1
|
Saedi S, Tan Y, Watson SE, Wintergerst KA, Cai L. Potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in individuals with diabetes. Front Endocrinol (Lausanne) 2024; 15:1461171. [PMID: 39415790 PMCID: PMC11479913 DOI: 10.3389/fendo.2024.1461171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes and its complications are major diseases that affect human health. Diabetic cardiovascular complications such as cardiovascular diseases (CVDs) are the major complications of diabetes, which are associated with the loss of cardiovascular cells. Pathogenically the role of ferroptosis, an iron-dependent cell death, and cuproptosis, a copper-dependent cell death has recently been receiving attention for the pathogenesis of diabetes and its cardiovascular complications. How exposure to environmental metals affects these two metal-dependent cell deaths in cardiovascular pathogenesis under diabetic and nondiabetic conditions remains largely unknown. As an omnipresent environmental metal, cadmium exposure can cause oxidative stress in the diabetic cardiomyocytes, leading to iron accumulation, glutathione depletion, lipid peroxidation, and finally exacerbate ferroptosis and disrupt the cardiac. Moreover, cadmium-induced hyperglycemia can enhance the circulation of advanced glycation end products (AGEs). Excessive AGEs in diabetes promote the upregulation of copper importer solute carrier family 31 member 1 through activating transcription factor 3/transcription factor PU.1, thereby increasing intracellular Cu+ accumulation in cardiomyocytes and disturbing Cu+ homeostasis, leading to a decline of Fe-S cluster protein and reactive oxygen species accumulation in cardiomyocytes mitochondria. In this review, we summarize the available evidence and the most recent advances exploring the underlying mechanisms of ferroptosis and cuproptosis in CVDs and diabetic cardiovascular complications, to provide critical perspectives on the potential pathogenic roles of ferroptosis and cuproptosis in cadmium-induced or exacerbated cardiovascular complications in diabetic individuals.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Sara E. Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
| | - Kupper A. Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children’s Hospital, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Wendy Novak Diabetes Institute, Norton Children’s Hospital, Louisville, KY, United States
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, United States
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
2
|
Choneva M, Delchev S, Hrischev P, Dimov I, Boyanov K, Dimitrov I, Gerginska F, Georgieva K, Bacelova M, Bivolarska A. Modulation of the Cardiovascular Risk in Type 1 Diabetic Rats by Endurance Training in Combination with the Prebiotic Xylooligosaccharide. Int J Mol Sci 2024; 25:10027. [PMID: 39337515 PMCID: PMC11432573 DOI: 10.3390/ijms251810027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic cardiomyopathy is a major etiological factor in heart failure in diabetic patients, characterized by mitochondrial oxidative metabolism dysfunction, myocardial fibrosis, and marked glycogen elevation. The aim of the present study is to evaluate the effect of endurance training and prebiotic xylooligosaccharide (XOS) on the activity of key oxidative enzymes, myocardial collagen, and glycogen distribution as well as some serum biochemical risk markers in streptozotocin-induced type 1 diabetic rats. Male Wistar rats (n = 36) were divided into four diabetic groups (n = 9): sedentary diabetic rats on a normal diet (SDN), trained diabetic rats on a normal diet (TDN), trained diabetic rats on a normal diet with an XOS supplement (TD-XOS), and sedentary diabetic rats with an XOS supplement (SD-XOS). The results show that aerobic training managed to increase the enzyme activity of respiratory Complex I and II and the lactate dehydrogenase in the cardiomyocytes of the diabetic rats. Furthermore, the combination of exercise and XOS significantly decreased the collagen and glycogen content. No significant effects on blood pressure, heart rate or markers of inflammation were detected. These results demonstrate the beneficial effects of exercise, alone or in combination with XOS, on the cardiac mitochondrial enzymology and histopathology of diabetic rats.
Collapse
Affiliation(s)
- Mariya Choneva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Slavi Delchev
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.D.); (F.G.)
| | - Petar Hrischev
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.H.); (K.G.); (M.B.)
| | - Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Krasimir Boyanov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Iliyan Dimitrov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| | - Fanka Gerginska
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (S.D.); (F.G.)
| | - Katerina Georgieva
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.H.); (K.G.); (M.B.)
| | - Mariana Bacelova
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.H.); (K.G.); (M.B.)
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (I.D.); (K.B.); (I.D.); (A.B.)
| |
Collapse
|
3
|
Teng W, Zhou Z, Cao J, Guo Q. Recent Advances of Natural Pentacyclic Triterpenoids as Bioactive Delivery System for Synergetic Biological Applications. Foods 2024; 13:2226. [PMID: 39063310 PMCID: PMC11275325 DOI: 10.3390/foods13142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Bioactive compounds have drawn much attention according to their various health benefits. However, poor dissolvability, low stability and limited bioavailability largely narrow their applications. Although a variety of nontoxic ingredients have been rapidly developed as vehicles to deliver bioactive compounds in the last few years, most of them are non-bioactive. Pentacyclic triterpenoids, owing to their unique self-assembly and co-assembly behaviors and different physiological functions, can construct bioactive carriers due to their higher biodegradability, biocompatibility and lower toxicity. In this paper, the basic classification, biological activities and physicochemical properties of pentacyclic triterpenoids were summarized. Additionally, applications of self-assembled and co-assembled pentacyclic triterpenoids as bioactive delivery systems to load bioactive components and future research directions were discussed. This study emphasizes the potential of pentacyclic triterpenoids as bioactive delivery systems, offering a new perspective for constructing self- or co-assemblies for further synergetic biological applications.
Collapse
Affiliation(s)
- Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Zixiao Zhou
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (W.T.); (Z.Z.); (J.C.)
| | - Qing Guo
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Zhang Z, Zuo L, Song X, Wang L, Zhang Y, Cheng Y, Huang J, Zhao T, Yang Z, Zhang H, Li J, Zhang X, Geng Z, Wang Y, Ge S, Hu J. Arjunolic acid protects the intestinal epithelial barrier, ameliorating Crohn's disease-like colitis by restoring gut microbiota composition and inactivating TLR4 signalling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155223. [PMID: 38134862 DOI: 10.1016/j.phymed.2023.155223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) is characterized by an overabundance of epithelial cell death and an imbalance in microflora, both of which contribute to the dysfunction of the intestinal barrier. Arjunolic acid (AA) has anti-apoptotic effects and regulates microbiota efficacy. The objective of this study was to assess the impact of the treatment on colitis resembling Crohn's disease, along with exploring the potential underlying mechanism. METHODS CD animal models were created using Il-10-/- mice, and the impact of AA on colitis in mice was evaluated through disease activity index, weight fluctuations, pathological examination, and assessment of intestinal barrier function. To clarify the direct role of AA on intestinal epithelial cell apoptosis, organoids were induced by LPS, and TUNEL staining was performed. To investigate the potential mechanisms of AA in protecting the intestinal barrier, various methods including bioinformatics analysis and FMT experiments were employed. RESULTS The treatment for AA enhanced the condition of colitis and the function of the intestinal barrier in Il-10-/- mice. This was demonstrated by the amelioration of weight loss, reduction in tissue inflammation score, and improvement in intestinal permeability. Moreover, AA suppressed the apoptosis of intestinal epithelial cells in Il-10-/- mice and LPS-induced colon organoids, while also reducing the levels of Bax and C-caspase-3. In terms of mechanism, AA suppressed the activation of TLR4 signaling in Il-10-/- mice and colon organoids induced by LPS. In addition, AA increased the abundance of short-chain fatty acid-producing bacteria in the stool of Il-10-/- mice, and transplantation of feces from AA-treated mice improved CD-like colitis. CONCLUSIONS The results of our study demonstrate that AA has a protective effect on the intestinal barrier in Crohn's disease-like colitis by preventing apoptosis. Additionally, this groundbreaking study reveals the capacity of AA to hinder TLR4 signaling and alter the makeup of the intestinal microbiome. The findings present fresh possibilities for treating individuals diagnosed with Crohn's disease. AA offers a hopeful novel strategy for managing Crohn's disease by obstructing crucial pathways implicated in intestinal inflammation and enhancing the gut microbiota.
