1
|
Liu J, Wang L, Peng Y, Long S, Zeng H, Deng M, Xiang W, Liu B, Hu X, Liu X, Xie J, Hou W, Tang J, Liu J. A novel therapeutic strategy utilizing EpCAM aptamer-conjugated gemcitabine for targeting bladder cancer and cancer stem cells. Biomater Sci 2025; 13:1398-1413. [PMID: 39835931 DOI: 10.1039/d4bm01471e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Gemcitabine (GEM) is a first line chemotherapy drug for bladder cancer (BCa). GEM's lack of specificity has led to disadvantages, resulting in low efficiency, especially when combined with the targeted treatment of BCa stem cells (CSCs), which is considered the cause of BCa recurrence and progression. To enhance the anti-cancer effect and reduce the side effects of GEM targeting of BCa cells/CSCs, an aptamer drug conjugate (ApDC) targeted delivery system was used to improve the efficiency of GEM in BCa therapy using EpCAM aptamer-GEM conjugates based on the epithelial cell adhesion molecule (EpCAM), which is highly expressed on the cell membrane of BCa cells/CSCs. We designed and synthesized EpCAM aptamer gemcitabine conjugates (EpCAM-GEMs, one aptamer carried three GEMs). The targeting effect of EpCAM-GEMs was examined in a xenograft model using an in vivo imaging system. To evaluate the antitumor activity and mechanism of EpCAM-GEMs, Cell Counting Kit-8, apoptosis and colony formation assays; BCa CSC xenotransplantation; xenotransplantation of subcutaneous tumors; a lung metastasis model; an in situ model; and biosafety assessment were used in vitro and in vivo. EpCAM is highly expressed on the surface of BCa cells/CSCs. EpCAM-GEMs were automatically synthesized using a DNA synthesizer, were stable in serum, and selectively delivered GEM to kill BCa cells/CSCs. EpCAM-GEMs entered BCa cells via macropinocytosis, released GEM to inhibit DNA synthesis, and degraded all BCa cells under the action of a BCa cell intracellular phosphatase; however, they did not kill normal cells because of their low EpCAM expression. EpCAM-GEMs inhibited BCa growth and metastasis in three bladder tumor models, with good biosafety. These results demonstrated the targeted anti-tumor efficiency and good biosafety of EpCAM-GEMs in BCa treatment, which will provide a new therapeutic strategy in BCa biomarker targeted therapy.
Collapse
Affiliation(s)
- Jiahao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, No. 1, Yixueyuan Road, Chongqing, 400016, China
| | - Shuyang Long
- School of Medicine, Hunan University of Chinese Medicine, Grade 2024, China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, No. 8, Yuehua Road, Changsha 410013, China
| | - Minhua Deng
- Department of Urology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, No. 651, Dongfeng Road East, Guangzhou, 510060, Guangdong, China
| | - Wei Xiang
- Department of Urology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Biao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Xing Hu
- Department of Urology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Xuewen Liu
- Department of Oncology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jianfei Xie
- Department of Nursing, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Weibin Hou
- Department of Urology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Wang P, Shen S, Guo Y, Cao J, Zhu D, Xie M, Yu Q, Cui Z, Liu S, Zhang J, Chen J. Rho kinase inhibitor Y-27632 and dual media culture approach promote the construction and transplantation of rabbit limbal epithelial cell sheets via cell spheroid culture and auto-bioprinting. Acta Biomater 2025; 194:140-152. [PMID: 39800095 DOI: 10.1016/j.actbio.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
The shortage of corneal donors and the limitations in tissue engineering grafts, such as biocompatibility and mechanical properties, pose significant challenges in corneal transplantation. Here, for the first time, we investigate the effect of Rho kinase inhibitor Y-27632 and a dual media culture approach, including proliferative media (M1) and stabilizing media (M2), on rabbit limbal epithelial stem cells (LESCs), aiming to explore the feasibility of constructing corneal cell sheets in vitro through auto-bioprinting and assessing their corneal wound healing capacity in vivo. Y-27632 has primarily demonstrated significantly enhanced LESCs growth, proliferation, and reduced apoptosis. The dual media culture approach combined with Y-27632 improved LESCs proliferation while maintaining stemness. In spheroid culture, Y-27632 decreased cell death and promoted proliferation. Immunofluorescent staining and RNA sequencing revealed upregulation of genes related to tight junctions and cell adhesion and downregulation of genes associated with aging and cell cycle. Using a bioprinter, LESC spheroids were auto-bioprinted onto a custom-made curved collagen membrane, creating a bioactive, transplantable, tissue-engineered anterior corneal sheet. Anterior superficial corneal transplantation with these LESC sheets significantly accelerated epithelial wound healing in rabbit limbal stem cell deficiency (LSCD) models. Overall, the integration of Y-27632, dual-media culture, and spheroid cell culture led to the development of a highly bioactive and therapeutically promising bio-ink derived from LESCs. Auto-bioprinting these LESC spheroids produced a bioactive, transplantable corneal cell sheet, presenting a promising therapeutic option for LSCD. STATEMENT OF SIGNIFICANCE: The renewal and wound healing of the corneal epithelium are essential for maintaining normal vision and refractive function. Limbal stem cell deficiency (LSCD) is a major cause of blinding keratopathy, and current treatment options are limited. In this study, for the first time, we developed a highly bioactive and therapeutically potent bio-ink for ocular surface regeneration by integrating Y-27632, a dual-media culture approach, and spheroid cell culture. Additionally, using auto-bioprinting technology, the limbal epithelial stem cell (LESC) spheroid bio-ink was precisely auto-bioprinted onto the curved surface of the corneal membrane, significantly accelerating corneal epithelial healing in an LSCD rabbit model.
Collapse
Affiliation(s)
- Peiyuan Wang
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Clinical Research Center for Ocular Disease, Guangzhou, China
| | - Shuhao Shen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yonglong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jixing Cao
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Deliang Zhu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China; Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengyuan Xie
- Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Quan Yu
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Zekai Cui
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Shiwei Liu
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; Purui Eye Group, Shenzhen Purui Eye Hospital, Shenzhen, China
| | - Jun Zhang
- Department of Optoelectronic Engineering, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, China
| | - Jiansu Chen
- Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China.
| |
Collapse
|
3
|
Ferronato GDA, Vit FF, da Silveira JC. 3D culture applied to reproduction in females: possibilities and perspectives. Anim Reprod 2024; 21:e20230039. [PMID: 38510565 PMCID: PMC10954237 DOI: 10.1590/1984-3143-ar2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/13/2023] [Indexed: 03/22/2024] Open
Abstract
In vitro cell culture is a well-established technique present in numerous laboratories in diverse areas. In reproduction, gametes, embryos, and reproductive tissues, such as the ovary and endometrium, can be cultured. These cultures are essential for embryo development studies, understanding signaling pathways, developing drugs for reproductive diseases, and in vitro embryo production (IVP). Although many culture systems are successful, they still have limitations to overcome. Three-dimensional (3D) culture systems can be close to physiological conditions, allowing greater interaction between cells and cells with the surrounding environment, maintenance of the cells' natural morphology, and expression of genes and proteins such as in vivo. Additionally, three-dimensional culture systems can stimulated extracellular matrix generating responses due to the mechanical force produced. Different techniques can be used to perform 3D culture systems, such as hydrogel matrix, hanging drop, low attachment surface, scaffold, levitation, liquid marble, and 3D printing. These systems demonstrate satisfactory results in follicle culture, allowing the culture from the pre-antral to antral phase, maintaining the follicular morphology, and increasing the development rates of embryos. Here, we review some of the different techniques of 3D culture systems and their applications to the culture of follicles and embryos, bringing new possibilities to the future of assisted reproduction.
