1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Sandoval SO, Cappuccio G, Kruth K, Osenberg S, Khalil SM, Méndez-Albelo NM, Padmanabhan K, Wang D, Niciu MJ, Bhattacharyya A, Stein JL, Sousa AMM, Waxman EA, Buttermore ED, Whye D, Sirois CL, Williams A, Maletic-Savatic M, Zhao X. Rigor and reproducibility in human brain organoid research: Where we are and where we need to go. Stem Cell Reports 2024; 19:796-816. [PMID: 38759644 PMCID: PMC11297560 DOI: 10.1016/j.stemcr.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Human brain organoid models have emerged as a promising tool for studying human brain development and function. These models preserve human genetics and recapitulate some aspects of human brain development, while facilitating manipulation in an in vitro setting. Despite their potential to transform biology and medicine, concerns persist about their fidelity. To fully harness their potential, it is imperative to establish reliable analytic methods, ensuring rigor and reproducibility. Here, we review current analytical platforms used to characterize human forebrain cortical organoids, highlight challenges, and propose recommendations for future studies to achieve greater precision and uniformity across laboratories.
Collapse
Affiliation(s)
- Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Gerarda Cappuccio
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Karina Kruth
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Sivan Osenberg
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Saleh M Khalil
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Krishnan Padmanabhan
- Department of Neuroscience, Center for Visual Science, Del Monte Institute for Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark J Niciu
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elisa A Waxman
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Epilepsy and NeuroDevelopmental Disorders (ENDD), The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth D Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, MA, USA
| | - Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Aislinn Williams
- Department of Psychiatry, University of Iowa Health Care, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Health Care, Iowa City, IA 52242, USA.
| | - Mirjana Maletic-Savatic
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
3
|
Debruyne A, Okkelman IA, Heymans N, Pinheiro C, Hendrix A, Nobis M, Borisov SM, Dmitriev RI. Live Microscopy of Multicellular Spheroids with the Multimodal Near-Infrared Nanoparticles Reveals Differences in Oxygenation Gradients. ACS NANO 2024; 18:12168-12186. [PMID: 38687976 PMCID: PMC11100290 DOI: 10.1021/acsnano.3c12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Assessment of hypoxia, nutrients, metabolite gradients, and other hallmarks of the tumor microenvironment within 3D multicellular spheroid and organoid models represents a challenging analytical task. Here, we report red/near-infrared (NIR) emitting cell staining with O2-sensitive nanoparticles, which enable measurements of spheroid oxygenation on a conventional fluorescence microscope. Nanosensor probes, termed "MMIR" (multimodal infrared), incorporate an NIR O2-sensitive metalloporphyrin (PtTPTBPF) and deep red aza-BODIPY reference dyes within a biocompatible polymer shell, allowing for oxygen gradient quantification via fluorescence ratio and phosphorescence lifetime readouts. We optimized staining techniques and evaluated the nanosensor probe characteristics and cytotoxicity. Subsequently, we applied nanosensors to the live spheroid models based on HCT116, DPSCs, and SKOV3 cells, at rest, and treated with drugs affecting cell respiration. We found that the growth medium viscosity, spheroid size, and formation method influenced spheroid oxygenation. Some spheroids produced from HCT116 and dental pulp stem cells exhibited "inverted" oxygenation gradients, with higher core oxygen levels than the periphery. This contrasted with the frequently encountered "normal" gradient of hypoxia toward the core caused by diffusion. Further microscopy analysis of spheroids with an "inverted" gradient demonstrated metabolic stratification of cells within spheroids: thus, autofluorescence FLIM of NAD(P)H indicated the formation of a glycolytic core and localization of OxPhos-active cells at the periphery. Collectively, we demonstrate a strong potential of NIR-emitting ratiometric nanosensors for advanced microscopy studies targeting live and quantitative real-time monitoring of cell metabolism and hypoxia in complex 3D tissue models.
Collapse
Affiliation(s)
- Angela
C. Debruyne
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Irina A. Okkelman
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
- Ghent
Light
Microscopy Core, Ghent University, 9000 Ghent, Belgium
| | - Nina Heymans
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Cláudio Pinheiro
- Laboratory
of Experimental Cancer Research, Department of Human Structure and
Repair, Ghent University, 9000 Ghent, Belgium
- Cancer
Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - An Hendrix
- Laboratory
of Experimental Cancer Research, Department of Human Structure and
Repair, Ghent University, 9000 Ghent, Belgium
- Cancer
Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Max Nobis
- Intravital
Imaging Expertise Center, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Ruslan I. Dmitriev
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium
- Ghent
Light
Microscopy Core, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Li X, Xiu X, Su R, Ma S, Li Z, Zhang L, Wang Z, Zhu Y, Ma F. Immune cell receptor-specific nanoparticles as a potent adjuvant for nasal split influenza vaccine delivery. NANOTECHNOLOGY 2024; 35:125101. [PMID: 38100843 DOI: 10.1088/1361-6528/ad1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
Mucosal delivery systems have gained much attention as effective way for antigen delivery that induces both systemic and mucosal immunity. However, mucosal vaccination faces the challenges of mucus barrier and effective antigen uptake and presentation. In particular, split, subunit and recombinant protein vaccines that do not have an intact pathogen structure lack the efficiency to stimulate mucosal immunity. In this study, poly (lactic acid-co-glycolic acid-polyethylene glycol) (PLGA-PEG) block copolymers were modified by mannose to form a PLGA-PEG-Man conjugate (mannose modified PLGA-PEG), which were characterized. The novel nanoparticles (NPs) prepared with this material had a particle size of about 150 nm and a zeta potential of -15 mV, and possessed ideal mucus permeability, immune cell targeting, stability and low toxicity. Finally, PLGA-PEG-Man nanoparticles (PLGA-PEG-Man NPs) were successfully applied for intranasal delivery of split influenza vaccine in rat for the first time, which triggered strong systemic and mucosal immune responses. These studies suggest that PLGA-PEG-Man NPs could function as competitive potential nano-adjuvants to address the challenge of inefficient mucosal delivery of non-allopathogenic antigens.