Collapse
Affiliation(s)
- Zining Zhang
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China
| | - Xue Song
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Zhang
- Bengbu Medical College, Bengbu, Anhui, China
| | - Yang Cheng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ju Huang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tianhao Zhao
- Department of Gastroenterology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zi Yang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jing Li
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu, Medical College, Bengbu, China
| | - Xiaofeng Zhang
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu, Medical College, Bengbu, China
| | - Sitang Ge
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China
| | - Jianguo Hu
- Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Anhui, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu, Medical College, Bengbu, China.
| |
Collapse
|
5
|
Hasan MM, Madhavan P, Ahmad Noruddin NA, Lau WK, Ahmed QU, Arya A, Zakaria ZA. Cardioprotective effects of arjunolic acid in LPS-stimulated H9C2 and C2C12 myotubes via the My88-dependent TLR4 signaling pathway. PHARMACEUTICAL BIOLOGY 2023; 61:1135-1151. [PMID: 37497554 PMCID: PMC10375937 DOI: 10.1080/13880209.2023.2230251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/21/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
CONTEXT Arjunolic acid (AA) is a triterpenoid saponin found in Terminalia arjuna (Roxb.) Wight & Arn. (Combretaceae). It exerts cardiovascular protective effects as a phytomedicine. However, it is unclear how AA exerts the effects at the molecular level. OBJECTIVE This study investigates the cardioprotective effects of arjunolic acid (AA) via MyD88-dependant TLR4 downstream signaling marker expression. MATERIALS AND METHODS The MTT viability assay was used to assess the cytotoxicity of AA. LPS induced in vitro cardiovascular disease model was developed in H9C2 and C2C12 myotubes. The treatment groups were designed such as control (untreated), LPS control, positive control (LPS + pyrrolidine dithiocarbamate (PDTC)-25 µM), and treatment groups were co-treated with LPS and three concentrations of AA (50, 75, and 100 µM) for 24 h. The changes in the expression of TLR4 downstream signaling markers were evaluated through High Content Screening (HCS) and Western Blot (WB) analysis. RESULTS After 24 h of co-treatment, the expression of TLR4, MyD88, MAPK, JNK, and NF-κB markers were upregulated significantly (2-6 times) in the LPS-treated groups compared to the untreated control in both HCS and WB experiments. Evidently, the HCS analysis revealed that MyD88, NF-κB, p38, and JNK were significantly downregulated in the H9C2 myotube in the AA treated groups. In HCS, the expression of NF-κB was downregulated in C2C12. Additionally, TLR4 expression was downregulated in both H9C2 and C2C12 myotubes in the WB experiment. DISCUSSION AND CONCLUSIONS TLR4 marker expression in H9C2 and C2C12 myotubes was subsequently decreased by AA treatment, suggesting possible cardioprotective effects of AA.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Nur Adelina Ahmad Noruddin
- National Institutes of Biotechnology Malaysia, Malaysian Institute of Pharmaceuticals and Nutraceuticals, Serdang, Malaysia
| | - Wai Kwan Lau
- National Institutes of Biotechnology Malaysia, Malaysian Institute of Pharmaceuticals and Nutraceuticals, Serdang, Malaysia
| | - Qamar Uddin Ahmed
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Aditya Arya
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
- National Institutes of Biotechnology Malaysia, Malaysian Institute of Pharmaceuticals and Nutraceuticals, Serdang, Malaysia
- School of Biosciences, Faculty of Science, The University of Melbourne, Melbourne, Australia
| | - Zainul Amiruddin Zakaria
- Borneo Research for Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Malaysia
| |
Collapse
|
6
|
Boeing T, Reis Lívero FAD, de Souza P, de Almeida DAT, Donadel G, Lourenço ELB, Gasparotto Junior A. Natural Products as Modulators of Mitochondrial Dysfunctions Associated with Cardiovascular Diseases: Advances and Opportunities. J Med Food 2023; 26:279-298. [PMID: 37186894 DOI: 10.1089/jmf.2022.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The mitochondria have an important role in modulating cell cycle progression, cell survival, and apoptosis. In the adult heart, the cardiac mitochondria have a unique spatial arrangement and occupy nearly one-third the volume of a cardiomyocyte, being highly efficient for converting the products of glucose or fatty acid metabolism into adenosine triphosphate (ATP). In cardiomyocytes, the decline of mitochondrial function reduces ATP generation and increases the production of reactive oxygen species, which generates impaired heart function. This is because mitochondria play a key role in maintaining cytosolic calcium concentration and modulation of muscle contraction, as ATP is required to dissociate actin from myosin. Beyond that, mitochondria have a significant role in cardiomyocyte apoptosis because it is evident that patients who have cardiovascular diseases (CVDs) have increased mitochondrial DNA damage to the heart and aorta. Many studies have shown that natural products have mitochondria-modulating effects in cardiac diseases, determining them as potential candidates for new medicines. This review outlines the leading plant secondary metabolites and natural compounds derived from microorganisms as modulators of mitochondrial dysfunctions associated with CVDs.
Collapse
Affiliation(s)
- Thaise Boeing
- Graduate Program in Pharmaceutical Sciences, Chemical-Pharmaceutical Research Nucleus, University of Vale do Itajaí, Itajaí, Brazil
| | - Francislaine Aparecida Dos Reis Lívero
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Priscila de Souza
- Graduate Program in Pharmaceutical Sciences, Chemical-Pharmaceutical Research Nucleus, University of Vale do Itajaí, Itajaí, Brazil
| | - Danielle Ayr Tavares de Almeida
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Guilherme Donadel
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Emerson Luiz Botelho Lourenço
- Laboratory of Pre-Clinical Research of Natural Products, Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University, Umuarama, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|
7
|
Aamir K, Khan HU, Hossain CF, Afrin MR, Jusuf PR, Waheed I, Sethi G, Arya A. Arjunolic acid downregulates elevated blood sugar and pro-inflammatory cytokines in streptozotocin (STZ)-nicotinamide induced type 2 diabetic rats. Life Sci 2022; 289:120232. [PMID: 34919901 DOI: 10.1016/j.lfs.2021.120232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a worldwide health issue primarily due to failure of pancreatic β-cells to release sufficient insulin. PURPOSE The present work aimed to assess the antidiabetic potential of arjunolic acid (AA) isolated from Terminalia arjuna in type 2 diabetic rats. STUDY DESIGN After extraction, isolation and purification, AA was orally administered to type 2 diabetic Sprague Dawley rats to investigate antidiabetic effect of AA. METHOD T2DM was induced via single intraperitoneal injection of streptozotocin-nicotinamide (STZ-NIC) in adult male rats. After 10 days, fasting and random blood glucose (FBG and RBG), body weight (BW), food and water intake, serum C-peptide, insulin and glycated hemoglobin (HbA1c) was measured to confirm T2DM development. Dose dependent effects of orally administered AA (25 and 50 mg/kg/day) for 4 weeks was investigated by measuring BW variation, fasting and postprandial hyperglycemia, oral glucose tolerance test (OGTT), and levels of serum HbA1c, serum total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL), high density lipoprotein (HDL), serum and pancreatic C-peptide, insulin, growth differentiation factor 15 (GDF-15), serum and pancreatic inflammatory cytokines. RESULTS The oral administration of AA in preclinical model of T2DM significantly normalized FBG and RBG, restored BW, controlled polyphagia, polydipsia and glucose tolerance. In addition, AA notably reduced serum HbA1c, TC, TG, LDL with non-significant increase in HDL. On the other hand, significant increase in serum and pancreatic C-peptide and insulin was observed with AA treatment, while serum and pancreatic GDF-15 were non-significantly altered in AA treated diabetic rats. Moreover, AA showed dose dependent reduction in serum and pancreatic proinflammatory cytokines including TNF-α, IL-1β and IL-6. CONCLUSION For the first time our findings highlighted AA as a potential candidate in type 2 diabetic conditions.