Collapse
Affiliation(s)
| | - Franciele Flores Vit
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | | |
Collapse
|
4
|
Shen X, Pan D, Gong Q, Gu Z, Luo K. Enhancing drug penetration in solid tumors via nanomedicine: Evaluation models, strategies and perspectives. Bioact Mater 2024; 32:445-472. [PMID: 37965242 PMCID: PMC10641097 DOI: 10.1016/j.bioactmat.2023.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Effective tumor treatment depends on optimizing drug penetration and accumulation in tumor tissue while minimizing systemic toxicity. Nanomedicine has emerged as a key solution that addresses the rapid clearance of free drugs, but achieving deep drug penetration into solid tumors remains elusive. This review discusses various strategies to enhance drug penetration, including manipulation of the tumor microenvironment, exploitation of both external and internal stimuli, pioneering nanocarrier surface engineering, and development of innovative tactics for active tumor penetration. One outstanding strategy is organelle-affinitive transfer, which exploits the unique properties of specific tumor cell organelles and heralds a potentially transformative approach to active transcellular transfer for deep tumor penetration. Rigorous models are essential to evaluate the efficacy of these strategies. The patient-derived xenograft (PDX) model is gaining traction as a bridge between laboratory discovery and clinical application. However, the journey from bench to bedside for nanomedicines is fraught with challenges. Future efforts should prioritize deepening our understanding of nanoparticle-tumor interactions, re-evaluating the EPR effect, and exploring novel nanoparticle transport mechanisms.
Collapse
Affiliation(s)
- Xiaoding Shen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361021, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
5
|
Papapostolou I, Bochen F, Peinelt C, Maldifassi MC. A Simple and Fast Method for the Formation and Downstream Processing of Cancer-Cell-Derived 3D Spheroids: An Example Using Nicotine-Treated A549 Lung Cancer 3D Spheres. Methods Protoc 2023; 6:94. [PMID: 37888026 PMCID: PMC10609300 DOI: 10.3390/mps6050094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Although 2D in vitro cancer cell cultures have been used for decades as a first line-of-research tool to investigate antitumoral drugs and treatments, their use presents many drawbacks, including the poor resemblance of such cultures to the characteristics of in vivo tumors. To mitigate these drawbacks, 3D culture models have emerged as a more representative alternative. Cancer cells cultured as 3D structures have the advantage of resembling solid tumors in their architecture and in their resistance to chemotherapeutic drugs, in part because of restrained drug penetration. Additionally, these 3D structures create a more physiological environment for the study of immune cell invasion and migration, comparable to solid tumors. In this paper, we describe a fast and cost-effective step-by-step protocol for the generation of 3D spheres using ultra-low-attachment (ULA) multiwell plates, which can be incorporated into the normal workflow of any laboratory. Using this protocol, spheroids of different human cancer cell lines can be obtained and can then be characterized on the basis of their morphology, viability, and expression of specific markers.
Collapse
Affiliation(s)
| | | | | | - Maria Constanza Maldifassi
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (I.P.); (F.B.); (C.P.)
| |
Collapse
|
6
|
Li Z, Zhou H, Xia Z, Xia T, Du G, Franziska SD, Li X, Zhai X, Jin B. HMGA1 augments palbociclib efficacy via PI3K/mTOR signaling in intrahepatic cholangiocarcinoma. Biomark Res 2023; 11:33. [PMID: 36978140 PMCID: PMC10053751 DOI: 10.1186/s40364-023-00473-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer that is challenging to diagnose at an early stage. Despite recent advances in combination chemotherapy, drug resistance limits the therapeutic value of this regimen. iCCA reportedly harbors high HMGA1 expression and pathway alterations, especially hyperactivation of the CCND1/CDK4/CDK6 and PI3K signaling pathway. In this study, we explored the potential of targeting CDK4/6 and PI3K inhibition to treat iCCA. METHODS The significance of HMGA1 in iCCA was investigated with in vitro/vivo experiments. Western blot, qPCR, dual-luciferase reporter and immunofluorescence assays were performed to examine the mechanism of HMGA1 induced CCND1 expression. CCK-8, western blot, transwell, 3D sphere formation and colony formation assays were conducted to predict the potential role of CDK4/6 inhibitors PI3K/mTOR inhibitors in iCCA treatment. Xenograft mouse models were also used to determine the efficacy of combination treatment strategies related to HMGA1 in iCCA. RESULTS HMGA1 promoted the proliferation, epithelial-mesenchymaltransition (EMT), metastasis and stemness of iCCA. In vitro studies showed that HMGA1 induced CCND1 expression via promoting CCND1 transcription and activating the PI3K signaling pathway. Palbociclib(CDK4/6 inhibitor) could suppress iCCA proliferation, migration and invasion, especially during the first 3 days. Although there was more stable attenuation of growth in the HIBEpic model, we observed substantial outgrowth in each hepatobiliary cancer cell model. PF-04691502(PI3K/mTOR inhibitor) exhibited similar effects to palbociclib. Compared with monotherapy, the combination retained effective inhibition for iCCA through the more potent and steady inhibition of CCND1, CDK4/6 and PI3K pathway. Furthermore, more significant inhibition of the common downstream signaling pathways is observed with the combination compared to monotherapy. CONCLUSIONS Our study reveals the potential therapeutic role of dual inhibition of CDK4/6 and PI3K/mTOR pathways in iCCA, and proposes a new paradigm for the clinical treatment of iCCA.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Huaxin Zhou
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
- The Second Clinical College of Shandong University, Jinan, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tong Xia
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, China
| | - Gang Du
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, China
| | - Strohmer Dorothee Franziska
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Xiaoming Li
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China.
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China.
| | - Bin Jin
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China.
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
7
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
8
|
Fabrication of Cell Spheroids for 3D Cell Culture and Biomedical Applications. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00086-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Basabrain MS, Zhong J, Luo H, Liu J, Yi B, Zaeneldin A, Koh J, Zou T, Zhang C. Formation of Three-Dimensional Spheres Enhances the Neurogenic Potential of Stem Cells from Apical Papilla. Bioengineering (Basel) 2022; 9:604. [PMID: 36354515 PMCID: PMC9687952 DOI: 10.3390/bioengineering9110604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 10/24/2023] Open
Abstract
UNLABELLED Cell-based neural regeneration is challenging due to the difficulty in obtaining sufficient neural stem cells with clinical applicability. Stem cells from apical papilla (SCAPs) originating from embryonic neural crests with high neurogenic potential could be a promising cell source for neural regeneration. This study aimed to investigate whether the formation of 3D spheres can promote SCAPs' neurogenic potential. MATERIAL AND METHODS Three-dimensional SCAP spheres were first generated in a 256-well agarose microtissue mold. The spheres and single cells were individually cultured on collagen I-coated μ-slides. Cell morphological changes, neural marker expression, and neurite outgrowth were evaluated by confocal microscope, ELISA, and RT-qPCR. RESULTS Pronounced morphological changes were noticed in a time-dependent manner. The migrating cells' morphology changed from fibroblast-like cells to neuron-like cells. Compared to the 2D culture, neurite length, number, and the expression of multiple progenitors, immature and mature neural markers were significantly higher in the 3D spheres. BDNF and NGF-β may play a significant role in the neural differentiation of SCAP spheres. CONCLUSION The formation of 3D spheres enhanced the neurogenic potential of SCAPs, suggesting the advantage of using the 3D spheres of SCAPs for treating neural diseases.
