1
|
Perry AC, Adesida AB. Tissue Engineering Nasal Cartilage Grafts with Three-Dimensional Printing: A Comprehensive Review. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39311456 DOI: 10.1089/ten.teb.2024.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nasal cartilage serves a crucial structural function for the nose, where rebuilding the cartilaginous framework is an essential aspect of nasal reconstruction. Conventional methods of nasal reconstruction rely on autologous cartilage harvested from patients, which contributes to donor site pain and the potential for site-specific complications. Some patients are not ideal candidates for this procedure due to a lack of adequate substitute cartilage due to age-related calcification, differences in tissue quality, or due to prior surgeries. Tissue engineering, combined with three-dimensional printing technologies, has emerged as a promising method of generating biomimetic tissues to circumvent these issues to restore normal function and aesthetics. We conducted a comprehensive literature review to examine the applications of three-dimensional printing in conjunction with tissue engineering for the generation of nasal cartilage grafts. This review aims to compare various approaches and discuss critical considerations in the design of these grafts.
Collapse
Affiliation(s)
- Alexander C Perry
- Department of Surgery, Division of Plastic Surgery, University of Alberta, Edmonton, Canada
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, University of Alberta, Edmonton, Canada
- Department of Surgery, Division of Otolaryngology, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Alternative lung cell model systems for toxicology testing strategies: Current knowledge and future outlook. Semin Cell Dev Biol 2023; 147:70-82. [PMID: 36599788 DOI: 10.1016/j.semcdb.2022.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Due to the current relevance of pulmonary toxicology (with focus upon air pollution and the inhalation of hazardous materials), it is important to further develop and implement physiologically relevant models of the entire respiratory tract. Lung model development has the aim to create human relevant systems that may replace animal use whilst balancing cost, laborious nature and regulatory ambition. There is an imperative need to move away from rodent models and implement models that mimic the holistic characteristics important in lung function. The purpose of this review is therefore, to describe and identify the various alternative models that are being applied towards assessing the pulmonary toxicology of inhaled substances, as well as the current and potential developments of various advanced models and how they may be applied towards toxicology testing strategies. These models aim to mimic various regions of the lung, as well as implementing different exposure methods with the addition of various physiologically relevent conditions (such as fluid-flow and dynamic movement). There is further progress in the type of models used with focus on the development of lung-on-a-chip technologies and bioprinting, as well as and the optimization of such models to fill current knowledge gaps within toxicology.
Collapse
|
3
|
Li M, Song P, Wang W, Xu Y, Li J, Wu L, Gui X, Zeng Z, Zhou Z, Liu M, Kong Q, Fan Y, Zhang X, Zhou C, Liu L. Preparation and characterization of biomimetic gradient multi-layer cell-laden scaffolds for osteochondral integrated repair. J Mater Chem B 2022; 10:4172-4188. [PMID: 35531933 DOI: 10.1039/d2tb00576j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A cell-laden tissue engineering scaffold for osteochondral integrated repair is one of the ideal strategies for osteochondral lesions. In this study, we fabricated cell-laden porous hydrogel scaffolds with gradient nano-hydroxyapatite using methacrylic anhydride gelatin (GelMA), nano-hydroxyapatite (nHA), and polyethylene oxide (PEO) solution for osteochondral tissue regeneration. The scaffold possessed interconnected pores and a nano-hydroxyapatite gradient in the vertical direction. The chemical, physical, mechanical, and biological properties of the hydrogel solutions and scaffolds were characterized. In vitro experiments confirmed that cells were distributed homogeneously and that different pore structures could affect the proliferation and differentiation of BMSCs. The Nonporous hydrogel was beneficial for the chondrogenic differentiation of BMSCs and interconnected pores were conducive to BMSC proliferation and osteogenic differentiation. The osteochondral integrative repair capacity of the scaffold was assessed by implanting the scaffolds into the intercondylar defect of the rabbit femur. By constructing pore structures in different layers, the cells in different layers of the hydrogels were in an intrinsic environment for survival and differentiation. Animal experiments confirmed that tissue engineering scaffolds for osteochondral lesions require different pore structures in different layers, and gradient structure facilitated integrated repair.
Collapse
Affiliation(s)
- Mingxin Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ping Song
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wenzhao Wang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Jun Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhimou Zeng
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhigang Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China. .,College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Lei Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Koh RH, Kim J, Kim SHL, Hwang NS. RGD-incorporated biomimetic cryogels for hyaline cartilage regeneration. Biomed Mater 2022; 17:024106. [PMID: 35114659 DOI: 10.1088/1748-605x/ac51b7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/03/2022] [Indexed: 11/11/2022]
Abstract
Maintaining the integrity of articular cartilage is paramount to joint health and function. Under constant mechanical stress, articular cartilage is prone to injury that often extends to the underlying subchondral bone. In this study, we incorporated arginine-aspartate-glycine (RGD) peptide into chondroitin sulfate-based cryogel for hyaline cartilage regeneration. Known to promote cell adhesion and proliferation, RGD peptide is a double-edged sword for cartilage regeneration. Depending on the peptide availability in the microenvironment, RGD may aid in redifferentiation of dedifferentiated chondrocytes by mimicking physiological cell-matrix interaction or inhibit chondrogenic phenotype via excessive cell spreading. Here, we observed an increase in chondrogenic phenotype with RGD concentration. The group containing the highest RGD concentration (3 mM; RGD group) experienced a 24-fold increase inCOL2expression in the 1st week ofin vitroculture and formed native cartilage-resembling ectopic tissuein vivo. No sign of dedifferentiation (COL1) was observed in all groups. Within the concentration range tested (0-3 mM RGD), RGD promotes chondrocyte redifferentiation after monolayer expansion and thus, formation of hyaline cartilage tissue.
Collapse
Affiliation(s)
- Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-BIO Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisoo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- BioMAX/N-BIO Institute, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
5
|
Klimek K, Tarczynska M, Truszkiewicz W, Gaweda K, Douglas TEL, Ginalska G. Freeze-Dried Curdlan/Whey Protein Isolate-Based Biomaterial as Promising Scaffold for Matrix-Associated Autologous Chondrocyte Transplantation-A Pilot In-Vitro Study. Cells 2022; 11:282. [PMID: 35053397 PMCID: PMC8773726 DOI: 10.3390/cells11020282] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 01/18/2023] Open
Abstract
The purpose of this pilot study was to establish whether a novel freeze-dried curdlan/whey protein isolate-based biomaterial may be taken into consideration as a potential scaffold for matrix-associated autologous chondrocyte transplantation. For this reason, this biomaterial was initially characterized by the visualization of its micro- and macrostructures as well as evaluation of its mechanical stability, and its ability to undergo enzymatic degradation in vitro. Subsequently, the cytocompatibility of the biomaterial towards human chondrocytes (isolated from an orthopaedic patient) was assessed. It was demonstrated that the novel freeze-dried curdlan/whey protein isolate-based biomaterial possessed a porous structure and a Young's modulus close to those of the superficial and middle zones of cartilage. It also exhibited controllable degradability in collagenase II solution over nine weeks. Most importantly, this biomaterial supported the viability and proliferation of human chondrocytes, which maintained their characteristic phenotype. Moreover, quantitative reverse transcription PCR analysis and confocal microscope observations revealed that the biomaterial may protect chondrocytes from dedifferentiation towards fibroblast-like cells during 12-day culture. Thus, in conclusion, this pilot study demonstrated that novel freeze-dried curdlan/whey protein isolate-based biomaterial may be considered as a potential scaffold for matrix-associated autologous chondrocyte transplantation.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (W.T.); (G.G.)
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
| | - Wieslaw Truszkiewicz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (W.T.); (G.G.)
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-090 Lublin, Poland; (M.T.); (K.G.)
| | - Timothy E. L. Douglas
- Engineering Department, Lancaster University, Gillow Avenue, Lancaster LA 1 4YW, UK;
- Materials Science Institute (MSI), Lancaster University, Lancaster LA 1 4YW, UK
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; (W.T.); (G.G.)
| |
Collapse
|
6
|
Soliman BG, Major GS, Atienza-Roca P, Murphy CA, Longoni A, Alcala-Orozco CR, Rnjak-Kovacina J, Gawlitta D, Woodfield TBF, Lim KS. Development and Characterization of Gelatin-Norbornene Bioink to Understand the Interplay between Physical Architecture and Micro-Capillary Formation in Biofabricated Vascularized Constructs. Adv Healthc Mater 2022; 11:e2101873. [PMID: 34710291 DOI: 10.1002/adhm.202101873] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Indexed: 12/12/2022]
Abstract
The principle challenge for engineering viable, cell-laden hydrogel constructs of clinically-relevant size, is rapid vascularization, in order to moderate the finite capacity of passive nutrient diffusion. A multiscale vascular approach, with large open channels and bulk microcapillaries may be an admissible approach to accelerate this process, promoting overall pre-vascularization for long-term viability of constructs. However, the limited availability of bioinks that possess suitable characteristics that support both fabrication of complex architectures and formation of microcapillaries, remains a barrier to advancement in this space. In this study, gelatin-norbornene (Gel-NOR) is investigated as a vascular bioink with tailorable physico-mechanical properties, which promoted the self-assembly of human stromal and endothelial cells into microcapillaries, as well as being compatible with extrusion and lithography-based biofabrication modalities. Gel-NOR constructs containing self-assembled microcapillaries are successfully biofabricated with varying physical architecture (fiber diameter, spacing, and orientation). Both channel sizes and cell types affect the overall structural changes of the printed constructs, where cross-signaling between both human stromal and endothelial cells may be responsible for the reduction in open channel lumen observed over time. Overall, this work highlights an exciting three-way interplay between bioink formulation, construct design, and cell-mediated response that can be exploited towards engineering vascular tissues.