Collapse
Affiliation(s)
- Khurram Aamir
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia; Akhtar Saeed College of Pharmacy, Canal Campus, Lahore, Pakistan
| | - Hidayat Ullah Khan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selengor, Malaysia
| | - Chowdhury Faiz Hossain
- Department of Pharmacy, Faculty of Sciences and Engineering, East West University, Dhaka 1212, Bangladesh
| | - Mst Rejina Afrin
- Department of Pharmacy, Faculty of Sciences and Engineering, East West University, Dhaka 1212, Bangladesh
| | | | - Imran Waheed
- Akhtar Saeed College of Pharmacy, Canal Campus, Lahore, Pakistan
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Aditya Arya
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia; Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
| |
Collapse
|
8
|
Wang Q, Wang J, Li N, Liu J, Zhou J, Zhuang P, Chen H. A Systematic Review of Orthosiphon stamineus Benth. in the Treatment of Diabetes and Its Complications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020444. [PMID: 35056765 PMCID: PMC8781015 DOI: 10.3390/molecules27020444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
(1) Background: Orthosiphon stamineus Benth. is a traditional medicine used in the treatment of diabetes and chronic renal failure in southern China, Malaysia, and Thailand. Diabetes is a chronic metabolic disease and the number of diabetic patients in the world is increasing. This review aimed to systematically review the effects of O. stamineus in the treatment of diabetes and its complications and the pharmacodynamic material basis. (2) Methods: This systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), using the databases ScienceDirect, PubMed, and Web of Science. (3) Results: Thirty-one articles related to O. stamineus and diabetes were included. The mechanisms of O. stamineus in the treatment of diabetes and its complications mainly included inhibiting α-amylase and α-glucosidase activities, antioxidant and anti-inflammatory activities, regulating lipid metabolism, promoting insulin secretion, ameliorating insulin resistance, increasing glucose uptake, promoting glycolysis, inhibiting gluconeogenesis, promoting glucagon-likepeptide-1 (GLP-1) secretion and antiglycation activity. Phenolic acids, flavonoids and triterpenoids might be the main components for hypoglycemia effects in O. stamineus. (4) Conclusion: O. stamineus could be an antidiabetic agent to treat diabetes and its complications. However, it needs further study on a pharmacodynamic substance basis and the mechanisms of effective constituents.
Collapse
Affiliation(s)
- Qirou Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.W.); (N.L.); (J.L.); (J.Z.)
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.W.); (N.L.); (J.L.); (J.Z.)
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.W.); (N.L.); (J.L.); (J.Z.)
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.W.); (N.L.); (J.L.); (J.Z.)
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.W.); (N.L.); (J.L.); (J.Z.)
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; (Q.W.); (J.W.); (N.L.); (J.L.); (J.Z.)
- Correspondence: ; Tel.: +86-22-2740-1483
| |
Collapse
|
9
|
Sajadimajd S, Khosravifar M, Bahrami G. Anti-Diabetic Effects of Isolated Lipids from Natural Sources through Modulation of Angiogenesis. Curr Mol Pharmacol 2021; 15:589-606. [PMID: 34473620 DOI: 10.2174/1874467214666210902121337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/10/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aberrant angiogenesis plays a fateful role in the development of diabetes and diabetic complications. Lipids, as a diverse group of biomacromolecules, are able to relieve diabetes through the modulation of angiogenesis. OBJECTIVE Owing to the present remarkable anti-diabetic effects with no or few side effects of lipids, the aim of this study was to assess the state-of-the-art research on anti-diabetic effects of lipids via the modulation of angiogenesis. METHODS To study the effects of lipids in diabetes via modulation of angiogenesis, we have searched the electronic databases including Scopus, PubMed, and Cochrane. RESULTS The promising anti-diabetic effects of lipids were reported in several studies. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil (FO) were reported to significantly induce neovasculogenesis in high glucose (HG)-mediated endothelial progenitor cells (EPCs) neovasculogenic dysfunction in type 2 diabetic mice. Linoleic acid, mono-epoxy-tocotrienol-α (MeT3α), and ginsenoside Rg1 facilitate wound closure and vessel formation. N-Palmitoylethanolamine (PEA), α-linolenic acid (ALA), omega-3 (ω3) lipids from flaxseed (FS) oil, ω-3 polyunsaturated fatty acids (PUFA), lipoic acid, taurine, and zeaxanthin (Zx) are effective in diabetic retinopathy via suppression of angiogenesis. Lysophosphatidic acid, alkyl-glycerophosphate, crocin, arjunolic acid, α-lipoic acid, and FS oil are involved in the management of diabetes and its cardiac complications. Furthermore, in two clinical trials, R-(+)-lipoic acid (RLA) in combination with hyperbaric oxygenation therapy (HBOT) for treatment of chronic wound healing in DM patients, as well as supplementation with DHA plus antioxidants along with intravitreal ranibizumab were investigated for its effects on diabetic macular edema. CONCLUSION Proof-of-concept studies presented here seem to well shed light on the anti-diabetic effects of lipids via modulation of angiogenesis.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Mina Khosravifar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Gholamreza Bahrami
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
10
|
Advanced Glycation End Products: Potential Mechanism and Therapeutic Target in Cardiovascular Complications under Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9570616. [PMID: 31885827 PMCID: PMC6925928 DOI: 10.1155/2019/9570616] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
The occurrence and development of cardiovascular complications are predominantly responsible for the increased morbidity and mortality observed in patients with diabetes. Oxidative stress under hyperglycemia is currently considered the initial link to diabetic cardiovascular complications and a key node for the prevention and treatment of diabetes-related fatal cardiovascular events. Numerous studies have indicated that the common upstream pathway in the context of oxidative stress in the cardiovascular system under diabetic conditions is the interaction of advanced glycation end products (AGEs) with their receptors (RAGEs). Therefore, a further understanding of the relationship between oxidative stress and AGEs is of great significance for the prevention and treatment of cardiovascular complications in patients with diabetes. In this review, we will briefly summarize the recent research advances in diabetes with an emphasis on oxidative stress and its association with AGEs in diabetic cardiovascular complications.