Collapse
Affiliation(s)
- Mohammed S. Basabrain
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jialin Zhong
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Haiyun Luo
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- Stomatological Hospital, Southern Medical University, 366 Jiangnan Avenue South, Guangzhou 510280, China
| | - Junqing Liu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Baicheng Yi
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ahmed Zaeneldin
- Restorative Dental Sciences, Cariology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Junhao Koh
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ting Zou
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Zhu D, Cao Z, Pang X, Jiang W, Li C, Zhang X, Tian X, Tu H, Wu P, Nie H. Derivation of Stem Cell-like Cells From Spherical Culture of Astrocytes for Enhanced Neural Repair After Middle Cerebral Artery Occlusion. Front Bioeng Biotechnol 2022; 10:875514. [PMID: 35445000 PMCID: PMC9013960 DOI: 10.3389/fbioe.2022.875514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Neural precursor cells (NPCs) tend to aggregate and develop into three-dimensional (3D) spheres, which in turn help maintain the stemness of the cells. This close relationship between spherical environments and cell stemness direct us to assume that 3D spheres of astrocytes (ASTs) may facilitate the acquisition of stem cell-like features and generate sufficient seed cells for the regeneration of neurons. In vitro results confirmed that mouse ASTs cultured on agarose surfaces spontaneously formed cell spheres and exhibited molecular features similar to stem cells, particularly capable of further differentiating into neurons and forming functional synaptic networks with synchronous burst activities. RNA-sequencing results revealed the similarity between AST-derived stem cells (A-iSCs) and NPCs in global gene expression profiles. The potency of A-iSCs in repairing neural injuries was evaluated in a mouse model of middle cerebral artery occlusion. It was observed that the transplanted A-iSCs expressed a series of markers related to neural differentiation, such as NeuN, Tuj1, and Map2, indicating the conversion of the transplanted A-iSCs into neurons in the scenario. We also found that the injured mice injected with A-iSCs exhibited significant improvements in sensorimotor functions after 8 weeks compared with the sham and control mice. Taken together, mouse ASTs form cell spheres on agarose surfaces and acquire stem cell-associated features; meanwhile, the derived A-iSCs possess the capacity to differentiate into neurons and facilitate the regeneration of damaged nerves.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Zheming Cao
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, China
| | - Xiaoyang Pang
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, China
| | - Wei Jiang
- Department of Pharmaceutics, College of Biology, Hunan University, Changsha, China
| | - Chihao Li
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Xing Zhang
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, China
| | - Xibin Tian
- Department of Pharmaceutics, College of Biology, Hunan University, Changsha, China
| | - Haijun Tu
- Department of Pharmaceutics, College of Biology, Hunan University, Changsha, China
| | - Panfeng Wu
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, China
| | - Hemin Nie
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
11
|
Yu P, Duan Z, Liu S, Pachon I, Ma J, Hemstreet GP, Zhang Y. Drug-Induced Nephrotoxicity Assessment in 3D Cellular Models. MICROMACHINES 2021; 13:mi13010003. [PMID: 35056167 PMCID: PMC8780064 DOI: 10.3390/mi13010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
The kidneys are often involved in adverse effects and toxicity caused by exposure to foreign compounds, chemicals, and drugs. Early predictions of these influences are essential to facilitate new, safe drugs to enter the market. However, in current drug treatments, drug-induced nephrotoxicity accounts for 1/4 of reported serious adverse reactions, and 1/3 of them are attributable to antibiotics. Drug-induced nephrotoxicity is driven by multiple mechanisms, including altered glomerular hemodynamics, renal tubular cytotoxicity, inflammation, crystal nephropathy, and thrombotic microangiopathy. Although the functional proteins expressed by renal tubules that mediate drug sensitivity are well known, current in vitro 2D cell models do not faithfully replicate the morphology and intact renal tubule function, and therefore, they do not replicate in vivo nephrotoxicity. The kidney is delicate and complex, consisting of a filter unit and a tubular part, which together contain more than 20 different cell types. The tubular epithelium is highly polarized, and maintaining cellular polarity is essential for the optimal function and response to environmental signals. Cell polarity depends on the communication between cells, including paracrine and autocrine signals, as well as biomechanical and chemotaxis processes. These processes affect kidney cell proliferation, migration, and differentiation. For drug disposal research, the microenvironment is essential for predicting toxic reactions. This article reviews the mechanism of drug-induced kidney injury, the types of nephrotoxicity models (in vivo and in vitro models), and the research progress related to drug-induced nephrotoxicity in three-dimensional (3D) cellular culture models.
Collapse
Affiliation(s)
- Pengfei Yu
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Zhongping Duan
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Shuang Liu
- Difficult & Complicated Liver Diseases and Artificial Liver Center, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China; (P.Y.); (Z.D.); (S.L.)
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Ivan Pachon
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| | - Jianxing Ma
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
| | | | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA;
- Correspondence: ; Tel.: +1-336-713-1189
| |
Collapse
|
12
|
Recent Advances in Three-Dimensional Stem Cell Culture Systems and Applications. Stem Cells Int 2021; 2021:9477332. [PMID: 34671401 PMCID: PMC8523294 DOI: 10.1155/2021/9477332] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
Cell culture is one of the most core and fundamental techniques employed in the fields of biology and medicine. At present, although the two-dimensional cell culture method is commonly used in vitro, it is quite different from the cell growth microenvironment in vivo. In recent years, the limitations of two-dimensional culture and the advantages of three-dimensional culture have increasingly attracted more and more attentions. Compared to two-dimensional culture, three-dimensional culture system is better to realistically simulate the local microenvironment of cells, promote the exchange of information among cells and the extracellular matrix (ECM), and retain the original biological characteristics of stem cells. In this review, we first present three-dimensional cell culture methods from two aspects: a scaffold-free culture system and a scaffold-based culture system. The culture method and cell characterizations will be summarized. Then the application of three-dimensional cell culture system is further explored, such as in the fields of drug screening, organoids and assembloids. Finally, the directions for future research of three-dimensional cell culture are stated briefly.
