1
|
Kraus S, Arbib S, Rukenstein P, Shoval I, Khandadash R, Shalev O. Macrophage Responses to Multicore Encapsulated Iron Oxide Nanoparticles for Cancer Therapy. ACS OMEGA 2025; 10:3535-3550. [PMID: 39926549 PMCID: PMC11800149 DOI: 10.1021/acsomega.4c07883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Macrophages are the primary cells responsible for nanoparticle processing and mediating host immunological biological outcomes. Their cellular response to nanoparticles is a vital constituent in the safety assessment of new designs for clinical application. An approach for the treatment of solid tumors was developed, based on magnetic hyperthermia, consisting of iron oxide multicore encapsulated nanoparticles named Sarah nanoparticles (SaNPs), and alternating magnetic field irradiation. SaNPs are intravenously injected, accumulate in the liver, spleen and in tumor tissue, where they are passively targeted to malignant cells via the Enhanced Permeability and Retention (EPR) effect and undergo selective heating. SaNP-induced responses after cellular uptake were investigated in murine RAW264.7 macrophages using a wide imaging approach. When activated, macrophages form different phenotypic populations with unique immune functions, however the mechanism/s by which these activated macrophages respond to nanoparticles is unclear. Unraveling these responses is important for the understanding of nanoparticle uptake, potential degradation, and clearance to address both toxicity and regulatory concerns, which was the aim of this study. The results demonstrated that SaNPs undergo internalization, localize within the lysosomal compartment while keeping their integrity, without intracellular toxic degradation, and are cleared with time. The production of tumor necrosis factor alpha (TNF-α) and reactive oxygen species (ROS), superoxide dismutase (SOD) activation, and cytokine secretion in macrophage conditioned medium (CM) were also evaluated. SaNPs effects were both time- and dose- dependent. High SaNP concentrations resulted in reduced RAW264.7 cell viability which correlated with SOD activation and was associated with ROS generation. Lower SaNP concentrations stimulated the time-dependent production of TNF-α. The expression of additional cytokines was also induced, potentially affecting cancer cell growth by CM from SaNP-activated macrophages supporting a potential antitumor effect. These results will help understand the fate of nanoparticles in vivo.
Collapse
Affiliation(s)
| | - Shir Arbib
- New
Phase Ltd., Petah Tikva 4951788, Israel
| | | | - Irit Shoval
- Scientific
Equipment Center, the Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | | | | |
Collapse
|
2
|
Medeiros TS, Bezerra de Lima LE, Alves-Pereira EL, Alves-Silva MF, Dourado D, Fernandes-Pedrosa MDF, Figueiredo RCBQD, da Silva-Junior AA. Cationic and anionic PLGA-cholesterol hybrid nanoparticles as promising platforms to enhance the trypanocidal efficacy of benznidazole and drug delivery in Trypanosoma cruzi-infected cells. Biomed Pharmacother 2025; 183:117782. [PMID: 39755025 DOI: 10.1016/j.biopha.2024.117782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi, remains a significant global health challenge. Currently, benznidazole (BNZ) is the primary treatment in many countries. However, this drug is limited by low bioavailability, significant host toxicity, and reduced efficacy in chronic disease phase. Additionally, cases of parasite resistance to treatment and low efficacy in in chronic disease phase have been reported. In this context, nanotechnology formulations for intracellular drug delivery have emerged as a promising alternative to improve the pharmacological properties of BNZ. In this study, we developed and evaluated cationic and anionic PLGA-cholesterol hybrid nanoparticles (HNPs) as innovative drug delivery systems for BNZ. These HNPs, functionalized with polyethyleneimine, were synthesized using a composition-dependent self-assembly method, yielding stable nanosystems with tuneable physicochemical properties. Furthermore, four release kinetic models were applied and Peppas-Sahlin demonstrated the best fit. In vitro assays confirmed the biocompatibility of HNPs with cardiomyoblasts at tested concentrations and revealed significantly enhanced trypanocidal activity against intracellular amastigotes compared to free BNZ. Transmission electron microscopy and fluorescence microscopy analyses highlighted effective nanoparticle internalization, with superior performance trypanocidal observed in anionic HNPs, which can be attributed to the residence of cationic in endo/lysosomal vesicles. Taken together, our results demonstrate the successful development of HNPs, underscoring their potential as a promising platform for the intracellular delivery of therapeutic agents.
Collapse
Affiliation(s)
- Thayse Silva Medeiros
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil; Laboratory of Cellular Biology of Pathogens, Department of Microbiology, Aggeu Magalhães Institute/FIOCRUZ-PE, Recife, PE, Brazil
| | - Lucas Eduardo Bezerra de Lima
- Laboratory of Cellular Biology of Pathogens, Department of Microbiology, Aggeu Magalhães Institute/FIOCRUZ-PE, Recife, PE, Brazil
| | - Eron Lincoln Alves-Pereira
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil
| | - Mariana Farias Alves-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil
| | - Douglas Dourado
- Laboratory of Immunopathology and Molecular Biology, Aggeu Magalhães Institute/FIOCRUZ-PE, Recife, PE, Brazil
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil
| | | | - Arnóbio Antônio da Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil.
| |
Collapse
|
3
|
Vaidya K, Regan MS, Lin J, Houle J, Gupta A, Stopka SA, Agar NYR, Hammond PT, Boehnke N. Pooled Nanoparticle Screening Using a Chemical Barcoding Approach. Angew Chem Int Ed Engl 2025; 64:e202420052. [PMID: 39714325 PMCID: PMC11773315 DOI: 10.1002/anie.202420052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
We report the development of a small molecule-based barcoding platform for pooled screening of nanoparticle delivery. Using aryl halide-based tags (halocodes), we achieve high-sensitivity detection via gas chromatography coupled with mass spectrometry or electron capture. This enables barcoding and tracking of nanoparticles with minimal halocode concentrations and without altering their physicochemical properties. To demonstrate the utility of our platform for pooled screening, we synthesized a halocoded library of polylactide-co-glycolide (PLGA) nanoparticles and quantified uptake in ovarian cancer cells in a pooled manner. Our findings correlate with conventional fluorescence-based assays. Additionally, we demonstrate the potential of halocodes for spatial mapping of nanoparticles using mass spectrometry imaging (MSI). Halocoding presents an accessible and modular nanoparticle screening platform capable of quantifying delivery of pooled nanocarrier libraries in a range of biological settings.
Collapse
Affiliation(s)
- Katherine Vaidya
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Twin CitiesMinneapolis, MNUSA
| | - Michael S. Regan
- Department of Neurosurgery Brigham and Women's HospitalHarvard Medical SchoolBoston, MAUSA
| | - James Lin
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Twin CitiesMinneapolis, MNUSA
| | - Jenna Houle
- Department of BioengineeringMassachusetts Institute of TechnologyCambridge, MAUSA
| | - Aanchal Gupta
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Twin CitiesMinneapolis, MNUSA
| | - Sylwia A. Stopka
- Department of Neurosurgery Brigham and Women's HospitalHarvard Medical SchoolBoston, MAUSA
| | - Nathalie Y. R. Agar
- Department of Neurosurgery Brigham and Women's HospitalHarvard Medical SchoolBoston, MAUSA
- Department of Radiology Brigham and Women's HospitalHarvard Medical SchoolBoston, MAUSA
- Department of Cancer Biology Dana-Farber Cancer InstituteHarvard Medical SchoolBoston, MAUSA
| | - Paula T. Hammond
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridge, MAUSA
- Koch Institute for Integrative Cancer Research at MITMassachusetts Institute of TechnologyCambridge, MAUSA
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials ScienceUniversity of Minnesota Twin CitiesMinneapolis, MNUSA
| |
Collapse
|
4
|
Li DD, Jin JC, Liu XW, Liu SY, Ji FJ, Liu T. Nanoparticle delivery of si-Notch1 modulates metabolic reprogramming to affect 5-FU resistance and cell pyroptosis in colorectal cancer. Cancer Nanotechnol 2024; 15:23. [DOI: 10.1186/s12645-024-00259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 01/05/2025] Open
Abstract
Abstract
Background
Nanocarrier delivery of small interfering RNAs (siRNAs) to silence cancer-associated genes is a promising method for cancer treatment. Here, we explored the role and mechanisms of PLAG NPs-delivered si-Notch1 in colorectal cancer (CRC).
Results
High Notch1 expression was observed in both sensitive and resistant CRC tissues and cells. Notch1 silencing repressed proliferation and facilitates apoptosis of resistant CRC cells, and suppressed glycolysis and promoted pyroptosis in resistant CRC cells. Notch1 directly interacts with PCAF. Notch1 knockdown’s suppressive effect on glycolysis was reversed by overexpression of PCAF. Moreover, a nanocarrier called PLAG NPs was built with a higher delivery efficiency compared with lipo2000. Si-Notch1 delivered by PLAG NPs efficiently overcame the CRC cells’ 5-FU resistance and facilitated pyroptosis in a CRC mouse model.
Conclusions
PLAG NPs carrying si-Notch1 had a great advantage in the extension of half-life circulation and targeting ability, providing a theoretical foundation for precise clinical treatment of CRC.
Collapse
|
5
|
Huang S, Xu Y, Luo Y, Wang Z, Li F, Qin Z, Ban J. Enhanced Ocular Bioavailability and Prolonged Duration via Hydrophilic Surface Nanocomposite Vesicles for Topical Drug Administration. Pharmaceutics 2024; 16:1496. [PMID: 39771476 PMCID: PMC11677563 DOI: 10.3390/pharmaceutics16121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Internal ocular diseases, such as macular edema, uveitis, and diabetic macular edema require precise delivery of therapeutic agents to specific regions within the eye. However, the eye's complex anatomical structure and physiological barriers present significant challenges to drug penetration and distribution. Traditional eye drops suffer from low bioavailability primarily due to rapid clearance mechanisms. METHODS The novel ocular drug delivery system developed in this study utilizes poly(lactic-co-glycolic acid) (PLGA) nanoparticles modified with cell-penetrating peptides (CPPs). In vitro drug release studies were conducted to evaluate the sustained-release properties of the nanoparticles. Ex vivo experiments using MDCK cells assessed corneal permeability and uptake efficiency. Additionally, in vivo studies were performed in rabbit eyes to determine the nanoparticles' resistance to elimination by tears and their retention time in the aqueous humor. RESULTS In vitro drug release studies demonstrated superior sustained-release properties of the nanoparticles. Ex vivo experiments revealed enhanced corneal permeability and increased uptake efficiency by MDCK cells. In vivo studies in rabbit eyes confirmed the nanoparticles' resistance to elimination by lacrimal fluid and their ability to extend retention time in the aqueous humor. CPP modification significantly improved ocular retention, corneal penetration, and cellular endocytosis efficiency. CONCLUSIONS The CPP-modified PLGA nanoparticles provide an effective and innovative solution for ocular drug delivery, offering improved bioavailability, prolonged retention, and enhanced drug penetration, thereby overcoming the challenges of traditional intraocular drug administration methods.
Collapse
Affiliation(s)
- Sa Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
- College of Pharmacy, Guilin Medical University, No. 1 Zhiyuan Road, Guilin 541104, China
- Guangdong Laboratory Animals Monitoring Institute, No. 11 Fengxin Road, Guangzhou 510663, China
| | - Yuan Xu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
| | - Yingyao Luo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
| | - Zhijiong Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
| | - Zhenmiao Qin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, No. 3 Xueyuan Road, Haikou 571199, China
| | - Junfeng Ban
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, No. 280 University Town Outer Ring East Road, Guangzhou 510006, China
| |
Collapse
|
6
|
Alsa'd AA, Greene MK, Tayyem M, Elmore B, Abed A, Burden RE, Gilmore BF, Scott CJ, Burrows JF. Optimising intracellular delivery of antibiotic loaded PLGA nanoparticles to macrophages. Int J Pharm 2024; 664:124567. [PMID: 39127173 DOI: 10.1016/j.ijpharm.2024.124567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Bacteria can evade antimicrobial therapy by hiding inside host cells such as macrophages. Here we examine the ability of PLGA nanoparticles to deliver antibiotics to intracellular bacteria, specifically focusing upon the impact of nanoparticle size. Different sized Rhodamine-B conjugated PLGA nanoparticles were synthesized and uptake examined in two macrophage cell lines, as well as different epithelial cells, to determine the optimal properties for macrophage uptake. These studies demonstrate macrophages display a consistent increase in uptake with increased PLGA nanoparticle diameter. In a bacteria-macrophage co-culture model, we then examined the efficacy of different sized antibiotic-loaded PLGA nanoparticles against intracellular infections with K. pneumoniae and S. aureus. Increasing the size of antibiotic-loaded PLGA nanoparticles significantly increased their potency against intracellular K. pneumoniae. However, this was not observed for S. aureus, potentially due to the observation these nanoparticles failed to access the compartment in which S. aureus reside. This work demonstrates for the first time that increasing the size of antibiotic-loaded PLGA nanoparticles can significantly enhance antimicrobial efficacy against K. pneumoniae intracellular macrophage infections. However, our S. aureus studies indicate this is not a 'one size fits all' approach for all intracellular infections.