Collapse
Affiliation(s)
- Bram G Soliman
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Gretel S Major
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Pau Atienza-Roca
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Caroline A Murphy
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Alessia Longoni
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Cesar R Alcala-Orozco
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2006, Australia
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, Utrecht, GA, 3508, The Netherlands
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| |
Collapse
|
7
|
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6:4830-4855. [PMID: 34136726 PMCID: PMC8175243 DOI: 10.1016/j.bioactmat.2021.05.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
In spite of the considerable achievements in the field of regenerative medicine in the past several decades, osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition, structure and functions. In order to repair the hierarchical tissue involving different layers of articular cartilage, cartilage-bone interface and subchondral bone, traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling. It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional, structural and functional characteristics to the native osteochondral tissues. Here in this review, some basic knowledge of the osteochondral units including the anatomical structure and composition, the defect classification and clinical treatments will be first introduced. Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design, cell encapsulation and signaling factor incorporation including bioreactor application. Clinical products for osteochondral defect repair will be analyzed and summarized later. Moreover, we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
8
|
Xie Y, Lee K, Wang X, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Interconnected collagen porous scaffolds prepared with sacrificial PLGA sponge templates for cartilage tissue engineering. J Mater Chem B 2021; 9:8491-8500. [PMID: 34553735 DOI: 10.1039/d1tb01559a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interconnected pore structures of scaffolds are important to control the cell functions for cartilage tissue engineering. In this study, collagen scaffolds with interconnected pore structures were prepared using poly(D,L-lactide-co-glycolide) (PLGA) sponges as sacrificial templates. Six types of PLGA sponges of different pore sizes and porosities were prepared by the solvent casting/particulate leaching method and used to regulate the interconnectivity of the collagen scaffolds. The integral and continuous templating structure of PLGA sponges generated well-interconnected pore structures in the collagen scaffolds. Bovine articular chondrocytes cultured in collagen scaffolds showed homogenous distribution, fast proliferation, high expression of cartilaginous genes and high secretion of cartilaginous extracellular matrix. In particular, the collagen scaffold templated by the PLGA sacrificial sponge that was prepared with a high weight ratio of PLGA and large salt particulates showed the most promotive effect on cartilage tissue formation. The interconnected pore structure facilitated cell distribution, cell-cell interaction and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Yan Xie
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kyubae Lee
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Xiuhui Wang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
9
|
Jiang Z, Zhang K, Du L, Cheng Z, Zhang T, Ding J, Li W, Xu B, Zhu M. Construction of chitosan scaffolds with controllable microchannel for tissue engineering and regenerative medicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112178. [PMID: 34082978 DOI: 10.1016/j.msec.2021.112178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/16/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Microchannels are effective means of enabling the functional performance of tissue engineering scaffolds. Chitosan, a partial deacetylation derivative of chitin, exhibiting excellent biocompatibility, has been widely used in clinical practice. However, development of chitosan scaffolds with controllable microchannels architecture remains an engineering challenge. Here, we generated chitosan scaffolds with adjustable microchannel by combining a 3D printing microfiber templates-leaching method and a freeze-drying method. We can precisely control the arrangement, diameter and density of microchannel within chitosan scaffolds. Moreover, the integrated bilayer scaffolds with the desired structural parameters in each layer were fabricated and exhibited no delamination. The flow rate and volume of the simulated fluid can be modulated by diverse channels architecture. Additionally, the microchannel structure promoted cell survival, proliferation and distribution in vitro, and improved cell and tissue ingrowth and vascular formation in vivo. This study opens a new road for constructing chitosan scaffolds, and can further extend their application scope across tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Zhuyan Jiang
- The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300070, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Kaihui Zhang
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Lilong Du
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China.
| | - Zhaojun Cheng
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Tongxing Zhang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Ji Ding
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China
| | - Wen Li
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Baoshan Xu
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, China.
| | - Meifeng Zhu
- College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| |
Collapse
|
10
|
Liu J, Fang Q, Lin H, Yu X, Zheng H, Wan Y. Alginate-poloxamer/silk fibroin hydrogels with covalently and physically cross-linked networks for cartilage tissue engineering. Carbohydr Polym 2020; 247:116593. [PMID: 32829786 DOI: 10.1016/j.carbpol.2020.116593] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/02/2020] [Accepted: 06/03/2020] [Indexed: 11/28/2022]
Abstract
Poloxamer was grafted onto alginate and the optimally synthesized alginate-poloxamer (ALG-POL) copolymer was combined with silk fibroin (SF) to produce thermosensitive ALG-POL/SF hydrogels with covalently and physically crosslinked networks. The formulated ALG-POL/SF gels were found to be injectable with sol-gel transitions near physiological temperature and pH. Rheological measurements showed that some ALG-POL/SF gels had their elastic modulus of around 5 kPa or higher with large ratio of elastic modulus to viscous modulus, indicative of their mechanically strong feature. The achieved ALG-POL/SF gels exhibited concurrent enhancement in strength and elasticity when compared to the gels built with either ALG-POL or SF alone. The microscopic insight into dry ALG-POL/SF gels validated that they were highly porous with well-interconnected pore characteristics. These ALG-POL/SF gels showed abilities to support the in-growth of seeded chondrocytes while effectively maintaining their chondrogenic phenotype. Results suggest promising attributes of ALG-POL/SF gels as alternative biomaterial for cartilage tissue engineering.
Collapse
Affiliation(s)
- Jiaoyan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Qing Fang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Hui Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Xiaofeng Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Hong Zheng
- Department of Pathophysiology, Anhui Medical University, Hefei, 230032, PR China.
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
11
|
Liu J, Yang B, Li M, Li J, Wan Y. Enhanced dual network hydrogels consisting of thiolated chitosan and silk fibroin for cartilage tissue engineering. Carbohydr Polym 2019; 227:115335. [PMID: 31590851 DOI: 10.1016/j.carbpol.2019.115335] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/26/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
Thiolated chitosan (CS-NAC) was synthesized and the selected CS-NAC was used together with silk fibroin (SF) to produce dual network CS-NAC/SF hydrogels. The CS-NAC/SF solutions with formulated compositions were able to form hydrogels at physiological temperature and pH. Rheological measurements showed that elastic modulus of some CS-NAC/SF gels could reach around 3 kPa or higher and was much higher than their respective viscous modulus, indicating that they behaved like strong gels. Deformation measurements verified that CS-NAC/SF gels had well-defined elasticity. The optimized CS-NAC/SF gels exhibited jointly enhanced properties in terms of strength, stiffness and elasticity when compared to the gels resulted from either CS-NAC or SF. Examinations of dry CS-NAC/SF gels revealed that they were highly porous with well-interconnected pore features. Cell culture demonstrated that CS-NAC/SF gels supported the growth of chondrocytes while effectively maintaining their phenotype. Results suggest that these dual network gels have promising potential in cartilage repair.
Collapse
Affiliation(s)
- Jiaoyan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Bin Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Minhui Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jing Li
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
12
|
Baek J, Lotz MK, D'Lima DD. Core-Shell Nanofibrous Scaffolds for Repair of Meniscus Tears. Tissue Eng Part A 2019; 25:1577-1590. [PMID: 30950316 DOI: 10.1089/ten.tea.2018.0319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Electrospinning is an attractive method of fabricating nanofibers that replicate the ultrastructure of the human meniscus. However, it is challenging to approximate the mechanical properties of meniscal tissue while maintaining the biocompatibility of collagen fibers. Our objective was to determine if functionalizing polylactic acid (PLA) nanofibers with collagen would enhance their biocompatibility. We therefore used coaxial electrospinning to generate core-shell nanofibers with a core of PLA for mechanical strength and a shell of collagen to enhance cell attachment and matrix synthesis. We characterized the nanostructure of the engineered scaffolds and measured the hydrophilic and mechanical properties. We assessed the performance of human meniscal cells seeded on coaxial electrospun scaffolds to produce meniscal tissue by gene expression and histology. Finally, we investigated whether these cell-seeded scaffolds could repair surgical tears created ex vivo in avascular meniscal explants. Histology, immunohistochemistry, and mechanical testing of ex vivo repair provided evidence of neotissue that was significantly better integrated with the native tissue than with the acellular coaxial electrospun scaffolds. Human meniscal cell-seeded coaxial electrospun scaffolds may have potential in enhancing repair of avascular meniscus tears. Impact Statement The success of any tissue-engineered meniscus graft relies on its ability to mimic native three-dimensional microstructure, support cell growth, produce tissue-specific matrix, and enhance graft integration into the repair site. Polylactic acid scaffolds possess the desired mechanical properties, whereas collagen scaffolds induce better cell attachment and enhanced tissue regeneration. We therefore fabricated nanofibrous scaffolds that combined the properties of two biomaterials. These novel coaxial scaffolds more closely emulated the structure, mechanical properties, and biochemical composition of native meniscal tissue. Our findings of meniscogenic tissue generation and integration in meniscus defects have the potential to be translated to clinical use.