Collapse
|
13
|
Liu S, Zhang Q, Shy AN, Yi M, He H, Lu S, Xu B. Enzymatically Forming Intranuclear Peptide Assemblies for Selectively Killing Human Induced Pluripotent Stem Cells. J Am Chem Soc 2021; 143:15852-15862. [PMID: 34528792 DOI: 10.1021/jacs.1c07923] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumorigenic risk of undifferentiated human induced pluripotent stem cells (iPSCs), being a major obstacle for clinical application of iPSCs, requires novel approaches for selectively eliminating undifferentiated iPSCs. Here, we show that an l-phosphopentapeptide, upon the dephosphorylation catalyzed by alkaline phosphatase (ALP) overexpressed by iPSCs, rapidly forms intranuclear peptide assemblies made of α-helices to selectively kill iPSCs. The phosphopentapeptide, consisting of four l-leucine residues and a C-terminal l-phosphotyrosine, self-assembles to form micelles/nanoparticles, which transform into peptide nanofibers/nanoribbons after enzymatic dephosphorylation removes the phosphate group from the l-phosphotyrosine. The concentration of ALP and incubation time dictates the morphology of the peptide assemblies. Circular dichroism and FTIR indicate that the l-pentapeptide in the assemblies contains a mixture of an α-helix and aggregated strands. Incubating the l-phosphopentapeptide with human iPSCs results in rapid killing of the iPSCs (=<2 h) due to the significant accumulation of the peptide assemblies in the nuclei of iPSCs. The phosphopentapeptide is innocuous to normal cells (e.g., HEK293 and hematopoietic progenitor cell (HPC)) because normal cells hardly overexpress ALP. Inhibiting ALP, mutating the l-phosphotyrosine from the C-terminal to the middle of the phosphopentapeptides, or replacing l-leucine to d-leucine in the phosphopentapeptide abolishes the intranuclear assemblies of the pentapeptides. Treating the l-phosphopentapeptide with cell lysate of normal cells (e.g., HS-5) confirms the proteolysis of the l-pentapeptide. This work, as the first case of intranuclear assemblies of peptides, not only illustrates the application of enzymatic noncovalent synthesis for selectively targeting nuclei of cells but also may lead to a new way to eliminate other pathological cells that express a high level of certain enzymes.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States.,School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Shijiang Lu
- HebeCell, 21 Strathmore Road, Natick, Massachusetts 01760, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
14
|
Jang BS, Park KH, Suh EY, Lee BS, Kang SW, Huh KM. Non-cell adhesive hexanoyl glycol chitosan hydrogels for stable and efficient formation of 3D cell spheroids with tunable size and density. Int J Biol Macromol 2021; 187:955-963. [PMID: 34343581 DOI: 10.1016/j.ijbiomac.2021.07.185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022]
Abstract
Three-dimensional (3D) culture systems that provide a more physiologically similar environment than conventional two-dimensional (2D) cultures have been extensively developed. Previously we have provided a facile method for the formation of 3D spheroids using non-adhesive N-hexanoyl glycol chitosan (HGC) hydrogel-coated dishes, but with limitations such as low gel stability and weak mechanical properties. In this study, chemically crosslinked hydrogels were prepared by photocrosslinking of methacrylated HGCs (M-HGCs), and their spheroid-forming abilities were evaluated for long-term 3D cell cultures. The M-HGC hydrogels demonstrated not only enhanced gel stability, but also good spheroid-forming abilities. Furthermore, the M-HGC-coated dishes were effective in generating spheroids of larger size and higher cell density depending on the crosslinking density of the M-HGCs. These results indicate that our hydrogel-coated dish system could be widely applied as an effective technique to produce cell spheroids with customized sizes and densities that are essential for tissue engineering and drug screening.
Collapse
Affiliation(s)
- Bo Seul Jang
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Kyoung Hwan Park
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Republic of Korea; Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Eun Yeong Suh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Byoung-Seok Lee
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
15
|
|
16
|
Ren Y, Zhang H, Wang Y, Du B, Yang J, Liu L, Zhang Q. Hyaluronic Acid Hydrogel with Adjustable Stiffness for Mesenchymal Stem Cell 3D Culture via Related Molecular Mechanisms to Maintain Stemness and Induce Cartilage Differentiation. ACS APPLIED BIO MATERIALS 2021; 4:2601-2613. [PMID: 35014377 DOI: 10.1021/acsabm.0c01591] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The stemness and differentiation characteristics of bone marrow mesenchymal stem cells (BMSCs) in three-dimensional (3D) culture are of great significance for stem cell therapy and cartilage tissue engineering repair. Moreover, due to their mechanical sensitivity, scaffold materials play important roles in various cell behaviors in 3D culture. In this study, the mechanical strength of hydrogel scaffolds was adjusted by changing the molecular weight of hyaluronic acid (HA). It was proven that BMSCs in a low-strength hydrogel could maintain stemness properties by activating the Wnt/β-catenin pathway for 1 week, while the high-molecular-weight hydrogel with a higher mechanical strength had the potential to promote the direction of cartilage differentiation of BMSCs by opening transient receptor potential vanilloid 4 (TRPV4)/Ca2+ molecular channels, also increasing the expression of type II collagen and SOX9 in BMSCs. This research has a certain reference value for the design of biomaterials for BMSCs' delivery in vivo, as well as the formulation of cartilage repair drug delivery programs based on molecular mechanisms.
Collapse
Affiliation(s)
- Ying Ren
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Han Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Yunping Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Bo Du
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Jing Yang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Lingrong Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Qiqing Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China.,Fujian Bote Biotechnology Co. Ltd., Fuzhou, Fujian 350013, P. R. China
| |
Collapse
|
17
|
Li Z, Liu J, Chen T, Sun R, Liu Z, Qiu B, Xu Y, Zhang Z. HMGA1-TRIP13 axis promotes stemness and epithelial mesenchymal transition of perihilar cholangiocarcinoma in a positive feedback loop dependent on c-Myc. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:86. [PMID: 33648560 PMCID: PMC7923631 DOI: 10.1186/s13046-021-01890-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/21/2021] [Indexed: 01/04/2023]
Abstract
Background Cholangiocarcinoma is a highly malignant cancer with very dismal prognosis. Perihilar cholangiocarcinoma(pCCA) accounts for more than 50% of all cholangiocarcinoma and is well-characterized for its low rate of radical resection. Effects of radiotherapy and chemotherapy of pCCA are very limited. Methods Here we screened potential biomarkers of pCCA with transcriptome sequencing and evaluated the prognostic significance of HMGA1 in a large cohort pCCA consisting of 106 patients. With bioinformatics and in vitro/vivo experiments, we showed that HMGA1 induced tumor cell stemness and epithelial-mesenchymal-transition (EMT), and thus facilitated proliferation, migration and invasion by promoting TRIP13 transcription. Moreover, TRIP13 was also an unfavorable prognostic biomarker of pCCA, and double high expression of HMGA1/TRIP13 could predict prognosis more sensitively. TRIP13 promoted pCCA progression by suppressing FBXW7 transcription and stabilizing c-Myc. c-Myc in turn induced the transcription and expression of both HMGA1 and TRIP13, indicating that HMGA-TRIP13 axis facilitated pCCA stemness and EMT in a positive feedback pathway. Conclusions HMGA1 and TRIP13 were unfavorable prognostic biomarkers of pCCA. HMGA1 enhanced pCCA proliferation, migration, invasion, stemness and EMT, by inducing TRIP13 expression, suppressing FBXW7 expression and stabilizing c-Myc. Moreover, c-Myc can induce the transcription of HMGA1 and TRIP13, suggesting that HMGA-TRIP13 axis promoted EMT and stemness in a positive feedback pathway dependent on c-Myc. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01890-1.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.,Department of General Surgery, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, China
| | - Jialiang Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Tianli Chen
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Rongqi Sun
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Zengli Liu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Bo Qiu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| | - Zongli Zhang
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
18
|
Luo L, Zhang W, Chen W, Fu X, Wang X, Xu R, Hu D. Based on a Self-Feeder Layer, a Novel 3D Culture Model of Human ADSCs Facilitates Trans-Differentiation of the Spheroid Cells into Neural Progenitor-Like Cells Using siEID3 with a Laminin/Poly-d-lysine Matrix. Cells 2021; 10:493. [PMID: 33668931 PMCID: PMC7996540 DOI: 10.3390/cells10030493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/21/2022] Open
Abstract
Human adipose-derived stromal cells (ADSCs) are receiving unprecedented attention as a potential cellular source for regenerative medicine-based therapies against various diseases and conditions. However, there still have significant issues concerning the translational development of ADSC-based therapies, such as its heterogeneity and being prone to aging. We developed a new simple and economical 3D semi-suspended expansion method in which 3D spheroids reside on an ADSC-derived self-feeder cell layer, producing cells with increased population homogeneity and strong stemness and ensuring that the proliferation and differentiation potency of the cells does not become notably reduced after at least ten passages in culture. To check the potential application of the 3D ADSC spheroids, we discovered that the combination of siEID3, which is a small interfering RNA of EP300 inhibitor of differentiation 3 (EID3), and laminin/poly-d-lysine matrix can rapidly result in trans-differentiation of the 3D spheroid cells to neural progenitor-like cells (NPLCs) in approximately 9 days in vitro. This approach provides a multidisciplinary tool for stem cell research and production in mesenchymal stem cell-related fields.