Collapse
Affiliation(s)
- Alhareth A Alsa'd
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Michelle K Greene
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - May Tayyem
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Faculty of Pharmacy, Middle East University, Airport Road, Amman 11831, Jordan
| | - Bronagh Elmore
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Anas Abed
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Roberta E Burden
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Christopher J Scott
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - James F Burrows
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
7
|
Vaidya K, Regan MS, Lin J, Houle J, Stopka SA, Agar NYR, Hammond PT, Boehnke N. Pooled nanoparticle screening using a chemical barcoding approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614746. [PMID: 39386478 PMCID: PMC11463557 DOI: 10.1101/2024.09.24.614746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We report the development of a small molecule-based barcoding platform for pooled screening of nanoparticle delivery. Using aryl halide-based tags (halocodes), we achieve high-sensitivity detection via gas chromatography coupled with mass spectrometry or electron capture. This enables barcoding and tracking of nanoparticles with minimal halocode concentrations and without altering their physicochemical properties. To demonstrate the utility of our platform for pooled screening, we synthesized a halocoded library of polylactide-co-glycolide (PLGA) nanoparticles and quantified uptake in ovarian cancer cells in a pooled manner. Our findings correlate with conventional fluorescence-based assays. Additionally, we demonstrate the potential of halocodes for spatial mapping of nanoparticles using mass spectrometry imaging (MSI). Halocoding presents an accessible and modular nanoparticle screening platform capable of quantifying delivery of pooled nanocarrier libraries in a range of biological settings.
Collapse
|
8
|
Tsilova SL, Schreiber BE, Lever R, Parhizkar M. Polymeric nanoparticles produced by electrohydrodynamic atomisation for the passive delivery of imatinib. Eur J Pharm Biopharm 2024; 202:114412. [PMID: 39013491 DOI: 10.1016/j.ejpb.2024.114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Imatinib is a chemotherapeutic agent known to cause severe side effects when administrated systemically. Encapsulating imatinib in co-polymer poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) offers a targeted drug delivery. In this work, PLGA 50:50 and PLGA 75:25 NPs encapsulated imatinib using the electrohydrodynamic atomisation technique. All particles generated were spherical with a smooth surface with a size distribution of 455±115 nm (PLGA 50:50) and 363±147 nm (PLGA 75:25). Encapsulation of imatinib was shown to be higher than 75 % and was shown to increase the zeta potential of the loaded NPs. The release of imatinib showed an initial burst in the first 12 h, followed by different sustained releases with up to 70 %. Both types of imatinib-loaded NPs' effect on cell viability and their cellular uptake were also studied on A549 cells, and the antiproliferative effect was comparable to that of cells treated with free drugs. Finally, Rhodamine-B-loaded NP-treated cells demonstrated the cellular uptake of NPs.
Collapse
Affiliation(s)
| | - Benjamin E Schreiber
- National Pulmonary Hypertension Service, Royal Free London NHS Foundation Trust, Pond Street, London, NW3 2QG, United Kingdom
| | - Rebecca Lever
- School of Pharmacy, University College London, London, United Kingdom
| | - Maryam Parhizkar
- School of Pharmacy, University College London, London, United Kingdom.
| |
Collapse
|
9
|
Cojocaru E, Petriș OR, Cojocaru C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals (Basel) 2024; 17:1059. [PMID: 39204164 PMCID: PMC11357421 DOI: 10.3390/ph17081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Inhaled nanoparticle (NP) therapy poses intricate challenges in clinical and pharmacodynamic realms. Recent strides have revolutionized NP technology by enabling the incorporation of diverse molecules, thus circumventing systemic clearance mechanisms and enhancing drug effectiveness while mitigating systemic side effects. Despite the established success of systemic NP delivery in oncology and other disciplines, the exploration of inhaled NP therapies remains relatively nascent. NPs loaded with bronchodilators or anti-inflammatory agents exhibit promising potential for precise distribution throughout the bronchial tree, offering targeted treatment for respiratory diseases. This article conducts a comprehensive review of NP applications in respiratory medicine, highlighting their merits, ranging from heightened stability to exacting lung-specific delivery. It also explores cutting-edge technologies optimizing NP-loaded aerosol systems, complemented by insights gleaned from clinical trials. Furthermore, the review examines the current challenges and future prospects in NP-based therapies. By synthesizing current data and perspectives, the article underscores the transformative promise of NP-mediated drug delivery in addressing chronic conditions such as chronic obstructive pulmonary disease, a pressing global health concern ranked third in mortality rates. This overview illuminates the evolving landscape of NP inhalation therapies, presenting optimistic avenues for advancing respiratory medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Rusalim Petriș
- Medical II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
10
|
Chang X, Wang WX. Differential cellular uptake and trafficking of nanoplastics in two hemocyte subpopulations of mussels Perna viridis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134388. [PMID: 38669925 DOI: 10.1016/j.jhazmat.2024.134388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Affiliation(s)
- Xinyi Chang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
11
|
Sibgatullina G, Ramazanova I, Salnikov V, Stepanov A, Voloshina A, Sapunova A, Mustafina A, Petrov K, Samigullin D. Increased endocytosis rate and enhanced lysosomal pathway of silica-coated superparamagnetic nanoparticles into M-HeLa cells compared with cultured primary motor neurons. Histochem Cell Biol 2024; 161:507-519. [PMID: 38597938 DOI: 10.1007/s00418-024-02283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
The unique properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable their use as magnetic biosensors, targeted drug delivery, magnetothermia, magnetic resonance imaging, etc. Today, SPIONs are the only type of metal oxide nanoparticles approved for biomedical application. In this work, we analyzed the cellular response to the previously reported luminescent silica coated SPIONs of the two cell types: M-HeLa cells and primary motor neuron culture. Both internalization pathways and intracellular fate of SPIONs have been compared for these cell lines using fluorescence and transmission electron microscopy. We also applied a pharmacological approach to analyze the endocytosis pathways of SPIONs into the investigated cell lines. The penetration of SPIONs into M-HeLa cells is already noticeable within 30 s of incubation through both caveolin-dependent endocytosis and micropinocytosis. However, incubation for a longer time (1 h at least) is required for the internalization of SPIONs into motor neuron culture cells provided by dynamin-dependent endocytosis and macropinocytosis. The intracellular colocalization assay reveals that the lysosomal internalization pathway of SPIONs is also dependent on the cell type. The lysosomal pathway is much more pronounced for M-HeLa cells compared with motor neurons. The emphasized differences in cellular responses of the two cell lines open up new opportunities in the application of SPIONs in the diagnostics and therapy of cancer cells.
Collapse
Affiliation(s)
- Guzel Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Iliza Ramazanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Alexey Stepanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Konstantin Petrov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia.
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named After A.N. Tupolev-KAI, 10 K. Marx St., Kazan, 420111, Russia.
| |
Collapse
|
12
|
Rano S, Bhaduri A, Singh M. Nanoparticle-based platforms for targeted drug delivery to the pulmonary system as therapeutics to curb cystic fibrosis: A review. J Microbiol Methods 2024; 217-218:106876. [PMID: 38135160 DOI: 10.1016/j.mimet.2023.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder of the respiratory system caused by mutation of the Cystic Fibrosis Trans-Membrane Conductance Regulator (CFTR) gene that affects a huge number of people worldwide. It results in difficulty breathing due to a large accumulation of mucus in the respiratory tract, resulting in serious bacterial infections, and subsequent death. Traditional drug-based treatments face hindered penetration at the site of action due to the thick mucus layer. Nanotechnology offers possibilities for developing advanced and effective treatment platforms by focusing on drugs that can penetrate the dense mucus layer, fighting against the underlying bacterial infections, and targeting the genetic cause of the disease. In this review, current nanoparticle-mediated drug delivery platforms for CF, challenges in therapeutics, and future prospects have been highlighted. The effectiveness of the different types of nano-based systems conjugated with various drugs to combat the symptoms and the challenges of treating CF are brought into focus. The toxic effects of these nano-medicines and the various factors that are responsible for their effectiveness are also highlighted.
Collapse
Affiliation(s)
- Sujoy Rano
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; In-vitro Biology, Aragen Life Sciences, Hyderabad 500076, Telangana, India
| | - Ahana Bhaduri
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; Department of Botany, Kabi Nazrul College, Murarai, Birbhum 731219 (West Bengal), India.
| |
Collapse
|
13
|
Pichardo AH, Littlewood J, Taylor A, Wilm B, Lévy R, Murray P. Multispectral optoacoustic tomography is more sensitive than micro-computed tomography for tracking gold nanorod labelled mesenchymal stromal cells. JOURNAL OF BIOPHOTONICS 2023; 16:e202300109. [PMID: 37431566 PMCID: PMC7616740 DOI: 10.1002/jbio.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Tracking the fate of therapeutic cell types is important for assessing their safety and efficacy. Bioluminescence imaging (BLI) is an effective cell tracking technique, but poor spatial resolution means it has limited ability to precisely map cells in vivo in 3D. This can be overcome by using a bimodal imaging approach that combines BLI with a technique capable of generating high-resolution images. Here we compared the effectiveness of combining either multispectral optoacoustic tomography (MSOT) or micro-computed tomography (micro-CT) with BLI for tracking the fate of luciferase+ human mesenchymal stromal cells (MSCs) labelled with gold nanorods. Following subcutaneous administration in mice, the MSCs could be readily detected with MSOT but not with micro-CT. We conclude that MSOT is more sensitive than micro-CT for tracking gold nanorod-labelled cells in vivo and depending on the route of administration, can be used effectively with BLI to track MSC fate in mice.
Collapse
Affiliation(s)
- Alejandra Hernandez Pichardo
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-clinical Imaging, University of Liverpool, Liverpool, UK
| | - James Littlewood
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- iThera Medical GmbH, Munich, Germany
| | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-clinical Imaging, University of Liverpool, Liverpool, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-clinical Imaging, University of Liverpool, Liverpool, UK
| | - Raphaël Lévy
- Université Sorbonne Paris Nord and Université de Paris, INSERM, LVTS, Paris, France
| | - Patricia Murray
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Centre for Pre-clinical Imaging, University of Liverpool, Liverpool, UK
| |
Collapse
|
14
|
Chattopadhyay S, Sarkar SS, Saproo S, Yadav S, Antil D, Das B, Naidu S. Apoptosis-targeted gene therapy for non-small cell lung cancer using chitosan-poly-lactic-co-glycolic acid -based nano-delivery system and CASP8 and miRs 29A-B1 and 34A. Front Bioeng Biotechnol 2023; 11:1188652. [PMID: 37346791 PMCID: PMC10281530 DOI: 10.3389/fbioe.2023.1188652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, with resistance to apoptosis being a major driver of therapeutic resistance and aggressive phenotype. This study aimed to develop a novel gene therapy approach for NSCLC by targeting resistance to apoptosis. Loss of function mutations of caspase 8 (CASP8) and downregulation of microRNAs (miRs) 29A-B1 and 34A were identified as key contributors to resistance to apoptosis in NSCLC. A biodegradable polymeric nano-gene delivery system composed of chitosan-poly-lactic-co-glycolic acid was formulated to deliver initiator CASP8 and miRs 29A-B1 and 34A. The nano-formulation efficiently encapsulated the therapeutic genes effectively internalized into NSCLC cells and induced significant apoptosis. Evaluation of the nano-formulation in A549 tumor spheroids showed a significant increase in apoptosis within the core of the spheroids, suggesting effective penetration into the spheroid structures. We provide a novel nano-formulation that demonstrate therapeutic potential for suicidal gene therapy in NSCLC.
