.heliyon.2024.e39229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Despite extensive research in chemotherapy, global cancer concerns persist, exacerbated by the challenge of drug resistance, which imposes economic and medical burdens. Natural compounds, particularly secondary metabolites from medicinal plants, present promising avenues for overcoming cancer drug resistance due to their diverse structures and essential pharmacological effects. This review provides a comprehensive exploration of cancer cell resistance mechanisms and target actions for reversing resistance and highlights the in vitro and in vivo efficacy of noteworthy alkaloids, flavonoids, and other compounds, emphasizing their potential as therapeutic agents. The molecular properties supporting ligand interactions are thoroughly examined, providing a robust theoretical foundation. The review concludes by discussing methods including quantitative structure-activity relationships and molecular docking, offering insights into screening potential candidates. Current trends in clinical treatment, contributing to a holistic understanding of the multifaceted approaches to address cancer drug resistance are also outlined.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
| | - Thi Yen Nhi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
- Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Street Ward 14, District 10, Ho Chi Minh City, Viet Nam
| | - Thien Han Nguyen Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Thi Ngoc Tam Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Ngoc Trong Nghia Chau
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Tu Manh Huy Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Bui Quoc Huy Nguyen
- The University of Danang - VN-UK Institute for Research and Executive Education, 41 Le Duan Street, Hai Chau 1 Ward, Hai Chau District, Danang City, Viet Nam
| |
Collapse
|
5
|
Peng X, He Z, Yuan D, Liu Z, Rong P. Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189164. [PMID: 39096976 DOI: 10.1016/j.bbcan.2024.189164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
As a solid tumor with high glycolytic activity, hepatocellular carcinoma (HCC) produces excess lactic acid and increases extracellular acidity, thus forming a unique immunosuppressive microenvironment. L-lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) play a very important role in glycolysis. LDH is the key enzyme for lactic acid (LA) production, and MCT is responsible for the cellular import and export of LA. The synergistic effect of the two promotes the formation of an extracellular acidic microenvironment. In the acidic microenvironment of HCC, LA can not only promote the proliferation, survival, transport and angiogenesis of tumor cells but also have a strong impact on immune cells, ultimately leading to an inhibitory immune microenvironment. This article reviews the role of LA in HCC, especially its effect on immune cells, summarizes the progress of LDH and MCT-related drugs, and highlights the potential of immunotherapy targeting lactate combined with HCC.
Collapse
Affiliation(s)
- Xiaopei Peng
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenhu He
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Dandan Yuan
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Pengfei Rong
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
6
|
Liang B, Wang Y, Huang J, Lin S, Mao G, Zhou Z, Yan W, Shan C, Wu H, Etcheverry A, He Y, Liu F, Kang H, Yin A, Zhang S. Genome-wide DNA methylation analysis identifies potent CpG signature for temzolomide response in non-G-CIMP glioblastomas with unmethylated MGMT promoter: MGMT-dependent roles of GPR81. CNS Neurosci Ther 2024; 30:e14465. [PMID: 37830163 PMCID: PMC11017469 DOI: 10.1111/cns.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/14/2023] Open
Abstract
PURPOSES To identify potent DNA methylation candidates that could predict response to temozolomide (TMZ) in glioblastomas (GBMs) that do not have glioma-CpGs island methylator phenotype (G-CIMP) but have an unmethylated promoter of O-6-methylguanine-DNA methyltransferase (unMGMT). METHODS The discovery-validation approach was planned incorporating a series of G-CIMP-/unMGMT GBM cohorts with DNA methylation microarray data and clinical information, to construct multi-CpG prediction models. Different bioinformatic and experimental analyses were performed for biological exploration. RESULTS By analyzing discovery sets with radiotherapy (RT) plus TMZ versus RT alone, we identified a panel of 64 TMZ efficacy-related CpGs, from which a 10-CpG risk signature was further constructed. Both the 64-CpG panel and the 10-CpG risk signature were validated showing significant correlations with overall survival of G-CIMP-/unMGMT GBMs when treated with RT/TMZ, rather than RT alone. The 10-CpG risk signature was further observed for aiding TMZ choice by distinguishing differential outcomes to RT/TMZ versus RT within each risk subgroup. Functional studies on GPR81, the gene harboring one of the 10 CpGs, indicated its distinct impacts on TMZ resistance in GBM cells, which may be dependent on the status of MGMT expression. CONCLUSIONS The 64 TMZ efficacy-related CpGs and in particular the 10-CpG risk signature may serve as promising predictive biomarker candidates for guiding optimal usage of TMZ in G-CIMP-/unMGMT GBMs.
Collapse
Affiliation(s)
- Bao‐Bao Liang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yu‐Hong Wang
- The Emergency DepartmentThe Seventh Medical Center of Chinese PLA General HospitalBeijingChina
| | - Jing‐Jing Huang
- Department of Pediatric SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Shuai Lin
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Guo‐Chao Mao
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Zhang‐Jian Zhou
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Wan‐Jun Yan
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Chang‐You Shan
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Hui‐Zi Wu
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Amandine Etcheverry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR)RennesFrance
| | - Ya‐Long He
- Department of Neurosurgery, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Fang‐Fang Liu
- Institute of Neurosciences, College of Basic MedicineAir Force Medical UniversityXi'anChina
| | - Hua‐Feng Kang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - An‐An Yin
- Department of Biochemistry and Molecular BiologyAir Force Medical UniversityXi'anChina
- Department of Plastic and Reconstructive Surgery, Xijing HospitalAir Force Medical UniversityXi'anChina
| | - Shu‐Qun Zhang
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
7
|
Zhang Y, Song H, Li M, Lu P. Histone lactylation bridges metabolic reprogramming and epigenetic rewiring in driving carcinogenesis: Oncometabolite fuels oncogenic transcription. Clin Transl Med 2024; 14:e1614. [PMID: 38456209 PMCID: PMC10921234 DOI: 10.1002/ctm2.1614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
Heightened lactate production in cancer cells has been linked to various cellular mechanisms such as angiogenesis, hypoxia, macrophage polarisation and T-cell dysfunction. The lactate-induced lactylation of histone lysine residues is noteworthy, as it functions as an epigenetic modification that directly augments gene transcription from chromatin. This epigenetic modification originating from lactate effectively fosters a reliance on transcription, thereby expediting tumour progression and development. Herein, this review explores the correlation between histone lactylation and cancer characteristics, revealing histone lactylation as an innovative epigenetic process that enhances the vulnerability of cells to malignancy. Moreover, it is imperative to acknowledge the paramount importance of acknowledging innovative therapeutic methodologies for proficiently managing cancer by precisely targeting lactate signalling. This comprehensive review illuminates a crucial yet inadequately investigated aspect of histone lactylation, providing valuable insights into its clinical ramifications and prospective therapeutic interventions centred on lactylation.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Clinical MedicineXuzhou Medical UniversityXuzhouJiangsuChina
| | - Hang Song
- Department of OphthalmologyPeking Union Medical College HospitalBeijingChina
| | - Meili Li
- Department of OphthalmologyEye Disease Prevention and Treatment Institute of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical UniversityXuzhou First People's HospitalXuzhouJiangsuChina
| | - Peirong Lu
- Department of OphthalmologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
8
|
Mostafavi S, Eskandari N. Mitochondrion: Main organelle in orchestrating cancer escape from chemotherapy. Cancer Rep (Hoboken) 2024; 7:e1942. [PMID: 38151790 PMCID: PMC10849933 DOI: 10.1002/cnr2.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Chemoresistance is a challenging barrier to cancer therapy, and in this context, the role of mitochondria is significant. We put emphasis on key biological characteristics of mitochondria, contributing to tumor escape from various therapies, to find the "Achilles' Heel" of cancer cells for future drug design. RECENT FINDINGS The mitochondrion is a dynamic organelle, and its existence is important for tumor growth. Its metabolites also cooperate with cell signaling in tumor proliferation and drug resistance. CONCLUSION Biological characteristics of this organelle, such as redox balance, DNA depletion, and metabolic reprogramming, provide flexibility to cancer cells to cope with therapy-induced stress.