Collapse
|
11
|
Wang XT, Gong Y, Zhou B, Yang JJ, Cheng Y, Zhao JG, Qi MY. Ursolic acid ameliorates oxidative stress, inflammation and fibrosis in diabetic cardiomyopathy rats. Biomed Pharmacother 2018; 97:1461-1467. [PMID: 29156537 DOI: 10.1016/j.biopha.2017.11.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/30/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy is a major and severe cardiovascular complication of diabetes mellitus. Ursolic acid, a pentacyclic triterpene compound widespread in fruits and plants, performs a variety of pharmacological activities including lowering blood glucose, anti-oxidation, anti-inflammation and anti-fibrosis. Our present study aimed to investigate the cardioprotective effects of ursolic acid on diabetic cardiomyopathy rats and uncover its underlying mechanism. Diabetes mellitus was induced by a single injection of STZ-only (40 mg/ kg, i.v.) in male SD rats. Animals were divided into three groups (n=10): control group (normal saline, i.g.), diabetic group (normal saline, i.g.) and diabetic+ursolic acid group (35 mg/kg UA + normal saline, i.g.). Rats were administered for 8 weeks from 5th to 12th week. After the last administration, cardiac function was evaluated; HWI was calculated; FBG, CK, LDH in serum and SOD, MDA in cardiac tissue were detected. HE staining and Masson trichrome staining were employed to observe pathological alterations. Immunohistochemistry and western blotting were taken to determine the expression levels of TNF-α, MCP-1, TGF-β1 and MMP-2 in the heart. The results dramatically showed increased levels of FBG, CK, LDH, MDA and a decreased activity of SOD in diabetic group, in which left ventricular dysfunction, cardiac myocytes hypertrophy, inflammatory cell infiltration and myocardial interstitial fibrosis had also been found. What's more, the expressions of TNF-α, MCP-1 and TGF-β1 were significantly up-regulated and the expression of MMP-2 was markedly down-regulated in myocardium. Interestingly, treatment with ursolic acid remarkably ameliorated these changes. Collectively, our study strongly showed that ursolic acid is capable of improving the cardiac structure and function in STZ-induced diabetic cardiomyopathy rats by attenuating oxidative stress, inflammation and fibrosis.
Collapse
Affiliation(s)
- Xu-Tao Wang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yan Gong
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Bin Zhou
- Zhejiang Center for Drug Inspection, Hangzhou, Zhejiang, 310014, China
| | - Jun-Jie Yang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yin Cheng
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jin-Guo Zhao
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Min-You Qi
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
12
|
Sarkar P, Basak P, Ghosh S, Kundu M, Sil PC. Prophylactic role of taurine and its derivatives against diabetes mellitus and its related complications. Food Chem Toxicol 2017; 110:109-121. [PMID: 29050977 DOI: 10.1016/j.fct.2017.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/08/2023]
Abstract
Taurine is a conditionally essential amino acid present in the body in free form. Mammalian taurine is synthesized in the pancreas via the cysteine sulfinic acid pathway. Anti-oxidation and anti-inflammation are two main properties through which it exerts its therapeutic effects. Many studies have shown its excellent therapeutic potential against diabetes mellitus and related complications like diabetic neuropathy, retinopathy, nephropathy, hematological dysfunctions, reproductive dysfunctions, liver and pancreas related complications etc. Not only taurine, a number of its derivatives have also been reported to be important in ameliorating diabetic complications. The present review has been aimed to describe the importance of taurine and its derivatives against diabetic metabolic syndrome and related complications.
Collapse
Affiliation(s)
- Poulami Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Priyanka Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Mousumi Kundu
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India.
| |
Collapse
|
13
|
Rashid K, Chowdhury S, Ghosh S, Sil PC. Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes. Biochem Pharmacol 2017; 143:140-155. [PMID: 28711624 DOI: 10.1016/j.bcp.2017.07.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022]
Abstract
The present study was aimed to determine the curative role of curcumin against diabetes induced oxidative stress and its associated splenic complications. Diabetes was induced in the experimental rats via the intraperitoneal administration of a single dose of STZ (65mgkg-1body weight). Increased blood glucose and intracellular ROS levels along with decreased body weight, the activity of cellular antioxidant enzymes and GSH/GSSG ratio were observed in the diabetic animals. Histological assessment showed white pulp depletion and damaged spleen anatomy in these animals. Oral administration of curcumin at a dose of 100mgkg-1 body weight daily for 8weeks, however, restored these alterations. Investigation of the mechanism of hyperglycemia induced oxidative stress mediated inflammation showed upregulation of inflammatory cytokines, chemokines, adhesion molecules and increased translocation of NFκB into the nucleus. Moreover, ER stress dependent cell death showed induction of eIF2α and CHOP mediated signalling pathways as well as increment in the expression of GRP78, Caspase-12, Calpain-1, phospho JNK, phospho p38 and phospho p53 in the diabetic group. Alteration of Bax/Bcl-2 ratio; disruption of mitochondrial membrane potential, release of cytochrome-C from mitochondria and upregulation of caspase 3 along with the formation of characteristic DNA ladder in the diabetic animals suggest the involvement of mitochondria dependent apoptotic pathway in the splenic cells. Treatment with curcumin could, however, protect cells from inflammatory damage and ER as well as mitochondrial apoptotic death by restoring the alterations of these parameters. Our results suggest that curcumin has the potential to act as an anti-diabetic, anti-oxidant, anti-inflammatory and anti-apoptotic therapeutic against diabetes mediated splenic damage.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
14
|
Wu J, Luo X, Thangthaeng N, Sumien N, Chen Z, Rutledge MA, Jing S, Forster MJ, Yan LJ. Pancreatic mitochondrial complex I exhibits aberrant hyperactivity in diabetes. Biochem Biophys Rep 2017; 11:119-129. [PMID: 28868496 PMCID: PMC5580358 DOI: 10.1016/j.bbrep.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 12/28/2022] Open
Abstract
It is well established that NADH/NAD+ redox balance is heavily perturbed in diabetes, and the NADH/NAD+ redox imbalance is a major source of oxidative stress in diabetic tissues. In mitochondria, complex I is the only site for NADH oxidation and NAD+ regeneration and is also a major site for production of mitochondrial reactive oxygen species (ROS). Yet how complex I responds to the NADH/NAD+ redox imbalance and any potential consequences of such response in diabetic pancreas have not been investigated. We report here that pancreatic mitochondrial complex I showed aberrant hyperactivity in either type 1 or type 2 diabetes. Further studies focusing on streptozotocin (STZ)-induced diabetes indicate that complex I hyperactivity could be attenuated by metformin. Moreover, complex I hyperactivity was accompanied by increased activities of complexes II to IV, but not complex V, suggesting that overflow of NADH via complex I in diabetes could be diverted to ROS production. Indeed in diabetic pancreas, ROS production and oxidative stress increased and mitochondrial ATP production decreased, which can be attributed to impaired pancreatic mitochondrial membrane potential that is responsible for increased cell death. Additionally, cellular defense systems such as glucose 6-phosphate dehydrogenase, sirtuin 3, and NQO1 were found to be compromised in diabetic pancreas. Our findings point to the direction that complex I aberrant hyperactivity in pancreas could be a major source of oxidative stress and β cell failure in diabetes. Therefore, inhibiting pancreatic complex I hyperactivity and attenuating its ROS production by various means in diabetes might serve as a promising approach for anti-diabetic therapies.