Collapse
Affiliation(s)
- Jihye Baek
- Shiley Center for Orthopedic Research and Education, Scripps Clinic, La Jolla, California.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Martin K Lotz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Darryl D D'Lima
- Shiley Center for Orthopedic Research and Education, Scripps Clinic, La Jolla, California.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
13
|
Polyhydroxybutyrate/Chitosan 3D Scaffolds Promote In Vitro and In Vivo Chondrogenesis. Appl Biochem Biotechnol 2019; 189:556-575. [PMID: 31073980 DOI: 10.1007/s12010-019-03021-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
The articular cartilage is an avascular and aneural tissue and its injuries result mostly in osteoarthritic changes and formation of fibrous tissue. Efforts of scientists worldwide are focused on restoration of cartilage with increase in life quality of patients. Novel polymeric polyhydroxybutyrate/chitosan (PCH) porous 3D scaffolds were developed and characterized. The rat mesenchymal stem cells (MSCs) were seeded in vitro on PCH scaffolds by a simple filtration of MSCs suspension over scaffolds using syringe. The chondrogenesis of cell-scaffold constructs was carried out in supplemented chondrogenic cultivation medium. After 2 and 4 weeks of in vitro culturing cell-scaffold constructs in chondrogenic differentiation medium, the cartilage extracellular matrix components like glycosaminoglycans and collagens were identified in scaffolds by biochemical assays and histological and immunohistochemical staining. Preliminary in vivo experiments with acellular scaffolds, which filled the artificially created cartilage defect in sheep knee were done and evaluated. Cells released from the bone marrow cavity have penetrated into acellular PCH scaffold in cartilage defect and induced tissue formation similar to hyaline cartilage. The results demonstrated that PCH scaffolds supported chondrogenic differentiation of MSCs in vitro. Acellular PCH scaffolds were successfully utilized in vivo for reparation of artificially created knee cartilage defects in sheep and supported wound healing and formation of hyaline cartilage-like tissue.
Collapse
|
14
|
Lindberg G, Longoni A, Lim K, Rosenberg A, Hooper G, Gawlitta D, Woodfield T. Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications. Acta Biomater 2019; 85:117-130. [PMID: 30572166 DOI: 10.1016/j.actbio.2018.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/09/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
Abstract
Decellularisation of tissues, utilising their biochemical cues, poses exciting tissue engineering (TE) opportunities. However, removing DNA from cartilage (dCart) requires harsh treatments due to its dense structure, causing loss of bioactivity and limiting its application as a cartilaginous extra cellular matrix (ECM). In this study, we demonstrate for the first time the successful application of vitreous humor (VH), a highly hydrated tissue closely resembling the glycosaminoglycan (GAG) and collagen composition of cartilage, as an ECM hydrogel to support chondrogenic differentiation. Equine VH was extracted followed by biochemical quantifications, histological examinations, cytotoxicity (human mesenchymal stromal cells, hMSCs and human articular chondrocytes, hACs) and U937 cell proliferation studies. VH was further seeded with hACs or hMSCs and cultured for 3-weeks to study chondrogenesis compared to scaffold-free micro-tissue pellet cultures and collagen-I hydrogels. Viability, metabolic activity, GAG and DNA content, chondrogenic gene expression (aggrecan, collagen I/II mRNA) and mechanical properties were quantified and matrix deposition was visualised using immunohistochemistry (Safranin-O, collagen I/II). VH was successfully extracted, exhibiting negligible amounts of DNA (0.4 ± 0.4 µg/mg dry-weight) and notable preservation of ECM components. VH displayed neither cytotoxic responses nor proliferation of macrophage-like U937 cells, instead enhancing both hMSC and hAC proliferation. Interestingly, encapsulated cells self-assembled the VH-hydrogel into spheroids, resulting in uniform distribution of both GAGs and collagen type II with increased compressive mechanical properties, rendering VH a permissive native ECM source to fabricate cartilaginous hydrogels for potential TE applications. STATEMENT OF SIGNIFICANCE: Fabricating bioactive and cell-instructive cartilage extracellular matrix (ECM) derived biomaterials and hydrogels has over recent years proven to be a challenging task, often limited by poor retention of inherent environmental cues post decellularisation due to the dense and avascular nature of native cartilage. In this study, we present an alternative route to fabricate highly permissive and bioactive ECM hydrogels from vitreous humor (VH) tissue. This paper specifically reports the discovery of optimal VH extraction protocols and cell seeding strategy enabling fabrication of cartilaginous matrix components into a hydrogel support material for promoting chondrogenic differentiation. The work showcases a naturally intact and unmodified hydrogel design that improves cellular responses and may help guide the development of cell instructive and stimuli responsive hybrid biomaterials in a number of TERM applications.
Collapse
|
15
|
Irawan V, Sung TC, Higuchi A, Ikoma T. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. Tissue Eng Regen Med 2018; 15:673-697. [PMID: 30603588 PMCID: PMC6250655 DOI: 10.1007/s13770-018-0135-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.
Collapse
Affiliation(s)
- Vincent Irawan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| | - Tzu-Cheng Sung
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Toshiyuki Ikoma
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
16
|
Barui A, Chowdhury F, Pandit A, Datta P. Rerouting mesenchymal stem cell trajectory towards epithelial lineage by engineering cellular niche. Biomaterials 2018; 156:28-44. [DOI: 10.1016/j.biomaterials.2017.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/22/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
|
17
|
Mekhileri NV, Lim KS, Brown GCJ, Mutreja I, Schon BS, Hooper GJ, Woodfield TBF. Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication 2018; 10:024103. [PMID: 29199637 DOI: 10.1088/1758-5090/aa9ef1] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bottom-up biofabrication approaches combining micro-tissue fabrication techniques with extrusion-based 3D printing of thermoplastic polymer scaffolds are emerging strategies in tissue engineering. These biofabrication strategies support native self-assembly mechanisms observed in developmental stages of tissue or organoid growth as well as promoting cell-cell interactions and cell differentiation capacity. Few technologies have been developed to automate the precise assembly of micro-tissues or tissue modules into structural scaffolds. We describe an automated 3D bioassembly platform capable of fabricating simple hybrid constructs via a two-step bottom-up bioassembly strategy, as well as complex hybrid hierarchical constructs via a multistep bottom-up bioassembly strategy. The bioassembly system consisted of a fluidic-based singularisation and injection module incorporated into a commercial 3D bioprinter. The singularisation module delivers individual micro-tissues to an injection module, for insertion into precise locations within a 3D plotted scaffold. To demonstrate applicability for cartilage tissue engineering, human chondrocytes were isolated and micro-tissues of 1 mm diameter were generated utilising a high throughput 96-well plate format. Micro-tissues were singularised with an efficiency of 96.0 ± 5.1%. There was no significant difference in size, shape or viability of micro-tissues before and after automated singularisation and injection. A layer-by-layer approach or aforementioned bottom-up bioassembly strategy was employed to fabricate a bilayered construct by alternatively 3D plotting a thermoplastic (PEGT/PBT) polymer scaffold and inserting pre-differentiated chondrogenic micro-tissues or cell-laden gelatin-based (GelMA) hydrogel micro-spheres, both formed via high-throughput fabrication techniques. No significant difference in viability between the construct assembled utilising the automated bioassembly system and manually assembled construct was observed. Bioassembly of pre-differentiated micro-tissues as well as chondrocyte-laden hydrogel micro-spheres demonstrated the flexibility of the platform while supporting tissue fusion, long-term cell viability, and deposition of cartilage-specific extracellular matrix proteins. This technology provides an automated and scalable pathway for bioassembly of both simple and complex 3D tissue constructs of clinically relevant shape and size, with demonstrated capability to facilitate direct spatial organisation and hierarchical 3D assembly of micro-tissue modules, ranging from biomaterial free cell pellets to cell-laden hydrogel formulations.
Collapse
Affiliation(s)
- N V Mekhileri
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch 8011, New Zealand
| | | | | | | | | | | | | |
Collapse
|
18
|
von Bomhard A, Faust J, Elsaesser AF, Schwarz S, Pippich K, Rotter N. Impact of expansion and redifferentiation under hypothermia on chondrogenic capacity of cultured human septal chondrocytes. J Tissue Eng 2017; 8:2041731417732655. [PMID: 29051809 PMCID: PMC5638156 DOI: 10.1177/2041731417732655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/29/2017] [Indexed: 01/20/2023] Open
Abstract
A critical limitation in the cultivation of cartilage for tissue engineering is the dedifferentiation in chondrocytes, mainly during in vitro amplification. Despite many previous studies investigating the influence of various conditions, no data exist concerning the effects of hypothermia. Our aim has been to influence chondrocyte dedifferentiation in vitro by hypothermic conditions. Chondrocytes were isolated from cartilage biopsies and seeded in monolayer and in three-dimensional pellet-cultures. Each cell culture was either performed at 32.2°C or 37°C during amplification. Additionally, the influence of the redifferentiation of chondrocytes in three-dimensional cell culture was examined at 32.2°C and 37°C after amplification at 32.2°C or 37°C. An 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was used to measure cell proliferation in monolayer, whereas the polymerase chain reaction and immunohistochemical and histological staining were used in three-dimensional pellet-cultures. Real-time polymerase chain reaction was employed to measure the relative expression of the target genes collagen II, collagen I, aggrecan and versican. Ratios were estimated between collagen II/collagen I and aggrecan/versican to evaluate differentiation. A higher value of these ratios indicated an advantageous status of differentiation. In monolayer, hypothermia at 32.2°C slowed down the proliferation rate of chondrocytes significantly, being up to two times lower at 32.2°C compared with culture at 37°C. Simultaneously, hypothermia in monolayer decelerated dedifferentiation. The ratio of aggrecan/versican was significantly higher at 32.2°C compared with that at 37°C. In three-dimensional pellet-culture, the chondrocytes redifferentiated at 32.2°C and at 37°C, and this process is more distinct at 37°C than at 32.2°C. Similar results were obtained for the ratios of collagen II/collagen I and aggrecan/versican and were supported by immunochemical and histological staining. Thus, hypothermic conditions for chondrocytes are mainly advantageous in monolayer culture. In three-dimensional pellet-culture, redifferentiation predominates at 37°C compared with at 32.2°C. In particular, the results from the monolayer cultures show potential in the avoidance of dedifferentiation.