Collapse
Affiliation(s)
- Samaneh Mostafavi
- Department of Immunology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Nahid Eskandari
- Department of Immunology, Faculty of MedicineIsfahan University of Medical ScienceIsfahanIran
| |
Collapse
|
9
|
Chen Y, Wu J, Zhai L, Zhang T, Yin H, Gao H, Zhao F, Wang Z, Yang X, Jin M, Huang B, Ding X, Li R, Yang J, He Y, Wang Q, Wang W, Kloeber JA, Li Y, Hao B, Zhang Y, Wang J, Tan M, Li K, Wang P, Lou Z, Yuan J. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell 2024; 187:294-311.e21. [PMID: 38128537 PMCID: PMC11725302 DOI: 10.1016/j.cell.2023.11.022] [Citation(s) in RCA: 126] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 08/09/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
Lactylation is a lactate-induced post-translational modification best known for its roles in epigenetic regulation. Herein, we demonstrate that MRE11, a crucial homologous recombination (HR) protein, is lactylated at K673 by the CBP acetyltransferase in response to DNA damage and dependent on ATM phosphorylation of the latter. MRE11 lactylation promotes its binding to DNA, facilitating DNA end resection and HR. Inhibition of CBP or LDH downregulated MRE11 lactylation, impaired HR, and enhanced chemosensitivity of tumor cells in patient-derived xenograft and organoid models. A cell-penetrating peptide that specifically blocks MRE11 lactylation inhibited HR and sensitized cancer cells to cisplatin and PARPi. These findings unveil lactylation as a key regulator of HR, providing fresh insights into the ways in which cellular metabolism is linked to DSB repair. They also imply that the Warburg effect can confer chemoresistance through enhancing HR and suggest a potential therapeutic strategy of targeting MRE11 lactylation to mitigate the effects.
Collapse
Affiliation(s)
- Yuping Chen
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinhuan Wu
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang 422001, China
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhe Wang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoning Yang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mingpeng Jin
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Bingsong Huang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Xin Ding
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Rui Li
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Jie Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yiming He
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Qianwen Wang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic Alix School of Medicine and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Yunxuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bingbing Hao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Shanghai 200072, China
| | - Zhenkun Lou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Yuan
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
10
|
Gong H, Zhong H, Cheng L, Li LP, Zhang DK. Post-translational protein lactylation modification in health and diseases: a double-edged sword. J Transl Med 2024; 22:41. [PMID: 38200523 PMCID: PMC10777551 DOI: 10.1186/s12967-023-04842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
As more is learned about lactate, it acts as both a product and a substrate and functions as a shuttle system between different cell populations to provide the energy for sustaining tumor growth and proliferation. Recent discoveries of protein lactylation modification mediated by lactate play an increasingly significant role in human health (e.g., neural and osteogenic differentiation and maturation) and diseases (e.g., tumors, fibrosis and inflammation, etc.). These views are critically significant and first described in detail in this review. Hence, here, we focused on a new target, protein lactylation, which may be a "double-edged sword" of human health and diseases. The main purpose of this review was to describe how protein lactylation acts in multiple physiological and pathological processes and their potential mechanisms through an in-depth summary of preclinical in vitro and in vivo studies. Our work aims to provide new ideas for treating different diseases and accelerate translation from bench to bedside.
Collapse
Affiliation(s)
- Hang Gong
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huang Zhong
- Department of Gastroenterology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Long Cheng
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Liang-Ping Li
- Department of Gastroenterology, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China.
| | - De-Kui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
11
|
Liu K, Zhu Y, Cao X, Liu Y, Ying R, Huang Q, Gao P, Zhang C. Curcumin as an antiviral agent and immune-inflammatory modulator in COVID-19: A scientometric analysis. Heliyon 2023; 9:e21648. [PMID: 38027776 PMCID: PMC10661356 DOI: 10.1016/j.heliyon.2023.e21648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Reports regarding the antiviral activity of curcumin have surfaced. However, to date there has been no scientometric analysis of the relationship between curcumin and Coronavirus Disease 2019 (COVID-19). To comprehensively understand the studies involving curcumin in the context of COVID-19, we conducted a scientometric analysis to provide an exhaustive review of these studies. Methods We systematically searched the Web of Science core collection database for bibliographic data indexed from January 1, 2020, to December 31, 2022, using keywords such as 'curcumin', 'COVID-19', and their synonyms. To clarify the research content and trends related to curcumin in COVID-19, we utilized VOSviewer, Origin 2023, and Charticulator for analysis, supplemented by external data. Results The final count of publications included in this study was 252. These publications originated from 63 countries or territories, with India contributing the highest number of publications. They were published across 170 journals. Notably, the Egyptian Knowledge Bank (EKB) emerged as the most important institution that carried out this study. The most cited publication had been referenced 166 times. The main elements involved in the keyword analysis were reflected in the antiviral activity of curcumin and the immuno-inflammatory modulation of the inflammatory cytokine storm. Furthermore, the pharmacological mechanisms of curcumin for treating COVID-19 emerged as a prominent area of research. Simultaneously, there exists direct evidence of clinical usage of curcumin to enhance COVID-19 outcomes. Conclusions The scientometric analysis underscores the burgeoning professional domain of curcumin-based treatment for COVID-19. Ongoing studies have focused on the antiviral activity of curcumin and its immunomodulatory effects on inflammatory cytokine storms. On the other hand, the pharmacological mechanism of curcumin in the treatment of COVID-19 is a hot spot in the research field at present, which may become the main research trend in this field in the future. While maintaining a focus on foundational research, the clinical application of curcumin in COVID-19 infection is developing in parallel, highlighting its obvious guiding value in clinical practice. These insights offer researchers a snapshot of the present state of curcumin treatment for COVID-19 and guide further mechanistic validation efforts in the future.
Collapse
Affiliation(s)
- Ke Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yi Zhu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiyu Cao
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yufei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Rongtao Ying
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Qingsong Huang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| |
Collapse
|
12
|
Han JH, Lee EJ, Park W, Ha KT, Chung HS. Natural compounds as lactate dehydrogenase inhibitors: potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front Pharmacol 2023; 14:1275000. [PMID: 37915411 PMCID: PMC10616500 DOI: 10.3389/fphar.2023.1275000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a crucial enzyme involved in energy metabolism and present in various cells throughout the body. Its diverse physiological functions encompass glycolysis, and its abnormal activity is associated with numerous diseases. Targeting LDH has emerged as a vital approach in drug discovery, leading to the identification of LDH inhibitors among natural compounds, such as polyphenols, alkaloids, and terpenoids. These compounds demonstrate therapeutic potential against LDH-related diseases, including anti-cancer effects. However, challenges concerning limited bioavailability, poor solubility, and potential toxicity must be addressed. Combining natural compounds with LDH inhibitors has led to promising outcomes in preclinical studies. This review highlights the promise of natural compounds as LDH inhibitors for treating cancer, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Ho Han
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Eun-Ji Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Wonyoung Park
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Ki-Tae Ha
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
13
|
Li S, Hao L, Hu X. Natural products target glycolysis in liver disease. Front Pharmacol 2023; 14:1242955. [PMID: 37663261 PMCID: PMC10469892 DOI: 10.3389/fphar.2023.1242955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondrial dysfunction plays an important role in the occurrence and development of different liver diseases. Oxidative phosphorylation (OXPHOS) dysfunction and production of reactive oxygen species are closely related to mitochondrial dysfunction, forcing glycolysis to become the main source of energy metabolism of liver cells. Moreover, glycolysis is also enhanced to varying degrees in different liver diseases, especially in liver cancer. Therefore, targeting the glycolytic signaling pathway provides a new strategy for the treatment of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis associated with liver cancer. Natural products regulate many steps of glycolysis, and targeting glycolysis with natural products is a promising cancer treatment. In this review, we have mainly illustrated the relationship between glycolysis and liver disease, natural products can work by targeting key enzymes in glycolysis and their associated proteins, so understanding how natural products regulate glycolysis can help clarify the therapeutic mechanisms these drugs use to inhibit liver disease.