Collapse
Affiliation(s)
- Xuemei Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Xueliang Xiu
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Rui Su
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Shichao Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Zhipeng Li
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Li Zhang
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
| | - Zhi Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences; and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences; and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fengsen Ma
- Laboratory of Biologics and Biomaterials, College of Pharmacy, Zhejiang University of Technology, Deqing 313216, People's Republic of China
- Micro-nano Scale Biomedical Engineering Laboratory, Institute for Frontiers and Interdisciplinary Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Zhejiang Provincial Key Laboratory of Quantum Precision Measurement, Hangzhou 310023, People's Republic of China
| |
Collapse
|
5
|
Zanetti C, Gaspar RDL, Zhdanov AV, Maguire NM, Joyce SA, Collins SG, Maguire AR, Papkovsky DB. Heterosubstituted Derivatives of PtPFPP for O 2 Sensing and Cell Analysis: Structure–Activity Relationships. Bioconjug Chem 2022; 33:2161-2169. [DOI: 10.1021/acs.bioconjchem.2c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chiara Zanetti
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | | | - Alexander V. Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | - Nuala M. Maguire
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Susan A. Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | - Stuart G. Collins
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Anita R. Maguire
- School of Chemistry and School of Pharmacy, University College Cork, Cork T12 YN60, Ireland
| | - Dmitri B. Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| |
Collapse
|
6
|
Gkika KS, Kargaard A, Burke CS, Dolan C, Heise A, Keyes TE. Ru(ii)/BODIPY core co-encapsulated ratiometric nanotools for intracellular O 2 sensing in live cancer cells. RSC Chem Biol 2021; 2:1520-1533. [PMID: 34704057 PMCID: PMC8496004 DOI: 10.1039/d1cb00102g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
Oxygen is a crucial reagent in many biochemical processes within living cells and its concentration can be an effective marker in disease, particularly in cancer where tissue hypoxia has been shown to indicate tumour growth. Probes that can reflect the oxygen concentration and distribution using ratiometric signals can be applied to a range of conventional methods without the need for specialised equipment and are particularly useful. The preparation and in cellulo study of luminescent ratiometric core–shell nanoparticles are presented. Here, a new lipophilic and oxygen-responsive Ru(ii) tris-heteroleptic polypyridyl complex is co-encapsulated with a reference BODIPY dye into the core of poly-l-lysine-coated polystyrene particles. The co-core encapsulation ensures oxygen response but reduces the impact of the environment on both probes. Single wavelength excitation of the particles, suspended in aqueous buffer, at 480 nm, triggers well-resolved dual emission from both dyes with peak maxima at 515 nm and 618 nm. A robust ratiometric oxygen response is observed from water, with a linear dynamic range of 3.6–262 μM which matches well with typical biological ranges. The uptake of RuBDP NPs was found to be cell-line dependent, but in cancerous cell lines, the particles were strongly permeable with late endosomal and partial lysosomal co-staining observed within 3 to 4 hours, eventually leading to extensive staining of the cytoplasm. The co-localisation of the ruthenium and BODIPY emission confirms that the particles remain intact in cellulo with no indication of dye leaching. The ratiometric O2 sensing response of the particles in cellulo was demonstrated using a plate-based assay and by confocal xyλ scanning of cells exposed to hypoxic conditions. Uptake and quantitative ratiometric oxygen sensing response of core–shell nanoparticles containing ruthenium probe and BODIPY reference is demonstrated using a plate reader-based assay and by confocal xyλ scanning of live cancer cells under hypoxic conditions.![]()
Collapse
Affiliation(s)
- Karmel Sofia Gkika
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin Dublin 9 Ireland
| | | | - Christopher S Burke
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin Dublin 9 Ireland .,Department of Chemistry, RCSI Dublin Ireland
| | - Ciaran Dolan
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin Dublin 9 Ireland
| | - Andreas Heise
- Department of Chemistry, RCSI Dublin Ireland.,CÚRAM, SFI Research Centre for Medical Devices RCSI Dublin D02 Ireland.,AMBER, The SFI Advanced Materials and Bioengineering Research Centre RCSI Dublin D02 Ireland
| | - Tia E Keyes
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin Dublin 9 Ireland
| |
Collapse
|
7
|
Huynh GT, Kesarwani V, Walker JA, Frith JE, Meagher L, Corrie SR. Review: Nanomaterials for Reactive Oxygen Species Detection and Monitoring in Biological Environments. Front Chem 2021; 9:728717. [PMID: 34568279 PMCID: PMC8461210 DOI: 10.3389/fchem.2021.728717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) and dissolved oxygen play key roles across many biological processes, and fluorescent stains and dyes are the primary tools used to quantify these species in vitro. However, spatio-temporal monitoring of ROS and dissolved oxygen in biological systems are challenging due to issues including poor photostability, lack of reversibility, and rapid off-site diffusion. In particular, ROS monitoring is hindered by the short lifetime of ROS molecules and their low abundance. The combination of nanomaterials and fluorescent detection has led to new opportunities for development of imaging probes, sensors, and theranostic products, because the scaffolds lead to improved optical properties, tuneable interactions with cells and media, and ratiometric sensing robust to environmental drift. In this review, we aim to critically assess and highlight recent development in nanosensors and nanomaterials used for the detection of oxygen and ROS in biological systems, and their future potential use as diagnosis tools.
Collapse
Affiliation(s)
- Gabriel T. Huynh
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
| | - Vidhishri Kesarwani
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
| | - Julia A. Walker
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
| | - Jessica E. Frith
- Monash Institute of Medical Engineering, Monash University, Clayton, VIC, Australia
- Department of Material Science and Engineering, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
| | - Laurence Meagher
- Department of Material Science and Engineering, Monash University, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
| | - Simon R. Corrie
- Department of Chemical Engineering, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Node, Clayton, VIC, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia
| |
Collapse
|
8
|
Cho AN, Jin Y, An Y, Kim J, Choi YS, Lee JS, Kim J, Choi WY, Koo DJ, Yu W, Chang GE, Kim DY, Jo SH, Kim J, Kim SY, Kim YG, Kim JY, Choi N, Cheong E, Kim YJ, Je HS, Kang HC, Cho SW. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun 2021; 12:4730. [PMID: 34354063 PMCID: PMC8342542 DOI: 10.1038/s41467-021-24775-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
Brain organoids derived from human pluripotent stem cells provide a highly valuable in vitro model to recapitulate human brain development and neurological diseases. However, the current systems for brain organoid culture require further improvement for the reliable production of high-quality organoids. Here, we demonstrate two engineering elements to improve human brain organoid culture, (1) a human brain extracellular matrix to provide brain-specific cues and (2) a microfluidic device with periodic flow to improve the survival and reduce the variability of organoids. A three-dimensional culture modified with brain extracellular matrix significantly enhanced neurogenesis in developing brain organoids from human induced pluripotent stem cells. Cortical layer development, volumetric augmentation, and electrophysiological function of human brain organoids were further improved in a reproducible manner by dynamic culture in microfluidic chamber devices. Our engineering concept of reconstituting brain-mimetic microenvironments facilitates the development of a reliable culture platform for brain organoids, enabling effective modeling and drug development for human brain diseases.
Collapse
Affiliation(s)
- Ann-Na Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yoonhee Jin
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeonjoo An
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jin Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jung Seung Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Junghoon Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Won-Young Choi
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Dong-Jun Koo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Weonjin Yu
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Gyeong-Eon Chang
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dong-Yoon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jihun Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Yon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ju Young Kim
- Department of Advanced Materials Engineering, Kangwon National University, Samcheok, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Young-Joon Kim
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea.
- Center for Nanomedicine, Institute for Basic science (IBS), Seoul, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Phosphorescence-based ratiometric probes: Design, preparation and applications in sensing, imaging and biomedicine therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213694] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Chen M, Sun W, Kretzschmann A, Butt HJ, Wu S. Nanostructured polymer assemblies stabilize photoactivatable anticancer ruthenium complexes under physiological conditions. J Inorg Biochem 2020; 207:111052. [PMID: 32187562 DOI: 10.1016/j.jinorgbio.2020.111052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022]
Abstract
Photoactivatable ruthenium (Ru) complexes are promising compounds for anticancer phototherapy. They must be stable under physiological conditions before they are transported to cancer cells. In this paper, we systematically studied the stabilities of two Ru-containing block copolymers (Ru complexes as side group or in main chain, respectively) and their corresponding Ru complexes in different media, including saline, bovine serum albumin (BSA) solution, Dulbecco's Modified Eagle's Medium (DMEM, pH 6.5) and DMEM (pH 5.5) with 1.0 mM glutathione (GSH). Their stabilities were studied by monitoring the metal-to-ligand charge transfer (MLCT) bands of the Ru moieties via UV-Vis absorption spectroscopy. The MLCT bands of Ru complexes changed to varying degrees within a day in the above-mentioned media, indicating that they were instable. In contrast, the MLCT bands of Ru-containing polymer assemblies did not change significantly under the same conditions. These results showed that the self-assembled nanostructures protected the Ru moieties and improved their stability. In addition, these nanostructured polymer assemblies could be activated by red light. Therefore, the studied Ru-containing polymer assemblies are more suitable for in vivo applications than their low-molecular weight analogues.