Collapse
|
15
|
Liu M, Lau CYJ, Cabello IT, Garssen J, Willemsen LEM, Hennink WE, van Nostrum CF. Live Cell Imaging by Förster Resonance Energy Transfer Fluorescence to Study Trafficking of PLGA Nanoparticles and the Release of a Loaded Peptide in Dendritic Cells. Pharmaceuticals (Basel) 2023; 16:818. [PMID: 37375766 DOI: 10.3390/ph16060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Our previous study demonstrated that a selected β-lactoglobulin-derived peptide (BLG-Pep) loaded in poly(lactic-co-glycolic acid) (PLGA) nanoparticles protected mice against cow's milk allergy development. However, the mechanism(s) responsible for the interaction of the peptide-loaded PLGA nanoparticles with dendritic cells (DCs) and their intracellular fate was/were elusive. Förster resonance energy transfer (FRET), a distance-dependent non-radioactive energy transfer process mediated from a donor to an acceptor fluorochrome, was used to investigate these processes. The ratio of the donor (Cyanine-3)-conjugated peptide and acceptor (Cyanine-5) labeled PLGA nanocarrier was fine-tuned for optimal (87%) FRET efficiency. The colloidal stability and FRET emission of prepared NPs were maintained upon 144 h incubation in PBS buffer and 6 h incubation in biorelevant simulated gastric fluid at 37 °C. A total of 73% of Pep-Cy3 NP was internalized by DCs as quantified using flow cytometry and confirmed using confocal fluorescence microscopy. By real-time monitoring of the change in the FRET signal of the internalized peptide-loaded nanoparticles, we observed prolonged retention (for 96 h) of the nanoparticles-encapsulated peptide as compared to 24 h retention of the free peptide in the DCs. The prolonged retention and intracellular antigen release of the BLG-Pep loaded in PLGA nanoparticles in murine DCs might facilitate antigen-specific tolerance induction.
Collapse
Affiliation(s)
- Mengshan Liu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Chun Yin Jerry Lau
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Irene Trillo Cabello
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Immunology, Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
| | - Linette E M Willemsen
- Department of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
16
|
Uzhytchak M, Smolková B, Lunova M, Frtús A, Jirsa M, Dejneka A, Lunov O. Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev 2023; 197:114828. [PMID: 37075952 DOI: 10.1016/j.addr.2023.114828] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Although several nanomedicines got clinical approval over the past two decades, the clinical translation rate is relatively small so far. There are many post-surveillance withdrawals of nanomedicines caused by various safety issues. For successful clinical advancement of nanotechnology, it is of unmet need to realize cellular and molecular foundation of nanotoxicity. Current data suggest that lysosomal dysfunction caused by nanoparticles is emerging as the most common intracellular trigger of nanotoxicity. This review analyzes prospect mechanisms of lysosomal dysfunction-mediated toxicity induced by nanoparticles. We summarized and critically assessed adverse drug reactions of current clinically approved nanomedicines. Importantly, we show that physicochemical properties have great impact on nanoparticles interaction with cells, excretion route and kinetics, and subsequently on toxicity. We analyzed literature on adverse reactions of current nanomedicines and hypothesized that adverse reactions might be linked with lysosomal dysfunction caused by nanomedicines. Finally, from our analysis it becomes clear that it is unjustifiable to generalize safety and toxicity of nanoparticles, since different particles possess distinct toxicological properties. We propose that the biological mechanism of the disease progression and treatment should be central in the optimization of nanoparticle design.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Adam Frtús
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), 14021 Prague, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, 18221 Prague, Czech Republic.
| |
Collapse
|
17
|
Li X, Jafari SM, Zhou F, Hong H, Jia X, Mei X, Hou G, Yuan Y, Liu B, Chen S, Gong Y, Yan H, Chang R, Zhang J, Ren F, Li Y. The intracellular fate and transport mechanism of shape, size and rigidity varied nanocarriers for understanding their oral delivery efficiency. Biomaterials 2023; 294:121995. [PMID: 36641813 DOI: 10.1016/j.biomaterials.2023.121995] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
Nanocarriers have become an effective strategy to overcome epithelial absorption barriers. During the absorption process, the endocytosis mechanisms, cell internalization pathways, and transport efficiency of nanocarriers are greatly impacted by their physical properties. To understand the relationship between physical properties of nanocarriers and their abilities overcoming multiple absorption barriers, nanocarriers with variable physical properties were prepared via self-assembly of hydrolyzed α-lactalbumin peptide fragments. The impacts of size, shape, and rigidity of nanocarriers on epithelial cells endocytosis mechanisms, internalization pathways, transport efficiency, and bioavailability were studied systematically. The results showed that nanospheres were mainly internalized via clathrin-mediated endocytosis, which was then locked in lysosomes and degraded enzymatically in cytoplasm. While macropinocytosis was the primary pathway of nanotubes and transported to the endoplasmic reticulum and Golgi apparatus, resulting in a high drug concentration and sustained release in cytoplasm. Besides, nanotubes can overcome the multi-drug resistance by inhibiting the P-glycoprotein efflux. Furthermore, nanotubes can open intercellular tight-junctions instantaneously and reversibly, which promotes transport into blood circulation. The aqueous solubility of hydrophobic bioactive mangiferin (Mgf) was improved by nanocarriers. Most importantly, the bioavailability of Mgf was the highest for cross-linked short nanotube (CSNT) which outperformed free Mgf and other formulations by in vivo pharmacokinetic studies. Finally, Mgf-loaded CSNT showed an excellent therapeutic efficiency in vivo for the intervention of streptozotocin-induced diabetes. These results indicate that cross-linked α-lactalbumin nanotubes could be an effective nanocarrier delivery system for improving the epithelium cellular absorption and bioavailability of hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Xin Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Hong
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xin Jia
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaohong Mei
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guohua Hou
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Liu
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yifu Gong
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huiling Yan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ruxin Chang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiayin Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Fazheng Ren
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
18
|
Gao J, Kumari A, Zeng XA, Chan S, Farooq MA, Alee M, Khan SH, Rahaman A, He S, Xin X, Mehmood T. Coating of chitosan on poly D,L-lactic-co-glycolic acid thymoquinone nanoparticles enhances the anti-tumor activity in triple-negative breast cancer. Front Chem 2023; 11:1044953. [PMID: 36846852 PMCID: PMC9945229 DOI: 10.3389/fchem.2023.1044953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer is the second most common cancer around the world. Triple-negative breast cancer (TNBC) is characterized by the absence of three receptors: progesterone, estrogen, and human epidermal growth factor-2 receptor (HER2). Various synthetic chemotherapies have gained attention but they caused unwanted side effects. Therefore, some secondary therapies are now becoming famous against this disease. For instance, natural compounds have been extensively researched against many diseases. However, enzymatic degradation and low solubility remain a major concern. To combat these issues, various nanoparticles have been synthesized and optimized from time to time, which increases its solubility and hence therapeutic potential of a particular drug increases. In this study, we have synthesized Poly D,L-lactic-co-glycolic acid (PLGA) loaded thymoquinone (TQ) nanoparticle (PLGA-TQ-NPs) and then coated them by chitosan (CS) (PLGA-CS-TQ-NPs), which was characterized by different methods. Size of non-coated NPs was 105 nm with PDI value of 0.3 and the size of coated NPs was 125 nm with PDI value of 0.4. Encapsulation efficiency (EE%) and Drug loading (DL%) was found to be 70.5 ± 2.33 and 3.38 for non-coated and 82.3 ± 3.11 and 2.66 for coated NPs respectively. We have also analysed their cell viability against MDA-MB-231 and SUM-149 TNBC cell lines. The resultant, nanoformulations exhibit anti-cancerous activity in a dose and time-dependent manner for MDA-MB-231 and SUM-149 cell lines with an IC50 value of (10.31 ± 1.15, 15.60 ± 1.25, 28.01 ± 1.24) and (23.54 ± 1.24, 22.37 ± 1.25, 35 ± 1.27) for TQ free, PLGA-TQ-NPs and PLGA-CS-TQ-NPs respectively. For the first time, we have developed a nanoformulations of PLGA loaded TQ coated with CS NPs (PLGA-CS-TQ-NPs) against TNBC which led to their enhanced anti-cancerous effects.
Collapse
Affiliation(s)
- Jingrong Gao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Siewyin Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Muhammad Adil Farooq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Punjab, Pakistan
| | - Mahafooj Alee
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shaheer Hasan Khan
- Enzymology and nanotechnology laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Shan He
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Institute for Nano Scale and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
- College of Engineering, Information, Technology & Environment, Charles Darwin University, Darwin, NT, Australia
| | - Xiong Xin
- The Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tariq Mehmood
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Punjab, Pakistan
| |
Collapse
|
19
|
Ali M, van Gent ME, de Waal AM, van Doodewaerd BR, Bos E, Koning RI, Cordfunke RA, Drijfhout JW, Nibbering PH. Physical and Functional Characterization of PLGA Nanoparticles Containing the Antimicrobial Peptide SAAP-148. Int J Mol Sci 2023; 24:2867. [PMID: 36769188 PMCID: PMC9918011 DOI: 10.3390/ijms24032867] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Synthetic antimicrobial and antibiofilm peptide (SAAP-148) commits significant antimicrobial activities against antimicrobial resistant (AMR) planktonic bacteria and biofilms. However, SAAP-148 is limited by its low selectivity index, i.e., ratio between cytotoxicity and antimicrobial activity, as well as its bioavailability at infection sites. We hypothesized that formulation of SAAP-148 in PLGA nanoparticles (SAAP-148 NPs) improves the selectivity index due to the sustained local release of the peptide. The aim of this study was to investigate the physical and functional characteristics of SAAP-148 NPs and to compare the selectivity index of the formulated peptide with that of the peptide in solution. SAAP-148 NPs displayed favorable physiochemical properties [size = 94.1 ± 23 nm, polydispersity index (PDI) = 0.08 ± 0.1, surface charge = 1.65 ± 0.1 mV, and encapsulation efficiency (EE) = 86.7 ± 0.3%] and sustained release of peptide for up to 21 days in PBS at 37 °C. The antibacterial and cytotoxicity studies showed that the selectivity index for SAAP-148 NPs was drastically increased, by 10-fold, regarding AMR Staphylococcus aureus and 20-fold regarding AMR Acinetobacter baumannii after 4 h. Interestingly, the antibiofilm activity of SAAP-148 NPs against AMR S. aureus and A. baumannii gradually increased overtime, suggesting a dose-effect relationship based on the peptide's in vitro release profile. Using 3D human skin equivalents (HSEs), dual drug SAAP-148 NPs and the novel antibiotic halicin NPs provided a stronger antibacterial response against planktonic and cell-associated bacteria than SAAP-148 NPs but not halicin NPs after 24 h. Confocal laser scanning microscopy revealed the presence of SAAP-148 NPs on the top layers of the skin models in close proximity to AMR S. aureus at 24 h. Overall, SAAP-148 NPs present a promising yet challenging approach for further development as treatment against bacterial infections.
Collapse
Affiliation(s)
- Muhanad Ali
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Miriam E. van Gent
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Amy M. de Waal
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Bjorn R. van Doodewaerd
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Erik Bos
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Roman I. Koning
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Robert A. Cordfunke
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
20
|
Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [PMID: 36208724 DOI: 10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Currently, the only practical way to treat type 1 and advanced insulin-dependent type 2 diabetes mellitus (T1/2DM) is the frequent subcutaneous injection of insulin, which is significantly different physiologically from endogenous insulin secretion from pancreatic islets and can lead to hyperinsulinemia, pain, and infection in patients with poor compliance. Hence, oral insulin delivery has been actively pursued to revolutionize the treatment of insulin-dependent diabetes. In this review, we provide an overview of recent progress in developing poly(lactic co-glycolic acid) (PLGA) nanoparticles (NPs) for oral insulin delivery. Different strategies for insulin-loaded PLGA NPs to achieve normoglycemic effects are discussed. Finally, challenges and future perspectives of PLGA NPs for oral insulin delivery are put forward.