Collapse
Affiliation(s)
- Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Mehta A, Ratre YK, Soni VK, Shukla D, Sonkar SC, Kumar A, Vishvakarma NK. Orchestral role of lipid metabolic reprogramming in T-cell malignancy. Front Oncol 2023; 13:1122789. [PMID: 37256177 PMCID: PMC10226149 DOI: 10.3389/fonc.2023.1122789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
The immune function of normal T cells partially depends on the maneuvering of lipid metabolism through various stages and subsets. Interestingly, T-cell malignancies also reprogram their lipid metabolism to fulfill bioenergetic demand for rapid division. The rewiring of lipid metabolism in T-cell malignancies not only provides survival benefits but also contributes to their stemness, invasion, metastasis, and angiogenesis. Owing to distinctive lipid metabolic programming in T-cell cancer, quantitative, qualitative, and spatial enrichment of specific lipid molecules occur. The formation of lipid rafts rich in cholesterol confers physical strength and sustains survival signals. The accumulation of lipids through de novo synthesis and uptake of free lipids contribute to the bioenergetic reserve required for robust demand during migration and metastasis. Lipid storage in cells leads to the formation of specialized structures known as lipid droplets. The inimitable changes in fatty acid synthesis (FAS) and fatty acid oxidation (FAO) are in dynamic balance in T-cell malignancies. FAO fuels the molecular pumps causing chemoresistance, while FAS offers structural and signaling lipids for rapid division. Lipid metabolism in T-cell cancer provides molecules having immunosuppressive abilities. Moreover, the distinctive composition of membrane lipids has implications for immune evasion by malignant cells of T-cell origin. Lipid droplets and lipid rafts are contributors to maintaining hallmarks of cancer in malignancies of T cells. In preclinical settings, molecular targeting of lipid metabolism in T-cell cancer potentiates the antitumor immunity and chemotherapeutic response. Thus, the direct and adjunct benefit of lipid metabolic targeting is expected to improve the clinical management of T-cell malignancies.
Collapse
Affiliation(s)
- Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Yashwant Kumar Ratre
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Subhash C. Sonkar
- Multidisciplinary Research Unit, Maulana Azad Medical College, University of Delhi, New Delhi, India
| | - Ajay Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
15
|
Wagner W, Sobierajska K, Pułaski Ł, Stasiak A, Ciszewski WM. Whole grain metabolite 3,5-dihydroxybenzoic acid is a beneficial nutritional molecule with the feature of a double-edged sword in human health: a critical review and dietary considerations. Crit Rev Food Sci Nutr 2023; 64:8786-8804. [PMID: 37096487 DOI: 10.1080/10408398.2023.2203762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Nonprocessed foodstuffs of plant origin, especially whole-grain cereals, are considered to be health-promoting components of the human diet. While most of their well-studied effects derive from their high fiber content and low glycemic index, the presence of underrated phenolic phytonutrients has recently been brought to the attention of nutritionists. In this review, we report and discuss findings on the sources and bioactivities of 3,5-dihydroxybenzoic acid (3,5-DHBA), which is both a direct dietary component (found, e.g., in apples) and, more importantly, a crucial metabolite of whole-grain cereal-derived alkylresorcinols (ARs). 3,5-DHBA is a recently described exogenous agonist of the HCAR1/GPR81 receptor. We concentrate on the HCAR1-mediated effects of 3,5-DHBA in the nervous system, on the maintenance of cell stemness, regulation of carcinogenesis, and response to anticancer therapy. Unexpectedly, malignant tumors take advantage of HCAR1 expression to sense 3,5-DHBA to support their growth. Thus, there is an urgent need to fully identify the role of whole-grain-derived 3,5-DHBA during anticancer therapy and its contribution in the regulation of vital organs of the body via its specific HCAR1 receptor. We discuss here in detail the possible consequences of the modulatory capabilities of 3,5-DHBA in physiological and pathological conditions in humans.
Collapse
Affiliation(s)
- Waldemar Wagner
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | - Łukasz Pułaski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Wojciech M Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
16
|
Lu Y, Wang Y, Liu W, Ma H, Yang B, Shao K, Long S, Sun W, Du J, Fan J, Liu B, Wang L, Peng X. Photothermal "nano-dot" reactivate "immune-hot" for tumor treatment via reprogramming cancer cells metabolism. Biomaterials 2023; 296:122089. [PMID: 36898223 DOI: 10.1016/j.biomaterials.2023.122089] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/08/2023]
Abstract
Cancer immunotherapy, despite its enormous application prospect, is trapped in the abnormal lactic acid metabolism of tumor cells that usually causes an immunosuppressive tumor microenvironment (ITM). Inducing immunogenic cell death (ICD) not only sensitizes cancer cells to carcer immunity, but also leads to a great increase in tumor-specific antigens. It improves tumor condition from "immune-cold" to "immune-hot". Herein, a near-infrared photothermal agent NR840 was developed and encapsulated into tumor-targeted polymer DSPE-PEG-cRGD and carried lactate oxidase (LOX) by electrostatic interaction, forming self-assembling "nano-dot" PLNR840 with high loading capacity for synergistic antitumor photo-immunotherapy. In this strategy, PLNR840 was swallowed by cancer cells, then dye NR840 was excited at 808 nm to generate heat inducing tumor cell necrosis, which further caused ICD. LOX could serve as a catalyst, reducing lactic acid efflux via regulation of cell metabolism. More importantly, the consumption of intratumoral lactic acid could substantially reverse ITM, including promoting the polarization of tumor-associated macrophages from M2 to M1 type, inhibiting the viability of regulatory T cells for sensitizing photothermal therapy (PTT). After the combination of αPD-L1 (programmed cell death protein ligand 1), PLNR840 restored CD8+ T-cell activity that thoroughly cleaned the pulmonary metastasis of breast cancer in 4T1 mouse model and cured hepatocellular carcinoma in Hepa1-6 mouse model. This study provided an effective PTT strategy to boost "immune-hot" and reprogrammed tumor metabolism for antitumor immunotherapy.
Collapse
Affiliation(s)
- Yang Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Weijian Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - He Ma
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Bo Yang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, PR China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, PR China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, PR China.
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, PR China
| | - Bin Liu
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, PR China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, PR China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, PR China; State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, PR China.
| |
Collapse
|
17
|
El-Saadony MT, Yang T, Korma SA, Sitohy M, Abd El-Mageed TA, Selim S, Al Jaouni SK, Salem HM, Mahmmod Y, Soliman SM, Mo’men SAA, Mosa WFA, El-Wafai NA, Abou-Aly HE, Sitohy B, Abd El-Hack ME, El-Tarabily KA, Saad AM. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front Nutr 2023; 9:1040259. [PMID: 36712505 PMCID: PMC9881416 DOI: 10.3389/fnut.2022.1040259] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023] Open
Abstract
The yellow polyphenolic pigment known as curcumin, originating from the rhizome of the turmeric plant Curcuma longa L., has been utilized for ages in ancient medicine, as well as in cooking and food coloring. Recently, the biological activities of turmeric and curcumin have been thoroughly investigated. The studies mainly focused on their antioxidant, antitumor, anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective impacts. This review seeks to provide an in-depth, detailed discussion of curcumin usage within the food processing industries and its effect on health support and disease prevention. Curcumin's bioavailability, bio-efficacy, and bio-safety characteristics, as well as its side effects and quality standards, are also discussed. Finally, curcumin's multifaceted uses, food appeal enhancement, agro-industrial techniques counteracting its instability and low bioavailability, nanotechnology and focused drug delivery systems to increase its bioavailability, and prospective clinical use tactics are all discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain, United Arab Emirates
| | - Soliman M. Soliman
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shaimaa A. A. Mo’men
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Nahed A. El-Wafai
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Hamed E. Abou-Aly
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Basel Sitohy
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Mohamed E. Abd El-Hack
- Department of Poultry Diseases, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Abstract
Histone lactylation, an indicator of lactate level and glycolysis, has intrinsic connections with cell metabolism that represents a novel epigenetic code affecting the fate of cells including carcinogenesis. Through delineating the relationship between histone lactylation and cancer hallmarks, we propose histone lactylation as a novel epigenetic code priming cells toward the malignant state, and advocate the importance of identifying novel therapeutic strategies or dual-targeting modalities against lactylation toward effective cancer control. This review underpins important yet less-studied area in histone lactylation, and sheds insights on its clinical impact as well as possible therapeutic tools targeting lactylation.