Collapse
Affiliation(s)
- Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Xiaoting Luo
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Nopporn Thangthaeng
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Nathalie Sumien
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Zhenglan Chen
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Margaret A. Rutledge
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Siqun Jing
- College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Michael J. Forster
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| |
Collapse
|
15
|
Bhattacharjee N, Khanra R, Dua TK, Das S, De B, Zia-Ul-Haq M, De Feo V, Dewanjee S. Sansevieria roxburghiana Schult. & Schult. F. (Family: Asparagaceae) Attenuates Type 2 Diabetes and Its Associated Cardiomyopathy. PLoS One 2016; 11:e0167131. [PMID: 27893829 PMCID: PMC5125675 DOI: 10.1371/journal.pone.0167131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Sansevieria roxburghiana Schult. & Schult. F. (Family: Asparagaceae) rhizome has been claimed to possess antidiabetic activity in the ethno-medicinal literature in India. Therefore, present experiments were carried out to explore the protective role of edible (aqueous) extract of S. roxburghiana rhizome (SR) against experimentally induced type 2 diabetes mellitus (T2DM) and its associated cardiomyopathy in Wistar rats. METHODS SR was chemically characterized by GC-MS analysis. Antidiabetic activity of SR (50 and 100 mg/kg, orally) was measured in high fat diets (ad libitum) + low-single dose of streptozotocin (35 mg/kg, intraperitoneal) induced type 2 diabetic (T2D) rat. Fasting blood glucose level was measured at specific intermissions. Serum biochemical and inflammatory markers were estimated after sacrificing the animals. Besides, myocardial redox status, expressions of signal proteins (NF-κB and PKCs), histological and ultrastructural studies of heart were performed in the controls and SR treated T2D rats. RESULTS Phytochemical screening of the crude extract revealed the presence of phenolic compounds, sugar alcohols, sterols, amino acids, saturated fatty acids within SR. T2D rats exhibited significantly (p < 0.01) higher fasting blood glucose level with respect to control. Alteration in serum lipid profile (p < 0.01) and increased levels of lactate dehydrogenase (p < 0.01) and creatine kinase (p < 0.01) in the sera revealed the occurrence of hyperlipidemia and cell destruction in T2D rats. T2DM caused significant (p < 0.05-0.01) alteration in the biochemical markers in the sera. T2DM altered the redox status (p < 0.05-0.01), decreased (p < 0.01) the intracellular NAD and ATP concentrations in the myocardial tissues of experimental rats. While investigating the molecular mechanism, activation PKC isoforms was observed in the selected tissues. T2D rats also exhibited an up-regulation in nuclear NF-κB (p65) in the cardiac tissues. So, oral administration of SR (50 and 500 mg/kg) could reduce hyperglycemia, hyperlipidemia, membrane disintegration, oxidative stress, vascular inflammation and prevented the activation of oxidative stress induced signaling cascades leading to cell death. Histological and ultra-structural studies of cardiac tissues supported the protective characteristics of SR. CONCLUSIONS From the present findings it can be concluded that, SR could offer protection against T2DM and its associated cardio-toxicity via multiple mechanisms viz. hypoglycemic, antioxidant and anti-inflammatory actions.
Collapse
Affiliation(s)
- Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Ritu Khanra
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Tarun K. Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Susmita Das
- Phytochemistry and Pharmacognosy Research Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Bratati De
- Phytochemistry and Pharmacognosy Research Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - M. Zia-Ul-Haq
- Office of Research, Innovation and Commercialization, Lahore College for Women University, Lahore, Pakistan
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Fisciano, Salerno, Italy
- * E-mail: (SD); (VDF)
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- * E-mail: (SD); (VDF)
| |
Collapse
|
16
|
Chowdhury S, Ghosh S, Rashid K, Sil PC. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats. Food Chem Toxicol 2016; 97:187-198. [PMID: 27621051 DOI: 10.1016/j.fct.2016.09.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022]
Abstract
The cardiomyocytes are one of the major sources of hyperglycemia induced ROS generation. The present study focuses on the ameliorative role of ferulic acid in combating cardiac complications in diabetic rats. Induction of diabetes by STZ in male Wistar rats (at a dose of 50 mg kg-1 body wt, i.p.) reduced body weight and plasma insulin level, enhanced blood glucose, disturbed the intra-cellular antioxidant machineries and disintegrated the normal radiation pattern of cardiac muscle fibers. Induction of ER stress (up-regulation in the levels of CHOP, GRP78, eIF2α signaling, increased calpain-1 expression), caspase-3 activation, PARP cleavage and DNA fragmentation were evidenced from immunoblot analyses and DNA fragmentation assay. However, ferulic acid administration, (at a dose of 50 mg kg-1 body wt, orally for eight weeks) in post-hyperglycemia could reverse such adverse effects. Also, the molecule increased GLUT-4 translocation to the cardiac membrane by enhanced phosphorylation of PI3Kinase, AKT and inactivation of GSK-3β thereby altering the hyperglycemic condition in the cardiac tissue of diabetic rats. Therefore, as a potential therapeutic, ferulic acid, exhibiting antioxidant and hypoglycemic effects, may hold promise in circumventing stress mediated diabetic cardiomyopathy in rats.
Collapse
Affiliation(s)
- Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
17
|
Elsherbiny NM, Al-Gayyar MM. Anti-tumor activity of arjunolic acid against Ehrlich Ascites Carcinoma cells in vivo and in vitro through blocking TGF-β type 1 receptor. Biomed Pharmacother 2016; 82:28-34. [DOI: 10.1016/j.biopha.2016.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/25/2016] [Indexed: 12/28/2022] Open
|
18
|
Elsherbiny NM, Eladl MA, Al-Gayyar MM. Renal protective effects of arjunolic acid in a cisplatin-induced nephrotoxicity model. Cytokine 2016; 77:26-34. [DOI: 10.1016/j.cyto.2015.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/23/2022]
|
19
|
Cong W, Ruan D, Xuan Y, Niu C, Tao Y, Wang Y, Zhan K, Cai L, Jin L, Tan Y. Cardiac-specific overexpression of catalase prevents diabetes-induced pathological changes by inhibiting NF-κB signaling activation in the heart. J Mol Cell Cardiol 2015; 89:314-325. [PMID: 26456065 DOI: 10.1016/j.yjmcc.2015.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 09/14/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022]
Abstract
Catalase is an antioxidant enzyme that specifically catabolizes hydrogen peroxide (H2O2). Overexpression of catalase via a heart-specific promoter (CAT-TG) was reported to reduce diabetes-induced accumulation of reactive oxygen species (ROS) and further prevent diabetes-induced pathological abnormalities, including cardiac structural derangement and left ventricular abnormity in mice. However, the mechanism by which catalase overexpression protects heart function remains unclear. This study found that activation of a ROS-dependent NF-κB signaling pathway was downregulated in hearts of diabetic mice overexpressing catalase. In addition, catalase overexpression inhibited the significant increase in nitration levels of key enzymes involved in energy metabolism, including α-oxoglutarate dehydrogenase E1 component (α-KGD) and ATP synthase α and β subunits (ATP-α and ATP-β). To assess the effects of the NF-κB pathway activation on heart function, Bay11-7082, an inhibitor of the NF-κB signaling pathway, was injected into diabetic mice, protecting mice against the development of cardiac damage and increased nitrative modifications of key enzymes involved in energy metabolism. In conclusion, these findings demonstrated that catalase protects mouse hearts against diabetic cardiomyopathy, partially by suppressing NF-κB-dependent inflammatory responses and associated protein nitration.