Collapse
|
21
|
Pang H, Huang X, Xu ZP, Chen C, Han FY. Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [DOI: https:/doi.org/10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
22
|
Lin Z, Aryal S, Cheng YH, Gesquiere AJ. Integration of In Vitro and In Vivo Models to Predict Cellular and Tissue Dosimetry of Nanomaterials Using Physiologically Based Pharmacokinetic Modeling. ACS NANO 2022; 16:19722-19754. [PMID: 36520546 PMCID: PMC9798869 DOI: 10.1021/acsnano.2c07312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/02/2022] [Indexed: 05/15/2023]
Abstract
Nanomaterials (NMs) have been increasingly used in a number of areas, including consumer products and nanomedicine. Target tissue dosimetry is important in the evaluation of safety, efficacy, and potential toxicity of NMs. Current evaluation of NM efficacy and safety involves the time-consuming collection of pharmacokinetic and toxicity data in animals and is usually completed one material at a time. This traditional approach no longer meets the demand of the explosive growth of NM-based products. There is an emerging need to develop methods that can help design safe and effective NMs in an efficient manner. In this review article, we critically evaluate existing studies on in vivo pharmacokinetic properties, in vitro cellular uptake and release and kinetic modeling, and whole-body physiologically based pharmacokinetic (PBPK) modeling studies of different NMs. Methods on how to simulate in vitro cellular uptake and release kinetics and how to extrapolate cellular and tissue dosimetry of NMs from in vitro to in vivo via PBPK modeling are discussed. We also share our perspectives on the current challenges and future directions of in vivo pharmacokinetic studies, in vitro cellular uptake and kinetic modeling, and whole-body PBPK modeling studies for NMs. Finally, we propose a nanomaterial in vitro to in vivo extrapolation via physiologically based pharmacokinetic modeling (Nano-IVIVE-PBPK) framework for high-throughput screening of target cellular and tissue dosimetry as well as potential toxicity of different NMs in order to meet the demand of efficient evaluation of the safety, efficacy, and potential toxicity of a rapidly increasing number of NM-based products.
Collapse
Affiliation(s)
- Zhoumeng Lin
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32610, United States
- Center
for
Environmental and Human Toxicology, University
of Florida, Gainesville, Florida 32608, United
States
| | - Santosh Aryal
- Department
of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee
Fisch College of Pharmacy, The University
of Texas at Tyler, Tyler, Texas 75799, United States
| | - Yi-Hsien Cheng
- Department
of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
- Institute
of Computational Comparative Medicine, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Andre J. Gesquiere
- Department
of Chemistry, College of Sciences, University
of Central Florida, Orlando, Florida 32816, United States
- NanoScience
Technology Center, University of Central
Florida, Orlando, Florida 32826, United States
- Department
of Materials Science and Engineering, College of Engineering,, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
23
|
Gaglio SC, Jabalera Y, Montalbán-López M, Millán-Placer AC, Lázaro-Callejón M, Maqueda M, Carrasco-Jimenez MP, Laso A, Aínsa JA, Iglesias GR, Perduca M, López CJ. Embedding Biomimetic Magnetic Nanoparticles Coupled with Peptide AS-48 into PLGA to Treat Intracellular Pathogens. Pharmaceutics 2022; 14:2744. [PMID: 36559238 PMCID: PMC9785849 DOI: 10.3390/pharmaceutics14122744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Among the strategies employed to overcome the development of multidrug-resistant bacteria, directed chemotherapy combined with local therapies (e.g., magnetic hyperthermia) has gained great interest. A nano-assembly coupling the antimicrobial peptide AS-48 to biomimetic magnetic nanoparticles (AS-48-BMNPs) was demonstrated to have potent bactericidal effects on both Gram-positive and Gram-negative bacteria when the antimicrobial activity of the peptide was combined with magnetic hyperthermia. Nevertheless, intracellular pathogens remain challenging due to the difficulty of the drug reaching the bacterium. Thus, improving the cellular uptake of the nanocarrier is crucial for the success of the treatment. In the present study, we demonstrate the embedding cellular uptake of the original nano-assembly into THP-1, reducing the toxicity of AS-48 toward healthy THP-1 cells. We optimized the design of PLGA[AS-48-BMNPs] in terms of size, colloidal stability, and hyperthermia activity (either magnetic or photothermal). The stability of the nano-formulation at physiological pH values was evaluated by studying the AS-48 release at this pH value. The influence of pH and hyperthermia on the AS-48 release from the nano-formulation was also studied. These results show a slower AS-48 release from PLGA[AS-48-BMNPs] compared to previous nano-formulations, which could make this new nano-formulation suitable for longer extended treatments of intracellular pathogens. PLGA[AS-48-BMNPs] are internalized in THP-1 cells where AS-48 is liberated slowly, which may be useful to treat diseases and prevent infection caused by intracellular pathogens. The treatment will be more efficient combined with hyperthermia or photothermia.
Collapse
Affiliation(s)
| | - Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Manuel Montalbán-López
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Ana Cristina Millán-Placer
- Departamento de Microbiología, Pediatría, Radiología y Salud Publica (Facultad de Medicina) & BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marina Lázaro-Callejón
- Department of Applied Physics and Instituto de Investigación Biosanitaria ibs. GRANADA, NanoMag Laboratory, University of Granada, 18071 Granada, Spain
| | - Mercedes Maqueda
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | | | - Alejandro Laso
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| | - José A. Aínsa
- Departamento de Microbiología, Pediatría, Radiología y Salud Publica (Facultad de Medicina) & BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Guillermo R. Iglesias
- Department of Applied Physics and Instituto de Investigación Biosanitaria ibs. GRANADA, NanoMag Laboratory, University of Granada, 18071 Granada, Spain
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | |
Collapse
|
24
|
Direct Cardiac Epigenetic Reprogramming through Codelivery of 5'Azacytidine and miR-133a Nanoformulation. Int J Mol Sci 2022; 23:ijms232315179. [PMID: 36499508 PMCID: PMC9739153 DOI: 10.3390/ijms232315179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Direct reprogramming of cardiac fibroblasts to induced cardiomyocytes (iCMs) is a promising approach to cardiac regeneration. However, the low yield of reprogrammed cells and the underlying epigenetic barriers limit its potential. Epigenetic control of gene regulation is a primary factor in maintaining cellular identities. For instance, DNA methylation controls cell differentiation in adults, establishing that epigenetic factors are crucial for sustaining altered gene expression patterns with subsequent rounds of cell division. This study attempts to demonstrate that 5'AZA and miR-133a encapsulated in PLGA-PEI nanocarriers induce direct epigenetic reprogramming of cardiac fibroblasts to cardiomyocyte-like cells. The results present a cardiomyocyte-like phenotype following seven days of the co-delivery of 5'AZA and miR-133a nanoformulation into human cardiac fibroblasts. Further evaluation of the global DNA methylation showed a decreased global 5-methylcytosine (5-medCyd) levels in the 5'AZA and 5'AZA/miR-133a treatment group compared to the untreated group and cells with void nanocarriers. These results suggest that the co-delivery of 5'AZA and miR-133a nanoformulation can induce the direct reprogramming of cardiac fibroblasts to cardiomyocyte-like cells in-vitro, in addition to demonstrating the influence of miR-133a and 5'AZA as epigenetic regulators in dictating cell fate.
Collapse
|
25
|
Piotrowski-Daspit AS, Barone C, Lin CY, Deng Y, Wu D, Binns TC, Xu E, Ricciardi AS, Putman R, Garrison A, Nguyen R, Gupta A, Fan R, Glazer PM, Saltzman WM, Egan ME. In vivo correction of cystic fibrosis mediated by PNA nanoparticles. SCIENCE ADVANCES 2022; 8:eabo0522. [PMID: 36197984 PMCID: PMC9534507 DOI: 10.1126/sciadv.abo0522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/18/2022] [Indexed: 05/26/2023]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. We sought to correct the multiple organ dysfunction of the F508del CF-causing mutation using systemic delivery of peptide nucleic acid gene editing technology mediated by biocompatible polymeric nanoparticles. We confirmed phenotypic and genotypic modification in vitro in primary nasal epithelial cells from F508del mice grown at air-liquid interface and in vivo in F508del mice following intravenous delivery. In vivo treatment resulted in a partial gain of CFTR function in epithelia as measured by in situ potential differences and Ussing chamber assays and correction of CFTR in both airway and GI tissues with no off-target effects above background. Our studies demonstrate that systemic gene editing is possible, and more specifically that intravenous delivery of PNA NPs designed to correct CF-causing mutations is a viable option to ameliorate CF in multiple affected organs.
Collapse
Affiliation(s)
| | - Christina Barone
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Chun-Yu Lin
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Douglas Wu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Thomas C. Binns
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Emily Xu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Adele S. Ricciardi
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Rachael Putman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Alannah Garrison
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Richard Nguyen
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Anisha Gupta
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Marie E. Egan
- Department of Pediatrics, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
26
|
Shin HJ, Lee KY, Kang JW, Choi SG, Kim DW, Yi YY. Perampanel Reduces Brain Damage via Induction of M2 Microglia in a Neonatal Rat Stroke Model. Int J Nanomedicine 2022; 17:2791-2804. [PMID: 35782016 PMCID: PMC9248959 DOI: 10.2147/ijn.s361377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose Ischemic stroke is a leading cause of death and disability worldwide. Additionally, neonatal ischemia is a common cause of neonatal brain injury, resulting in cerebral palsy with subsequent learning disabilities and epilepsy. However, there is currently a lack of effective treatments available for patients with perinatal ischemic stroke. In this study, we investigated the effect of perampanel (PER)-loaded poly lactic-co-glycolic acid (PLGA) by targeting microglia in perinatal stroke. Methods After formation of focal ischemic stroke by photothrombosis in P7 rats, PER-loaded PLGA was injected intrathecally. Proinflammatory markers (TNF-α, IL-1β, IL-6, COX2, and iNOS) and M2 polarization markers (Ym1 and Arg1) were evaluated. We investigated whether PER increased M2 microglial polarization in vitro. Results PER-loaded PLGA nanoparticles decreased the pro-inflammatory cytokines compared to the control group. Furthermore, they increased M2 polarization. Conclusion PER-loaded PLGA nanoparticles decreased the size of the infarct and increased motor function in a perinatal ischemic stroke rat model. Pro-inflammatory cytokines were also reduced compared to the control group. Finally, this development of a drug delivery system targeting microglia confirms the potential to develop new therapeutic agents for perinatal ischemic stroke.