Collapse
|
19
|
Salari N, Faraji F, Jafarpour S, Faraji F, Rasoulpoor S, Dokaneheifard S, Mohammadi M. Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review. Indian J Surg Oncol 2022; 13:681-690. [PMID: 36687219 PMCID: PMC9845454 DOI: 10.1007/s13193-022-01550-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/03/2022] [Indexed: 01/25/2023] Open
Abstract
Chrysin is a natural bioactive compound that is extracted from many trees, honey, and propolis. Chrysin has several pharmacological activities such as anti-inflammatory, anti-cancer, and antioxidant properties. This study was performed to evaluate the anti-cancer activities of chrysin in cancer therapy. The present study was conducted by systematic review of studies published up to August 2021. Related studies were identified by searching Web of Science (WoS), PubMed, Science Direct, SID, MagIran, Scopus, and Google Scholar databases. The keywords of chrysin, cancer, anti-cancer, and cancer therapy were used for searching. The quality of the studies was assessed by the CONSORT checklist. A total of 21 studies were identified. The results of studies showed that chrysin has an anticancer effect by stimulating apoptosis in a wide range of human cells and rats. Chrysin is also an important factor in inhibiting tumor growth and neoplasticity. Chrysin inhibits the growth and proliferation of cancer cells by inducing cytotoxic effects. Therefore, due to the antitumor effects of chrysin and its safety and non-toxicity towards normal cells, this compound can be considered as an adjuvant along with chemotherapeutic agents in cancer treatment.
Collapse
Affiliation(s)
- Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Jafarpour
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Faraji
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shna Rasoulpoor
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sadat Dokaneheifard
- Department of Human Genetics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Masoud Mohammadi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
20
|
Cui Y, Li C, Sang F, Cao W, Qin Z, Zhang P. Natural products targeting glycolytic signaling pathways-an updated review on anti-cancer therapy. Front Pharmacol 2022; 13:1035882. [PMID: 36339566 PMCID: PMC9631946 DOI: 10.3389/fphar.2022.1035882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Glycolysis is a complex metabolic process that occurs to convert glucose into pyruvate to produce energy for living cells. Normal cells oxidized pyruvate into adenosine triphosphate and carbon dioxide in the presence of oxygen in mitochondria while cancer cells preferentially metabolize pyruvate to lactate even in the presence of oxygen in order to maintain a slightly acidic micro-environment of PH 6.5 and 6.9, which is beneficial for cancer cell growth and metastasis. Therefore targeting glycolytic signaling pathways provided new strategy for anti-cancer therapy. Natural products are important sources for the treatment of diseases with a variety of pharmacologic activities. Accumulated studies suggested that natural products exhibited remarkable anti-cancer properties both in vitro and in vivo. Plenty of studies suggested natural products like flavonoids, terpenoids and quinones played anti-cancer properties via inhibiting glucose metabolism targets in glycolytic pathways. This study provided an updated overview of natural products controlling glycolytic pathways, which also provide insight into druggable mediators discovery targeting cancer glucose metabolism.
Collapse
Affiliation(s)
- Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chuang Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Feng Sang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Weiling Cao, ; Zhuo Qin, ; Peng Zhang,
| | - Zhuo Qin
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Weiling Cao, ; Zhuo Qin, ; Peng Zhang,
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong, China
- *Correspondence: Weiling Cao, ; Zhuo Qin, ; Peng Zhang,
| |
Collapse
|
21
|
Ciszewski WM, Sobierajska K, Stasiak A, Wagner W. Lactate drives cellular DNA repair capacity: Role of lactate and related short-chain fatty acids in cervical cancer chemoresistance and viral infection. Front Cell Dev Biol 2022; 10:1012254. [PMID: 36340042 PMCID: PMC9627168 DOI: 10.3389/fcell.2022.1012254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2023] Open
Abstract
The characteristic feature of a cancer microenvironment is the presence of a highly elevated concentration of L-lactate in the tumor niche. The lactate-rich environment is also maintained by commensal mucosal microbiota, which has immense potential for affecting cancer cells through its receptoric and epigenetic modes of action. Some of these lactate activities might be associated with the failure of anticancer therapy as a consequence of the drug resistance acquired by cancer cells. Upregulation of cellular DNA repair capacity and enhanced drug efflux are the most important cellular mechanisms that account for ineffective radiotherapy and drug-based therapies. Here, we present the recent scientific knowledge on the role of the HCA1 receptor for lactate and lactate intrinsic activity as an HDAC inhibitor in the development of an anticancer therapy-resistant tumor phenotype, with special focus on cervical cancer cells. In addition, a recent study highlighted the viable role of interactions between mammalian cells and microorganisms in the female reproductive tract and demonstrated an interesting mechanism regulating the efficacy of retroviral transduction through lactate-driven modulation of DNA-PKcs cellular localization. To date, very few studies have focused on the mechanisms of lactate-driven enhancement of DNA repair and upregulation of particular multidrug-resistance proteins in cancer cells with respect to their intracellular regulatory mechanisms triggered by lactate. This review presents the main achievements in the field of lactate impact on cell biology that may promote undesirable alterations in cancer physiology and mitigate retroviral infections.
Collapse
Affiliation(s)
| | | | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Waldemar Wagner
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
22
|
Wu Z, Han T, Su H, Xuan J, Wang X. Comprehensive analysis of fatty acid and lactate metabolism–related genes for prognosis value, immune infiltration, and therapy in osteosarcoma patients. Front Oncol 2022; 12:934080. [PMID: 36119478 PMCID: PMC9478861 DOI: 10.3389/fonc.2022.934080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma is the most frequent bone tumor. Notwithstanding that significant medical progress has been achieved in recent years, the 5-year overall survival of osteosarcoma patients is inferior. Regulation of fatty acids and lactate plays an essential role in cancer metabolism. Therefore, our study aimed to comprehensively assess the fatty acid and lactate metabolism pattern and construct a fatty acid and lactate metabolism–related risk score system to predict prognosis in osteosarcoma patients. Clinical data and RNA expression data were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. We used the least absolute shrinkage and selection operator (LASSO) and Cox regression analyses to construct a prognostic risk score model. Relationships between the risk score model and age, gender, tumor microenvironment characteristics, and drug sensitivity were also explored by correlation analysis. We determined the expression levels of prognostic genes in osteosarcoma cells via Western blotting. We developed an unknown fatty acid and lactate metabolism–related risk score system based on three fatty acid and lactate metabolism–related genes (SLC7A7, MYC, and ACSS2). Survival analysis showed that osteosarcoma patients in the low-risk group were likely to have a better survival time than those in the high-risk group. The area under the curve (AUC) value shows that our risk score model performs well in predicting prognosis. Elevated fatty acids and lactate risk scores weaken immune function and the environment of the body, which causes osteosarcoma patients’ poor survival outcomes. In general, the constructed fatty acid and lactate metabolism–related risk score model can offer essential insights into subsequent mechanisms in available research. In addition, our study may provide rational treatment strategies for clinicians based on immune correlation analysis and drug sensitivity in the future.