Collapse
Affiliation(s)
- Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Dandan Ruan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China; The Health Examination Center, the 117th Hospital of Chinese People's Liberation Army, Hangzhou 310013, PR China
| | - Yuanhu Xuan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Chao Niu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Youli Tao
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yang Wang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Kungao Zhan
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Lu Cai
- The First Hospital of Jilin University, Changchun 130021, PR China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China.
| | - Yi Tan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
20
|
Ghosh S, Banerjee S, Sil PC. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food Chem Toxicol 2015; 83:111-124. [PMID: 26066364 DOI: 10.1016/j.fct.2015.05.022] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 02/06/2023]
Abstract
The concept of using phytochemicals has ushered in a new revolution in pharmaceuticals. Naturally occurring polyphenols (like curcumin, morin, resveratrol, etc.) have gained importance because of their minimal side effects, low cost and abundance. Curcumin (diferuloylmethane) is a component of turmeric isolated from the rhizome of Curcuma longa. Research for more than two decades has revealed the pleiotropic nature of the biological effects of this molecule. More than 7000 published articles have shed light on the various aspects of curcumin including its antioxidant, hypoglycemic, anti-inflammatory and anti-cancer activities. Apart from these well-known activities, this natural polyphenolic compound also exerts its beneficial effects by modulating different signalling molecules including transcription factors, chemokines, cytokines, tumour suppressor genes, adhesion molecules, microRNAs, etc. Oxidative stress and inflammation play a pivotal role in various diseases like diabetes, cancer, arthritis, Alzheimer's disease and cardiovascular diseases. Curcumin, therefore, could be a therapeutic option for the treatment of these diseases, provided limitations in its oral bioavailability can be overcome. The current review provides an updated overview of the metabolism and mechanism of action of curcumin in various organ pathophysiologies. The review also discusses the potential for multifunctional therapeutic application of curcumin and its recent progress in clinical biology.
Collapse
Affiliation(s)
- Shatadal Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Sharmistha Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
21
|
Han J, Tan C, Wang Y, Yang S, Tan D. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation. Chem Biol Interact 2015; 227:37-44. [DOI: 10.1016/j.cbi.2014.12.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
22
|
Naguib YM, Azmy RM, Samaka RM, Salem MF. Pleurotus ostreatus opposes mitochondrial dysfunction and oxidative stress in acetaminophen-induced hepato-renal injury. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:494. [PMID: 25510860 PMCID: PMC4301462 DOI: 10.1186/1472-6882-14-494] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 12/10/2014] [Indexed: 02/01/2023]
Abstract
Background Acetaminophen (APAP)-induced toxicity is a predominant cause of acute hepatic and renal failure. In both humans and rodents toxicity begins with a reactive metabolite that binds to proteins. This leads to mitochondrial dysfunction and nuclear DNA fragmentation resulting in necrotic cell death. Pleurotus ostreatus (an edible oyster mushroom) is well recognized as a flavourful food, as well as a medicinal supplement. In the present study, we evaluated the role of Pleurotus ostreatus in the protection against APAP-induced hepato-renal toxicity. We also explored the mechanism by which Pleurotus ostreatus exerts its effects. Methods Ninety adult male Swiss albino mice were divided into three groups (30 mice/group). Mice were offered normal diet (control and APAP groups), or diet supplemented with 10% Pleurotus ostreatus (APAP + Pleurotus ostreatus) for 10 days. Mice were either treated with vehicle (control group, single intra-peritoneal injection.), or APAP (APAP and APAP + Pleurotus ostreatus groups, single intra-peritoneal injection, 500 mg/kg), 24 hours after the last meal. Results APAP increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) glutamate dehydrogenase (GDH), creatinine, blood urea nitrogen (BUN), urinary kidney injury molecule-1 (KIM-1), and hepatic and renal malondialdehyde (MDA) content. APAP decreased hepatic and renal glutathione (GSH) content, as well as glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities. Supplementation with Pleurotus ostreatus significantly reduced APAP-induced elevated levels of ALT, AST, GDH, creatinine, BUN, KIM-1and MDA, while GSH level, and GSH-Px and SOD activities were significantly increased. Our findings were further validated by histopathology; treatment with Pleurotus ostreatus significantly decreased APAP-induced cell necrosis in liver and kidney tissues. Conclusions We report here that the antioxidant effect of Pleurotus ostreatus opposes mitochondrial dysfunction and oxidative stress accompanying APAP over-dose, with subsequent clinically beneficial effects on liver and kidney tissues.
Collapse
|
23
|
Sherif IO. Amelioration of cisplatin-induced nephrotoxicity in rats by triterpenoid saponin of Terminalia arjuna. Clin Exp Nephrol 2014; 19:591-7. [PMID: 25389052 DOI: 10.1007/s10157-014-1056-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/05/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cisplatin is a potent anti-tumor compound. Nephrotoxicity-inducing oxidative stress is a common side effect. This study was conducted to find out whether, the triterpenoid saponin of Terminalia arjuna (TA), Arjunolic acid which is a natural antioxidant, could prevent cisplatin-induced renal toxicity and if so, explore its possible renoprotective mechanism. METHODS Thirty male Sprague-Dawley rats were divided into three groups: CONTROL GROUP rats received saline injection, cisplatin group: rats injected intraperitoneally with 7 mg/kg cisplatin and Arjunolic acid group: rats received 20 mg/kg Arjunolic acid daily for 10 days with cisplatin injection on day 5. Serum creatinine and blood urea nitrogen (BUN) were determined and kidney sections were obtained for histopathology. Oxidative stress was evaluated in kidney homogenates by measuring malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide (NO) levels. Renal gene expressions of transforming growth factor-beta (TGF-β), nuclear factor-kappa B (NF-κB), kidney injury molecule-1 (Kim-1) and B cell lymphoma-2 (Bcl-2) were estimated. RESULTS Cisplatin-treated rats showed a significant reduction in renal GSH and a significant elevation of serum creatinine, BUN, MDA and NO renal levels when compared with control. Moreover, upregulation of TGF-β, NF-κB and Kim-1 along with downregulation of Bcl-2 renal expressions were also observed in cisplatin-treated rats in comparison to control. All these markers were significantly reversed by TA triterpenoid saponin administration. CONCLUSION Arjunolic acid ameliorated the nephrotoxic biochemical changes induced by cisplatin supporting its renoprotective effects which may be mediated by attenuation of oxidative stress markers, downregulation of renal expressions of fibrotic (TGF-β), inflammatory (NF-κB) and kidney injury (Kim-1) markers along with upregulation of renal antiapoptotic marker (Bcl-2) gene expressions.