Collapse
Affiliation(s)
- Achim von Bomhard
- Department of Oral and Maxillofacial Surgery, The University Hospital Klinikum rechts der Isar, Munich, Germany
| | - Joseph Faust
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | | | - Silke Schwarz
- Institute for Anatomy, Paracelsus Medical University, Nuremberg, Germany
| | - Katharina Pippich
- Department of Oral and Maxillofacial Surgery, The University Hospital Klinikum rechts der Isar, Munich, Germany
| | - Nicole Rotter
- Department of Oto-Rhino-Laryngology, Kepler University, Linz, Austria
| |
Collapse
|
19
|
Gostynska N, Shankar Krishnakumar G, Campodoni E, Panseri S, Montesi M, Sprio S, Kon E, Marcacci M, Tampieri A, Sandri M. 3D porous collagen scaffolds reinforced by glycation with ribose for tissue engineering application. Biomed Mater 2017; 12:055002. [DOI: 10.1088/1748-605x/aa7694] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Gu Y, Kang N, Dong P, Liu X, Wang Q, Fu X, Yan L, Jiang H, Cao Y, Xiao R. Chondrocytes from congenital microtia possess an inferior capacity for in vivo cartilage regeneration to healthy ear chondrocytes. J Tissue Eng Regen Med 2017; 12:e1737-e1746. [PMID: 27860439 DOI: 10.1002/term.2359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 09/06/2016] [Accepted: 11/09/2016] [Indexed: 01/01/2023]
Abstract
The remnant auricular cartilage from microtia has become a valuable cell source for ear regeneration. It is important to clarify the issue of whether the genetically defective microtia chondrocytes could engineer cartilage tissue comparable to healthy ear chondrocytes. In the current study, the histology and cell yield of native microtia and normal ear cartilage were investigated, and the biological characteristics of derived chondrocytes examined, including proliferation, chondrogenic phenotype and cell migration. Furthermore, the in vivo cartilage-forming capacity of passaged microtia and normal auricular chondrocytes were systematically compared by seeding them onto polyglycolic acid/polylactic acid scaffold to generate tissue engineered cartilage in nude mice. Through histological examinations and quantitative analysis of glycosaminoglycan, Young's modulus, and the expression of cartilage-related genes, it was found that microtia chondrocytes had a slower dedifferentiation rate with the decreased expression of stemness-related genes, and weaker migration ability than normal ear chondrocytes, and the microtia chondrocytes-engineered cartilage was biochemically and biomechanically inferior to that constructed using normal ear chondrocytes. This study provides valuable information for the clinical application of the chondrocytes derived from congenital microtia to engineer cartilage. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yunpeng Gu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ning Kang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ping Dong
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Haiyue Jiang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yilin Cao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
21
|
Bianchi VJ, Weber JF, Waldman SD, Backstein D, Kandel RA. Formation of Hyaline Cartilage Tissue by Passaged Human Osteoarthritic Chondrocytes. Tissue Eng Part A 2017; 23:156-165. [DOI: 10.1089/ten.tea.2016.0262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Vanessa J. Bianchi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Joanna F. Weber
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada
- Kennan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Stephen D. Waldman
- Kennan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada
| | - David Backstein
- Division of Orthopaedics, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Rita A. Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Pathology and Laboratory Medicine, Mt. Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Masaeli E, Karamali F, Loghmani S, Eslaminejad MB, Nasr-Esfahani MH. Bio-engineered electrospun nanofibrous membranes using cartilage extracellular matrix particles. J Mater Chem B 2017; 5:765-776. [DOI: 10.1039/c6tb02015a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Functionalized nanofibrous scaffolds with decellularized ECM (DECM) particles can mimic the natural motifs of cartilage ECMs and enhance chondro-inductivity for tissue engineering applications.
Collapse
Affiliation(s)
- Elahe Masaeli
- Department of Cellular Biotechnology
- Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
| | - Fereshte Karamali
- Department of Cellular Biotechnology
- Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
| | - Shahriar Loghmani
- Department of Cellular Biotechnology
- Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology
- Cell Science Research Center
- Royan Institute for Stem Cell Biology and Technology
- ACECR
- Tehran
| | | |
Collapse
|
23
|
Zhang ZZ, Jiang D, Ding JX, Wang SJ, Zhang L, Zhang JY, Qi YS, Chen XS, Yu JK. Role of scaffold mean pore size in meniscus regeneration. Acta Biomater 2016; 43:314-326. [PMID: 27481291 DOI: 10.1016/j.actbio.2016.07.050] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/09/2016] [Accepted: 07/29/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED Recently, meniscus tissue engineering offers a promising management for meniscus regeneration. Although rarely reported, the microarchitectures of scaffolds can deeply influence the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation in meniscus tissue engineering. Herein, a series of three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds with three distinct mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The scaffold with the mean pore size of 215μm significantly improved both the proliferation and extracellular matrix (ECM) production/deposition of mesenchymal stem cells compared to all other groups in vitro. Moreover, scaffolds with mean pore size of 215μm exhibited the greatest tensile and compressive moduli in all the acellular and cellular studies. In addition, the relatively better results of fibrocartilaginous tissue formation and chondroprotection were observed in the 215μm scaffold group after substituting the rabbit medial meniscectomy for 12weeks. Overall, the mean pore size of 3D-printed PCL scaffold could affect cell behavior, ECM production, biomechanics, and repair effect significantly. The PCL scaffold with mean pore size of 215μm presented superior results both in vitro and in vivo, which could be an alternative for meniscus tissue engineering. STATEMENT OF SIGNIFICANCE Meniscus tissue engineering provides a promising strategy for meniscus regeneration. In this regard, the microarchitectures (e.g., mean pore size) of scaffolds remarkably impact the behaviors of cells and subsequent tissue formation, which has been rarely reported. Herein, three three-dimensional poly(ε-caprolactone) scaffolds with different mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The results suggested that the mean pore size significantly affected the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation. This study furthers our understanding of the cell-scaffold interaction in meniscus tissue engineering, which provides unique insight into the design of meniscus scaffolds for future clinical application.
Collapse
Affiliation(s)
- Zheng-Zheng Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, PR China
| | - Dong Jiang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, PR China
| | - Jian-Xun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Shao-Jie Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, PR China
| | - Lei Zhang
- Beijing Key Laboratory of Biofabrication and Rapid Prototyping Technology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Ji-Ying Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, PR China
| | - Yan-Song Qi
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, PR China
| | - Xue-Si Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jia-Kuo Yu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, PR China.
| |
Collapse
|
24
|
Recha-Sancho L, Semino CE. Chondroitin Sulfate- and Decorin-Based Self-Assembling Scaffolds for Cartilage Tissue Engineering. PLoS One 2016; 11:e0157603. [PMID: 27315119 PMCID: PMC4912132 DOI: 10.1371/journal.pone.0157603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/01/2016] [Indexed: 12/14/2022] Open
Abstract
Cartilage injury and degenerative tissue progression remain poorly understood by the medical community. Therefore, various tissue engineering strategies aim to recover areas of damaged cartilage by using non-traditional approaches. To this end, the use of biomimetic scaffolds for recreating the complex in vivo cartilage microenvironment has become of increasing interest in the field. In the present study, we report the development of two novel biomaterials for cartilage tissue engineering (CTE) with bioactive motifs, aiming to emulate the native cartilage extracellular matrix (ECM). We employed a simple mixture of the self-assembling peptide RAD16-I with either Chondroitin Sulfate (CS) or Decorin molecules, taking advantage of the versatility of RAD16-I. After evaluating the structural stability of the bi-component scaffolds at a physiological pH, we characterized these materials using two different in vitro assessments: re-differentiation of human articular chondrocytes (AC) and induction of human adipose derived stem cells (ADSC) to a chondrogenic commitment. Interestingly, differences in cellular morphology and viability were observed between cell types and culture conditions (control and chondrogenic). In addition, both cell types underwent a chondrogenic commitment under inductive media conditions, and this did not occur under control conditions. Remarkably, the synthesis of important ECM constituents of mature cartilage, such as type II collagen and proteoglycans, was confirmed by gene and protein expression analyses and toluidine blue staining. Furthermore, the viscoelastic behavior of ADSC constructs after 4 weeks of culture was more similar to that of native articular cartilage than to that of AC constructs. Altogether, this comparative study between two cell types demonstrates the versatility of our novel biomaterials and suggests a potential 3D culture system suitable for promoting chondrogenic differentiation.
Collapse
Affiliation(s)
- Lourdes Recha-Sancho
- Tissue Engineering Laboratory, Department of Bioengineering, IQS School of Engineering, Ramon Llull University, Barcelona, Spain
| | - Carlos E. Semino
- Tissue Engineering Laboratory, Department of Bioengineering, IQS School of Engineering, Ramon Llull University, Barcelona, Spain
- * E-mail:
| |
Collapse
|
25
|
Recha-Sancho L, Moutos FT, Abellà J, Guilak F, Semino CE. Dedifferentiated Human Articular Chondrocytes Redifferentiate to a Cartilage-Like Tissue Phenotype in a Poly(ε-Caprolactone)/Self-Assembling Peptide Composite Scaffold. MATERIALS 2016; 9:ma9060472. [PMID: 28773609 PMCID: PMC5456812 DOI: 10.3390/ma9060472] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/29/2016] [Accepted: 06/03/2016] [Indexed: 01/01/2023]
Abstract
Adult articular cartilage has a limited capacity for growth and regeneration and, with injury, new cellular or biomaterial-based therapeutic platforms are required to promote repair. Tissue engineering aims to produce cartilage-like tissues that recreate the complex mechanical and biological properties found in vivo. In this study, a unique composite scaffold was developed by infiltrating a three-dimensional (3D) woven microfiber poly (ε-caprolactone) (PCL) scaffold with the RAD16-I self-assembling nanofibers to obtain multi-scale functional and biomimetic tissue-engineered constructs. The scaffold was seeded with expanded dedifferentiated human articular chondrocytes and cultured for four weeks in control and chondrogenic growth conditions. The composite constructs were compared to control constructs obtained by culturing cells with 3D woven PCL scaffolds or RAD16-I independently. High viability and homogeneous cell distribution were observed in all three scaffolds used during the term of the culture. Moreover, gene and protein expression profiles revealed that chondrogenic markers were favored in the presence of RAD16-I peptide (PCL/RAD composite or alone) under chondrogenic induction conditions. Further, constructs displayed positive staining for toluidine blue, indicating the presence of synthesized proteoglycans. Finally, mechanical testing showed that constructs containing the PCL scaffold maintained the initial shape and viscoelastic behavior throughout the culture period, while constructs with RAD16-I scaffold alone contracted during culture time into a stiffer and compacted structure. Altogether, these results suggest that this new composite scaffold provides important mechanical requirements for a cartilage replacement, while providing a biomimetic microenvironment to re-establish the chondrogenic phenotype of human expanded articular chondrocytes.