Collapse
Affiliation(s)
- Zhouwei Wu
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Han
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haohan Su
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangwei Xuan
- Department of Orthopaedic Surgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
- *Correspondence: Xinwei Wang, ; Jiangwei Xuan,
| | - Xinwei Wang
- Department of Orthopaedic Surgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
- *Correspondence: Xinwei Wang, ; Jiangwei Xuan,
| |
Collapse
|
23
|
Effects and Mechanisms of Curcumin for the Prevention and Management of Cancers: An Updated Review. Antioxidants (Basel) 2022; 11:antiox11081481. [PMID: 36009200 PMCID: PMC9405286 DOI: 10.3390/antiox11081481] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer is the leading cause of death in the world. Curcumin is the main ingredient in turmeric (Curcuma longa L.), and is widely used in the food industry. It shows anticancer properties on different types of cancers, and the underlying mechanisms of action include inhibiting cell proliferation, suppressing invasion and migration, promoting cell apoptosis, inducing autophagy, decreasing cancer stemness, increasing reactive oxygen species production, reducing inflammation, triggering ferroptosis, regulating gut microbiota, and adjuvant therapy. In addition, the anticancer action of curcumin is demonstrated in clinical trials. Moreover, the poor water solubility and low bioavailability of curcumin can be improved by a variety of nanotechnologies, which will promote its clinical effects. Furthermore, although curcumin shows some adverse effects, such as diarrhea and nausea, it is generally safe and tolerable. This paper is an updated review of the prevention and management of cancers by curcumin with a special attention to its mechanisms of action.
Collapse
|
24
|
Temre MK, Yadav S, Goel Y, Pandey SK, Kumar A, Singh SM. Glutor, a Glucose Transporter Inhibitor, Exerts Antineoplastic Action on Tumor Cells of Thymic Origin: Implication of Modulated Metabolism, Survival, Oxidative Stress, Mitochondrial Membrane Potential, pH Homeostasis, and Chemosensitivity. Front Oncol 2022; 12:925666. [PMID: 35847943 PMCID: PMC9279700 DOI: 10.3389/fonc.2022.925666] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Neoplastic cells overexpress glucose transporters (GLUT), particularly GLUT1 and GLUT3, to support altered metabolism. Hence, novel strategies are being explored to effectively inhibit GLUTs for a daunting interference of glucose uptake. Glutor, a piperazine-2-one derivative, is a newly reported pan-GLUT inhibitor with a promising antineoplastic potential. However, several aspects of the underlying mechanisms remain obscure. To understand this better, tumor cells of thymic origin designated as Dalton's lymphoma (DL) were treated with glutor and analyzed for survival and metabolism regulatory molecular events. Treatment of tumor cells with glutor caused a decrease in cell survival with augmented induction of apoptosis. It also caused a decrease in glucose uptake associated with altered expression of GLUT1 and GLUT3. HIF-1α, HK-2, LDH-A, and MCT1 also decreased with diminished lactate production and deregulated pH homeostasis. Moreover, glutor treatment modulated the expression of cell survival regulatory molecules p53, Hsp70, IL-2 receptor CD25, and C-myc along with mitochondrial membrane depolarization, increased intracellular ROS expression, and altered Bcl-2/BAX ratio. Glutor also enhanced the chemosensitivity of tumor cells to cisplatin, accompanied by decreased MDR1 expression. Adding fructose to the culture medium containing glutor reversed the latter's inhibitory action on tumor cell survival. These results demonstrate that in addition to inhibited glucose uptake, modulated tumor growth regulatory molecular pathways are also implicated in the manifestation of the antineoplastic action of glutor. Thus, the novel findings of this study will have a long-lasting clinical significance in evaluating and optimizing the use of glutor in anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saveg Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Yugal Goel
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shrish Kumar Pandey
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Deparment of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
25
|
Irungbam M, Chitkara A, Singh VK, Sonkar SC, Dubey A, Bansal A, Shrivastava R, Goswami B, Manchanda V, Saxena S, Saxena R, Garg S, Husain F, Talukdar T, Kumar D, Koner BC. Evaluation of Performance of Detection of Immunoglobulin G and Immunoglobulin M Antibody Against Spike Protein of SARS-CoV-2 by a Rapid Kit in a Real-Life Hospital Setting. Front Microbiol 2022; 13:802292. [PMID: 35558113 PMCID: PMC9087894 DOI: 10.3389/fmicb.2022.802292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Antibody testing is often used for serosurveillance of coronavirus disease 2019 (COVID-19). Enzyme-linked immunosorbent assay and chemiluminescence-based antibody tests are quite sensitive and specific for such serological testing. Rapid antibody tests against different antigens are developed and effectively used for this purpose. However, their diagnostic efficiency, especially in real-life hospital setting, needs to be evaluated. Thus, the present study was conducted in a dedicated COVID-19 hospital in New Delhi, India, to evaluate the diagnostic efficacy of a rapid antibody kit against the receptor-binding domain (RBD) of the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS Sixty COVID-19 confirmed cases by reverse transcriptase-polymerase chain reaction (RT-PCR) were recruited and categorized as early, intermediate, and late cases based on the days passed after their first RT-PCR-positive test report, with 20 subjects in each category. Twenty samples from pre-COVID era and 20 RT-PCR-negative collected during the study period were taken as controls. immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies against the RBD of the spike (S) protein of SARS-CoV-2 virus were detected by rapid antibody test and compared with the total antibody against the nucleocapsid (N) antigen of SARS-CoV-2 by electrochemiluminescence-based immunoassay (ECLIA). RESULTS The detection of IgM against the RBD of the spike protein by rapid kit was less sensitive and less specific for the diagnosis of SARS-CoV-2 infection. However, diagnostic efficacy of IgG by rapid kit was highly sensitive and specific when compared with the total antibody against N antigen measured by ECLIA. CONCLUSION It can be concluded that detection of IgM against the RBD of S protein by rapid kit is less effective, but IgG detection can be used as an effective diagnostic tool for SARS-CoV-2 infection in real-life hospital setting.
Collapse
Affiliation(s)
- Monica Irungbam
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Anubhuti Chitkara
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Vijay Kumar Singh
- Multidisciplinary Research Unit (MRU), Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Subash Chandra Sonkar
- Multidisciplinary Research Unit (MRU), Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Abhisek Dubey
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Aastha Bansal
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Ritika Shrivastava
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Binita Goswami
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
- Multidisciplinary Research Unit (MRU), Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Vikas Manchanda
- Department of Microbiology, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Sonal Saxena
- Department of Microbiology, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Ritu Saxena
- Emergency Department, Lok Nayak Jai Prakash Narayan (LNJP) Hospital, New Delhi, India
| | - Sandeep Garg
- Department of Medicine, Lok Nayak Jai Prakash Narayan (LNJP) Hospital, New Delhi, India
| | - Farah Husain
- Department of Anesthesiology, Lok Nayak Jai Prakash Narayan (LNJP) Hospital, New Delhi, India
| | - Tanmay Talukdar
- Department of TB & Chest Diseases/Pulmonary Medicine, Lady Hardinge Medical College (LHMC), New Delhi, India
| | - Dinesh Kumar
- Food Safety and Standards Authority of India, Ministry of Health and Family Welfare (MoHFW), New Delhi, India
| | - Bidhan Chandra Koner
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
- Multidisciplinary Research Unit (MRU), Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| |
Collapse
|
26
|
Curcumae Radix Decreases Neurodegenerative Markers through Glycolysis Decrease and TCA Cycle Activation. Nutrients 2022; 14:nu14081587. [PMID: 35458149 PMCID: PMC9024545 DOI: 10.3390/nu14081587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (ND) are being increasingly studied owing to the increasing proportion of the aging population. Several potential compounds are examined to prevent neurodegenerative diseases, including Curcumae radix, which is known to be beneficial for inflammatory conditions, metabolic syndrome, and various types of pain. However, it is not well studied, and its influence on energy metabolism in ND is unclear. We focused on the relationship between ND and energy metabolism using Curcumae radix extract (CRE) in cells and animal models. We monitored neurodegenerative markers and metabolic indicators using Western blotting and qRT-PCR and then assessed cellular glycolysis and metabolic flux assays. The levels of Alzheimer’s disease-related markers in mouse brains were reduced after treatment with the CRE. We confirmed that neurodegenerative markers decreased in the cerebrum and brain tumor cells following low endoplasmic reticulum (ER) stress markers. Furthermore, glycolysis related genes and the extracellular acidification rate decreased after treatment with the CRE. Interestingly, we found that the CRE exposed mouse brain and cells had increased mitochondrial Tricarboxylic acid (TCA) cycle and Oxidative phosphorylation (OXPHOS) related genes in the CRE group. Curcumae radix may act as a metabolic modulator of brain health and help treat and prevent ND involving mitochondrial dysfunction.