Collapse
Affiliation(s)
- Hyo Jung Shin
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
| | - Ka Young Lee
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
- Department of Rehabilitation Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Joon Won Kang
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Department of Pediatrics, Chungnam National Hospital, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seung Gyu Choi
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
- Department of Pediatrics, Chungnam National Hospital, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy and Cell Biology, Chungnam National University, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea
- Correspondence: Dong Woon Kim; Yoon Young Yi, Tel +82-42-580-8207; +82-2-2224-2251, Email ;
| | - Yoon Young Yi
- Department of Pediatrics, College of Medicine, Hallym University and Gangdong Sacred Heart Hospital, Seoul, Republic of Korea
| |
Collapse
|
27
|
Markowski A, Jaromin A, Migdał P, Olczak E, Zygmunt A, Zaremba-Czogalla M, Pawlik K, Gubernator J. Design and Development of a New Type of Hybrid PLGA/Lipid Nanoparticle as an Ursolic Acid Delivery System against Pancreatic Ductal Adenocarcinoma Cells. Int J Mol Sci 2022; 23:5536. [PMID: 35628352 PMCID: PMC9143619 DOI: 10.3390/ijms23105536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Despite many attempts, trials, and treatment procedures, pancreatic ductal adenocarcinoma (PDAC) still ranks among the most deadly and treatment-resistant types of cancer. Hence, there is still an urgent need to develop new molecules, drugs, and therapeutic methods against PDAC. Naturally derived compounds, such as pentacyclic terpenoids, have gained attention because of their high cytotoxic activity toward pancreatic cancer cells. Ursolic acid (UA), as an example, possesses a wide anticancer activity spectrum and can potentially be a good candidate for anti-PDAC therapy. However, due to its minimal water solubility, it is necessary to prepare an optimal nano-sized vehicle to overcome the low bioavailability issue. Poly(lactic-co-glycolic acid) (PLGA) polymeric nanocarriers seem to be an essential tool for ursolic acid delivery and can overcome the lack of biological activity observed after being incorporated within liposomes. PLGA modification, with the addition of PEGylated phospholipids forming the lipid shell around the polymeric core, can provide additional beneficial properties to the designed nanocarrier. We prepared UA-loaded hybrid PLGA/lipid nanoparticles using a nanoprecipitation method and subsequently performed an MTT cytotoxicity assay for AsPC-1 and BxPC-3 cells and determined the hemolytic effect on human erythrocytes with transmission electron microscopic (TEM) visualization of the nanoparticles and their cellular uptake. Hybrid UA-loaded lipid nanoparticles were also examined in terms of their stability, coating dynamics, and ursolic acid loading. We established innovative and repeatable preparation procedures for novel hybrid nanoparticles and obtained biologically active nanocarriers for ursolic acid with an IC50 below 20 µM, with an appropriate size for intravenous dosage (around 150 nm), high homogeneity of the sample (below 0.2), satisfactory encapsulation efficiency (up to 70%) and excellent stability. The new type of hybrid UA-PLGA nanoparticles represents a further step in the development of potentially effective PDAC therapies based on novel, biologically active, and promising triterpenoids.
Collapse
Affiliation(s)
- Adam Markowski
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Paweł Migdał
- Polish Academy of Science Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wrocław, Poland; (P.M.); (K.P.)
- Department of Environment Hygiene and Animal Welfare, Bee Division, Wroclaw University of Environmental and Life Sciences, Chelmońskiego 38C, 51-630 Wrocław, Poland
| | - Ewa Olczak
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| | - Krzysztof Pawlik
- Polish Academy of Science Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wrocław, Poland; (P.M.); (K.P.)
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland; (A.J.); (E.O.); (A.Z.); (M.Z.-C.)
| |
Collapse
|
28
|
Effect of Solvents, Stabilizers and the Concentration of Stabilizers on the Physical Properties of Poly(d,l-lactide- co-glycolide) Nanoparticles: Encapsulation, In Vitro Release of Indomethacin and Cytotoxicity against HepG2-Cell. Pharmaceutics 2022; 14:pharmaceutics14040870. [PMID: 35456705 PMCID: PMC9028368 DOI: 10.3390/pharmaceutics14040870] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/20/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
A biocompatible, biodegradable and FDA-approved polymer [Poly lactic-co-glycolic acid (PLGA)] was used to prepare the nanoparticles (NPs) to observe the effect of solvents, stabilizers and their concentrations on the physical properties of the PLGA-NPs, following the encapsulation and in vitro release of Indomethacin (IND). PLGA-NPs were prepared by the single-emulsion solvent evaporation technique using dichloromethane (DCM)/chloroform as the organic phase with Polyvinyl-alcohol (PVA)/Polyvinylpyrrolidone (PVP) as stabilizers to encapsulate IND. The effects of different proportions of PVA/PVP with DCM/chloroform on the physiochemical properties (particle size, the polydispersity index, the zeta potential by Malvern Zetasizer and morphology by SEM) of the NPs were investigated. DSC was used to check the physical state, the possible complexation of PLGA with stabilizer(s) and the crystallinity of the encapsulated drug. Stabilizers at all concentrations produced spherical, regular-shaped, smooth-surfaced discrete NPs. Average size of 273.2–563.9 nm was obtained when PVA (stabilizer) with DCM, whereas it ranged from 317.6 to 588.1 nm with chloroform. The particle size was 273.2–563.9 nm when PVP was the stabilizer with DCM, while it was 381.4–466.6 nm with chloroform. The zeta potentials of PVA-stabilized NPs were low and negative (−0.62 mV) while they were comparatively higher and positive for PVP-stabilized NPs (+17.73 mV). Finally, drug-loaded optimal NPs were composed of PLGA (40 mg) and IND (4 mg) in 1 mL DCM/chloroform with PVA/PVP (1–3%), which resulted in sufficient encapsulation (54.94–74.86%) and drug loading (4.99–6.81%). No endothermic peak of PVA/PVP appeared in the optimized formulation, which indicated the amorphous state of IND in the core of the PLGA-NPs. The in vitro release study indicated a sustained release of IND (32.83–52.16%) from the PLGA-NPs till 72 h and primarily followed the Higuchi matrix release kinetics followed by Korsmeyer–Peppas models. The cell proliferation assay clearly established that the organic solvents used to prepare PLGA-NPs had evaporated. The PLGA-NPs did not show any particular toxicity in the HepG2 cells within the dose range of IND (250–500 µg/mL) and at an equivalent concentration of PLGA-NPs (3571.4–7142.7 µg/mL). The cytotoxicity of the hepatotoxic drug (IND) was reduced by its encapsulation into PLGA-NPs. The outcomes of this investigation could be implemented to prepare PLGA-NPs of acceptable properties for the encapsulation of low/high molecular weight drugs. It would be useful for further in vitro and in vivo applications to use this delivery system.
Collapse
|
29
|
Luks VL, Mandl H, DiRito J, Barone C, Freedman-Weiss MR, Ricciardi AS, Tietjen GG, Egan ME, Saltzman WM, Stitelman DH. Surface conjugation of antibodies improves nanoparticle uptake in bronchial epithelial cells. PLoS One 2022; 17:e0266218. [PMID: 35385514 PMCID: PMC8986008 DOI: 10.1371/journal.pone.0266218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Advances in Molecular Therapy have made gene editing through systemic or topical administration of reagents a feasible strategy to treat genetic diseases in a rational manner. Encapsulation of therapeutic agents in nanoparticles can improve intracellular delivery of therapeutic agents, provided that the nanoparticles are efficiently taken up within the target cells. In prior work we had established proof-of-principle that nanoparticles carrying gene editing reagents can mediate site-specific gene editing in fetal and adult animals in vivo that results in functional disease improvement in rodent models of β-thalassemia and cystic fibrosis. Modification of the surface of nanoparticles to include targeting molecules (e.g. antibodies) holds the promise of improving cellular uptake and specific cellular binding. METHODS AND FINDINGS To improve particle uptake for diseases of the airway, like cystic fibrosis, our group tested the impact of nanoparticle surface modification with cell surface marker antibodies on uptake in human bronchial epithelial cells in vitro. Binding kinetics of antibodies (Podoplanin, Muc 1, Surfactant Protein C, and Intracellular Adhesion Molecule-1 (ICAM)) were determined to select appropriate antibodies for cellular targeting. The best target-specific antibody among those screened was ICAM antibody. Surface conjugation of nanoparticles with antibodies against ICAM improved cellular uptake in bronchial epithelial cells up to 24-fold. CONCLUSIONS This is a first demonstration of improved nanoparticle uptake in epithelial cells using conjugation of target specific antibodies. Improved binding, uptake or specificity of particles delivered systemically or to the luminal surface of the airway would potentially improve efficacy, reduce the necessary dose and thus safety of administered therapeutic agents. Incremental improvement in the efficacy and safety of particle-based therapeutic strategies may allow genetic diseases such as cystic fibrosis to be cured on a fundamental genetic level before birth or shortly after birth.
Collapse
Affiliation(s)
- Valerie L. Luks
- Department of Surgery, Yale University, New Haven, CT, United States of America
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Hanna Mandl
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Jenna DiRito
- Department of Surgery, Yale University, New Haven, CT, United States of America
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Christina Barone
- Department of Pediatrics, Yale University, New Haven, CT, United States of America
| | | | - Adele S. Ricciardi
- Department of Surgery, Yale University, New Haven, CT, United States of America
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Gregory G. Tietjen
- Department of Surgery, Yale University, New Haven, CT, United States of America
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Marie E. Egan
- Department of Pediatrics, Yale University, New Haven, CT, United States of America
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - David H. Stitelman
- Department of Surgery, Yale University, New Haven, CT, United States of America
| |
Collapse
|
30
|
Mulder D, Taute CJF, van Wyk M, Pretorius PJ. A Comparison of the Genotoxic Effects of Gold Nanoparticles Functionalized with Seven Different Ligands in Cultured Human Hepatocellular Carcinoma Cells. NANOMATERIALS 2022; 12:nano12071126. [PMID: 35407243 PMCID: PMC9000686 DOI: 10.3390/nano12071126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Gold nanoparticles (GNPs) have shown great potential in diagnostic and therapeutic applications in diseases, such as cancer. Despite GNP versatility, there is conflicting data regarding the toxicity of their overall functionalization chemistry for improved biocompatibility. This study aimed to determine the possible genotoxic effects of functionalized GNPs in Human hepatocellular carcinoma (HepG2) cells. GNPs were synthesized and biofunctionalized with seven common molecules used for biomedical applications. These ligands were bovine serum albumin (BSA), poly(sodium 4-styrene sulfonate) (PSSNA), trisodium citrate (citrate), mercaptoundecanoic acid (MUA), glutathione (GSH), polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG). Before in vitro genotoxicity assessment, inductively coupled plasma mass spectrometry was used to determine GNP cellular internalization quantitatively, followed by cell-based assays; WST-1 to find IC 30 and ApoPercentage for apoptotic induction time-points. The effect of the GNPs on cell growth in real-time was determined by using xCELLigence, followed by a comet assay for genotoxicity determination. The HepG2 cells experienced genotoxicity for all GNP ligands; however, they were able to initiate repair mechanisms and recover DNA damage, except for two functionalization chemistries.
Collapse
|
31
|
Advancements in nanomedicines for the detection and treatment of diabetic kidney disease. BIOMATERIALS AND BIOSYSTEMS 2022; 6:100047. [PMID: 36824160 PMCID: PMC9934479 DOI: 10.1016/j.bbiosy.2022.100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022] Open
Abstract
In the diabetic kidneys, morbidities such as accelerated ageing, hypertension and hyperglycaemia create a pro-inflammatory microenvironment characterised by extensive fibrogenesis. Radiological techniques are not yet optimised generating inconsistent and non-reproducible data. The gold standard procedure to assess renal fibrosis is kidney biopsy, followed by histopathological assessment. However, this method is risky, invasive, subjective and examines less than 0.01% of kidney tissue resulting in diagnostic errors. As such, less than 10% of patients undergo kidney biopsy, limiting the accuracy of the current diabetic kidney disease (DKD) staging method. Standard treatments suppress the renin-angiotensin system to control hypertension and use of pharmaceuticals aimed at controlling diabetes have shown promise but can cause hypoglycaemia, diuresis and malnutrition as a result of low caloric intake. New approaches to both diagnosis and treatment are required. Nanoparticles (NPs) are an attractive candidate for managing DKD due to their ability to act as theranostic tools that can carry drugs and enhance image contrast. NP-based point-of-care systems can provide physiological information previously considered unattainable and provide control over the rate and location of drug release. Here we discuss the use of nanotechnology in renal disease, its application to both the treatment and diagnosis of DKD. Finally, we propose a new method of NP-based DKD classification that overcomes the current systems limitations.
Collapse
|
32
|
Lee K, Jung I, Odom TW. Delivery Order of Nanoconstructs Affects Intracellular Trafficking by Endosomes. J Am Chem Soc 2022; 144:5274-5279. [PMID: 35302362 DOI: 10.1021/jacs.2c02276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper reports how the endosomal pathways of nanoparticle (NP) constructs with different surface curvatures are affected by their order of delivery. Sequential incubation of cytosine-phosphate-guanine (CpG)-conjugated spiky and spherical gold NPs with macrophages resulted in different nanoconstruct ratios at the interior edges of endosomes. Application of spiky NPs after spherical NPs accelerated the formation of late-stage endosomes and resulted in larger endosomes, and the spherical NPs were enclosed by the spiky NPs. In contrast, the reverse incubation order produced an asymmetric distribution of the two nanoconstruct shapes in smaller endosomes. Macrophages with a higher proportion of the enclosed spherical NPs as well as a larger ratio of spiky to spherical NPs at the endosomal edge showed enhanced toll-like receptor 9 activation and secretion of proinflammatory cytokines and chemokines. Our results indicate that the subcellular trafficking of targeting nanoconstructs by vesicles is affected by both the delivery order and the endosomal distribution. Our study also establishes a new approach for nanoscale monitoring of intracellular therapeutics delivery with conventional electron microscopy.