Collapse
Affiliation(s)
- Mingjia Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Wen Sun
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
| | - Annika Kretzschmann
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
11
|
Sinani G, Sessevmez M, Gök MK, Özgümüş S, Alpar HO, Cevher E. Modified chitosan-based nanoadjuvants enhance immunogenicity of protein antigens after mucosal vaccination. Int J Pharm 2019; 569:118592. [PMID: 31386881 DOI: 10.1016/j.ijpharm.2019.118592] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/08/2023]
Abstract
Nasal vaccination is considered to be an effective and convenient way of increasing immune responses both systemically and locally. Although various nanovaccine carriers have been introduced as potential immune adjuvants, further improvements are still needed before they can be taken to clinical usage. Chitosan-based nanovaccine carriers are one of the most widely studiedadjuvants, owing to the abilityof chitosan toopen tight junctions between nasal epithelial cells and enhance particle uptake as well as its inherent immune activating role. In present study, bovine serum albumin (BSA) loaded nanoparticles were prepared using novel aminated (aChi) and aminated plus thiolated chitosan (atChi) polymers, to further enhance mucoadhesiveness and adjuvanticity of the vaccine system by improving electrostatic interactions of polymers with negatively charged glycoproteins. Nanocarriers with optimum size and surface charge, high encapsulation efficiency of model antigen and good stability were developed. Negligible toxicity was observed in Calu-3 and A549 cell lines. In vivo studies, revealed high levels of systemic antibodies (IgG, IgG1 and IgG2a) throughout the study and presence of sIgA in vaginal washes showed that common mucosal system was successfully stimulated. Cytokine levels indicated a mixed Th1/Th2 immune response. A shift towards cellular immune responses was observed after nasal immunisation with antigen loaded nanoparticle formulations. These nanoparticles exhibit great potential for nasal application of vaccines.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, School of Pharmacy, Altinbas University, 34144 Istanbul, Turkey; Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| | - M Koray Gök
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Istanbul, Turkey
| | - Saadet Özgümüş
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Istanbul, Turkey
| | - H Oya Alpar
- Department of Pharmaceutical Technology, School of Pharmacy, Altinbas University, 34144 Istanbul, Turkey; School of Pharmacy, University College London (UCL), WC1N 1AX London, UK
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey.
| |
Collapse
|
12
|
Abada MB, Hamdi SH, Gharib R, Messaoud C, Fourmentin S, Greige-Gerges H, Jemâa JMB. Post-harvest management control of Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae): new insights through essential oil encapsulation in cyclodextrin. PEST MANAGEMENT SCIENCE 2019; 75:2000-2008. [PMID: 30610757 DOI: 10.1002/ps.5315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/12/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Essential oils are reported to be bio-insecticides. However, problems related to their volatility, oxidation and poor water solubility need to be solved before they can be considered as replacement pest control methods. Thus, an appropriate formulation is needed for commercial use. In this work, a new control method based on the use of a powdered cyclodextrin (CD)/1,8-cineole inclusion complex was assessed against larvae and adults of Ectomyelois ceratoniae (Zeller) in comparison with two Rosmarinus officinalis (L.) essential oils, free 1,8-cineole (oils major compound) and a mixture of 50% CD/1,8-cineole inclusion complex and 50% free 1,8-cineole. RESULTS Solid CD/1,8-cineole complex was more toxic against E. ceratoniae larvae than the two crude essential oils. At a concentration of 15 µL liter-1 air, the respective mortalities were 94.12%, 35.29% and 19.61% for solid CD/1,8-cineole complex, Thala and Cap Zbib oils after 37 days of exposure. Moreover, the solid CD/1,8-cineole complex achieved 5% adult emergence versus 68.33% for Cap Zbib and 55% for Thala oils. The half-life of solid CD/1,8-cineole inclusion complex (10.98 days) was considerably longer than that of the mixture (7.53 days) or free 1,8-cineole (3.43 days). CONCLUSION This work highlights the utility of essential oil encapsulation in CD to overcome restrictions when used to control the date moth E. ceratoniae during storage. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maha Ben Abada
- National Agronomic Institute of Tunisia (INAT), University of Carthage, Tunis, Tunisia
- Laboratory of Biotechnology Applied to Agriculture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Soumaya Haouel Hamdi
- Laboratory of Biotechnology Applied to Agriculture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Riham Gharib
- Bioactive Molecules Research Group, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Beirut Lebanon
| | - Chokri Messaoud
- National Institute of Applied Sciences and Technology (INSAT), Laboratory of Plant Biotechnology, University of Carthage, Tunis, Tunisia
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), Physics and Chemistry Department, Dunkerque, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Group, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Beirut Lebanon
| | - Jouda Mediouni Ben Jemâa
- Laboratory of Biotechnology Applied to Agriculture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| |
Collapse
|
13
|
Umehara Y, Kageyama T, Son A, Kimura Y, Kondo T, Tanabe K. Biological reduction of nitroimidazole-functionalized gold nanorods for photoacoustic imaging of tumor hypoxia. RSC Adv 2019; 9:16863-16868. [PMID: 35516361 PMCID: PMC9064429 DOI: 10.1039/c9ra00951e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor-selective accumulation of gold nanorods (GNR) has been demonstrated for visualization of tumor hypoxia by photoacoustic imaging. We prepared GNRs with hypoxia-targeting nitroimidazole units (G-NI) on their surface. Biological experiments revealed that G-NI produced a strong photoacoustic signal in hypoxic tumor cells and tissues. Tumor-selective accumulation of gold nanorods (GNR) has been demonstrated for visualization of tumor hypoxia by photoacoustic imaging.![]()
Collapse
Affiliation(s)
- Yui Umehara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2504 +81-75-383-7055
| | - Toki Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2504 +81-75-383-7055
| | - Aoi Son
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2504 +81-75-383-7055
| | - Yu Kimura
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2504 +81-75-383-7055
| | - Teruyuki Kondo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan +81-75-383-2504 +81-75-383-7055
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University 5-10-1 Fuchinobe, Chuo-ku Sagamihara 252-5258 Japan +81-42-759-6493 +81-42-759-6229
| |
Collapse
|
14
|
Esipova TV, Barrett MJP, Erlebach E, Masunov AE, Weber B, Vinogradov SA. Oxyphor 2P: A High-Performance Probe for Deep-Tissue Longitudinal Oxygen Imaging. Cell Metab 2019; 29:736-744.e7. [PMID: 30686745 PMCID: PMC6402963 DOI: 10.1016/j.cmet.2018.12.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/22/2018] [Accepted: 12/26/2018] [Indexed: 01/09/2023]
Abstract
Quantitative imaging of oxygen distributions in tissue can provide invaluable information about metabolism in normal and diseased states. Two-photon phosphorescence lifetime microscopy (2PLM) has been developed to perform measurements of oxygen in vivo with micron-scale resolution in 3D; however, the method's potential has not yet been fully realized due to the limitations of current phosphorescent probe technology. Here, we report a new sensor, Oxyphor 2P, that enables oxygen microscopy twice as deep (up to 600 μm below the tissue surface) and with ∼60 times higher speed than previously possible. Oxyphor 2P allows longitudinal oxygen measurements without having to inject the probe directly into the imaged region. As proof of principle, we monitored oxygen dynamics for days following micro-stroke induced by occlusion of a single capillary in the mouse brain. Oxyphor 2P opens up new possibilities for studies of tissue metabolic states using 2PLM in a wide range of biomedical research areas.