Collapse
|
27
|
Qin X, Ding B, Zhang X, Wang L, Zhang Q, Jiang B. Curcumin Suppresses Colon Cancer In Vitro and In Vivo. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: To discuss In Vitro and In Vivo the effects of curcumin on colon cancer. Material and Methods: SW620 cell and nude mice with tumor were respectively divided into 3 groups: NC, low, middle, high and 5-Fu groups. Measuring the cell activity by MTT,
the cell cycle and cell apoptosis using flow cytometry and relative proteins by WB assay in cell experiment. Evaluating tumor volume and weight, cell apoptosis rate by TUNEL assay and relative proteins by Immunohistochemistry (IHC). Results: Compared with NC group, the SW620 cell activity
was significantly depressed with cell apoptosis and G1 phase rates increasing and PI3K, AKT and P53 proteins expression were significantly differences in curcumin treated groups with dose-dependent by WB assay; In Vivo study, the tumor volume and size were significantly suppressed and
positive cell number were significantly up-regulation in curcumin treated groups with dose-dependent, and PI3K, AKT and P53 proteins expression were significantly differences in curcumin treated groups with dose-dependent by IHC. Conclusions: Curcumin had anti-tumor effects to colon
cancer via regulation PI3K/AKT/P53 pathway In Vivo and vitro study.
Collapse
Affiliation(s)
- Xiaojing Qin
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Bowen Ding
- Department of Anorectal Surgery, The Xuzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Xueyan Zhang
- Department of Anorectal Surgery, The Xuzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Lan Wang
- Department of Anorectal Surgery, The Xuzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Qing Zhang
- Department of Anorectal Surgery, The Xuzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, 221009, China
| | - Bin Jiang
- Department of Anorectal Surgery, The Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210001, China
| |
Collapse
|
28
|
Kooshki L, Mahdavi P, Fakhri S, Akkol EK, Khan H. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. Biofactors 2022; 48:359-383. [PMID: 34724274 DOI: 10.1002/biof.1799] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Anticancer drugs are not purely effective because of their toxicity, side effects, high cost, inaccessibility, and associated resistance. On the other hand, cancer is a complex public health problem that could intelligently adopt different signaling pathways and alter the body's metabolism to escape from the immune system. One of the cancer strategies to metastasize is modifying pH in the tumor microenvironment, ranging between 6.5 and 6.9. As a powerful determiner, lactate is responsible for this acidosis. It is involved in immune stimulation, including innate and adaptive immunity, apoptotic-related factors (Bax/Bcl-2, caspase), and glycolysis pathways (e.g., GLUT-1, PKM2, PFK, HK2, MCT-1, and LDH). Lactate metabolism, in turn, is interconnected with several dysregulated signaling mediators, including PI3K/Akt/mTOR, AMPK, NF-κB, Nrf2, JAK/STAT, and HIF-1α. Because of lactate's emerging and critical role, targeting lactate production and its transporters is important for preventing and managing tumorigenesis. Hence, exploring and developing novel promising anticancer agents to minimize human cancers is urgent. Based on numerous studies, natural secondary metabolites as multi-target alternative compounds with health-promoting properties possess more high effectiveness and low side effects than conventional agents. Besides, the mechanism of multi-targeted natural sources is related to lactate production and cancer-associated cross-talked factors. This review focuses on targeting the lactate metabolism/transporters, and lactate-associated mediators, including glycolytic pathways. Besides, interconnected mediators to lactate metabolism are also targeted by natural products. Accordingly, plant-derived secondary metabolites are introduced as alternative therapies in combating cancer through modulating lactate metabolism and glycolytic pathways.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
29
|
Yang T, Chen Y, Xu J, Li J, Liu H, Liu N. Bioinformatics screening the novel and promising targets of curcumin in hepatocellular carcinoma chemotherapy and prognosis. BMC Complement Med Ther 2022; 22:21. [PMID: 35078445 PMCID: PMC8788085 DOI: 10.1186/s12906-021-03487-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The aim of present study was to screen the novel and promising targets of curcumin in hepatocellular carcinoma diagnosis and chemotherapy. METHODS Potential targets of curcumin were screened from SwissTargetPrediction, ParmMapper and drugbank databases. Potential aberrant genes of hepatocellular carcinoma were screened from Genecards databases. Fifty paired hepatocellular carcinoma patients' gene expression profiles from the GEO database were used to test potential targets of curcumin. Besides, GO analysis, KEGG pathway enrichment analysis and PPI network construction were used to explore the underlying mechanism of candidate hub genes. ROC analysis and Kaplan-Meier analysis were used to evaluate the diagnostic and prognostic value of candidate hub genes, respectively. Real-time PCR was used to verify the results of bioinformatics analysis. RESULTS Bioinformatics analysis results suggested that AURKA, CDK1, CCNB1, TOP2A, CYP2B6, CYP2C9, and CYP3A4 genes served as candidate hub genes. AURKA, CDK1, CCNB1 and TOP2A were significantly upregulated and correlated with poor prognosis in hepatocellular carcinoma, AUC values of which were 95.7, 96.9, 98.1 and 96.1% respectively. There was not significant correlation between the expression of CYP2B6 and prognosis of hepatocellular carcinoma, while CYP2C9 and CYP3A4 genes were significantly downregulated and correlated with poor prognosis in hepatocellular carcinoma. AUC values of CYP2B6, CYP2C9, and CYP3A4 were 96.0, 97.0 and 88.0% respectively. In vitro, we further confirmed that curcumin significantly downregulated the expression of AURKA, CDK1, and TOP2A genes, while significantly upregulated the expression of CYP2B6, CYP2C9, and CYP3A4 genes. CONCLUSIONS Our results provided a novel panel of AURKA, CDK1, TOP2A, CYP2C9, and CYP3A4 candidate genes for curcumin related chemotherapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tingting Yang
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Guangzhou, Guangdong, 510080, P.R. China
| | - Yibiao Chen
- Department of Head and Neck Radiotherapy, Meizhou City People's Hospital, No.6 Building, Huangtang Road 63, Meijiang District, Meizhou, Guangdong, 514031, P.R. China
| | - Jiexuan Xu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Guangzhou, Guangdong, 510080, P.R. China
| | - Jinyuan Li
- Department of Head and Neck Radiotherapy, Meizhou City People's Hospital, No.6 Building, Huangtang Road 63, Meijiang District, Meizhou, Guangdong, 514031, P.R. China
| | - Hong Liu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Guangzhou, Guangdong, 510080, P.R. China.
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Guangzhou, Guangdong, 510080, P.R. China.
| | - Naihua Liu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Guangzhou, Guangdong, 510080, P.R. China.
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Gonghexiheng Street 1, Guangzhou, Guangdong, 510080, P.R. China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Nonglin Down Street 19, Guangzhou, Guangdong, 510080, P.R. China.
| |
Collapse
|
30
|
Mehta A, Kumar Ratre Y, Sharma K, Soni VK, Tiwari AK, Singh RP, Dwivedi MK, Chandra V, Prajapati SK, Shukla D, Vishvakarma NK. Interplay of Nutrition and Psychoneuroendocrineimmune Modulation: Relevance for COVID-19 in BRICS Nations. Front Microbiol 2021; 12:769884. [PMID: 34975797 PMCID: PMC8718880 DOI: 10.3389/fmicb.2021.769884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022] Open
Abstract
The consequences of COVID-19 are not limited to physical health deterioration; the impact on neuropsychological well-being is also substantially reported. The inter-regulation of physical health and psychological well-being through the psychoneuroendocrineimmune (PNEI) axis has enduring consequences in susceptibility, treatment outcome as well as recuperation. The pandemic effects are upsetting the lifestyle, social interaction, and financial security; and also pose a threat through perceived fear. These consequences of COVID-19 also influence the PNEI system and wreck the prognosis. The nutritional status of individuals is also reported to have a determinative role in COVID-19 severity and convalescence. In addition to energetic demand, diet also provides precursor substances [amino acids (AAs), vitamins, etc.] for regulators of the PNEI axis such as neurotransmitters (NTs) and immunomodulators. Moreover, exaggerated immune response and recovery phase of COVID-19 demand additional nutrient intake; widening the gap of pre-existing undernourishment. Mushrooms, fresh fruits and vegetables, herbs and spices, and legumes are few of such readily available food ingredients which are rich in protein and also have medicinal benefits. BRICS nations have their influences on global development and are highly impacted by a large number of confirmed COVID-19 cases and deaths. The adequacy and access to healthcare are also low in BRICS nations as compared to the rest of the world. Attempt to combat the COVID-19 pandemic are praiseworthy in BRICS nations. However, large population sizes, high prevalence of undernourishment (PoU), and high incidence of mental health ailments in BRICS nations provide a suitable landscape for jeopardy of COVID-19. Therefore, appraising the interplay of nutrition and PNEI modulation especially in BRICS countries will provide better understanding; and will aid in combat COVID-19. It can be suggested that the monitoring will assist in designing adjunctive interventions through medical nutrition therapy and psychopsychiatric management.