Collapse
Affiliation(s)
- Lourdes Recha-Sancho
- Tissue Engineering Laboratory, Bioengineering Department, IQS School of Engineering, Ramon Llull University, Via Augusta 390, Barcelona 08017, Spain.
| | | | - Jordi Abellà
- Analytical Chemistry Department, Institut Químic de Sarrià, Ramon Llull University, Via Augusta 390, Barcelona 08017, Spain.
| | - Farshid Guilak
- Cytex Therapeutics Inc., Durham, NC 27705, USA.
- Department of Orthopaedic Surgery, Washington University and Shriners Hospitals for Children-St. Louis, St. Louis, MO 63110, USA.
| | - Carlos E Semino
- Tissue Engineering Laboratory, Bioengineering Department, IQS School of Engineering, Ramon Llull University, Via Augusta 390, Barcelona 08017, Spain.
| |
Collapse
|
26
|
Murray LM, Nock V, Evans JJ, Alkaisi MM. The use of substrate materials and topography to modify growth patterns and rates of differentiation of muscle cells. J Biomed Mater Res A 2016; 104:1638-45. [DOI: 10.1002/jbm.a.35696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 11/10/2022]
Affiliation(s)
- L. M. Murray
- The MacDiarmid Institute for Advanced Materials and Nanotechnology; Department of Electrical and Computer Engineering; University of Canterbury; Christchurch 8140 New Zealand
| | - V. Nock
- The MacDiarmid Institute for Advanced Materials and Nanotechnology; Department of Electrical and Computer Engineering; University of Canterbury; Christchurch 8140 New Zealand
| | - J. J. Evans
- The MacDiarmid Institute for Advanced Materials and Nanotechnology and Centre for Neuroendocrinology; Department of Obstetrics and Gynaecology; University of Otago Christchurch; Christchurch 8011 New Zealand
| | - M. M. Alkaisi
- The MacDiarmid Institute for Advanced Materials and Nanotechnology; Department of Electrical and Computer Engineering; University of Canterbury; Christchurch 8140 New Zealand
| |
Collapse
|
27
|
Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C. Articular cartilage: from formation to tissue engineering. Biomater Sci 2016; 4:734-67. [PMID: 26923076 DOI: 10.1039/c6bm00068a] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hyaline cartilage is the nonlinear, inhomogeneous, anisotropic, poro-viscoelastic connective tissue that serves as friction-reducing and load-bearing cushion in synovial joints and is vital for mammalian skeletal movements. Due to its avascular nature, low cell density, low proliferative activity and the tendency of chondrocytes to de-differentiate, cartilage cannot regenerate after injury, wear and tear, or degeneration through common diseases such as osteoarthritis. Therefore severe damage usually requires surgical intervention. Current clinical strategies to generate new tissue include debridement, microfracture, autologous chondrocyte transplantation, and mosaicplasty. While articular cartilage was predicted to be one of the first tissues to be successfully engineered, it proved to be challenging to reproduce the complex architecture and biomechanical properties of the native tissue. Despite significant research efforts, only a limited number of studies have evolved up to the clinical trial stage. This review article summarizes the current state of cartilage tissue engineering in the context of relevant biological aspects, such as the formation and growth of hyaline cartilage, its composition, structure and biomechanical properties. Special attention is given to materials development, scaffold designs, fabrication methods, and template-cell interactions, which are of great importance to the structure and functionality of the engineered tissue.
Collapse
Affiliation(s)
- Sandra Camarero-Espinosa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | | | | | | |
Collapse
|
28
|
Green JD, Tollemar V, Dougherty M, Yan Z, Yin L, Ye J, Collier Z, Mohammed MK, Haydon RC, Luu HH, Kang R, Lee MJ, Ho SH, He TC, Shi LL, Athiviraham A. Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering. Genes Dis 2015; 2:307-327. [PMID: 26835506 PMCID: PMC4730920 DOI: 10.1016/j.gendis.2015.09.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/16/2015] [Indexed: 01/08/2023] Open
Abstract
Defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity and avascular nature. Current surgical treatment options do not ensure consistent regeneration of hyaline cartilage in favor of fibrous tissue. Here, we review the current understanding of the most important biological regulators of chondrogenesis and their interactions, to provide insight into potential applications for cartilage tissue engineering. These include various signaling pathways, including: fibroblast growth factors (FGFs), transforming growth factor β (TGF-β)/bone morphogenic proteins (BMPs), Wnt/β-catenin, Hedgehog, Notch, hypoxia, and angiogenic signaling pathways. Transcriptional and epigenetic regulation of chondrogenesis will also be discussed. Advances in our understanding of these signaling pathways have led to promising advances in cartilage regeneration and tissue engineering.
Collapse
Affiliation(s)
- Jordan D. Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Viktor Tollemar
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mark Dougherty
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhengjian Yan
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liangjun Yin
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zachary Collier
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Jafari M, Paknejad Z, Rad MR, Motamedian SR, Eghbal MJ, Nadjmi N, Khojasteh A. Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater 2015; 105:431-459. [PMID: 26496456 DOI: 10.1002/jbm.b.33547] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 09/06/2015] [Accepted: 09/27/2015] [Indexed: 12/16/2022]
Abstract
The tissue engineering scaffold acts as an extracellular matrix that interacts to the cells prior to forming new tissues. The chemical and structural characteristics of scaffolds are major concerns in fabricating of ideal three-dimensional structure for tissue engineering applications. The polymer scaffolds used for tissue engineering should possess proper architecture and mechanical properties in addition to supporting cell adhesion, proliferation, and differentiation. Much research has been done on the topic of polymeric scaffold properties such as surface topographic features (roughness and hydrophilicity) and scaffold microstructures (pore size, porosity, pore interconnectivity, and pore and fiber architectures) that influence the cell-scaffold interactions. In this review, efforts were given to evaluate the effect of both chemical and structural characteristics of scaffolds on cell behaviors such as adhesion, proliferation, migration, and differentiation. This review would provide the fundamental information which would be beneficial for scaffold design in future. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 431-459, 2017.
Collapse
Affiliation(s)
- Maissa Jafari
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahrasadat Paknejad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Oral and Maxillofacial Surgery, University of Antwerp, Belgium, Antwerp, Belgium
| | - Saeed Reza Motamedian
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Jafar Eghbal
- Iranian Center for Endodontic Research, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Nadjmi
- Department of Oral and Maxillofacial Surgery, University of Antwerp, Belgium, Antwerp, Belgium
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Gibbs DMR, Vaezi M, Yang S, Oreffo ROC. Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery? Regen Med 2015; 9:535-49. [PMID: 25159068 DOI: 10.2217/rme.14.20] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Additive manufacturing (AM) is a broad term encompassing 3D printing and several other varieties of material processing, which involve computer-directed layer-by-layer synthesis of materials. As the popularity of AM increases, so to do expectations of the medical therapies this process may offer. Clinical requirements and limitations of current treatment strategies in bone grafting, spinal arthrodesis, osteochondral injury and treatment of periprosthetic joint infection are discussed. The various approaches to AM are described, and the current state of clinical translation of AM across these orthopedic clinical scenarios is assessed. Finally, we attempt to distinguish between what AM may offer orthopedic surgery from the hype of what has been promised by AM.
Collapse
Affiliation(s)
- David M R Gibbs
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences (MP887), Southampton General Hospital, University of Southampton, Southampton, Hampshire S016 6YD, UK
| | | | | | | |
Collapse
|
31
|
Mutreja I, Woodfield TBF, Sperling S, Nock V, Evans JJ, Alkaisi MM. Positive and negative bioimprinted polymeric substrates: new platforms for cell culture. Biofabrication 2015; 7:025002. [PMID: 25850524 DOI: 10.1088/1758-5090/7/2/025002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bioimprinting, which involves capturing cell morphological details into a polymer matrix, provides a new class of patterned surfaces which opens an opportunity to investigate how cells respond to their own signatures and may introduce possibilities for regulating their behaviour. In this study, phenotypic details of human nasal chondrocytes (HNCs) were replicated in soft polydimethylsiloxane (PDMS) mould resulting in inverse replicas of cells, which have been termed here as 'negative bioimprint'. For the first time, the information from this negative bioimprint was then transferred into another PDMS layer resulting in surfaces which resemble cell morphology and were called 'positive bioimprints'. Soft lithography was used to transfer these details from PDMS into different polymers like polystyrene, tissue culture polystyrene and clinically used block co-polymer poly (ethylene glycol) terephthalate-poly (butylene terephthalate) (PEGT-PBT). Results obtained from surface characterization confirmed that fine details of cells were successfully replicated from cells to different polymer matrices without any significant loss of information during the different steps of pattern transfer. HNCs seeded on different polymer surfaces with positive and negative bioimprints exhibited distinct behaviour. Cells cultured on positive bioimprints were more spread out and displayed high levels of proliferation compared to those on negative bioimprints, where cells were more compact with lower proliferation.