Collapse
Affiliation(s)
- Tatiana V Esipova
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich 8057, Switzerland
| | - Eva Erlebach
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich 8057, Switzerland; Neuroscience Center, University of Zurich, Zurich 8057, Switzerland
| | - Artëm E Masunov
- NanoScience Technology Center, Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA; School of Modeling, Simulation and Training, University of Central Florida, Orlando, FL 32826, USA; National Research Nuclear University MEPhI, Kashirskoye Shosse 31, Moscow 115409, Russia; South Ural State University, Lenin Pr. 76, Chelyabinsk 454080, Russia
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich 8057, Switzerland; Neuroscience Center, University of Zurich, Zurich 8057, Switzerland.
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Lidon P, Marker SC, Wilson JJ, Williams RM, Zipfel WR, Stroock AD. Enhanced Oxygen Solubility in Metastable Water under Tension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12017-12024. [PMID: 30221943 DOI: 10.1021/acs.langmuir.8b02408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite its relevance in numerous natural and industrial processes, the solubility of molecular oxygen has never been directly measured in capillary-condensed liquid water. In this article, we measure oxygen solubility in liquid water trapped within nanoporous samples, in metastable equilibrium with a subsaturated vapor. We show that solubility increases two fold at moderate subsaturations (relative humidity ∼0.55). This evolution with relative humidity is in good agreement with a simple thermodynamic prediction using properties of bulk water, previously verified experimentally at positive pressure. Our measurement thus verifies the validity of this macroscopic thermodynamic theory to strong confinement and large negative pressures, where significant nonidealities are expected. This effect has strong implications for important oxygen-dependent chemistries in natural and technological contexts.
Collapse
Affiliation(s)
- Pierre Lidon
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall , Ithaca , New York 14853 , United States
- CNRS, Solvay, LOF, UMR 5258, Univ. Bordeaux , 178 avenue du Dr. Schweitzer Pessac F-33600 , France
| | - Sierra C Marker
- Department of Chemistry and Chemical Biology , Cornell University , Baker Lab , Ithaca , New York 14853 , United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology , Cornell University , Baker Lab , Ithaca , New York 14853 , United States
| | - Rebecca M Williams
- Department Biomedical Engineering , Cornell University , Weill Hall , Ithaca , New York 14853 , United States
| | - Warren R Zipfel
- Department Biomedical Engineering , Cornell University , Weill Hall , Ithaca , New York 14853 , United States
| | - Abraham D Stroock
- Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall , Ithaca , New York 14853 , United States
- Kavli Institute at Cornell for Nanoscale Science , Physical Sciences Building , Ithaca , New York 14853 , United States
| |
Collapse
|
16
|
Poynton FE, Bright SA, Blasco S, Williams DC, Kelly JM, Gunnlaugsson T. The development of ruthenium(ii) polypyridyl complexes and conjugates for in vitro cellular and in vivo applications. Chem Soc Rev 2018; 46:7706-7756. [PMID: 29177281 DOI: 10.1039/c7cs00680b] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ruthenium(ii) [Ru(ii)] polypyridyl complexes have been the focus of intense investigations since work began exploring their supramolecular interactions with DNA. In recent years, there have been considerable efforts to translate this solution-based research into a biological environment with the intention of developing new classes of probes, luminescent imaging agents, therapeutics and theranostics. In only 10 years the field has expanded with diverse applications for these complexes as imaging agents and promising candidates for therapeutics. In light of these efforts this review exclusively focuses on the developments of these complexes in biological systems, both in cells and in vivo, and hopes to communicate to readers the diversity of applications within which these complexes have found use, as well as new insights gained along the way and challenges that researchers in this field still face.
Collapse
Affiliation(s)
- Fergus E Poynton
- School of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
17
|
Sun W, Zeng X, Wu S. Photoresponsive ruthenium-containing polymers: potential polymeric metallodrugs for anticancer phototherapy. Dalton Trans 2018; 47:283-286. [DOI: 10.1039/c7dt03390g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The recent development of photoresponsive Ru-containing polymers for combined photoactivated chemotherapy and photodynamic therapy is discussed.
Collapse
Affiliation(s)
- Wen Sun
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Xiaolong Zeng
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - Si Wu
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| |
Collapse
|
18
|
O'Donnell RM, Grusenmeyer TA, Stewart DJ, Ensley TR, Shensky WM, Haley JE, Shi J. Photodriven Oxygen Removal via Chromophore-Mediated Singlet Oxygen Sensitization and Chemical Capture. Inorg Chem 2017; 56:9273-9280. [PMID: 28696103 DOI: 10.1021/acs.inorgchem.7b01226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a general, photochemical method for the rapid deoxygenation of organic solvents and aqueous solutions via visible light excitation of transition metal chromophores (TMCs) in the presence of singlet oxygen scavenging substrates. Either 2,5-dimethylfuran or an amino acid (histidine or tryptophan methyl ester) was used as the substrate in conjunction with an iridium or ruthenium TMC in toluene, acetonitrile, or water. This behavior is described for solutions with chromophore concentrations that are pertinent for both luminescence and transient absorption spectroscopies. These results consistently produce TMC lifetimes comparable to those measured using traditional inert gas sparging and freeze-pump-thaw techniques. This method has the added benefits of providing long-term stability (days to months); economical preparation due to use of inexpensive, commercially available oxygen scrubbing substrates; and negligible size and weight footprints compared to traditional methods. Furthermore, attainment of dissolved [O2] < 50 μM makes this method relevant to any solution application requiring low dissolved oxygen concentration in solution, provided that the oxygenated substrate does not interfere with the intended chemical process.
Collapse
Affiliation(s)
- Ryan M O'Donnell
- U.S. Army Research Laboratory , 2800 Powder Mill Road, Adelphi, Maryland 20783-1138, United States
| | - Tod A Grusenmeyer
- Air Force Research Laboratory, Wright Patterson Air Force Base , Ohio 45433-7750, United States
| | - David J Stewart
- Air Force Research Laboratory, Wright Patterson Air Force Base , Ohio 45433-7750, United States.,General Dynamics Information Technology , 5100 Springfield Pike, Dayton, Ohio 45431, United States
| | - Trenton R Ensley
- U.S. Army Research Laboratory , 2800 Powder Mill Road, Adelphi, Maryland 20783-1138, United States
| | - William M Shensky
- U.S. Army Research Laboratory , 2800 Powder Mill Road, Adelphi, Maryland 20783-1138, United States
| | - Joy E Haley
- Air Force Research Laboratory, Wright Patterson Air Force Base , Ohio 45433-7750, United States
| | - Jianmin Shi
- U.S. Army Research Laboratory , 2800 Powder Mill Road, Adelphi, Maryland 20783-1138, United States
| |
Collapse
|
19
|
Yoshihara K, Takagi K, Son A, Kurihara R, Tanabe K. Aggregate Formation of Oligonucleotides that Assist Molecular Imaging for Tracking of the Oxygen Status in Tumor Tissue. Chembiochem 2017; 18:1650-1658. [PMID: 28503897 DOI: 10.1002/cbic.201700116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Indexed: 12/15/2022]
Abstract
The use of DNA aggregates could be a promising strategy for the molecular imaging of biological functions. Herein, phosphorescent oligodeoxynucleotides were designed with the aim of visualizing oxygen fluctuation in tumor cells. DNA-ruthenium conjugates (DRCs) that consisted of oligodeoxynucleotides, a phosphorescent ruthenium complex, a pyrene unit for high oxygen responsiveness, and a nitroimidazole unit as a tumor-targeting unit were prepared. In general, oligonucleotides have low cell permeability because of their own negative charges; however, the DRC formed aggregates in aqueous solution due to the hydrophobic pyrene and nitroimidazole groups, and smoothly penetrated the cellular membrane to accumulate in tumor cells in a hypoxia-selective manner. The oxygen-dependent phosphorescence of DRC in cells was also observed. In vivo experiments revealed that aggregates of DRC accumulated in hypoxic tumor tissue that was transplanted into the left leg of mice, and showed that oxygen fluctuations in tumor tissue could be monitored by tracking of the phosphorescence emission of DRC.