Collapse
Affiliation(s)
- Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Krishna Sharma
- Department of Psychology, Government Bilasa Girls Post Graduate Autonomous College, Bilaspur, India
| | - Vivek Kumar Soni
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Atul Kumar Tiwari
- Department of Zoology, Bhanwar Singh Porte Government Science College, Pendra, India
| | - Rajat Pratap Singh
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Mrigendra Kumar Dwivedi
- Department of Biochemistry, Government Nagarjuna Post Graduate College of Science, Raipur, India
| | - Vikas Chandra
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | |
Collapse
|
31
|
Soni VK, Mehta A, Ratre YK, Chandra V, Shukla D, Kumar A, Vishvakarma NK. Counteracting Action of Curcumin on High Glucose-Induced Chemoresistance in Hepatic Carcinoma Cells. Front Oncol 2021; 11:738961. [PMID: 34692517 PMCID: PMC8526934 DOI: 10.3389/fonc.2021.738961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Along with direct anticancer activity, curcumin hinders the onset of chemoresistance. Among many, high glucose condition is a key driving factor for chemoresistance. However, the ability of curcumin remains unexplored against high glucose-induced chemoresistance. Moreover, chemoresistance is major hindrance in effective clinical management of liver cancer. Using hepatic carcinoma HepG2 cells, the present investigation demonstrates that high glucose induces chemoresistance, which is averted by the simultaneous presence of curcumin. Curcumin obviated the hyperglycemia-induced modulations like elevated glucose consumption, lactate production, and extracellular acidification, and diminished nitric oxide and reactive oxygen species (ROS) production. Modulated molecular regulators are suggested to play a crucial role as curcumin pretreatment also prevented the onset of chemoresistance by high glucose. High glucose instigated suppression in the intracellular accumulation of anticancer drug doxorubicin and drug-induced chromatin compactness along with declined expression of drug efflux pump MDR-1 and transcription factors and signal transducers governing the survival, aggressiveness, and apoptotic cell death (p53, HIF-1α, mTOR, MYC, STAT3). Curcumin alleviated the suppression of drug retention and nuclear condensation along with hindering the high glucose-induced alterations in transcription factors and signal transducers. High glucose-driven resistance in cancer cells was associated with elevated expression of metabolic enzymes HKII, PFK1, GAPDH, PKM2, LDH-A, IDH3A, and FASN. Metabolite transporters and receptors (GLUT-1, MCT-1, MCT-4, and HCAR-1) were also found upregulated in high glucose exposed HepG2 cells. Curcumin inhibited the elevated expression of these enzymes, transporters, and receptors in cancer cells. Curcumin also uplifted the SDH expression, which was inhibited in high glucose condition. Taken together, the findings of the present investigation first time demonstrate the ability of curcumin against high glucose-induced chemoresistance, along with its molecular mechanism. This will have implication in therapeutic management of malignancies in diabetic conditions.
Collapse
Affiliation(s)
- Vivek Kumar Soni
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Vikas Chandra
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Ajay Kumar
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
32
|
Liu C, Jin Y, Fan Z. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer. Front Oncol 2021; 11:698023. [PMID: 34540667 PMCID: PMC8446599 DOI: 10.3389/fonc.2021.698023] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Although chemotherapy can improve the overall survival and prognosis of cancer patients, chemoresistance remains an obstacle due to the diversity, heterogeneity, and adaptability to environmental alters in clinic. To determine more possibilities for cancer therapy, recent studies have begun to explore changes in the metabolism, especially glycolysis. The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically, even under normoxia, which contributes to chemoresistance. However, the association between glycolysis and chemoresistance and molecular mechanisms of glycolysis-induced chemoresistance remains unclear. This review describes the mechanism of glycolysis-induced chemoresistance from the aspects of glycolysis process, signaling pathways, tumor microenvironment, and their interactions. The understanding of how glycolysis induces chemoresistance may provide new molecular targets and concepts for cancer therapy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
34
|
Cao W, Zhang Y, Li A, Yu P, Song L, Liang J, Cao N, Gao J, Xu R, Ma Y, Tang X. Curcumin reverses hepatic epithelial mesenchymal transition induced by trichloroethylene by inhibiting IL-6R/STAT3. Toxicol Mech Methods 2021; 31:589-599. [PMID: 34233590 DOI: 10.1080/15376516.2021.1941463] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Epithelial mesenchymal transition (EMT) and inflammation have been identified as carcinogenic agents. This study aims to investigate whether inhibition of trichloroethylene (TCE) associated hepatocellular carcinoma (HCC) by curcumin is associated with inflammation and EMT. METHODS In the current study, TCE sub-chronic cell model was induced in vitro, and the effects of TCE on cell proliferation, migration, invasion, and expression of functional proteins were verified by Western blot, MTT, clone formation, wound healing, Transwell. The detoxification effect of curcumin on TCE was explored by a mouse tumor-bearing experiment. RESULTS TCE induces hepatocyte migration, colony formation, and EMT in vitro. In vivo studies have shown that curcumin significantly reduces the mortality of mice and control the occurrence and size of liver tumors by inhibiting the IL-6/STAT3 signaling pathway. In vitro, curcumin inhibits the proliferation of HepG2 cells as determined by MTT assay. In addition, curcumin significantly inhibited the protein expression of IL-6R, STAT3, snail, survivin, and cyclin D1 in THLE-2 and HepG2 cells induced by IL-6. CONCLUSION Curcumin has anti-inflammatory and anti-proliferative effects, and inhibits the development of HCC induced by TCE by reversing IL-6/STAT3 mediated EMT.
Collapse
Affiliation(s)
- Weiya Cao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Yinci Zhang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Amin Li
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Pan Yu
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Li Song
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Jiaojiao Liang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Niandie Cao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Jiafeng Gao
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Ruyue Xu
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Yongfang Ma
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Xiaolong Tang
- Medical School, Anhui University of Science and Technology, Huainan, China.,Institute of Environment-friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| |
Collapse
|
35
|
Dias AS, Helguero L, Almeida CR, Duarte IF. Natural Compounds as Metabolic Modulators of the Tumor Microenvironment. Molecules 2021; 26:molecules26123494. [PMID: 34201298 PMCID: PMC8228554 DOI: 10.3390/molecules26123494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is a heterogenous assemblage of malignant and non-malignant cells, including infiltrating immune cells and other stromal cells, together with extracellular matrix and a variety of soluble factors. This complex and dynamic milieu strongly affects tumor differentiation, progression, immune evasion, and response to therapy, thus being an important therapeutic target. The phenotypic and functional features of the various cell types present in the TME are largely dependent on their ability to adopt different metabolic programs. Hence, modulating the metabolism of the cells in the TME, and their metabolic crosstalk, has emerged as a promising strategy in the context of anticancer therapies. Natural compounds offer an attractive tool in this respect as their multiple biological activities can potentially be harnessed to ‘(re)-educate’ TME cells towards antitumoral roles. The present review discusses how natural compounds shape the metabolism of stromal cells in the TME and how this may impact tumor development and progression.