Collapse
Affiliation(s)
- Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi’an 710003, China; (W.Z.); (X.W.)
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China; (W.C.); (X.F.)
| | - Wei Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi’an 710003, China; (W.Z.); (X.W.)
- Department of Plastics and Aesthetic Surgery, the First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
| | - Wenjin Chen
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China; (W.C.); (X.F.)
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Xiaojun Fu
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China; (W.C.); (X.F.)
- Bayi Brain Hospital, General Hospital of PLA Army, Beijing 100700, China
| | - Xujie Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi’an 710003, China; (W.Z.); (X.W.)
| | - Ruxiang Xu
- Stem Cell Research Center, Neurosurgery Institute of PLA Army, Beijing 100700, China; (W.C.); (X.F.)
- Department of Plastics and Aesthetic Surgery, the First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
- The Department of Neurosurgery, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu 610072, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi’an 710003, China; (W.Z.); (X.W.)
| |
Collapse
|
19
|
Simeoni RB, Mogharbel BF, Francisco JC, Miyague NI, Irioda AC, Souza CMCO, Souza D, Stricker PEF, da Rosa NN, Souza CF, Franco CRC, Sierakowski MR, Abdelwaid E, Guarita-Souza LC, Carvalho KA. Beneficial Roles of Cellulose Patch-Mediated Cell Therapy in Myocardial Infarction: A Preclinical Study. Cells 2021; 10:424. [PMID: 33671407 PMCID: PMC7922134 DOI: 10.3390/cells10020424] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022] Open
Abstract
Biological scaffolds have become an attractive approach for repairing the infarcted myocardium and have been shown to facilitate constructive remodeling in injured tissues. This study aimed to investigate the possible utilization of bacterial cellulose (BC) membrane patches containing cocultured cells to limit myocardial postinfarction pathology. Myocardial infarction (MI) was induced by ligating the left anterior descending coronary artery in 45 Wistar rats, and patches with or without cells were attached to the hearts. After one week, the animals underwent echocardiography to assess for ejection fraction and left ventricular end-diastolic and end-systolic volumes. Following patch formation, the cocultured cells retained viability of >90% over 14 days in culture. The patch was applied to the myocardial surface of the infarcted area after staying 14 days in culture. Interestingly, the BC membrane without cellular treatment showed higher preservation of cardiac dimensions; however, we did not observe improvement in the left ventricular ejection fraction of this group compared to coculture-treated membranes. Our results demonstrated an important role for BC in supporting cells known to produce cardioprotective soluble factors and may thus provide effective future therapeutic outcomes for patients suffering from ischemic heart disease.
Collapse
Affiliation(s)
- Rossana B. Simeoni
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Street Imaculada Conceição, 1155, 80215-901 Curitiba, Paraná, Brazil; (R.B.S.); (J.C.F.); (N.I.M.); (L.C.G.-S.)
| | - Bassam F. Mogharbel
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| | - Julio C. Francisco
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Street Imaculada Conceição, 1155, 80215-901 Curitiba, Paraná, Brazil; (R.B.S.); (J.C.F.); (N.I.M.); (L.C.G.-S.)
| | - Nelson I. Miyague
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Street Imaculada Conceição, 1155, 80215-901 Curitiba, Paraná, Brazil; (R.B.S.); (J.C.F.); (N.I.M.); (L.C.G.-S.)
| | - Ana C. Irioda
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| | - Carolina M. C. O. Souza
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| | - Daiany Souza
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| | - Priscila E. Ferreira Stricker
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| | - Nádia Nascimento da Rosa
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| | - Clayton F. Souza
- Biopol, Chemistry Department, Federal University of Paraná, Avenue Cel. Francisco Heráclito dos Santos, 200, 81530-900 Curitiba, Paraná, Brazil; (C.F.S.); (M.-R.S.)
- Chemistry Undergraduate Program, School of Education and Humanities of Pontifical Catholic University of Paraná (PUCPR), Street Imaculada Conceição, 1155, 80215-901 Curitiba, Paraná, Brazil
| | - Celia R. Cavichiolo Franco
- Molecular Biology Department, Federal University of Paraná, Avenue Cel. Francisco Heráclito dos Santos, 100, 81530-900 Curitiba, Paraná, Brazil;
| | - Maria-Rita Sierakowski
- Biopol, Chemistry Department, Federal University of Paraná, Avenue Cel. Francisco Heráclito dos Santos, 200, 81530-900 Curitiba, Paraná, Brazil; (C.F.S.); (M.-R.S.)
| | - Eltyeb Abdelwaid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, 303 E. Chicago Ave., Tarry 14–725, Chicago, IL 60611, USA;
| | - Luiz C. Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Paraná (PUCPR), Street Imaculada Conceição, 1155, 80215-901 Curitiba, Paraná, Brazil; (R.B.S.); (J.C.F.); (N.I.M.); (L.C.G.-S.)
| | - Katherine A.T. Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pelé Pequeno Príncipe Research Institute & Pequeno Príncipe Faculties, Ave., Silva Jardim, 1632, 80240-020 Curitiba, Paraná, Brazil; (B.F.M.); (A.C.I.); (C.M.C.O.S.); (D.S.); (P.E.F.S.); (N.N.d.R.)