Collapse
Affiliation(s)
- Kazuki Yoshihara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kohei Takagi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Aoi Son
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Ryohsuke Kurihara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| |
Collapse
|
20
|
Sinani G, Sessevmez M, Koray Gök M, Özgümüş S, Okyar A, Oya Alpar H, Cevher E. Nasal vaccination with poly(β-amino ester)-poly(d,l-lactide-co-glycolide) hybrid nanoparticles. Int J Pharm 2017. [PMID: 28629979 DOI: 10.1016/j.ijpharm.2017.06.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mucosal vaccination stimulates both mucosal and systemic immunity. However, mucosal applications of vaccine antigens in their free form generally result in poor systemic immune responses and need adjuvantation. In this study, bovine serum albumin loaded, new hybridised poly(β-amino ester)-poly(d,l-lactide-co-glycolide) nanoparticles were prepared by double emulsion-solvent evaporation method, characterised and evaluated in vivo as nasal vaccine carriers. Cationic spherical particles with a mean size of 240nm, good physical stability and high encapsulation efficiency were obtained. Protein structure was not affected throughout preparation and minimal toxicity was shown in Calu-3 and A549 cells. Nasal vaccination with these nanoparticles revealed markedly higher humoral immune responses compared with free antigen following intranasal and subcutaneous immunisation. Mucosal immune response was also stimulated and cytokine titres indicated that Th1 and Th2 pathways were successfully activated. This study shows that the formulated hybrid nanoparticles can be a promising carrier for nasal immunisation of poor antigenic proteins.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey; Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Kemerburgaz University, 34147 Istanbul, Turkey
| | - Melike Sessevmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| | - M Koray Gök
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University, 34320 Istanbul, Turkey
| | - Saadet Özgümüş
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University, 34320 Istanbul, Turkey
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| | - H Oya Alpar
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Kemerburgaz University, 34147 Istanbul, Turkey; School of Pharmacy, University of London, WC1N 1AX London, UK
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey.
| |
Collapse
|
21
|
Wang H, Zhang R, Bridle KR, Jayachandran A, Thomas JA, Zhang W, Yuan J, Xu ZP, Crawford DHG, Liang X, Liu X, Roberts MS. Two-photon dual imaging platform for in vivo monitoring cellular oxidative stress in liver injury. Sci Rep 2017; 7:45374. [PMID: 28349954 PMCID: PMC5368978 DOI: 10.1038/srep45374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/27/2017] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress reflects an imbalance between reactive oxygen species (ROS) and antioxidants, which has been reported as an early unifying event in the development and progression of various diseases and as a direct and mechanistic indicator of treatment response. However, highly reactive and short-lived nature of ROS and antioxidant limited conventional detection agents, which are influenced by many interfering factors. Here, we present a two-photon sensing platform for in vivo dual imaging of oxidative stress at the single cell-level resolution. This sensing platform consists of three probes, which combine the turn-on fluorescent transition-metal complex with different specific responsive groups for glutathione (GSH), hydrogen peroxide (H2O2) and hypochlorous acid (HOCl). By combining fluorescence intensity imaging and fluorescence lifetime imaging, these probes totally remove any possibility of crosstalk from in vivo environmental or instrumental factors, and enable accurate localization and measurement of the changes in ROS and GSH within the liver. This precedes changes in conventional biochemical and histological assessments in two distinct experimental murine models of liver injury. The ability to monitor real-time cellular oxidative stress with dual-modality imaging has significant implications for high-accurate, spatially configured and quantitative assessment of metabolic status and drug response.
Collapse
Affiliation(s)
- Haolu Wang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 S. Dongfang Road, Shanghai, 200127, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kim R. Bridle
- School of Medicine, The University of Queensland, Gallipoli Medical Research Institute, Greenslopes Private Hospital, Greenslopes, QLD 4120, Australia
| | - Aparna Jayachandran
- School of Medicine, The University of Queensland, Gallipoli Medical Research Institute, Greenslopes Private Hospital, Greenslopes, QLD 4120, Australia
| | - James A. Thomas
- Department of Gastroenterology, The Prince Charles Hospital, School of Medicine, The University of Queensland, Chermside, QLD 4032, Australia
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Darrell H. G. Crawford
- School of Medicine, The University of Queensland, Gallipoli Medical Research Institute, Greenslopes Private Hospital, Greenslopes, QLD 4120, Australia
| | - Xiaowen Liang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| | - Xin Liu
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| | - Michael S. Roberts
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
- School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
22
|
Esipova TV, Rivera-Jacquez HJ, Weber B, Masunov AE, Vinogradov SA. Two-Photon Absorbing Phosphorescent Metalloporphyrins: Effects of π-Extension and Peripheral Substitution. J Am Chem Soc 2016; 138:15648-15662. [PMID: 27934026 PMCID: PMC8281454 DOI: 10.1021/jacs.6b09157] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to form triplet excited states upon two-photon excitation is important for several applications of metalloporphyrins, including two-photon phosphorescence lifetime microscopy (2PLM) and two-photon photodynamic therapy (PDT). Here we analyzed one-photon (1P) and degenerate two-photon (2P) absorption properties of several phosphorescent Pt (II) porphyrins, focusing on the effects of aromatic π-extension and peripheral substitution on triplet emissivity and two-photon absorption (2PA). Our 2PA measurements for the first time made use of direct time-resolved detection of phosphorescence, having the ability to efficiently reject laser background through microsecond time gating. π-Extension of the porphyrin macrocycle by way of syn-fusion with two external aromatic fragments, such as in syn-dibenzo- (DBP) and syn-dinaphthoporphyrins (DNP), lowers the symmetry of the porphyrin skeleton. As a result, DBPs and DNPs exhibit stronger 2PA into the one-photon-allowed B (Soret) and Q states than fully symmetric (D4h) nonextended porphyrins. However, much more 2P-active states lie above the B state and cannot be accessed due to the interfering linear absorption. Alkoxycarbonyl groups (CO2R) in the benzo-rings dramatically enhance 2PA near the B state level. Time-dependent density functional theory (TDDFT) calculations in combinations with the sum-over-states (SOS) formalism revealed that the enhancement is due to the stabilization of higher-lying 2P-active states, which are dominated by the excitations involving orbitals extending onto the carbonyl groups. Furthermore, calculations predicted even stronger stabilization of the 2P-allowed gerade-states in symmetric Pt octaalkoxycarbonyl-tetrabenzoporphyrins. Experiments confirmed that the 2PA cross-section of PtTBP(CO2Bu)8 near 810 nm reaches above 500 GM in spite of its completely centrosymmetric structure. Combined with exceptionally bright phosphorescence (ϕphos = 0.45), strong 2PA makes Pt(II) complexes of π-extended porphyrins a valuable class of chromophores for 2P applications. Another important advantage of these porphyrinoids is their compact size and easily scalable synthesis.