Collapse
Affiliation(s)
- Ana S. Dias
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Luisa Helguero
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Catarina R. Almeida
- Department of Medical Sciences, iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (L.H.); (C.R.A.)
| | - Iola F. Duarte
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Correspondence: ; Tel.: +351-234-401-418
| |
Collapse
|
36
|
Soni VK, Mehta A, Ratre YK, Tiwari AK, Amit A, Singh RP, Sonkar SC, Chaturvedi N, Shukla D, Vishvakarma NK. Curcumin, a traditional spice component, can hold the promise against COVID-19? Eur J Pharmacol 2020; 886:173551. [PMID: 32931783 PMCID: PMC7832734 DOI: 10.1016/j.ejphar.2020.173551] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/17/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022]
Abstract
The severity of the recent pandemic and the absence of any specific medication impelled the identification of existing drugs with potential in the treatment of Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Curcumin, known for its pharmacological abilities especially as an anti-inflammatory agent, can be hypothesized as a potential candidate in the therapeutic regimen. COVID-19 has an assorted range of pathophysiological consequences, including pulmonary damage, elevated inflammatory response, coagulopathy, and multi-organ damage. This review summarizes the several evidences for the pharmacological benefits of curcumin in COVID-19-associated clinical manifestations. Curcumin can be appraised to hinder cellular entry, replication of SARS-CoV-2, and to prevent and repair COVID-19-associated damage of pneumocytes, renal cells, cardiomyocytes, hematopoietic stem cells, etc. The modulation and protective effect of curcumin on cytokine storm-related disorders are also discussed. Collectively, this review provides grounds for its clinical evaluation in the therapeutic management of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Vivek Kumar Soni
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Yashwant Kumar Ratre
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Atul Kumar Tiwari
- Department of Zoology, Bhanwar Singh Porte Government Science College, Pendra, Chhattisgarh, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Rajat Pratap Singh
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Subash Chandra Sonkar
- Multidisciplinary Research Unit, Maulana Azad Medical College, University of Delhi, New Delhi, India
| | - Navaneet Chaturvedi
- Department of Molecular and Cell Biology, Henry Welcome Building, University of Leicester, Leicester, LE26AW, UK; School of Biochemical Engineering, Indian Institute of Technology-Banaras Hindu University (IIT-BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India.
| | - Naveen Kumar Vishvakarma
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
37
|
Cosín-Roger J, Ortiz-Masia D, Barrachina MD, Calatayud S. Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment? Cells 2020; 9:cells9112345. [PMID: 33113952 PMCID: PMC7690732 DOI: 10.3390/cells9112345] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
G-protein-coupled receptors constitute the most diverse and largest receptor family in the human genome, with approximately 800 different members identified. Given the well-known metabolic alterations in cancer development, we will focus specifically in the 19 G-protein-coupled receptors (GPCRs), which can be selectively activated by metabolites. These metabolite sensing GPCRs control crucial processes, such as cell proliferation, differentiation, migration, and survival after their activation. In the present review, we will describe the main functions of these metabolite sensing GPCRs and shed light on the benefits of their potential use as possible pharmacological targets for cancer treatment.
Collapse
Affiliation(s)
- Jesús Cosín-Roger
- Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain
- Correspondence: ; Tel.: +34-963851234
| | - Dolores Ortiz-Masia
- Departament of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Maria Dolores Barrachina
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| | - Sara Calatayud
- Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (M.D.B.); (S.C.)
| |
Collapse
|
38
|
Soni VK, Mehta A, Shukla D, Kumar S, Vishvakarma NK. Fight COVID-19 depression with immunity booster: Curcumin for psychoneuroimmunomodulation. Asian J Psychiatr 2020; 53:102378. [PMID: 32916441 PMCID: PMC7462590 DOI: 10.1016/j.ajp.2020.102378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Vivek Kumar Soni
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
| | - Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
| | - Sujeet Kumar
- Department of Education, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
| | - Naveen Kumar Vishvakarma
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India.
| |
Collapse
|
39
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|
40
|
Zielińska A, Alves H, Marques V, Durazzo A, Lucarini M, Alves TF, Morsink M, Willemen N, Eder P, Chaud MV, Severino P, Santini A, Souto EB. Properties, Extraction Methods, and Delivery Systems for Curcumin as a Natural Source of Beneficial Health Effects. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E336. [PMID: 32635279 PMCID: PMC7404808 DOI: 10.3390/medicina56070336] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
This review discusses the impact of curcumin-an aromatic phytoextract from the turmeric (Curcuma longa) rhizome-as an effective therapeutic agent. Despite all of the beneficial health properties ensured by curcumin application, its pharmacological efficacy is compromised in vivo due to poor aqueous solubility, high metabolism, and rapid excretion that may result in poor systemic bioavailability. To overcome these problems, novel nanosystems have been proposed to enhance its bioavailability and bioactivity by reducing the particle size, the modification of surfaces, and the encapsulation efficiency of curcumin with different nanocarriers. The solutions based on nanotechnology can improve the perspective for medical patients with serious illnesses. In this review, we discuss commonly used curcumin-loaded bio-based nanoparticles that should be implemented for overcoming the innate constraints of this natural ingredient. Furthermore, the associated challenges regarding the potential applications in combination therapies are discussed as well.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (H.A.); (V.M.)
- Polish Academy of Sciences, Institute of Human Genetics, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Henrique Alves
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (H.A.); (V.M.)
| | - Vânia Marques
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (H.A.); (V.M.)
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Thais F. Alves
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba-UNISO, Sorocaba, São Paulo 18023-000, Brazil; (T.F.A.); (M.V.C.)
| | - Margreet Morsink
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women& Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; (M.M.); (N.W.); (P.S.)
- Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Niels Willemen
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women& Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; (M.M.); (N.W.); (P.S.)
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522 NB Enschede, The Netherlands
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Marco V. Chaud
- Laboratory of Biomaterials and Nanotechnology, University of Sorocaba-UNISO, Sorocaba, São Paulo 18023-000, Brazil; (T.F.A.); (M.V.C.)
| | - Patricia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women& Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; (M.M.); (N.W.); (P.S.)
- Nanomedicine and Nanotechnology Laboratory (LNMed), Biotechnological Postgraduate Program, and Institute of Technology and Research (ITP), University of Tiradentes (Unit), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (H.A.); (V.M.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
41
|
Ashrafizadeh M, Zarrabi A, Hashemi F, Moghadam ER, Hashemi F, Entezari M, Hushmandi K, Mohammadinejad R, Najafi M. Curcumin in cancer therapy: A novel adjunct for combination chemotherapy with paclitaxel and alleviation of its adverse effects. Life Sci 2020; 256:117984. [PMID: 32593707 DOI: 10.1016/j.lfs.2020.117984] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Dealing with cancer is of importance due to enhanced incidence rate of this life-threatening disorder. Chemotherapy is an ideal candidate in overcoming and eradication of cancer. To date, various chemotherapeutic agents have been applied in cancer therapy and paclitaxel (PTX) is one of them. PTX is a key member of taxane family with potential anti-tumor activity against different cancers. Notably, PTX has demonstrated excellent proficiency in elimination of cancer in clinical trials. This chemotherapeutic agent is isolated from Taxus brevifolia, and is a tricyclic diterpenoid. However, resistance of cancer cells into PTX chemotherapy has endangered its efficacy. Besides, administration of PTX is associated with a number of side effects such as neurotoxicity, hepatotoxicity, cardiotoxicity and so on, demanding novel strategies in obviating PTX issues. Curcumin is a pharmacological compound with diverse therapeutic effects including anti-tumor, anti-oxidant, anti-inflammatory, anti-diabetic and so on. In the current review, we demonstrate that curcumin, a naturally occurring nutraceutical compound is able to enhance anti-tumor activity of PTX against different cancers. Besides, curcumin administration reduces adverse effects of PTX due to its excellent pharmacological activities. These topics are discussed with an emphasis on molecular pathways to provide direction for further studies in revealing other signaling networks.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzia, Istanbul 34956, Turkey
| | - Farid Hashemi
- DVM, Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|