| |
Collapse
|
20
|
Bhandary L, Bailey PC, Chang KT, Underwood KF, Lee CJ, Whipple RA, Jewell CM, Ory E, Thompson KN, Ju JA, Mathias TM, Pratt SJP, Vitolo MI, Martin SS. Lipid tethering of breast tumor cells reduces cell aggregation during mammosphere formation. Sci Rep 2021; 11:3214. [PMID: 33547369 PMCID: PMC7865010 DOI: 10.1038/s41598-021-81919-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Mammosphere assays are widely used in vitro to identify prospective cancer-initiating stem cells that can propagate clonally to form spheres in free-floating conditions. However, the traditional mammosphere assay inevitably introduces cell aggregation that interferes with the measurement of true mammosphere forming efficiency. We developed a method to reduce tumor cell aggregation and increase the probability that the observed mammospheres formed are clonal in origin. Tethering individual tumor cells to lipid anchors prevents cell drift while maintaining free-floating characteristics. This enables real-time monitoring of single tumor cells as they divide to form mammospheres. Monitoring tethered breast cancer cells provided detailed size information that correlates directly to previously published single cell tracking data. We observed that 71% of the Day 7 spheres in lipid-coated wells were between 50 and 150 μm compared to only 37% in traditional low attachment plates. When an equal mixture of MCF7-GFP and MCF7-mCherry cells were seeded, 65% of the mammospheres in lipid-coated wells demonstrated single color expression whereas only 32% were single-colored in low attachment wells. These results indicate that using lipid tethering for mammosphere growth assays can reduce the confounding factor of cell aggregation and increase the formation of clonal mammospheres.
Collapse
Affiliation(s)
- Lekhana Bhandary
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Patrick C Bailey
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA.,Graduate Program in Biochemistry, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Katarina T Chang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA.,Graduate Program in Life Sciences, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Karen F Underwood
- UMGCCC Flow Cytometry Shared Service, 655 West Baltimore Street, BRB 7-022, Baltimore, MD, 21201, USA
| | - Cornell J Lee
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Rebecca A Whipple
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, 3102 A. James Clark Hall, College Park, MD, 20742, USA
| | - Eleanor Ory
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Keyata N Thompson
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Julia A Ju
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Trevor M Mathias
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA
| | - Stephen J P Pratt
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA.,Graduate Program in Biochemistry, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Michele I Vitolo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA. .,Graduate Program in Biochemistry, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA. .,Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| | - Stuart S Martin
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine (UMGCCC), 22 S. Greene St., Baltimore, MD, 21201, USA. .,Graduate Program in Biochemistry, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD, 21201, USA. .,Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA. .,, Bressler Research Building Room 10-29, 655 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
21
|
Kim SJ, Kim EM, Yamamoto M, Park H, Shin H. Engineering Multi-Cellular Spheroids for Tissue Engineering and Regenerative Medicine. Adv Healthc Mater 2020; 9:e2000608. [PMID: 32734719 DOI: 10.1002/adhm.202000608] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Multi-cellular spheroids are formed as a 3D structure with dense cell-cell/cell-extracellular matrix interactions, and thus, have been widely utilized as implantable therapeutics and various ex vivo tissue models in tissue engineering. In principle, spheroid culture methods maximize cell-cell cohesion and induce spontaneous cellular assembly while minimizing cellular interactions with substrates by using physical forces such as gravitational or centrifugal forces, protein-repellant biomaterials, and micro-structured surfaces. In addition, biofunctional materials including magnetic nanoparticles, polymer microspheres, and nanofiber particles are combined with cells to harvest composite spheroids, to accelerate spheroid formation, to increase the mechanical properties and viability of spheroids, and to direct differentiation of stem cells into desirable cell types. Biocompatible hydrogels are developed to produce microgels for the fabrication of size-controlled spheroids with high efficiency. Recently, spheroids have been further engineered to fabricate structurally and functionally reliable in vitro artificial 3D tissues of the desired shape with enhanced specific biological functions. This paper reviews the overall characteristics of spheroids and general/advanced spheroid culture techniques. Significant roles of functional biomaterials in advanced spheroid engineering with emphasis on the use of spheroids in the reconstruction of artificial 3D tissue for tissue engineering are also thoroughly discussed.
Collapse
Affiliation(s)
- Se-Jeong Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Eun Mi Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Masaya Yamamoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
- Biomedical Engineering for Diagnosis and Treatment, Graduate School of Biomedical Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Hansoo Park
- School of Integrative Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- Institute of Nano Science & Technology (INST), Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
22
|
Shima F, Makino T. Fabrication of Spheroids with Dome-Shaped Endothelial Tube Networks by an Adhesive Culture System. ACTA ACUST UNITED AC 2020; 4:e2000120. [PMID: 32902183 DOI: 10.1002/adbi.202000120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/06/2020] [Indexed: 01/14/2023]
Abstract
3D functional tissues, such as spheroids fabricated by mesenchymal stem cells (MSCs), which can mimic parts of tissues and organs, have recently been extensively studied in the fields of regenerative medicine and drug discovery. In this study, spheroids containing endothelial tubular structures are fabricated by use of a novel 3D culture plate, "MicoCell." As MicoCell has a mild cell adhesive surface and multicavity structures, it can provide multiple attached spheroids at the same time (about ≈102 to ≈104 spheroids). Spheroids can be fabricated without using serum, and are easily collected by simple pipetting and no use of enzyme. For the fabrication of spheroids containing endothelial tubular structures, MSCs and endothelial cells are co-cultured with MicoCell. Surprisingly, endothelial tubular structures are found to extend upward from the bottom where the spheroids attach onto, forming a dome-shaped morphology. Notably, some tubular structures in the spheroids have a basement membrane and markedly improved oxygen level of the inner part of spheroids. Moreover, as spheroids attach onto the bottom, they do not require any pre-treatment such as embedding into gel before microscopic observation using an optical clearing reagent. These results indicate that the culture plates will be suitable for clinical and pharmaceutical applications.
Collapse
Affiliation(s)
- Fumiaki Shima
- Nippon Shokubai Co., Ltd, 5-8 Nishi Otabi-cho, Suita, Osaka, 564-0034, Japan
| | - Tomomi Makino
- Nippon Shokubai Co., Ltd, 5-8 Nishi Otabi-cho, Suita, Osaka, 564-0034, Japan
| |
Collapse
|
23
|
Hsu JHM, Chang PMH, Cheng TS, Kuo YL, Wu ATH, Tran TH, Yang YH, Chen JM, Tsai YC, Chu YS, Huang TH, Huang CYF, Lai JM. Identification of Withaferin A as a Potential Candidate for Anti-Cancer Therapy in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11071003. [PMID: 31319622 PMCID: PMC6678286 DOI: 10.3390/cancers11071003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Low response rate and recurrence are common issues in lung cancer; thus, identifying a potential compound for these patients is essential. Utilizing an in silico screening method, we identified withaferin A (WA), a cell-permeable steroidal lactone initially extracted from Withania somnifera, as a potential anti-lung cancer and anti-lung cancer stem-like cell (CSC) agent. First, we demonstrated that WA exhibited potent cytotoxicity in several lung cancer cells, as evidenced by low IC50 values. WA concurrently induced autophagy and apoptosis and the activation of reactive oxygen species (ROS), which plays an upstream role in mediating WA-elicited effects. The increase in p62 indicated that WA may modulate the autophagy flux followed by apoptosis. In vivo research also demonstrated the anti-tumor effect of WA treatment. We subsequently demonstrated that WA could inhibit the growth of lung CSCs, decrease side population cells, and inhibit lung cancer spheroid-forming capacity, at least through downregulation of mTOR/STAT3 signaling. Furthermore, the combination of WA and chemotherapeutic drugs, including cisplatin and pemetrexed, exerted synergistic effects on the inhibition of epidermal growth factor receptor (EGFR) wild-type lung cancer cell viability. In addition, WA can further enhance the cytotoxic effect of cisplatin in lung CSCs. Therefore, WA alone or in combination with standard chemotherapy is a potential treatment option for EGFR wild-type lung cancer and may decrease the occurrence of cisplatin resistance by inhibiting lung CSCs.