Collapse
Affiliation(s)
| | - Héctor J Rivera-Jacquez
- NanoScience Technology Center, Department of Chemistry and Department of Physics, University of Central Florida , Orlando, Florida 32816, United States
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich , Zurich CH-8057, Switzerland
| | - Artëm E Masunov
- NanoScience Technology Center, Department of Chemistry and Department of Physics, University of Central Florida , Orlando, Florida 32816, United States
- Photochemistry Center, Russian Academy of Sciences , ul. Novatorov 7a, Moscow 119421, Russia
- South Ural State University , Lenin pr. 76, Chelyabinsk 454080, Russia
- National Nuclear Research University MEPhI , Kashirskoye sh. 31, Moscow 115409, Russia
| | | |
Collapse
|
23
|
Kim BJ, Chu I, Jusuf S, Kuo T, TerAvest MA, Angenent LT, Wu M. Oxygen Tension and Riboflavin Gradients Cooperatively Regulate the Migration of Shewanella oneidensis MR-1 Revealed by a Hydrogel-Based Microfluidic Device. Front Microbiol 2016; 7:1438. [PMID: 27703448 PMCID: PMC5028412 DOI: 10.3389/fmicb.2016.01438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/30/2016] [Indexed: 11/13/2022] Open
Abstract
Shewanella oneidensis is a model bacterial strain for studies of bioelectrochemical systems (BESs). It has two extracellular electron transfer pathways: (1) shuttling electrons via an excreted mediator riboflavin; and (2) direct contact between the c-type cytochromes at the cell membrane and the electrode. Despite the extensive use of S. oneidensis in BESs such as microbial fuel cells and biosensors, many basic microbiology questions about S. oneidensis in the context of BES remain unanswered. Here, we present studies of motility and chemotaxis of S. oneidensis under well controlled concentration gradients of two electron acceptors, oxygen and oxidized form of riboflavin (flavin+), using a newly developed microfluidic platform. Experimental results demonstrate that either oxygen or flavin+ is a chemoattractant to S. oneidensis. The chemotactic tendency of S. oneidensis in a flavin+ concentration gradient is significantly enhanced in an anaerobic in contrast to an aerobic condition. Furthermore, either a low oxygen tension or a high flavin+ concentration considerably enhances the speed of S. oneidensis. This work presents a robust microfluidic platform for generating oxygen and/or flavin+ gradients in an aqueous environment, and demonstrates that two important electron acceptors, oxygen and oxidized riboflavin, cooperatively regulate S. oneidensis migration patterns. The microfluidic tools presented as well as the knowledge gained in this work can be used to guide the future design of BESs for efficient electron production.
Collapse
Affiliation(s)
- Beum Jun Kim
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Injun Chu
- School of Chemical and Biomolecular Engineering, Cornell University Ithaca, NY, USA
| | - Sebastian Jusuf
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Tiffany Kuo
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Michaela A TerAvest
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Largus T Angenent
- Department of Biological and Environmental Engineering, Cornell UniversityIthaca, NY, USA; Atkinson Center for a Sustainable Future, Cornell UniversityIthaca, NY, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell UniversityIthaca, NY, USA; Atkinson Center for a Sustainable Future, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
24
|
Jana A, Crowston BJ, Shewring JR, McKenzie LK, Bryant HE, Botchway SW, Ward AD, Amoroso AJ, Baggaley E, Ward MD. Heteronuclear Ir(III)-Ln(III) Luminescent Complexes: Small-Molecule Probes for Dual Modal Imaging and Oxygen Sensing. Inorg Chem 2016; 55:5623-33. [PMID: 27219675 DOI: 10.1021/acs.inorgchem.6b00702] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Luminescent, mixed metal d-f complexes have the potential to be used for dual (magnetic resonance imaging (MRI) and luminescence) in vivo imaging. Here, we present dinuclear and trinuclear d-f complexes, comprising a rigid framework linking a luminescent Ir center to one (Ir·Ln) or two (Ir·Ln2) lanthanide metal centers (where Ln = Eu(III) and Gd(III), respectively). A range of physical, spectroscopic, and imaging-based properties including relaxivity arising from the Gd(III) units and the occurrence of Ir(III) → Eu(III) photoinduced energy-transfer are presented. The rigidity imposed by the ligand facilitates high relaxivities for the Gd(III) complexes, while the luminescence from the Ir(III) and Eu(III) centers provide luminescence imaging capabilities. Dinuclear (Ir·Ln) complexes performed best in cellular studies, exhibiting good solubility in aqueous solutions, low toxicity after 4 and 18 h, respectively, and punctate lysosomal staining. We also demonstrate the first example of oxygen sensing in fixed cells using the dyad Ir·Gd, via two-photon phosphorescence lifetime imaging (PLIM).
Collapse
Affiliation(s)
- Atanu Jana
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Bethany J Crowston
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Jonathan R Shewring
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Luke K McKenzie
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom.,Department of Oncology & Metabolism, University of Sheffield , Sheffield, S10 2RX, United Kingdom
| | - Helen E Bryant
- Department of Oncology & Metabolism, University of Sheffield , Sheffield, S10 2RX, United Kingdom
| | - Stanley W Botchway
- Rutherford Appleton Laboratory, STFC, Research Complex at Harwell, Harwell Science and Innovation Campus , Didcot, OX11 0FA, United Kingdom
| | - Andrew D Ward
- Rutherford Appleton Laboratory, STFC, Research Complex at Harwell, Harwell Science and Innovation Campus , Didcot, OX11 0FA, United Kingdom
| | - Angelo J Amoroso
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Elizabeth Baggaley
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Michael D Ward
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| |
Collapse
|
25
|
Sun L, Chen Y, Kuang S, Li G, Guan R, Liu J, Ji L, Chao H. Iridium(III) Anthraquinone Complexes as Two-Photon Phosphorescence Probes for Mitochondria Imaging and Tracking under Hypoxia. Chemistry 2016; 22:8955-65. [DOI: 10.1002/chem.201600310] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Lingli Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Guanying Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering; Sun Yat-Sen University; Guangzhou 510275 P.R. China
| |
Collapse
|
26
|
Cevher E, Salomon SK, Makrakis A, Li XW, Brocchini S, Alpar HO. Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines: optimisation and cellular studies. J Microencapsul 2015; 32:755-68. [DOI: 10.3109/02652048.2015.1073392] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Yoshihara T, Murayama S, Tobita S. Ratiometric Molecular Probes Based on Dual Emission of a Blue Fluorescent Coumarin and a Red Phosphorescent Cationic Iridium(III) Complex for Intracellular Oxygen Sensing. SENSORS 2015; 15:13503-21. [PMID: 26066988 PMCID: PMC4507661 DOI: 10.3390/s150613503] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/27/2015] [Accepted: 06/04/2015] [Indexed: 01/17/2023]
Abstract
Ratiometric molecular probes RP1 and RP2 consisting of a blue fluorescent coumarin and a red phosphorescent cationic iridium complex connected by a tetra- or octaproline linker, respectively, were designed and synthesized for sensing oxygen levels in living cells. These probes exhibited dual emission with good spectral separation in acetonitrile. The photorelaxation processes, including intramolecular energy transfer, were revealed by emission quantum yield and lifetime measurements. The ratios (RI=(Ip/If)) between the phosphorescence (Ip) and fluorescence (If) intensities showed excellent oxygen responses; the ratio of
RI under degassed and aerated conditions (RI0/RI)
was 20.3 and 19.6 for RP1 and RP2. The introduction of the cationic Ir (III) complex improved the cellular uptake efficiency compared to that of a neutral analogue with a tetraproline linker. The emission spectra of the ratiometric probes internalized into living HeLa or MCF-7 cells could be obtained using a conventional microplate reader. The complex RP2 with an octaproline linker provided ratios comparable to the ratiometric measurements obtained using a microplate reader: the ratio of the
RI
value of RP2 under hypoxia (2.5% O2) to that under normoxia (21% O2) was 1.5 and 1.7 for HeLa and MCF-7 cells, respectively. Thus, the intracellular oxygen levels of MCF-7 cells could be imaged by ratiometric emission measurements using the complex RP2.