Collapse
Affiliation(s)
- Iman O Sherif
- Biochemistry Department, Faculty of Pharmacy, Emergency Hospital, Mansoura University, Mansoura, 35516, Egypt,
| |
Collapse
|
24
|
Combination approaches to attenuate hemorrhagic transformation after tPA thrombolytic therapy in patients with poststroke hyperglycemia/diabetes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:391-410. [PMID: 25307224 DOI: 10.1016/bs.apha.2014.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To date, tissue type plasminogen activator (tPA)-based thrombolytic stroke therapy is the only FDA-approved treatment for achieving vascular reperfusion and clinical benefit, but this agent is given to only about 5% of stroke patients in the USA. This may be related, in part, to the elevated risk of symptomatic intracranial hemorrhage, and consequently limited therapeutic time window. Clinical investigations demonstrate that poststroke hyperglycemia is one of the most important risk factors that cause intracerebral hemorrhage and worsen neurological outcomes. There is a knowledge gap in understanding the underlying molecular mechanisms, and lack of effective therapeutics targeting the severe complication. This short review summarizes clinical observations and experimental investigations in preclinical stroke models of the field. The data strongly suggest that interactions of multiple pathogenic factors including hyperglycemia-mediated vascular oxidative stress and inflammation, ischemic insult, and tPA neurovascular toxicity in concert contribute to the BBB damage-intracerebral hemorrhagic transformation process. Development of combination approaches targeting the multiple pathological cascades may help to attenuate the hemorrhagic complication.
Collapse
|
25
|
Al-Gayyar MM, Al Youssef A, Sherif IO, Shams ME, Abbas A. Protective effects of arjunolic acid against cardiac toxicity induced by oral sodium nitrite: Effects on cytokine balance and apoptosis. Life Sci 2014; 111:18-26. [DOI: 10.1016/j.lfs.2014.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 11/16/2022]
|
26
|
Rashid K, Sinha K, Sil PC. An update on oxidative stress-mediated organ pathophysiology. Food Chem Toxicol 2013; 62:584-600. [PMID: 24084033 DOI: 10.1016/j.fct.2013.09.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/29/2013] [Accepted: 09/19/2013] [Indexed: 12/29/2022]
Abstract
Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta 700054, West Bengal, India
| | | | | |
Collapse
|
27
|
Bhattacharya S, Gachhui R, Sil PC. Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food Chem Toxicol 2013; 60:328-340. [PMID: 23907022 DOI: 10.1016/j.fct.2013.07.051] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 01/07/2023]
Abstract
Diabetic complications associated with increased oxidative stress can be suppressed by antioxidants. In the present study we investigated the antidiabetic and antioxidant effects of Kombucha (KT), a fermented black tea, in comparison to that of unfermented black tea (BT), in ALX-induced diabetic rats. ALX exposure lowered the body weight and plasma insulin by about 28.12% and 61.34% respectively and elevated blood glucose level and glycated Hb by about 3.79 and 3.73 folds respectively. The oxidative stress related parameters like lipid peroxidation end products (increased by 3.38, 1.7, 1.65, 1.94 folds respectively), protein carbonyl content (increased by 2.5, 2.35, 1.8, 3.26 folds respectively), glutathione content (decreased by 59.8%, 47.27%, 53.69%, 74.03% respectively), antioxidant enzyme activities were also altered in the pancreatic, hepatic, renal and cardiac tissues of diabetic animals. Results showed significant antidiabetic potential of the fermented beverage (150 mg lyophilized extract/kg bw for 14 days) as it effectively restored ALX-induced pathophysiological changes. Moreover, it could ameliorate DNA fragmentation and caspase-3 activation in the pancreatic tissue of diabetic rats. Although unfermented black tea is effective in the above pathophysiology, KT was found to be more efficient. This might be due to the formation of some antioxidant molecules during fermentation period.
Collapse
Affiliation(s)
- Semantee Bhattacharya
- Department of Life Sciences & Biotechnology, Jadavpur University, 188, Raja SC Mullick Road, Kolkata 700 032, India
| | | | | |
Collapse
|
28
|
Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 2013; 87:1157-1180. [PMID: 23543009 DOI: 10.1007/s00204-013-1034-4] [Citation(s) in RCA: 1261] [Impact Index Per Article: 105.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/28/2013] [Indexed: 12/15/2022]
Abstract
Oxidative stress basically defines a condition in which prooxidant-antioxidant balance in the cell is disturbed; cellular biomolecules undergo severe oxidative damage, ultimately compromising cells viability. In recent years, a number of studies have shown that oxidative stress could cause cellular apoptosis via both the mitochondria-dependent and mitochondria-independent pathways. Since these pathways are directly related to the survival or death of various cell types in normal as well as pathophysiological situations, a clear picture of these pathways for various active molecules in their biological functions would help designing novel therapeutic strategy. This review highlights the basic mechanisms of ROS production and their sites of formation; detail mechanism of both mitochondria-dependent and mitochondria-independent pathways of apoptosis as well as their regulation by ROS. Emphasis has been given on the redox-sensitive ASK1 signalosome and its downstream JNK pathway. This review also describes the involvement of oxidative stress under various environmental toxin- and drug-induced organ pathophysiology and diabetes-mediated apoptosis. We believe that this review would provide useful information about the most recent progress in understanding the mechanism of oxidative stress-mediated regulation of apoptotic pathways. It will also help to figure out the complex cross-talks between these pathways and their modulations by oxidative stress. The literature will also shed a light on the blind alleys of this field to be explored. Finally, readers would know about the ROS-regulated and apoptosis-mediated organ pathophysiology which might help to find their probable remedies in future.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta 700054, West Bengal, India
| | | | | | | |
Collapse
|
29
|
Ghosh J, Sil PC. Arjunolic acid: a new multifunctional therapeutic promise of alternative medicine. Biochimie 2013; 95:1098-1109. [PMID: 23402784 DOI: 10.1016/j.biochi.2013.01.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/22/2013] [Indexed: 02/05/2023]
Abstract
IMPORTANCE OF THE FIELD In recent years, a number of studies describing the effective therapeutic strategies of medicinal plants and their active constituents in traditional medicine have been reported. Indeed, tremendous demand for the development and implementation of these plant derived biomolecules in complementary and alternative medicine is increasing and appear to be promising candidates for pharmaceutical industrial research. These new molecules, especially those from natural resources, are considered as potential therapeutic targets, because they are derived from commonly consumed foodstuff and are considered to be safe for humans. AREAS COVERED IN THIS REVIEW This review highlights the beneficial role of arjunolic acid, a naturally occurring chiral triterpenoid saponin, in various organ pathophysiology and the underlying mechanism of its protective action. Studies on the biochemistry and pharmacology suggest the potential use of arjunolic acid as a novel promising therapeutic strategy. WHAT THE READERS WILL GAIN The multifunctional therapeutic application of arjunolic acid has already been documented by its various biological functions including antioxidant, anti-fungal, anti-bacterial, anticholinesterase, antitumor, antiasthmatic, wound healing and insect growth inhibitor activities. The scientific basis behind its therapeutic application as a cardioprotective agent in traditional medicine is justified by its ability to prevent myocardial necrosis and apoptosis, platelet aggregation, coagulation and lowering of blood pressure, heart rate, as well as cholesterol levels. Its antioxidant property coupled with metal chelating property (by its two hydroxyl groups) protects different organs from metal and drug-induced organ pathophysiology. Arjunolic acid also plays a beneficial role in the pathogenesis of diabetes and its associated complications. The mechanism of cytoprotection of arjunolic acid, at least in part, results from the detoxification of reactive oxygen species (ROS) produced in the respective pathophysiology. In addition to its other biological functions, it also possesses vibrant insecticidal properties and it has the potential to be used as a structural molecular framework for the design of molecular receptors in the general area of supramolecular chemistry and nanochemistry. Esters of arjunolic acid function as organogelators which has wide application in designing thermochromic switches and sensor devices. Arjunolic acid derived crown ether is an attractive candidate for the design of molecular receptors, biomimetics and supramolecular systems capable of performing some biological functions. HOME MESSAGE This review would provide useful information about the recent progress of natural product research in the domain of clinical science. This review also aims to untie the multifunctional therapeutic application of arjunolic acid, a nanometer-long naturally occurring chiral triterpenoid biomolecule.