Collapse
Affiliation(s)
- I Mutreja
- The MacDiarmid Institute of Advanced Materials and Nanotechnology, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand. The MacDiarmid Institute of Advanced Materials and Nanotechnology and Centre for Neuroendocrinology, Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
32
|
Rederstorff E, Rethore G, Weiss P, Sourice S, Beck-Cormier S, Mathieu E, Maillasson M, Jacques Y, Colliec-Jouault S, Fellah BH, Guicheux J, Vinatier C. Enriching a cellulose hydrogel with a biologically active marine exopolysaccharide for cell-based cartilage engineering. J Tissue Eng Regen Med 2015; 11:1152-1164. [PMID: 25824373 DOI: 10.1002/term.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/22/2014] [Accepted: 01/15/2015] [Indexed: 11/09/2022]
Abstract
The development of biologically and mechanically competent hydrogels is a prerequisite in cartilage engineering. We recently demonstrated that a marine exopolysaccharide, GY785, stimulates the in vitro chondrogenesis of adipose stromal cells. In the present study, we thus hypothesized that enriching our silated hydroxypropyl methylcellulose hydrogel (Si-HPMC) with GY785 might offer new prospects in the development of scaffolds for cartilage regeneration. The interaction properties of GY785 with growth factors was tested by surface plasmon resonance (SPR). The biocompatibility of Si-HPMC/GY785 towards rabbit articular chondrocytes (RACs) and its ability to maintain and recover a chondrocytic phenotype were then evaluated in vitro by MTS assay, cell counting and qRT-PCR. Finally, we evaluated the potential of Si-HPMC/GY785 associated with RACs to form cartilaginous tissue in vivo by transplantation into the subcutis of nude mice for 3 weeks. Our SPR data indicated that GY785 was able to physically interact with BMP-2 and TGFβ. Our analyses also showed that three-dimensionally (3D)-cultured RACs into Si-HPMC/GY785 strongly expressed type II collagen (COL2) and aggrecan transcripts when compared to Si-HPMC alone. In addition, RACs also produced large amounts of extracellular matrix (ECM) containing glycosaminoglycans (GAG) and COL2. When dedifferentiated RACs were replaced in 3D in Si-HPMC/GY785, the expressions of COL2 and aggrecan transcripts were recovered and that of type I collagen decreased. Immunohistological analyses of Si-HPMC/GY785 constructs transplanted into nude mice revealed the production of a cartilage-like extracellular matrix (ECM) containing high amounts of GAG and COL2. These results indicate that GY785-enriched Si-HPMC appears to be a promising hydrogel for cartilage tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- E Rederstorff
- INSERM, UMRS 791-LIOAD, Skeletal Tissue Engineering and Physiopathology (STEP) Group, UFR Odontology, Nantes, France.,Université de Nantes, Unité de Formation et de Recherche (UFR) Odontologie, Nantes, France.,French Research Institute for Exploitation of the Sea (IFREMER), Laboratory of Biotechnology and Marine Molecules, Nantes, France
| | - G Rethore
- INSERM, UMRS 791-LIOAD, Skeletal Tissue Engineering and Physiopathology (STEP) Group, UFR Odontology, Nantes, France.,Université de Nantes, Unité de Formation et de Recherche (UFR) Odontologie, Nantes, France.,Centre Hospitalier Universitaire Nantes, PHU4, Ostéo-articulaire Tête et Cou, Odontologie, Neurochirurgie, Neurotraumatologie (OTONN), Nantes, France
| | - P Weiss
- INSERM, UMRS 791-LIOAD, Skeletal Tissue Engineering and Physiopathology (STEP) Group, UFR Odontology, Nantes, France.,Université de Nantes, Unité de Formation et de Recherche (UFR) Odontologie, Nantes, France.,Centre Hospitalier Universitaire Nantes, PHU4, Ostéo-articulaire Tête et Cou, Odontologie, Neurochirurgie, Neurotraumatologie (OTONN), Nantes, France
| | - S Sourice
- INSERM, UMRS 791-LIOAD, Skeletal Tissue Engineering and Physiopathology (STEP) Group, UFR Odontology, Nantes, France.,Université de Nantes, Unité de Formation et de Recherche (UFR) Odontologie, Nantes, France
| | - S Beck-Cormier
- INSERM, UMRS 791-LIOAD, Skeletal Tissue Engineering and Physiopathology (STEP) Group, UFR Odontology, Nantes, France.,Université de Nantes, Unité de Formation et de Recherche (UFR) Odontologie, Nantes, France
| | - E Mathieu
- INSERM, UMRS 1087, L'Institut du Thorax, Nantes, France
| | - M Maillasson
- INSERM, UMRS 1087, L'Institut du Thorax, Nantes, France.,Plateforme IMPACT Biogenouest, CRCNA-INSERM U892, SFR Santé François Bonamy/UMS INSERM, Nantes, France
| | - Y Jacques
- INSERM, UMRS 1087, L'Institut du Thorax, Nantes, France.,Plateforme IMPACT Biogenouest, CRCNA-INSERM U892, SFR Santé François Bonamy/UMS INSERM, Nantes, France
| | - S Colliec-Jouault
- French Research Institute for Exploitation of the Sea (IFREMER), Laboratory of Biotechnology and Marine Molecules, Nantes, France
| | - B H Fellah
- Centre for Preclinical Research and Investigation of the ONIRIS, Nantes-Atlantic College of Veterinary Medicine, Food Science and Engineering (CRIP), Nantes, France
| | - J Guicheux
- INSERM, UMRS 791-LIOAD, Skeletal Tissue Engineering and Physiopathology (STEP) Group, UFR Odontology, Nantes, France.,Université de Nantes, Unité de Formation et de Recherche (UFR) Odontologie, Nantes, France.,Centre Hospitalier Universitaire Nantes, PHU4, Ostéo-articulaire Tête et Cou, Odontologie, Neurochirurgie, Neurotraumatologie (OTONN), Nantes, France
| | - C Vinatier
- INSERM, UMRS 791-LIOAD, Skeletal Tissue Engineering and Physiopathology (STEP) Group, UFR Odontology, Nantes, France.,Université de Nantes, Unité de Formation et de Recherche (UFR) Odontologie, Nantes, France
| |
Collapse
|
33
|
Schrobback K, Klein TJ, Woodfield TBF. The importance of connexin hemichannels during chondroprogenitor cell differentiation in hydrogel versus microtissue culture models. Tissue Eng Part A 2015; 21:1785-94. [PMID: 25693425 DOI: 10.1089/ten.tea.2014.0691] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell-cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs.
Collapse
Affiliation(s)
- Karsten Schrobback
- 1Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Travis Jacob Klein
- 1Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Tim B F Woodfield
- 1Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| |
Collapse
|
34
|
Implantation of encapsulated human septal chondrocytes into immunocompetent mice using alginate microfibers. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-014-9109-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Matsiko A, Gleeson JP, O'Brien FJ. Scaffold Mean Pore Size Influences Mesenchymal Stem Cell Chondrogenic Differentiation and Matrix Deposition. Tissue Eng Part A 2015; 21:486-97. [DOI: 10.1089/ten.tea.2013.0545] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Amos Matsiko
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Center for Bioengineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| | - John P. Gleeson
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Center for Bioengineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Center for Bioengineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Dublin, Ireland
| |
Collapse
|
36
|
Bhardwaj N, Devi D, Mandal BB. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors. Macromol Biosci 2014; 15:153-82. [PMID: 25283763 DOI: 10.1002/mabi.201400335] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/25/2014] [Indexed: 02/06/2023]
Abstract
Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering.