Collapse
Affiliation(s)
- Toshitada Yoshihara
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Saori Murayama
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
28
|
Hara D, Komatsu H, Son A, Nishimoto SI, Tanabe K. Water-Soluble Phosphorescent Ruthenium Complex with a Fluorescent Coumarin Unit for Ratiometric Sensing of Oxygen Levels in Living Cells. Bioconjug Chem 2015; 26:645-9. [DOI: 10.1021/acs.bioconjchem.5b00093] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daiki Hara
- Department of Energy and Hydrocarbon Chemistry, Graduate
School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, Kyoto 615-8510, Japan
| | - Hirokazu Komatsu
- Department of Energy and Hydrocarbon Chemistry, Graduate
School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, Kyoto 615-8510, Japan
| | - Aoi Son
- Department of Energy and Hydrocarbon Chemistry, Graduate
School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, Kyoto 615-8510, Japan
| | - Sei-ichi Nishimoto
- Department of Energy and Hydrocarbon Chemistry, Graduate
School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, Kyoto 615-8510, Japan
| | - Kazuhito Tanabe
- Department of Energy and Hydrocarbon Chemistry, Graduate
School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, Kyoto 615-8510, Japan
| |
Collapse
|
29
|
Kim JA, Kim HN, Im SK, Chung S, Kang JY, Choi N. Collagen-based brain microvasculature model in vitro using three-dimensional printed template. BIOMICROFLUIDICS 2015; 9:024115. [PMID: 25945141 PMCID: PMC4401807 DOI: 10.1063/1.4917508] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/30/2015] [Indexed: 05/07/2023]
Abstract
We present an engineered three-dimensional (3D) in vitro brain microvasculature system embedded within the bulk of a collagen matrix. To create a hydrogel template for the functional brain microvascular structure, we fabricated an array of microchannels made of collagen I using microneedles and a 3D printed frame. By culturing mouse brain endothelial cells (bEnd.3) on the luminal surface of cylindrical collagen microchannels, we reconstructed an array of brain microvasculature in vitro with circular cross-sections. We characterized the barrier function of our brain microvasculature by measuring transendothelial permeability of 40 kDa fluorescein isothiocyanate-dextran (Stoke's radius of ∼4.5 nm), based on an analytical model. The transendothelial permeability decreased significantly over 3 weeks of culture. We also present the disruption of the barrier function with a hyperosmotic mannitol as well as a subsequent recovery over 4 days. Our brain microvasculature model in vitro, consisting of system-in-hydrogel combined with the widely emerging 3D printing technique, can serve as a useful tool not only for fundamental studies associated with blood-brain barrier in physiological and pathological settings but also for pharmaceutical applications.
Collapse
Affiliation(s)
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST) , Seoul, South Korea
| | - Sun-Kyoung Im
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST) , Seoul, South Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University , Seoul, South Korea
| | | | | |
Collapse
|
30
|
Son A, Kawasaki A, Hara D, Ito T, Tanabe K. Phosphorescent Ruthenium Complexes with a Nitroimidazole Unit that Image Oxygen Fluctuation in Tumor Tissue. Chemistry 2014; 21:2527-36. [DOI: 10.1002/chem.201404979] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Indexed: 12/23/2022]
|
31
|
Martin A, Byrne A, Burke CS, Forster RJ, Keyes TE. Peptide-Bridged Dinuclear Ru(II) Complex for Mitochondrial Targeted Monitoring of Dynamic Changes to Oxygen Concentration and ROS Generation in Live Mammalian Cells. J Am Chem Soc 2014; 136:15300-9. [DOI: 10.1021/ja508043q] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aaron Martin
- School
of Chemical Sciences, National Biophotonics and Imaging Platform, Dublin City University, Dublin 9, Ireland
| | - Aisling Byrne
- School
of Chemical Sciences, National Biophotonics and Imaging Platform, Dublin City University, Dublin 9, Ireland
| | - Christopher S. Burke
- School
of Chemical Sciences, National Biophotonics and Imaging Platform, Dublin City University, Dublin 9, Ireland
| | - Robert J. Forster
- School
of Chemical Sciences, National Biophotonics and Imaging Platform, Dublin City University, Dublin 9, Ireland
| | - Tia E. Keyes
- School
of Chemical Sciences, National Biophotonics and Imaging Platform, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
32
|
Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. BIOMED RESEARCH INTERNATIONAL 2014; 2014:921905. [PMID: 25143954 PMCID: PMC4124711 DOI: 10.1155/2014/921905] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/15/2014] [Indexed: 01/01/2023]
Abstract
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.
Collapse
Affiliation(s)
- Julien Barthes
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Hayriye Özçelik
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, Université de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, 95302 Cergy Pontoise, France
| | | | - Anwarul Hasan
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nihal Engin Vrana
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
- Protip SAS, 8 Place de l'Hôpital, 67000, Strasbourg, France
| |
Collapse
|
33
|
Baggaley E, Cao DK, Sykes D, Botchway SW, Weinstein JA, Ward MD. Combined two-photon excitation and d→f energy transfer in a water-soluble Ir(III)/Eu(III) dyad: two luminescence components from one molecule for cellular imaging. Chemistry 2014; 20:8898-903. [PMID: 24930403 PMCID: PMC4145666 DOI: 10.1002/chem.201403618] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Indexed: 11/18/2022]
Abstract
The first example of cell imaging using two independent emission components from a dinuclear d/f complex is reported. A water-stable, cell-permeable Ir(III) /Eu(III) dyad undergoes partial Ir→Eu energy transfer following two-photon excitation of the Ir unit at 780 nm. Excitation in the near-IR region generated simultaneously green Ir-based emission and red Eu-based emission from the same probe. The orders-of-magnitude difference in their timescales (Ir ca. μs; Eu ca. 0.5 ms) allowed them to be identified by time-gated detection. Phosphorescence lifetime imaging microscopy (PLIM) allowed the lifetime of the Ir-based emission to be measured in different parts of the cell. At the same time, the cells are simultaneously imaged by using the Eu-based emission component at longer timescales. This new approach to cellular imaging by using dual d/f emitters should therefore enable autofluorescence-free sensing of two different analytes, independently, simultaneously and in the same regions of a cell.