Collapse
Affiliation(s)
- Kwahun Lee
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Insub Jung
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
33
|
Kan S, Grainge C, Nichol K, Reid A, Knight D, Sun Y, Bartlett N, Liang M. TLR7 agonist loaded airway epithelial targeting nanoparticles stimulate innate immunity and suppress viral replication in human bronchial epithelial cells. Int J Pharm 2022; 617:121586. [PMID: 35181464 DOI: 10.1016/j.ijpharm.2022.121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Nanoparticle-based delivery is a strategy for increasing the therapeutic window of inhaled immunomodulatory drugs that have inflammatory activity. TLR7 agonists are a class of immunomodulators that have been considered for the treatment of virus-induced respiratory diseases. However, due to high immune-stimulatory activity, TLR7 agonists, delivered via direct exposure, generally have a narrow therapeutic window. To address this, we have developed lipid/polymer hybrid nanoparticles (NPs) conjugated with anti-EpCAM monoclonal antibody for targeted delivery of TLR7 agonist (CL264) to airway epithelial cells (AECs)2 - the primary site of respiratory virus infection. These airway epithelial targeting nanoparticles (AEC-NPs)3 showed safety and biocompatibility, and approximately two-fold increased cellular uptake compared to non-targeting NPs. Upon cell entry, AEC-NPs were able to deliver CL264 to cytoplasm and endosomes where TLR7 is located. CL264 delivered by AEC-NPs significantly increased innate immune response through expression of IFN-β, IFN-λ 2/3 and IFN-stimulated genes and suppressed more than 92% of viral load at 48 hours post-infection compared to the drug alone and non-targeting NPs. In conclusion, AEC-NPs exhibited increased cellular uptake leading to enhanced innate immune activation and suppression of viral replication. These findings support the use of AEC-targeting approach for delivering drugs with a narrow therapeutic window.
Collapse
Affiliation(s)
- Stanislav Kan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Christopher Grainge
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Kristy Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Andrew Reid
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl Knight
- Department of Anaesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, P. R. China
| | - Nathan Bartlett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
34
|
Alferiev IS, Fishbein I, Levy RJ, Chorny M. Robust Chemical Strategy for Stably Labeling Polyester-Based Nanoparticles with BODIPY Fluorophores. ACS APPLIED POLYMER MATERIALS 2022; 4:1196-1206. [PMID: 36060230 PMCID: PMC9432775 DOI: 10.1021/acsapm.1c01601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aliphatic polyesters are among materials most extensively used for producing biodegradable polymeric nanoparticles currently in development as delivery carriers and imaging agents for a range of biomedical applications. Their clinical translation requires robust particle labeling methodologies that allow reliably monitoring the fate of these formulations in complex biological environments. In the present study, a practical and versatile synthetic strategy providing conjugates of poly(D,L-lactide) representative of this class of polymers with BODIPY fluorophores varying in functional groups and excitation/emission maxima was investigated as a tool for making traceable nanoparticles. Polymer-probe conjugation was accomplished by carbodiimide-induced and 4-(dimethylamino)pyridinium 4-toluenesulfonate-catalyzed esterification of the polymer's terminal hydroxyl group, either directly with a carboxy-functionalized fluorophore or with amine-protected amino acids (Boc-glycine or Boc-6-aminohexanoic acid). In the latter case, the amino acid-derivatized polymeric precursors were reacted with amine-reactive BODIPY dyes after the removal of the protective group. Unlike nanoparticles encapsulating a strongly hydrophobic BODIPY505/515 (logPo/w = 4.3), nanoparticles labeled covalently with its carboxy-functionalized analogue (BODIPY FL) demonstrated stable particle-tracer association under perfect sink conditions. Furthermore, in contrast to the encapsulated dye rapidly partitioning from particles onto cell membranes but not stably retained by cultured cells, the internalization of the covalently attached probe was an irreversible process requiring the presence of serum, consistent with active nanoparticle uptake by endocytosis. In conclusion, the conjugation of particle-forming polymers with BODIPY fluorophores offers an effective and accessible labeling strategy for making traceable polyester-based biodegradable nanoparticles and is expected to facilitate their development and optimization as therapeutic carriers and diagnostic agents.
Collapse
Affiliation(s)
- Ivan S Alferiev
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, United States; The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-4318, United States
| | - Ilia Fishbein
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, United States; The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-4318, United States
| | - Robert J Levy
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, United States; The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-4318, United States
| | - Michael Chorny
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, United States; The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-4318, United States
| |
Collapse
|
35
|
Li B, Pan L, Zhang H, Xie L, Wang X, Shou J, Qi Y, Yan X. Recent Developments on Using Nanomaterials to Combat Candida albicans. Front Chem 2022; 9:813973. [PMID: 35004630 PMCID: PMC8733329 DOI: 10.3389/fchem.2021.813973] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Vaginal candidiasis (VC) is a common disease of women and the main pathogen is Candida albicans (C. albicans). C. albicans infection incidence especially its drug resistance have become a global health threat due to the existence of C. albicans biofilms and the low bioavailability of traditional antifungal drugs. In recent years, nanomaterials have made great progresses in the field of antifungal applications. Some researchers have treated fungal infections with inorganic nanoparticles, represented by silver nanoparticles (AgNPs) with antifungal properties. Liposomes, polymeric nanoparticles, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs) were also used to improve the bioavailability of antifungal drugs. Herein, we briefly introduced the recent developments on using above nanomaterials to combat C. albicans in antifungal applications.
Collapse
Affiliation(s)
- Bingxin Li
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luyao Pan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haofeng Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingping Xie
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi Wang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahui Shou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Qi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xiaojian Yan
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Aryal S, Park S, Park C, Choi MJ, Key J. Porous discoidal polymeric particles for effective drug delivery minimizing phagocytosis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:390-396. [PMID: 33847187 DOI: 10.1080/21691401.2021.1909605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
Curcumin has great potential in cancer treatment and prevention. However, free curcumin for anticancer effect is limited due to its low water solubility and instability. Delivery of free curcumin using biodegradable and biocompatible polymers, such as poly (lactic-co-glycolic acid) (PLGA), can improve these undesirable problems. In this study, a top-down fabrication method using PLGA was employed to deliver free curcumin, engineering size, shape, and surface properties. As a result, porous discoidal polymeric particles (DPPs) were produced in ammonium bicarbonate with a hydrodynamic diameter of 5 µm and a negatively charged surface. The loading amount of free curcumin in the porous DPPs was higher than non-porous DPPs. In vitro drug release study showed that curcumin release from porous DPPs was 1.4-fold higher than non-porous ones. The confocal microscopy and flow cytometry results demonstrated that porous DPPs decrease phagocytosis by macrophages than non-porous ones. This study suggests that porous DPPs have significant advantages for effective drug delivery of curcumin, minimizing phagocytosis.
Collapse
Affiliation(s)
- Susmita Aryal
- Department of Biomedical Engineering, Yonsei University, Mirae Campus, Korea
| | - Sanghyo Park
- Department of Biomedical Engineering, Yonsei University, Mirae Campus, Korea
| | - Chaewon Park
- Department of Biomedical Engineering, Yonsei University, Mirae Campus, Korea
| | - Moon Jung Choi
- Department of Biomedical Laboratory Science, Yonsei University, Mirae Campus, Korea
| | - Jaehong Key
- Department of Biomedical Engineering, Yonsei University, Mirae Campus, Korea
| |
Collapse
|
37
|
Liu YY, Chang Q, Sun ZX, Liu J, Deng X, Liu Y, Cao A, Wang H. Fate of CdSe/ZnS quantum dots in cells: Endocytosis, translocation and exocytosis. Colloids Surf B Biointerfaces 2021; 208:112140. [PMID: 34597939 DOI: 10.1016/j.colsurfb.2021.112140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Semiconductor quantum dots (QDs) have been extensively explored for extensive bioapplications, yet their cellular fate, especially exocytosis, has not been thoroughly investigated. Herein, we systematically investigated the whole cellular process from the endocytosis, intercellular trafficking, to the exocytosis of a typical QD, core/shell CdSe/ZnS QD. Using confocal laser scanning microscopy and flow cytometry, and after carefully eliminating the effect of cell division, we found that the QDs were internalized by HeLa cells with a time-, dose-, and serum-dependent manner. The cellular uptake was inhibited by serum, but eventually peaked after 4-6 h incubation with or without serum. The primary endocytosis pathway was clathrin-mediated, and actin- and microtubule-dependent in the medium with serum, while the caveolae-mediated endocytosis and macropinocytosis were more important for the QDs in the serum-free medium. Inside cells, most QDs distributed in lysosomes, and some entered mitochondria, endoplasmic reticulum, and Golgi apparatus. The translocation of the QDs from other organelles to Golgi apparatus was observed. The exocytosis of QDs was faster than the endocytosis, reaching the maximum in about one hour after cultured in fresh culture medium, with around 60% of the internalized QDs remained undischarged. The exocytosis process was energy- and actin-dependent, and the lysosome exocytosis and endoplasmic reticulum/Golgi pathway were the main routes. This study provides a full picture of behavior and fate of QDs in cells, which may facilitate the design of ideal QDs applied in biomedical and other fields.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Zao-Xia Sun
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Jie Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China; Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
38
|
Wahane A, Malik S, Shih KC, Gaddam RR, Chen C, Liu Y, Nieh MP, Vikram A, Bahal R. Dual-Modality Poly-l-histidine Nanoparticles to Deliver Peptide Nucleic Acids and Paclitaxel for In Vivo Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45244-45258. [PMID: 34524806 DOI: 10.1021/acsami.1c11981] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cationic polymeric nanoformulations have been explored to increase the transfection efficiency of small molecules and nucleic acid-based drugs. However, an excessive positive charge density often leads to severe cell and tissue-based toxicity that restricts the clinical translation of cationic polymeric nanoformulations. Herein, we investigate a series of cationic poly(lactic-co-glycolic acid) (PLGA)-histidine-based nanoformulations for enhanced cytoplasmic delivery with minimal toxicity. PLGA/poly-l-histidine nanoparticles show promising physico-biochemical features and transfection efficiency in a series of in vitro and cell culture-based studies. Further, the use of acetone/dichloromethane as a solvent mixture during the formulation process significantly improves the morphology and size distribution of PLGA/poly-l-histidine nanoparticles. PLGA/poly-l-histidine nanoformulations undergo clathrin-mediated endocytosis. A contrast-matched small-angle neutron scattering experiment confirmed poly-l-histidine's distribution on the PLGA nanoformulations. PLGA/poly-l-histidine formulations containing paclitaxel as a small molecule-based drug and peptide nucleic acids targeting microRNA-155 as nucleic acid analog are efficacious in in vitro and in vivo studies. PLGA/poly-l-histidine NPs significantly decrease tumor growth in PNA-155 (∼6 fold) and paclitaxel (∼6.5 fold) treatment groups in a lymphoma cell line derived xenograft mice model without inducing any toxicity. Hence, PLGA/poly-l-histidine nanoformulations exhibit substantial transfection efficiency and are safe to deliver reagents ranging from small molecules to synthetic nucleic acid analogs and can serve as a novel platform for drug delivery.