Collapse
Affiliation(s)
- Jade H-M Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Peter M-H Chang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Tai-Shan Cheng
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Yu-Lun Kuo
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Alexander T-H Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Thu-Ha Tran
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 112, Taiwan
| | - Yun-Hsuan Yang
- The Ph.D. Program in Pharmaceutical Biotechnology, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Jing-Ming Chen
- Graduate Institute of Applied Science and Engineering, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Chen Tsai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | - Tse-Hung Huang
- Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan.
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 110, Taiwan.
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| | - Chi-Ying F Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Jin-Mei Lai
- The Ph.D. Program in Pharmaceutical Biotechnology, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
- Graduate Institute of Applied Science and Engineering, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| |
Collapse
|
24
|
Chen Y, Xu T, Yang X, Chu W, Hu S, Yin D. The toxic potentials and focus of disinfection byproducts based on the human embryonic kidney (HEK293) cell model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:948-957. [PMID: 30769318 DOI: 10.1016/j.scitotenv.2019.01.361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Disinfection byproducts (DBPs) are inevitably generated during drinking water disinfection processes, and their hazards have not been well characterized. Because they plausibly cause toxicological and pathological damage to human kidney, we selected the human embryonic kidney (HEK293) cell, instead of the commonly used CHO cell, as a model to investigate the toxic potential and target of 10 DBPs, including 3 haloacetamides, 2 trihaloacetaldehydes and 5 iodomethanes. Based on the chronic toxicity parameter EC10 of the cell viability test, we obtained a toxic rank of the tested DBPs different from previous studies and calculated their risk quotients by combining their actual concentrations in drinking water systems. Then, dichloroacetamide (DCAM), trichloroacetaldehyde (TCAL), and bromochloroiodomethane (BCIM) were selected to conduct multiple mechanistic bioassays, including cellular lactate dehydrogenase (LDH) assay, ATP metabolism, ROS production, mitochondria-derived apoptosis and qRT-PCR assay. All bioassays revealed the effects of interrupting the molecular, physiological and biochemical processes relevant to mitochondrial functions, such as oxidative respiration, apoptosis, and energy metabolism. Our study improved the human risk assessment of DBPs with the help of a convenient model and parameter and revealed that mitochondrion is a potential toxic focus of DBPs exposure at the cellular level.
Collapse
Affiliation(s)
- Yawen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xinyue Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenhai Chu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
25
|
Cell membrane engineering with synthetic materials: Applications in cell spheroids, cellular glues and microtissue formation. Acta Biomater 2019; 90:21-36. [PMID: 30986529 DOI: 10.1016/j.actbio.2019.04.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022]
Abstract
Biologically inspired materials with tunable bio- and physicochemical properties provide an essential framework to actively control and support cellular behavior. Cell membrane remodeling approaches benefit from the advances in polymer science and bioconjugation methods, which allow for the installation of un-/natural molecules and particles on the cells' surface. Synthetically remodeled cells have superior properties and are under intense investigation in various therapeutic scenarios as cell delivery systems, bio-sensing platforms, injectable biomaterials and bioinks for 3D bioprinting applications. In this review article, recent advances in the field of cell surface remodeling via bio-chemical means and the potential biomedical applications of these emerging cell hybrids are discussed. STATEMENT OF SIGNIFICANCE: Recent advances in bioconjugation methods, controlled/living polymerizations, microfabrication techniques and 3D printing technologies have enabled researchers to probe specific cellular functions and cues for therapeutic and research purposes through the formation of cell spheroids and polymer-cell chimeras. This review article highlights recent non-genetic cell membrane engineering strategies towards the fabrication of cellular ensembles and microtissues with interest in 3D in vitro modeling, cell therapeutics and tissue engineering. From a wider perspective, these approaches may provide a roadmap for future advances in cell therapies which will expedite the clinical use of cells, thereby improving the quality and accessibility of disease treatments.
Collapse
|
26
|
Wei H. Interleukin 6 signaling maintains the stem-like properties of bladder cancer stem cells. Transl Cancer Res 2019; 8:557-566. [PMID: 35116788 PMCID: PMC8799198 DOI: 10.21037/tcr.2019.03.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 02/26/2019] [Indexed: 01/23/2023]
Abstract
Background The relapse and metastasis of bladder cancer are due to its strong resistance to chemotherapeutic drugs after surgery as a result of the expansion and self-renewal of cancer stem cells (CSCs). However, the molecular mechanisms underlying the biology of bladder CSCs are unknown. This study aimed to investigate the role of interleukin 6 (IL6)/IL6 receptor (IL6R) in the stem-like characteristics of bladder CSCs. Methods Enzyme-linked immunosorbent assay (ELISA) and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to detect IL6 expression in the supernatant and cells of bladder CSCs, respectively. Following that, self-renewal, stem cell-associated gene expression, invasion, metastasis, and tumorigenicity were assessed by sphere-forming assay, qRT-PCR, invasion and transwell assays, and tumor-forming experiment in NOD/SCID mice, respectively. Finally, Western blot and qRT-PCR were employed to examine the IL6 signaling pathway in regulating the stem-like properties of bladder CSCs. Results The spheres, originating from the bladder cancer cell lines RT4 and J82, possessed a higher expression of stem-associated genes. The expression levels of IL6 were elevated in the supernatant and cells of the bladder CSCs. IL6R was also up-regulated in the bladder CSCs. Recombinant IL6 promoted the stem-like properties of the bladder CSCs, including self-renewal, expression of stem-associated genes, invasion, migration, and tumorigenicity. Mechanistically, IL6 exerted its biological effects by binding to IL6R, which enhanced the phosphorylation of STAT3 and triggered its activation. Furthermore, these effects were alleviated by the FDA-approved drug tocilizumab. Conclusions Our findings demonstrate that IL6/IL6R/STAT3 maintains the stem-like properties of bladder CSCs. Furthermore, IL6R may serve as a potential therapeutic target for CSCs in bladder cancer.
Collapse
Affiliation(s)
- Hua Wei
- Department of Urology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
27
|
Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Choi CH, Xu J, Zhang A, Lee H, Weitz DA. Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 2018; 47:5646-5683. [PMID: 29999050 PMCID: PMC6140344 DOI: 10.1039/c7cs00263g] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Droplet microfluidics offers exquisite control over the flows of multiple fluids in microscale, enabling fabrication of advanced microparticles with precisely tunable structures and compositions in a high throughput manner. The combination of these remarkable features with proper materials and fabrication methods has enabled high efficiency, direct encapsulation of actives in microparticles whose features and functionalities can be well controlled. These microparticles have great potential in a wide range of bio-related applications including drug delivery, cell-laden matrices, biosensors and even as artificial cells. In this review, we briefly summarize the materials, fabrication methods, and microparticle structures produced with droplet microfluidics. We also provide a comprehensive overview of their recent uses in biomedical applications. Finally, we discuss the existing challenges and perspectives to promote the future development of these engineered microparticles.