Collapse
Affiliation(s)
- Nandana Bhardwaj
- Seri-Biotechnology Unit, Life Science Division, Institute of Advanced Study in Science and Technology, Guwahati, 781035, India
| | | | | |
Collapse
|
37
|
Wang CC, Yang KC, Lin KH, Wu CC, Liu YL, Lin FH, Chen IH. A biomimetic honeycomb-like scaffold prepared by flow-focusing technology for cartilage regeneration. Biotechnol Bioeng 2014; 111:2338-48. [DOI: 10.1002/bit.25295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/30/2014] [Accepted: 05/14/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Chen-Chie Wang
- Department of Orthopedic Surgery; Taipei Tzu Chi Hospital; The Buddhist Tzu Chi Medical Foundation; New Taipei City Taiwan
- Department of Orthopedics; School of Medicine; Tzu Chi University; Hualien 97004 Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology; College of Oral Medicine; Taipei Medical University; Taipei Medical University; Taipei Taiwan
- Department of Organ Reconstruction; Institute for Frontier Medical Sciences; Kyoto University; Kyoto Japan
| | - Keng-Hui Lin
- Institute of Physics and Research Center for Applied Science; Academia Sinica; Taipei Taiwan
| | - Chang-Chin Wu
- Department of Orthopedics; National Taiwan University Hospital; College of Medicine; National Taiwan University; Taipei Taiwan
- Department of Orthopedics; En Chu Kong Hospital; New Taipei City Taiwan
| | - Yen-Liang Liu
- Department of Biomedical Engineering; The University of Texas at Austin; Austin
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Engineering and College of Medicine; National Taiwan University; Taipei Taiwan
| | - Ing-Ho Chen
- Department of Orthopedics; School of Medicine; Tzu Chi University; Hualien 97004 Taiwan
- Department of Orthopedic Surgery, Hualien Tzu Chi Hospital; The Buddhist Tzu Chi Medical Foundation; Hualien 970 Taiwan
| |
Collapse
|
38
|
Zeng L, Chen X, Zhang Q, Yu F, Li Y, Yao Y. Redifferentiation of dedifferentiated chondrocytes in a novel three‐dimensional microcavitary hydrogel. J Biomed Mater Res A 2014; 103:1693-702. [DOI: 10.1002/jbm.a.35309] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Zeng
- School of Materials Science and Engineering, South China University of TechnologyGuangzhou510641 China
- National Engineering Research Center for Tissue Restoration and ReconstructionGuangzhou510006 China
| | - Xiaofeng Chen
- School of Materials Science and Engineering, South China University of TechnologyGuangzhou510641 China
- National Engineering Research Center for Tissue Restoration and ReconstructionGuangzhou510006 China
| | - Qing Zhang
- School of Materials Science and Engineering, South China University of TechnologyGuangzhou510641 China
- National Engineering Research Center for Tissue Restoration and ReconstructionGuangzhou510006 China
| | - Feng Yu
- School of Materials Science and Engineering, South China University of TechnologyGuangzhou510641 China
- National Engineering Research Center for Tissue Restoration and ReconstructionGuangzhou510006 China
| | - Yuli Li
- School of Materials Science and Engineering, South China University of TechnologyGuangzhou510641 China
- National Engineering Research Center for Tissue Restoration and ReconstructionGuangzhou510006 China
| | - Yongchang Yao
- School of Materials Science and Engineering, South China University of TechnologyGuangzhou510641 China
- National Engineering Research Center for Tissue Restoration and ReconstructionGuangzhou510006 China
| |
Collapse
|
39
|
Kwon H, Rainbow RS, Sun L, Hui CK, Cairns DM, Preda RC, Kaplan DL, Zeng L. Scaffold structure and fabrication method affect proinflammatory milieu in three-dimensional-cultured chondrocytes. J Biomed Mater Res A 2014; 103:534-44. [PMID: 24753349 DOI: 10.1002/jbm.a.35203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/13/2014] [Accepted: 04/18/2014] [Indexed: 01/08/2023]
Abstract
Cartilage tissue engineering has emerged as an attractive therapeutic option for repairing damaged cartilage tissue in the arthritic joint. High levels of proinflammatory cytokines present at arthritic joints can cause cartilage destruction and instability of the engineered cartilage tissue, and thus it is critical to engineer strong and stable cartilage that is resistant to the inflammatory environment. In this study, we demonstrate that scaffolding materials with different pore sizes and fabrication methods influence the microenvironment of chondrocytes and the response of these cells to proinflammatory cytokines, interleukin-1beta, and tumor necrosis factor alpha. Silk scaffolds prepared using the organic solvent hexafluoroisopropanol as compared to an aqueous-based method, as well as those with larger pore sizes, supported the deposition of higher cartilage matrix levels and lower expression of cartilage matrix degradation-related genes, as well as lower expression of endogenous proinflammatory cytokines IL-1β in articular chondrocytes. These biochemical properties could be related to the physical properties of the scaffolds such as the water uptake and the tendency to leach or adsorb proinflammatory cytokines. Thus, scaffold structure may influence the behavior of chondrocytes by influencing the microenvironment under inflammatory conditions, and should be considered as an important component for bioengineering stable cartilage tissues.
Collapse
Affiliation(s)
- Heenam Kwon
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, 02111
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 34:168-75. [DOI: 10.1016/j.msec.2013.09.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/31/2013] [Accepted: 09/06/2013] [Indexed: 01/28/2023]
|
41
|
Schüller-Ravoo S, Teixeira SM, Feijen J, Grijpma DW, Poot AA. Flexible and Elastic Scaffolds for Cartilage Tissue Engineering Prepared by Stereolithography Using Poly(trimethylene carbonate)-Based Resins. Macromol Biosci 2013; 13:1711-9. [DOI: 10.1002/mabi.201300399] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/07/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Sigrid Schüller-Ravoo
- MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
| | - Sandra M. Teixeira
- MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
| | - Jan Feijen
- MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
| | - Dirk W. Grijpma
- MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
- W.J. Kolff Institute, Department of Biomedical Engineering; University Medical Center Groningen and University of Groningen; PO Box 96 9700 AD Groningen The Netherlands
| | - André A. Poot
- MIRA Institute for Biomedical Engineering and Technical Medicine, Department of Biomaterials Science and Technology; University of Twente; PO Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
42
|
Peng S, Yang SR, Ko CY, Peng YS, Chu IM. Evaluation of a mPEG-polyester-based hydrogel as cell carrier for chondrocytes. J Biomed Mater Res A 2013; 101:3311-9. [PMID: 24039062 DOI: 10.1002/jbm.a.34632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/14/2013] [Accepted: 01/22/2013] [Indexed: 11/11/2022]
Abstract
Temperature-sensitive hydrogels are attractive alternatives to porous cell-seeded scaffolds and is minimally invasive through simple injection and in situ gelling. In this study, we compared the performance of two types of temperature-sensitive hydrogels on chondrocytes encapsulation for the use of tissue engineering of cartilage. The two hydrogels are composed of methoxy poly(ethylene glycol)- poly(lactic-co-valerolactone) (mPEG-PVLA), and methoxy poly(ethylene glycol)-poly(lactic- co-glycolide) (mPEG-PLGA). Osmolarity and pH were optimized through the manipulation of polymer concentration and dispersion medium. Chondrocytes proliferation in mPEG-PVLA hydrogels was observed as well as accumulation of GAGs and collagen. On the other hand, chondrocytes encapsulated in mPEG-PLGA hydrogels showed low viability and chondrogenesis. Also, mPEG-PVLA hydrogel, which is more hydrophobic, retained physical integrity after 14 days while mPEG-PLGA hydrogel underwent full degradation due to faster hydrolysis rate and more pronounced acidic self-catalyzed degradation. The mPEG-PVLA hydrogel can be furthered tuned by manipulation of molecular weights to obtain hydrogels with different swelling and degradation characteristics, which may be useful as producing a selection of hydrogels compatible with different cell types. Taken together, these results demonstrate that mPEG-PVLA hydrogels are promising to serve as three-dimensional cell carriers for chondrocytes and potentially applicable in cartilage tissue engineering.
Collapse
Affiliation(s)
- Sydney Peng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | | | | | | | | |
Collapse
|
43
|
Hilal-Alnaqbi A, Hu AYC, Zhang Z, Al-Rubeai M. Growth, metabolic activity, and productivity of immobilized and freely suspended CHO cells in perfusion culture. Biotechnol Appl Biochem 2013; 60:436-45. [PMID: 23701045 DOI: 10.1002/bab.1103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/24/2013] [Indexed: 11/09/2022]
Abstract
Chinese hamster ovary (CHO) cells producing β-galactosidase (β-gal) were successfully cultured on silicone-based porous microcarriers (ImmobaSil FS) in a 1 L stirred-tank perfusion bioreactor. We studied the growth, metabolism, and productivity of free and immobilized cells to understand cellular activity in immobilized conditions. CHO cells attached to ImmobaSil FS significantly better than to other microcarriers. Scanning electron microscope images showed that the CHO cells thoroughly colonized the porous surfaces of the ImmobaSil FS, exhibiting a spherical morphology with microvilli that extended to anchorage cells on the silicone surface. In perfusion culture, the concentration of the attached cells reached 8 × 10(8) cells/mL of carrier, whereas those that remained freely suspended reached 2 × 10(7) cells/mL medium. The β-gal concentration reached more than 5 unit/mL in perfusion culture, more than fivefold that of batch culture. The maximum concentration per microcarrier was proportional to the initial cell density. The specific growth rate, the specific β-gal production rate, the percentage of S phase, and the oxygen uptake rate were all relatively lower for immobilized cells than freely suspended cells in the same bioreactor, indicating that not only do cells survive and grow to a greater extent in a free suspension state, but they are also metabolically more active than viable cells inside the pores of the microcarriers.
Collapse
Affiliation(s)
- Ali Hilal-Alnaqbi
- School of Chemical & Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland; Faculty of Engineering, UAE University, Al Ain, United Arab Emirates
| | | | | | | |
Collapse
|
44
|
Kwon H, Sun L, Cairns DM, Rainbow RS, Preda RC, Kaplan DL, Zeng L. The influence of scaffold material on chondrocytes under inflammatory conditions. Acta Biomater 2013; 9:6563-75. [PMID: 23333441 PMCID: PMC3713500 DOI: 10.1016/j.actbio.2013.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/02/2013] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
Cartilage tissue engineering aims to repair damaged cartilage tissue in arthritic joints. As arthritic joints have significantly higher levels of pro-inflammatory cytokines (such as IL-1β and TNFα that cause cartilage destruction, it is critical to engineer stable cartilage in an inflammatory environment. Biomaterial scaffolds constitute an important component of the microenvironment for chondrocytes in engineered cartilage. However, it remains unclear how the scaffold material influences the response of chondrocytes seeded in these scaffolds under inflammatory stimuli. Here we have compared the responses of articular chondrocytes seeded within three different polymeric scaffolding materials (silk, collagen and polylactic acid (PLA)) to IL-1β and TNFα. These scaffolds have different physical characteristics and yielded significant differences in the expression of genes associated with cartilage matrix production and degradation, cell adhesion and cell death. The silk and collagen scaffolds released pro-inflammatory cytokines faster and had higher uptake water abilities than PLA scaffolds. Correspondingly, chondrocytes cultured in silk and collagen scaffolds maintained higher levels of cartilage matrix than those in PLA, suggesting that these biophysical properties of scaffolds may regulate gene expression and the response to inflammatory stimuli in chondrocytes. Based on this study we conclude that selecting the proper scaffold material will aid in the engineering of more stable cartilage tissues for cartilage repair, and that silk and collagen are better scaffolds in terms of supporting the stability of three-dimensional cartilage under inflammatory conditions.