Collapse
Affiliation(s)
- Aniket Wahane
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Kuo-Chih Shih
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ravinder Reddy Gaddam
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Chaohao Chen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yun Liu
- NIST Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Mu-Ping Nieh
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, 191 Auditorium Road, Storrs, Connecticut 06269, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ajit Vikram
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
39
|
Dahanayake V, Lyons T, Kerwin B, Rodriguez O, Albanese C, Parasido E, Lee Y, Keuren EV, Li L, Maxey E, Paunesku T, Woloschak G, Stoll SL. Paramagnetic Mn 8Fe 4- co-Polystyrene Nanobeads as a Potential T 1-T 2 Multimodal Magnetic Resonance Imaging Contrast Agent with In Vivo Studies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39042-39054. [PMID: 34375073 PMCID: PMC10506655 DOI: 10.1021/acsami.1c09232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In developing a cluster-nanocarrier design, as a magnetic resonance imaging contrast agent, we have investigated the enhanced relaxivity of a manganese and iron-oxo cluster grafted within a porous polystyrene nanobead with increased relaxivity due to a higher surface area. The synthesis of the cluster-nanocarrier for the cluster Mn8Fe4O12(O2CC6H4CH═CH2)16(H2O)4, cross-linked with polystyrene (the nanocarrier), under miniemulsion conditions is described. By including a branched hydrophobe, iso-octane, the resulting nanobeads are porous and ∼70 nm in diameter. The increased surface area of the nanobeads compared to nonporous nanobeads leads to an enhancement in relaxivity; r1 increases from 3.8 to 5.2 ± 0.1 mM-1 s-1, and r2 increases from 11.9 to 50.1 ± 4.8 mM-1 s-1, at 9.4 teslas, strengthening the potential for T1 and T2 imaging. Several metrics were used to assess stability, and the porosity produced no reduction in metal stability. Synchrotron X-ray fluorescence microscopy was used to demonstrate that the nanobeads remain intact in vivo. In depth, physicochemical characteristics were determined, including extensive pharmacokinetics, in vivo imaging, and systemic biodistribution analysis.
Collapse
Affiliation(s)
- Vidumin Dahanayake
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Trevor Lyons
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Brendan Kerwin
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
- Department of Radiology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Erika Parasido
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Edward Van Keuren
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Luxi Li
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Evan Maxey
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University, 303 E. Chicago Ave., Chicago, Illinois 60611, United States
| | - Gayle Woloschak
- Department of Radiation Oncology, Northwestern University, 303 E. Chicago Ave., Chicago, Illinois 60611, United States
| | - Sarah L Stoll
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
40
|
Paudel S, Peña-Bahamonde J, Shakiba S, Astete CE, Louie SM, Sabliov CM, Rodrigues DF. Prevention of infection caused by enteropathogenic E. coli O157:H7 in intestinal cells using enrofloxacin entrapped in polymer based nanocarriers. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125454. [PMID: 33677317 DOI: 10.1016/j.jhazmat.2021.125454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Poor bioavailability of antibiotics, toxicity, and development of antibiotic-resistant bacteria jeopardize antibiotic treatments. To circumvent these issues, drug delivery using nanocarriers are highlighted to secure the future of antibiotic treatments. This work investigated application of nanocarriers, to prevent and treat bacterial infection, presenting minimal toxicity to the IPEC-J2 cell line. To accomplish this, polymer-based nanoparticles (NPs) of poly(lactide-co-glycolide) (PLGA) and lignin-graft-PLGA (LNP) loaded with enrofloxacin (ENFLX) were synthesized, yielding spherical particles with average sizes of 111.8 ± 0.6 nm (PLGA) and 117.4 ± 0.9 nm (LNP). The releases of ENFLX from PLGA and LNP were modeled by a theoretical diffusion model considering both the NP and dialysis diffusion barriers for drug release. Biocompatible concentrations of ENFLX, enrofloxacin loaded PLGA(Enflx) and LNP(Enflx) were determined based on examination of bacterial inhibition, toxicity, and ROS generation. Biocompatible concentrations were used for treatment of higher- and lower-level infections in IPEC-J2 cells. Prevention of bacterial infection by LNP(Enflx) was enhanced more than 50% compared to ENFLX at lower-level infection. At higher-level infection, PLGA(Enflx) and LNP(Enflx) demonstrated 25% higher prevention of bacteria growth compared to ENFLX alone. The superior treatment achieved by the nanocarried drug is accredited to particle uptake by endocytosis and slow release of the drug intracellularly, preventing rapid bacterial growth inside the cells.
Collapse
Affiliation(s)
- Sachin Paudel
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA
| | - Janire Peña-Bahamonde
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA
| | - Sheyda Shakiba
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA
| | - Carlos E Astete
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Stacey M Louie
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA
| | - Cristina M Sabliov
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4003, USA.
| |
Collapse
|
41
|
Vallorz EL, Blohm-Mangone K, Schnellmann RG, Mansour HM. Formoterol PLGA-PEG Nanoparticles Induce Mitochondrial Biogenesis in Renal Proximal Tubules. AAPS JOURNAL 2021; 23:88. [PMID: 34169439 DOI: 10.1208/s12248-021-00619-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/04/2021] [Indexed: 11/30/2022]
Abstract
Formoterol is a long-acting β2 agonist (LABA). Agonism of the β2-adrenergic receptor by formoterol is known to stimulate mitochondrial biogenesis (MB) in renal proximal tubules and recover kidney function. However, formoterol has a number of cardiovascular side effects that limits its usage. The goal of this study was to design and develop an intravenous biodegradable and biocompatible polymeric nanoparticle delivery system that targets formoterol to the kidney. Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide) nanoparticles containing encapsulated formoterol were synthesized by a modified single-emulsion solvent evaporation technique resulting in nanoparticles with a median hydrodynamic diameter of 442 + 17 nm. Using primary cell cultures of rabbit renal proximal tubular cells (RPTCs), free formoterol, encapsulated formoterol polymeric nanoparticles, and drug-free polymeric nanoparticles were biocompatible and not cytotoxic over a wide concentration range. In healthy male mice, polymeric nanoparticles were shown to localize in tubules of the renal cortex and improved the renal localization of encapsulated formoterol compared to the free formoterol. At a lower total formoterol dose, the nanoparticle localization resulted in increased expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), the master regulator of MB, and increased electron transport chain proteins, markers of MB. This was confirmed by direct visual quantification of mitochondria and occurred with both free formoterol and the encapsulated formoterol polymeric nanoparticles. At the same time, localization of nanoparticles to the kidneys resulted in reduced induction of MB markers in the heart. These new nanoparticles effectively target formoterol to the kidney and successfully produce MB in the kidney.
Collapse
Affiliation(s)
- Ernest L Vallorz
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, Arizona, 85721, USA
| | - Karen Blohm-Mangone
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, Arizona, 85721, USA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, Arizona, 85721, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona, 85724, USA.,BIO5 Institute, The University of Arizona, Tucson, Arizona, 85719, USA.,Southern Arizona VA Health Care System, Tucson, Arizona, 85723, USA
| | - Heidi M Mansour
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, Arizona, 85721, USA. .,Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona, 85724, USA. .,BIO5 Institute, The University of Arizona, Tucson, Arizona, 85719, USA. .,Colleges of Pharmacy & Medicine, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA.
| |
Collapse
|
42
|
Mekseriwattana W, Phungsom A, Sawasdee K, Wongwienkham P, Kuhakarn C, Chaiyen P, Katewongsa KP. Dual Functions of Riboflavin-functionalized Poly(lactic-co-glycolic acid) Nanoparticles for Enhanced Drug Delivery Efficiency and Photodynamic Therapy in Triple-negative Breast Cancer Cells. Photochem Photobiol 2021; 97:1548-1557. [PMID: 34109623 DOI: 10.1111/php.13464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
Combating triple-negative breast cancer (TNBC) is one of the greatest challenges in cancer therapy. This is primarily due to the difficulties in developing drug delivery systems that can effectively target cancer sites. In this study, we demonstrated a proof-of-principle concept using modified surfaces of poly(lactic-co-glycolic acid) nanoparticles linked with a riboflavin analogue (PLGA-CSRf) to obtain a dual-functional material. PLGA-CSRf nanoparticles were able to function as a drug delivery ligand and a photodynamic therapy agent for TNBC cells (MDA-MB-231). Biocompatibility of novel PLGA-CSRf nanoparticles was evaluated with both breast cancer and normal breast (MCF-10A) cells. In vitro studies revealed a six-fold increase in the cellular uptake of PLGA-CSRf nanoparticles in cancer cells compared with normal cells. The results demonstrate the ability of riboflavin (Rf) to enhance the delivery of PLGA nanoparticles to TNBC cells. The viability of TNBC cells was decreased following treatment with doxorubicin-encapsulated PLGA-CSRf nanoparticles in combination with UV irradiation, due to the photosensitizing property of Rf on the surface of the nanoparticles. This work demonstrated the ability of PLGA-CSRf to function both as an effective drug delivery carrier and as a therapeutic entity, with the potential to enhance photodynamic effects in the highly aggressive TNBC model.
Collapse
Affiliation(s)
- Wid Mekseriwattana
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anunyaporn Phungsom
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Komkrich Sawasdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Food Processing Technology Management, Faculty of Agro-Industry, Panyapiwat Institute of Management, Nonthaburi, Thailand
| | | | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Kanlaya Prapainop Katewongsa
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
43
|
Elbatanony RS, Parvathaneni V, Kulkarni NS, Shukla SK, Chauhan G, Kunda NK, Gupta V. Afatinib-loaded inhalable PLGA nanoparticles for localized therapy of non-small cell lung cancer (NSCLC)-development and in-vitro efficacy. Drug Deliv Transl Res 2021; 11:927-943. [PMID: 32557351 PMCID: PMC7738377 DOI: 10.1007/s13346-020-00802-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Afatinib (AFA) is a potent aniline-quinazoline derivative, approved by the Food and Drug Administration (FDA) in 2013, as a first-line treatment for metastatic non-small cell lung cancer (NSCLC). However, its clinical application is highly limited by its poor solubility, and consequently low bioavailability. We hypothesize that loading of AFA into biodegradable PLGA nanoparticles for localized inhalational drug delivery will be instrumental in improving therapeutic outcomes in NSCLC patients. Formulated AFA nanoparticles (AFA-NP) were evaluated for physicochemical properties (particle size: 180.2 ± 15.6 nm, zeta potential: - 23.1 ± 0.2 mV, % entrapment efficiency: 34.4 ± 2.3%), formulation stability, in-vitro aerosol deposition behavior, and anticancer efficacy. Stability studies revealed the physicochemical stability of AFA-NP. Moreover, AFA-NP exhibited excellent inhalable properties (mass median aerodynamic diameter (MMAD): 4.7 ± 0.1 μm; fine particle fraction (FPF): 77.8 ± 4.3%), indicating efficient particle deposition in deep lung regions. With respect to in-vitro drug release, AFA-NP showed sustained drug release with cumulative release of 56.8 ± 6.4% after 48 h. Cytotoxic studies revealed that encapsulation of AFA into PLGA nanoparticles significantly enhanced its cytotoxic potential in KRAS-mutated NSCLC cell lines (A549, H460). Cellular uptake studies revealed enhanced internalization of coumarin-loaded nanoparticles compared to plain coumarin in A549. In addition, 3D tumor spheroid studies demonstrated superior efficacy of AFA-NP in tumor penetration and growth inhibition. To conclude, we have established in-vitro efficacy of afatinib-loaded PLGA nanoparticles as inhalable NSCLC therapy, which will be of great significance when designing preclinical and clinical studies. Graphical abstract.
Collapse
Affiliation(s)
- Rasha S Elbatanony
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, 11835, Egypt
| | - Vineela Parvathaneni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Nishant S Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway,, Queens, NY, 11439, USA.
| |
Collapse
|
44
|
Cherian AM, Nair SV, Maniyal V, Menon D. Surface engineering at the nanoscale: A way forward to improve coronary stent efficacy. APL Bioeng 2021; 5:021508. [PMID: 34104846 PMCID: PMC8172248 DOI: 10.1063/5.0037298] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Coronary in-stent restenosis and late stent thrombosis are the two major inadequacies of vascular stents that limit its long-term efficacy. Although restenosis has been successfully inhibited through the use of the current clinical drug-eluting stent which releases antiproliferative drugs, problems of late-stent thrombosis remain a concern due to polymer hypersensitivity and delayed re-endothelialization. Thus, the field of coronary stenting demands devices having enhanced compatibility and effectiveness to endothelial cells. Nanotechnology allows for efficient modulation of surface roughness, chemistry, feature size, and drug/biologics loading, to attain the desired biological response. Hence, surface topographical modification at the nanoscale is a plausible strategy to improve stent performance by utilizing novel design schemes that incorporate nanofeatures via the use of nanostructures, particles, or fibers, with or without the use of drugs/biologics. The main intent of this review is to deliberate on the impact of nanotechnology approaches for stent design and development and the recent advancements in this field on vascular stent performance.