Collapse
Affiliation(s)
- Jyotirmoy Ghosh
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
30
|
Lotus (Nelumbo nucifera Gaertn) plumule polysaccharide ameliorates pancreatic islets loss and serum lipid profiles in non-obese diabetic mice. Food Chem Toxicol 2013; 58:416-22. [PMID: 23707471 DOI: 10.1016/j.fct.2013.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/06/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022]
Abstract
To unravel possible protective effects of a newly isolated lotus plumule polysaccharide (LPPS) on type 1 diabetes (T1D), this study isolated LPPS and administered it to non-obese diabetic (NOD) female mice for 15 weeks. Oral glucose tolerance, serum ketone body, glucose, insulin, and lipid levels, as well as pancreatic islet cell numbers and the insulin secretion ability of the experimental mice were determined. The results showed that LPPS administration in vivo significantly (P<0.05) increased pancreatic islet cell numbers and slightly enhanced the basal insulin secretion ability compared to the control group. LPPS administration improved serum lipid profiles in the diabetic mice via relatively increasing serum high density lipoprotein-cholesterol, but decreasing low density lipoprotein-cholesterol and total cholesterol levels. The present study suggests that LPPS supplementation may ameliorate T1D progress and its complications through protecting pancreatic islets and modulating serum lipid profiles.
Collapse
|
31
|
Visweswara Rao P, Madhavi K, Dhananjaya Naidu M, Gan SH. Rhinacanthus nasutus Ameliorates Cytosolic and Mitochondrial Enzyme Levels in Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:486047. [PMID: 23662138 PMCID: PMC3638636 DOI: 10.1155/2013/486047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 11/26/2022]
Abstract
The present study was conducted to evaluate the therapeutic efficacy of Rhinacanthus nasutus (R. nasutus) on mitochondrial and cytosolic enzymes in streptozotocin-induced diabetic rats. The rats were divided into five groups with 6 rats in each group. The methanolic extract of R. nasutus was orally administered at a dose of 200 mg/kg/day, and glibenclamide was administered at a dose of 50 mg/kg/day. All animals were treated for 30 days and were sacrificed. The activities of both intra- and extramitochondrial enzymes including glucose-6-phosphate dehydrogenase (G6PDH), succinate dehydrogenase (SDH), glutamate dehydrogenase (GDH), and lactate dehydrogenase (LDH) were measured in the livers of the animals. The levels of G6PDH, SDH, and GDH were significantly reduced in the diabetic rats but were significantly increased after 30 days of R. nasutus treatment. The increased LDH level in diabetic rats exhibited a significant reduction after treatment with R. nasutus. These results indicate that the administration of R. nasutus altered the activities of oxidative enzymes in a positive manner, indicating that R. nasutus improves mitochondrial energy production. Our data suggest that R. nasutus should be further explored for its role in the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Pasupuleti Visweswara Rao
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| | - K. Madhavi
- Department of Biochemistry, Sri Venkateswara Medical College, Tirupati 517502, Andhra Pradesh, India
| | - M. Dhananjaya Naidu
- Department of Zoology, Yogi Vemana University, Kadapa 516003, Andhra Pradesh, India
| | - Siew Hua Gan
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Malaysia
| |
Collapse
|
32
|
Associations of vascular endothelial growth factor (VEGF) with adhesion and inflammation molecules in a healthy population. Cytokine 2013. [DOI: 10.1016/j.cyto.2012.10.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Manna P, Sil PC. Arjunolic acid: beneficial role in type 1 diabetes and its associated organ pathophysiology. Free Radic Res 2012; 46:815-830. [PMID: 22486656 DOI: 10.3109/10715762.2012.683431] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this review article, we describe the most recent development of the beneficial effect of arjunolic acid (AA) in reducing type 1 diabetic pathophysiology. Diabetic mellitus is a serious and growing health problem worldwide. Increasing evidence suggest that oxidative stress plays a pivotal role in the pathogenesis of diabetes and its associated complications. Use of antioxidant supplements as a complimentary therapeutic approach in diabetes has, therefore, been seriously considered worldwide. AA, a natural pentacyclic triterpenoid saponin, is well known for various biological functions including antioxidant activity. It could prevent the increased production of ROS, RNS, AGEs, and the 8OHdG/2dG ratio and increase the intracellular antioxidant defence system. Signal transduction studies showed that AA could prevent hyperglycaemia induced activation of MAPKs, PKC, NF-κB signalling cascades and apoptotic cell death. Combining, AA supplements could be regarded as beneficial therapeutics in the treatment of diabetes and its associated complications.
Collapse
Affiliation(s)
- Prasenjit Manna
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | |
Collapse
|
34
|
Bagyánszki M, Bódi N. Diabetes-related alterations in the enteric nervous system and its microenvironment. World J Diabetes 2012; 3:80-93. [PMID: 22645637 PMCID: PMC3360223 DOI: 10.4239/wjd.v3.i5.80] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 04/06/2012] [Accepted: 05/11/2012] [Indexed: 02/05/2023] Open
Abstract
Gastric intestinal symptoms common among diabetic patients are often caused by intestinal motility abnormalities related to enteric neuropathy. It has recently been demonstrated that the nitrergic subpopulation of myenteric neurons are especially susceptible to the development of diabetic neuropathy. Additionally, different susceptibility of nitrergic neurons located in different intestinal segments to diabetic damage and their different levels of responsiveness to insulin treatment have been revealed. These findings indicate the importance of the neuronal microenvironment in the pathogenesis of diabetic nitrergic neuropathy. The main focus of this review therefore was to summarize recent advances related to the diabetes-related selective nitrergic neuropathy and associated motility disturbances. Special attention was given to the findings on capillary endothelium and enteric glial cells. Growing evidence indicates that capillary endothelium adjacent to the myenteric ganglia and enteric glial cells surrounding them are determinative in establishing the ganglionic microenvironment. Additionally, recent advances in the development of new strategies to improve glycemic control in type 1 and type 2 diabetes mellitus are also considered in this review. Finally, looking to the future, the recent and promising results of metagenomics for the characterization of the gut microbiome in health and disease such as diabetes are highlighted.
Collapse
Affiliation(s)
- Mária Bagyánszki
- Mária Bagyánszki, Nikolett Bódi, Department of Physiology, Anatomy and Neuroscience, Faculty of Science, University of Szeged, H-6726 Szeged, Hungary
| | | |
Collapse
|