Collapse
Affiliation(s)
- Heenam Kwon
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine. 136 Harrison Avenue, Boston, MA 02111
| | - Lin Sun
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Dana M. Cairns
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine. 136 Harrison Avenue, Boston, MA 02111
| | - Roshni S. Rainbow
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine. 136 Harrison Avenue, Boston, MA 02111
| | - Rucsanda Carmen Preda
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - David L. Kaplan
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Li Zeng
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine. 136 Harrison Avenue, Boston, MA 02111
- Department of Orthopaedic Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
45
|
Schuurman W, Harimulyo EB, Gawlitta D, Woodfield TBF, Dhert WJA, van Weeren PR, Malda J. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics. J Tissue Eng Regen Med 2013; 10:315-24. [DOI: 10.1002/term.1726] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 08/08/2012] [Accepted: 01/22/2013] [Indexed: 01/15/2023]
Affiliation(s)
- W. Schuurman
- Department of Orthopaedics; University Medical Centre Utrecht; The Netherlands
- Department of Equine Sciences, Faculty of Veterinary Sciences; Utrecht University; The Netherlands
| | - E. B. Harimulyo
- Department of Orthopaedics; University Medical Centre Utrecht; The Netherlands
| | - D. Gawlitta
- Department of Orthopaedics; University Medical Centre Utrecht; The Netherlands
| | - T. B. F. Woodfield
- Department of Orthopaedic Surgery; University of Otago; Christchurch New Zealand
| | - W. J. A. Dhert
- Department of Orthopaedics; University Medical Centre Utrecht; The Netherlands
- Faculty of Veterinary Sciences; University of Utrecht; The Netherlands
| | - P. R. van Weeren
- Department of Equine Sciences, Faculty of Veterinary Sciences; Utrecht University; The Netherlands
| | - J. Malda
- Department of Orthopaedics; University Medical Centre Utrecht; The Netherlands
| |
Collapse
|
46
|
Chomchalao P, Pongcharoen S, Sutheerawattananonda M, Tiyaboonchai W. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Biomed Eng Online 2013; 12:28. [PMID: 23566031 PMCID: PMC3680310 DOI: 10.1186/1475-925x-12-28] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/01/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In our previous study, we successfully developed 3-D scaffolds prepared from silk fibroin (SF), silk fibroin/collagen (SF/C) and silk fibroin/gelatin (SF/G) using a freeze drying technique. The blended construct showed superior mechanical properties to silk fibroin construct. In addition, collagen and gelatin, contain RGD sequences that could facilitate cell attachment and proliferation. Therefore, in this study, the ability of silk fibroin and blended constructs to promote cell adhesion, proliferation and production of extracellular matrix (EMC) were compared. METHODS Articular chondrocytes were isolated from rat and cultured on the prepared constructs. Then, the cell viability in SF, SF/C and SF/G scaffolds was determined by MTT assay. Cell morphology and distribution were investigated by scanning electron microscopy (SEM) and histological analysis. Moreover, the secretion of extracellular matrix (ECM) by the chondrocytes in 3-D scaffolds was assessed by immunohistochemistry. RESULTS Results from MTT assay indicated that the blended SF/C and SF/G scaffolds provided a more favorable environment for chondrocytes attachment and proliferation than that of SF scaffold. In addition, scanning electron micrographs and histological images illustrated higher cell density and distribution in the SF/C and SF/G scaffolds than that in the SF scaffold. Importantly, immunohistochemistry strongly confirmed a greater production of type II collagen and aggrecan, important markers of chondrocytic phenotype, in SF blended scaffolds than that in the SF scaffold. CONCLUSION Addition of collagen and gelatin to SF solution not only improved the mechanical properties of the scaffolds but also provided an effective biomaterial constructs for chondrocyte growth and chondrocytic phenotype maintenance. Therefore, SF/C and SF/G showed a great potential as a desirable biomaterial for cartilage tissue engineering.
Collapse
Affiliation(s)
- Pratthana Chomchalao
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand and the Center of Excellence for Innovation in Chemistry, Commission on Higher Education, Thailand
| | | | | | - Waree Tiyaboonchai
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand and the Center of Excellence for Innovation in Chemistry, Commission on Higher Education, Thailand
| |
Collapse
|
47
|
Smith Callahan LA, Ganios AM, Childers EP, Weiner SD, Becker ML. Primary human chondrocyte extracellular matrix formation and phenotype maintenance using RGD-derivatized PEGDM hydrogels possessing a continuous Young's modulus gradient. Acta Biomater 2013; 9:6095-104. [PMID: 23291491 DOI: 10.1016/j.actbio.2012.12.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 11/26/2022]
Abstract
Efficient ex vivo methods for expanding primary human chondrocytes while maintaining the phenotype is critical to advancing the sourcing of autologous cells for tissue engineering applications. While there has been significant research reported in the literature, systematic approaches are necessary to determine and optimize the chemical and mechanical scaffold properties for hyaline cartilage generation using limited cell numbers. Functionalized hydrogels possessing continuous variations in physico-chemical properties are, therefore, an efficient three-dimensional platform for studying several properties simultaneously. Herein we describe a polyethylene glycol dimethacrylate (PEGDM) hydrogel system with a modulus gradient (~27,000-3800 Pa) containing a uniform concentration of arginine-glycine-aspartic acid (RGD) peptide to enhance cell adhesion in order to correlate primary human osteoarthritic chondrocyte proliferation, phenotype maintenance, and extracellular matrix (ECM) production with hydrogel properties. Cell number and chondrogenic phenotype (CD14:CD90 ratios) were found to decline in regions with a higher storage modulus (>13,100 Pa), while regions with a lower storage modulus maintained their cell number and phenotype. Over 3 weeks culture hydrogel regions possessing a lower Young's modulus experienced an increase in ECM content (~200%) compared with regions with a higher storage modulus. Variations in the amount and organization of the cytoskeletal markers actin and vinculin were observed within the modulus gradient, which are indicative of differences in chondrogenic phenotype maintenance and ECM expression. Thus scaffold mechanical properties have a significant impact in modulating human osteoarthritic chondrocyte behavior and tissue formation.
Collapse
|
48
|
Hendriks JAA, Moroni L, Riesle J, de Wijn JR, van Blitterswijk CA. The effect of scaffold-cell entrapment capacity and physico-chemical properties on cartilage regeneration. Biomaterials 2013; 34:4259-65. [PMID: 23489921 DOI: 10.1016/j.biomaterials.2013.02.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/20/2013] [Indexed: 11/16/2022]
Abstract
An important tenet in designing scaffolds for regenerative medicine consists in mimicking the dynamic mechanical properties of the tissues to be replaced to facilitate patient rehabilitation and restore daily activities. In addition, it is important to determine the contribution of the forming tissue to the mechanical properties of the scaffold during culture to optimize the pore network architecture. Depending on the biomaterial and scaffold fabrication technology, matching the scaffolds mechanical properties to articular cartilage can compromise the porosity, which hampers tissue formation. Here, we show that scaffolds with controlled and interconnected pore volume and matching articular cartilage dynamic mechanical properties, are indeed effective to support tissue regeneration by co-cultured primary and expanded chondrocyte (1:4). Cells were cultured on scaffolds in vitro for 4 weeks. A higher amount of cartilage specific matrix (ECM) was formed on mechanically matching (M) scaffolds after 28 days. A less protein adhesive composition supported chondrocytes rounded morphology, which contributed to cartilaginous differentiation. Interestingly, the dynamic stiffness of matching constructs remained approximately at the same value after culture, suggesting a comparable kinetics of tissue formation and scaffold degradation. Cartilage regeneration in matching scaffolds was confirmed subcutaneously in vivo. These results imply that mechanically matching scaffolds with appropriate physico-chemical properties support chondrocyte differentiation.
Collapse
Affiliation(s)
- J A A Hendriks
- Institute for BioMedical Technology (MIRA), University of Twente, Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
49
|
Sanz-Ramos P, Mora G, Vicente-Pascual M, Ochoa I, Alcaine C, Moreno R, Doblaré M, Izal-Azcárate I. Response of sheep chondrocytes to changes in substrate stiffness from 2 to 20 Pa: effect of cell passaging. Connect Tissue Res 2013; 54:159-66. [PMID: 23323769 DOI: 10.3109/03008207.2012.762360] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM The influence of culture substrate stiffness (in the kPa range) on chondrocyte behavior has been described. Here we describe the response to variations in substrate stiffness in a soft range (2-20 Pa), as it may play a role in understanding cartilage physiopathology. METHODS We developed a system for cell culture in substrates with different elastic moduli using collagen hydrogels and evaluated chondrocytes after 2, 4, and 7 days in monolayer and three-dimensional (3D) cultures. Experiments were performed in normoxia and hypoxia in order to describe the effect of a low oxygen environment on chondrocytes. Finally, we also evaluated if dedifferentiated cells preserve the capacity for mechanosensing. RESULTS Chondrocytes showed less proliferating activity when cultured in monolayer in the more compliant substrates. Expression of the cartilage markers Aggrecan (Acan), type II collagen (Col2a1), and Sox9 was upregulated in the less stiff gels (both in monolayer and in 3D culture). Stiffer gels induced an organization of the actin cytoskeleton that correlated with the loss of a chondrocyte phenotype. When cells were cultured in hypoxia, we observed changes in the cellular response that were mediated by HIF-1α. Results in 3D hypoxia cultures were opposite to those found in normoxia, but remained unchanged in monolayer hypoxic experiments. Similar results were found for dedifferentiated cells. CONCLUSIONS Chondrocytes respond differently according to the stiffness of the substrate. This response depends greatly on the oxygen environment and on whether the chondrocyte is embedded or grown onto the hydrogel, since mechanosensing capacity was not lost with cell expansion.
Collapse
Affiliation(s)
- Patricia Sanz-Ramos
- Laboratory for Orthopaedic Research, School of Medicine, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kou ST, Tan ST. An Approach of Irregular Porous Structure Modeling Based on Subdivision and NURBS. ACTA ACUST UNITED AC 2013. [DOI: 10.3722/cadaps.2013.355-369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|