Collapse
Affiliation(s)
- Aleena Mary Cherian
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Shantikumar V. Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Vijayakumar Maniyal
- Department of Cardiology, Amrita Institute of Medical Science
and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Cochin
682041, Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| |
Collapse
|
45
|
Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles. J Control Release 2021; 335:465-480. [PMID: 34077782 DOI: 10.1016/j.jconrel.2021.05.038] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Non-viral vehicles hold therapeutic promise in advancing the delivery of a variety of cargos in vitro and in vivo, including small molecule drugs, biologics, and especially nucleic acids. However, their efficacy at the cellular level is limited by several delivery barriers, with endolysosomal degradation being most significant. The entrapment of vehicles and their cargo in the acidified endosome prevents access to the cytosol, nucleus, and other subcellular compartments. Understanding the factors that contribute to uptake and intracellular trafficking, especially endosomal entrapment and release, is key to overcoming delivery obstacles within cells. In this review, we summarize and compare experimental techniques for assessing the extent of endosomal escape of a variety of non-viral vehicles and describe proposed escape mechanisms for different classes of lipid-, polymer-, and peptide-based delivery agents. Based on this evaluation, we present forward-looking strategies utilizing information gained from mechanistic studies to inform the rational design of efficient delivery vehicles.
Collapse
|
46
|
Ghareghomi S, Ahmadian S, Zarghami N, Hemmati S. hTERT-molecular targeted therapy of ovarian cancer cells via folate-functionalized PLGA nanoparticles co-loaded with MNPs/siRNA/wortmannin. Life Sci 2021; 277:119621. [PMID: 34004255 DOI: 10.1016/j.lfs.2021.119621] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022]
Abstract
Effective telomerase-molecular targeted cancer therapy might be a promising approach for the efficient treatment of ovarian cancer. Therefore, folate-functionalized PLGA nanoparticles (NPs) were co-loaded with hTERT siRNA, Wortmannin (Wtmn), as a potent PI3K inhibitor, and magnetic nanoparticle (MNPs) as a theranostic agent to gain a multifunctional NPs for targeted drug delivery as well as molecular targeted therapy. 1HNMR, FTIR, DLS, FE-SEM and TEM were applied to characterize the synthesized NPs. In vitro discharge pattern for siRNA and Wtmn from the dual drug-loaded NPs showed an early fast release followed by a constant release up to 200 h. According to the MRI analysis, by increasing the concentration of Fe3O4 in NPs, the weaker T2 signal intensity was enhanced, and a considerable contrast was detected in the MRI images. MTT assay and median-effect analysis showed that the Wtmn/siRNA-loaded MNPs-PLGA-F2 NPs display the most synergistic cytotoxicity on the SKOV-3 ovarian cancer cells. Moreover, the Wtmn/siRNA-loaded MNPs-PLGA-FA NPs could significantly reduce the expression of hTERT, AKT, and p-AKT than the single drug-encapsulated NPs (P < 0.05). Taken together, the findings showed that the multifunctional NPs relying on combinatorial therapy might have considerable potential for effective telomerase-molecular targeted therapy of ovarian cancer.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Nader D, Yousef F, Kavanagh N, Ryan BK, Kerrigan SW. Targeting Internalized Staphylococcus aureus Using Vancomycin-Loaded Nanoparticles to Treat Recurrent Bloodstream Infections. Antibiotics (Basel) 2021; 10:antibiotics10050581. [PMID: 34068975 PMCID: PMC8156000 DOI: 10.3390/antibiotics10050581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 12/29/2022] Open
Abstract
The bacterial pathogen Staphylococcus aureus is a leading cause of bloodstream infections, where patients often suffer from relapse despite antibiotic therapy. Traditional anti-staphylococcal drugs display reduced effectivity against internalised bacteria, but nanoparticles conjugated with antibiotics can overcome these challenges. In the present study, we aimed to characterise the internalisation and re-emergence of S. aureus from human endothelial cells and construct a new formulation of nanoparticles that target intracellular bacteria. Using an in vitro infection model, we demonstrated that S. aureus invades and persists within endothelial cells, mediated through bacterial extracellular surface adhesion, Fibronectin-binding protein A/B. After internalising, S. aureus localises to vacuoles as determined by transmission electron microscopy. Viable S. aureus emerges from endothelial cells after 48 h, supporting the notion that intracellular persistence contributes to infection relapses during bloodstream infections. Poly lactic-co-glycolic acid nanoparticles were formulated using a water-in-oil double emulsion method, which loaded 10% vancomycin HCl with 82.85% ± 12 encapsulation efficiency. These non-toxic nanoparticles were successfully taken up by cells and demonstrated a biphasic controlled release of 91 ± 4% vancomycin. They significantly reduced S. aureus intracellular growth within infected endothelial cells, which suggests future potential applications for targeting internalised bacteria and reducing mortality associated with bacteraemia.
Collapse
Affiliation(s)
- Danielle Nader
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
- Correspondence: (D.N.); (S.W.K.); Tel.: +353-1-402-2104 (S.W.K.)
| | - Fajer Yousef
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
| | - Nicola Kavanagh
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
| | - Benedict K. Ryan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland;
| | - Steven W. Kerrigan
- Cardiovascular Infection Research Group, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 123 St. Stephens Green, Dublin 2, Ireland; (F.Y.); (N.K.)
- Correspondence: (D.N.); (S.W.K.); Tel.: +353-1-402-2104 (S.W.K.)
| |
Collapse
|
48
|
Clement S, Guller A, Mahbub SB, Goldys EM. Oxygen-Carrying Polymer Nanoconstructs for Radiodynamic Therapy of Deep Hypoxic Malignant Tumors. Biomedicines 2021; 9:322. [PMID: 33810115 PMCID: PMC8005177 DOI: 10.3390/biomedicines9030322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
Radiodynamic therapy (RDT) is an emerging non-invasive anti-cancer treatment based on the generation of the reactive oxygen species (ROS) at the lesion site following the interaction between X-rays and a photosensitizer drug (PS). The broader application of RDT is impeded by the tumor-associated hypoxia that results in low availability of oxygen for the generation of sufficient amounts of ROS. Herein, a novel nanoparticle drug formulation for RDT, which addresses the problem of low oxygen availability, is reported. It consists of poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) co-loaded with a PS drug verteporfin (VP), and the clinically approved oxygen-carrying molecule, perfluorooctylbromide (PFOB). When triggered by X-rays (4 Gy), under both normoxic and hypoxic conditions, PLGA-VP-PFOB nanoconstructs (NCs) induced a significant increase of the ROS production compared with matching PLGA-VP nanoparticles. The RDT with NCs effectively killed ~60% of human pancreatic cancer cells in monolayer cultures, and almost completely suppressed the outgrowth of tumor cells in 2-weeks clonogenic assay. In a 3D engineered model of pancreatic cancer metastasis to the liver, RDT with NCs destroyed ~35% of tumor cells, demonstrating an exceptional efficiency at a tissue level. These results show that PLGA-VP-PFOB is a promising agent for RDT of deep-seated hypoxic tumors.
Collapse
Affiliation(s)
- Sandhya Clement
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (E.M.G.)
| | - Anna Guller
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (E.M.G.)
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Saabah B. Mahbub
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (E.M.G.)
| | - Ewa M. Goldys
- ARC Centre of Excellence in Nanoscale Biophotonics, The Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia; (S.B.M.); (E.M.G.)
| |
Collapse
|
49
|
Jang SE, Qiu L, Cai X, Lee JWL, Zhang W, Tan EK, Liu B, Zeng L. Aggregation-induced emission (AIE) nanoparticles labeled human embryonic stem cells (hESCs)-derived neurons for transplantation. Biomaterials 2021; 271:120747. [PMID: 33740615 DOI: 10.1016/j.biomaterials.2021.120747] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/20/2022]
Abstract
Transplantation of differentiated neurons derived from either human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) is an emerging therapeutic strategy for various neurodegenerative diseases. One important aspect of transplantation is the accessibility to track and control the activity of the stem cells-derived neurons post-transplantation. Recently, the characteristics of organic nanoparticles (NPs) with aggregation-induced emission (AIE) have emerged as efficient cell labeling reagents, where positive outcomes were observed in long-term cancer cell tracing in vivo. In the current study, we designed, synthesized, and analyzed the biocompatibility of AIE-NPs in cultured neurons such as in mouse neuronal progenitor cells (NPCs) and hESC-derived neurons. Our data demonstrated that AIE-NPs show high degree of penetration into cells and presented intracellular long-term retention in vitro without altering the neuronal proliferation, differentiation, and viability. Furthermore, we have tracked AIE-NPs labeled neuronal grafts in mouse brain striatum in various time points post-transplantation. We demonstrated prolonged cellular retention of AIE-NPs labeled neuronal grafts 1 month post-transplantation in mouse brain striatum. Lastly, we have shown activation of brain microglia in response to AIE-NPs labeled grafts. Together, these findings highlight the potential application of AIE-NPs in neuronal transplantation.
Collapse
Affiliation(s)
- Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Xiaolei Cai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Jolene Wei Ling Lee
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Eng-King Tan
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore, 169856, Singapore; Department of Neurology, National Neuroscience Institute, Singapore, 308433, Singapore; Neuroscience & Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore.
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore; Neuroscience & Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore; Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, 11 Mandalay Road, 308232, Singapore.
| |
Collapse
|
50
|
Chen WF, Malacco CMDS, Mehmood R, Johnson KK, Yang JL, Sorrell CC, Koshy P. Impact of morphology and collagen-functionalization on the redox equilibria of nanoceria for cancer therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111663. [PMID: 33545829 DOI: 10.1016/j.msec.2020.111663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 01/24/2023]
Abstract
The application of nanoparticulate therapies for cancer depends largely on the uptake and redox activity of the particles. The present work reports the fabrication of different morphologies of nanoceria (CeO2-x) as nanooctahedra (NO), nanorods (NR), and nanocubes (NC) by hydrothermal synthesis at different temperatures (100 °C, 180 °C) of solutions of 0.05 M Ce(NO3)3·6H2O and different concentrations of NaOH (0.01 M, 6.00 M). The characteristics of these nanomorphologies are compared in terms of the crystallinity (XRD), grain size (TEM), surface area (BET), tendency to agglomerate, and the oxygen vacancy concentration ([VO••]) as reflected by the [Ce3+]/[Ce4+] ratio (XPS). The effects of these parameters on the potential cellular uptake are canvassed, suggesting that the nonpolarity of the {111} planes of NO and NR facilitate the preferential uptake of these nanomorphologies. These experimental variables then were normalized through the use of NC as a model substrate for the functionalization using gum arabic (GA) and collagen in order to assess their roles in enhancing redox activity. Both the unfunctionalized and functionalized NC were noncytotoxic in in vitro tests with Kuramochi ovarian cancer cells. However, the antioxidant behavior of the collagen-functionalized NC was superior to that of the unfunctionalized NC, which was superior to that of the controls. These results demonstrate that, while the intrinsic VO•• of CeO2-x enhance the destruction of reactive oxygen species (ROS), functionalization by gum arabic and collagen crosslinking as extrinsic additions to the system enhances ROS destruction to an even greater extent. The antioxidant behavior and potential to neutralize superoxide and hydroxyl radicals of these materials offers new potential for the improvement of nanoparticulate cancer therapies.
Collapse
Affiliation(s)
- Wen-Fan Chen
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | | | - Rashid Mehmood
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Chemical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kochurani K Johnson
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Jia-Lin Yang
- Prince of Wales Clinical School, Lowy Cancer Research Centre, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | | | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|