Collapse
Affiliation(s)
| | - Deng-Ke Cao
- Department of Chemistry, University of SheffieldSheffield S3 7HF (UK)
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210093 (P.R. China)
| | - Daniel Sykes
- Department of Chemistry, University of SheffieldSheffield S3 7HF (UK)
| | - Stanley W Botchway
- Rutherford Appleton Laboratory, STFC, Research Complex at Harwell, Harwell Science and Innovation CampusDidcot OX11 0FA (UK)
| | - Julia A Weinstein
- Department of Chemistry, University of SheffieldSheffield S3 7HF (UK)
| | - Michael D Ward
- Department of Chemistry, University of SheffieldSheffield S3 7HF (UK)
| |
Collapse
|
34
|
Roussakis E, Spencer JA, Lin CP, Vinogradov SA. Two-photon antenna-core oxygen probe with enhanced performance. Anal Chem 2014; 86:5937-45. [PMID: 24848643 PMCID: PMC4066907 DOI: 10.1021/ac501028m] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent development of two-photon phosphorescence lifetime microscopy (2PLM) of oxygen enabled first noninvasive high-resolution measurements of tissue oxygenation in vivo in 3D, providing valuable physiological information. The so far developed two-photon-enhanced phosphorescent probes comprise antenna-core constructs, in which two-photon absorbing chromophores (antenna) capture and channel excitation energy to a phosphorescent core (metalloporphyrin) via intramolecular excitation energy transfer (EET). These probes allowed demonstration of the methods' potential; however, they suffer from a number of limitations, such as partial loss of emissivity to competing triplet state deactivation pathways (e.g., electron transfer) and suboptimal sensitivity to oxygen, thereby limiting spatial and temporal resolution of the method. Here we present a new probe, PtTCHP-C307, designed to overcome these limitations. The key improvements include significant increase in the phosphorescence quantum yield, higher efficiency of the antenna-core energy transfer, minimized quenching of the phosphorescence by electron transfer and increased signal dynamic range. For the same excitation flux, the new probe is able to produce up to 6-fold higher signal output than previously reported molecules. Performance of PtTCHP-C307 was demonstrated in vivo in pO2 measurements through the intact mouse skull into the bone marrow, where all blood cells are made from hematopoietic stem cells.
Collapse
Affiliation(s)
- Emmanuel Roussakis
- Department of Biochemistry and Biophysics, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
35
|
Baggaley E, Gill MR, Green NH, Turton D, Sazanovich IV, Botchway SW, Smythe C, Haycock JW, Weinstein JA, Thomas JA. Dinuclear ruthenium(II) complexes as two-photon, time-resolved emission microscopy probes for cellular DNA. Angew Chem Int Ed Engl 2014; 53:3367-71. [PMID: 24458590 PMCID: PMC4298790 DOI: 10.1002/anie.201309427] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/11/2013] [Indexed: 01/12/2023]
Abstract
The first transition-metal complex-based two-photon absorbing luminescence lifetime probes for cellular DNA are presented. This allows cell imaging of DNA free from endogenous fluorophores and potentially facilitates deep tissue imaging. In this initial study, ruthenium(II) luminophores are used as phosphorescent lifetime imaging microscopy (PLIM) probes for nuclear DNA in both live and fixed cells. The DNA-bound probes display characteristic emission lifetimes of more than 160 ns, while shorter-lived cytoplasmic emission is also observed. These timescales are orders of magnitude longer than conventional FLIM, leading to previously unattainable levels of sensitivity, and autofluorescence-free imaging.
Collapse
Affiliation(s)
- Elizabeth Baggaley
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF (UK)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Baggaley E, Gill MR, Green NH, Turton D, Sazanovich IV, Botchway SW, Smythe C, Haycock JW, Weinstein JA, Thomas JA. Dinuclear Ruthenium(II) Complexes as Two-Photon, Time-Resolved Emission Microscopy Probes for Cellular DNA. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Dmitriev RI, Kondrashina AV, Koren K, Klimant I, Zhdanov AV, Pakan JMP, McDermott KW, Papkovsky DB. Small molecule phosphorescent probes for O2imaging in 3D tissue models. Biomater Sci 2014; 2:853-866. [DOI: 10.1039/c3bm60272a] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PtPFPP-carbohydrate conjugates are promising O2probes for 3D PLIM imaging of live spheroids and brain explants.
Collapse
Affiliation(s)
| | | | - Klaus Koren
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- 8010 Graz, Austria
| | - Ingo Klimant
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- 8010 Graz, Austria
| | | | | | | | | |
Collapse
|
38
|
Baggaley E, Botchway SW, Haycock JW, Morris H, Sazanovich IV, Williams JAG, Weinstein JA. Long-lived metal complexes open up microsecond lifetime imaging microscopy under multiphoton excitation: from FLIM to PLIM and beyond. Chem Sci 2014. [DOI: 10.1039/c3sc51875b] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
39
|
Baggaley E, Sazanovich IV, Williams JAG, Haycock JW, Botchway SW, Weinstein JA. Two-photon phosphorescence lifetime imaging of cells and tissues using a long-lived cyclometallated Npyridyl^Cphenyl^Npyridyl Pt(ii) complex. RSC Adv 2014. [DOI: 10.1039/c4ra04489d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ‘longer’ picture: emission bio-imaging over microsecond time frame with scanning, multi-photon posphorescence-lifetime-imaging-microscopy (PLIM).
Collapse
Affiliation(s)
| | - Igor V. Sazanovich
- Department of Chemistry
- University of Sheffield
- Sheffield S3 7HF, U.K
- Central Laser Facility
- Science and Technology Facilities Council
| | | | - John W. Haycock
- Department of Engineering Materials
- The Kroto Research Institute
- University of Sheffield
- Sheffield, UK
| | | | | |
Collapse
|
40
|
Time-Resolved Emission Imaging Microscopy Using Phosphorescent Metal Complexes: Taking FLIM and PLIM to New Lengths. LUMINESCENT AND PHOTOACTIVE TRANSITION METAL COMPLEXES AS BIOMOLECULAR PROBES AND CELLULAR REAGENTS 2014. [DOI: 10.1007/430_2014_168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
|
42
|
Abstract
Continuous monitoring of oxygen concentration is of great importance in many different areas of research which range from medical applications to food packaging. In the last three decades, significant progress has been made in the field of optical sensing technology and this review will highlight the one inherent to the development of oxygen indicators. The first section outlines the bioanalytical fields in which optical oxygen sensors have been applied. The second section gives the reader a comprehensive summary of the existing oxygen indicators with a critical highlight on their photophysical and sensing properties. Altogether, this review is meant to give the potential user a guide to select the most suitable oxygen indicator for the particular application of interest.
Collapse
|
43
|
Abstract
The emerging field of micro-technology has opened up new possibilities for exploring cellular chemotaxis in real space and time, and at single cell resolution. Chemotactic cells sense and move in response to chemical gradients and play important roles in a number of physiological and pathological processes, including development, immune responses, and tumor cell invasions. Due to the size proximity of the microfluidic device to cells, microfluidic chemotaxis devices advance the traditional macro-scale chemotaxis assays in two major directions: one is to build well defined and stable chemical gradients at cellular length scales, and the other is to provide a platform for quantifying cellular responses at both cellular and molecular levels using advanced optical imaging systems. Here, we present a critical review on the designing principles, recent development, and potential capabilities of the microfluidic chemotaxis assay for solving problems that are of importance in the biomedical engineering field.
Collapse
Affiliation(s)
- Beum Jun Kim
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
44
|
Feng Y, Cheng J, Zhou L, Zhou X, Xiang H. Ratiometric optical oxygen sensing: a review in respect of material design. Analyst 2012; 137:4885-901. [DOI: 10.1039/c2an35907c] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|