Collapse
Affiliation(s)
- Wen Li
- School of Materials Science & Engineering, Department of Polymer Materials, Shanghai University, 333 Nanchen Street, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen X, Li J, Huang Y, Liu P, Fan Y. Insoluble Microenvironment Facilitating the Generation and Maintenance of Pluripotency. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:267-278. [PMID: 29327674 DOI: 10.1089/ten.teb.2017.0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induced pluripotent stem cells (iPSCs) hold enormous potential as a tool to generate cells for tissue engineering and regenerative medicine. Since the initial report of iPSCs in 2006, many different methods have been developed to enhance the safety and efficiency of this technology. Recent studies indicate that the extracellular signals can promote the production of iPSCs, and even replace the Yamanaka factors. Noticeably, abundant evidences suggest that the insoluble microenvironment, including the culture substrate and neighboring cells, directly regulates the expression of core pluripotency genes and the epigenetic modification of the chromatins, hence, impacts the reprogramming dynamics. These studies provide new strategies for developing safer and more efficient method for iPSC generation. In this review, we examine the publications addressing the insoluble extracellular microenvironment that boosts iPSC generation and self-renewal. We also discuss cell adhesion-mediated molecular mechanisms, through which the insoluble extracellular cues interplay with reprogramming.
Collapse
Affiliation(s)
- Xiaofang Chen
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
- 2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University , Beijing, China
| | - Jiaqi Li
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
| | - Yan Huang
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
- 2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University , Beijing, China
| | - Peng Liu
- 3 Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University , Beijing, China
| | - Yubo Fan
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
- 2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University , Beijing, China
- 4 National Research Center for Rehabilitation Technical Aids , Beijing, China
| |
Collapse
|
29
|
Zhang C, Xie B, Zou Y, Zhu D, Lei L, Zhao D, Nie H. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional biomaterials for cell fate regulation. Adv Drug Deliv Rev 2018; 132:33-56. [PMID: 29964080 DOI: 10.1016/j.addr.2018.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
The interaction of biological cells with artificial biomaterials is one of the most important issues in tissue engineering and regenerative medicine. The interaction is strongly governed by physical and chemical properties of the materials and displayed with differentiated cellular behaviors, including cell self-renewal, differentiation, reprogramming, dedifferentiation, or transdifferentiation as a result. A number of engineered biomaterials with micro- or nano-structures have been developed to mimic structural components of cell niche and specific function of extra cellular matrix (ECM) over past two decades. In this review article, we briefly introduce the fabrication of biomaterials and their classification into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) ones. More importantly, the influence of different biomaterials on inducing cell self-renewal, differentiation, reprogramming, dedifferentiation, and transdifferentiation was discussed based on the progress at 0D, 1D, 2D and 3D levels, following which the current research limitations and research perspectives were provided.
Collapse
Affiliation(s)
- Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Bei Xie
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yujian Zou
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Dan Zhu
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Lei Lei
- Department of Orthodontics, Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.
| | - Dapeng Zhao
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China.
| | - Hemin Nie
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China; Shenzhen Research Institute of Hunan University, Nanshan Hi-new Technology and Industry Park, Shenzhen 518057, China.
| |
Collapse
|
30
|
Zhang Y, Xu S, Wu T, Hu K, Chen S, Xu A, Wu L. Assessment of Genotoxic Effects by Constructing a 3D Cellular System with Highly Sensitive Mutagenic Human–Hamster Hybrid Cells. Chem Res Toxicol 2018; 31:594-600. [DOI: 10.1021/acs.chemrestox.8b00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yajun Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Shengmin Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Tao Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Kunyu Hu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031, China
| |
Collapse
|
31
|
Laterally confined growth of cells induces nuclear reprogramming in the absence of exogenous biochemical factors. Proc Natl Acad Sci U S A 2018; 115:E4741-E4750. [PMID: 29735717 PMCID: PMC6003522 DOI: 10.1073/pnas.1714770115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we demonstrate a platform for reprogramming somatic cells with high efficiency in the absence of exogenous reprogramming factors. Sustained laterally confined growth of cells on micropatterned substrates results in sequential changes to the nucleus and chromatin with each cell division, leading to the progressive erasure of lineage specific characteristics and incorporation of pluripotency. After 10 days of confined growth, the cells exhibit stemness and have multilineage differentiation potential. Our observation highlights a previously unknown role of mechanical constraints in nuclear reprogramming. Our method provides a unique approach to greatly improve stem cell technologies for developing patient specific disease models and regenerative medicine. Cells in tissues undergo transdifferentiation programs when stimulated by specific mechanical and biochemical signals. While seminal studies have demonstrated that exogenous biochemical factors can reprogram somatic cells into pluripotent stem cells, the critical roles played by mechanical signals in such reprogramming process have not been well documented. In this paper, we show that laterally confined growth of fibroblasts on micropatterned substrates induces nuclear reprogramming with high efficiency in the absence of any exogenous reprogramming factors. We provide compelling evidence on the induction of stem cell-like properties using alkaline phosphatase assays and expression of pluripotent markers. Early onset of reprogramming was accompanied with enhanced nuclear dynamics and changes in chromosome intermingling degrees, potentially facilitating rewiring of the genome. Time-lapse analysis of promoter occupancy by immunoprecipitation of H3K9Ac chromatin fragments revealed that epithelial, proliferative, and reprogramming gene promoters were progressively acetylated, while mesenchymal promoters were deacetylated by 10 days. Consistently, RNA sequencing analysis showed a systematic progression from mesenchymal to stem cell transcriptome, highlighting pathways involving mechanisms underlying nuclear reprogramming. We then demonstrated that these mechanically reprogrammed cells could be maintained as stem cells and can be redifferentiated into multiple lineages with high efficiency. Importantly, we also demonstrate the induction of cancer stemness properties in MCF7 cells grown in such laterally confined conditions. Collectively, our results highlight an important generic property of somatic cells that, when grown in laterally confined conditions, acquire stemness. Such mechanical reprogramming of somatic cells demonstrated here has important implications in tissue regeneration and disease models.
Collapse
|
32
|
Miyaguchi N, Kajiya H, Yamaguchi M, Sato A, Yasunaga M, Toshimitu T, Yanagi T, Matsumoto A, Kido H, Ohno J. Bone Morphogenetic Protein-2 Accelerates Osteogenic Differentiation in Spheroid-Derived Mesenchymal Stem Cells. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Naoyuki Miyaguchi
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Hiroshi Kajiya
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College
| | - Masahiro Yamaguchi
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Geriatric Dentistry, Department of General Dentistry, Fukuoka Dental College
| | - Ayako Sato
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Madoka Yasunaga
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Orthodontics, Department of Oral Growth and Development, Fukuoka Dental College
| | - Takuya Toshimitu
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Dentistry for the Disabled, Department of Oral Growth and Development, Fukuoka Dental College
| | - Tsukasa Yanagi
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Ayako Matsumoto
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Hirofumi Kido
- Section of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
| | - Jun Ohno
- Research Center for Regenerative Medicine, Fukuoka Dental College
| |
Collapse
|
33
|
Zhu ZW, Chen L, Liu JX, Huang JW, Wu G, Zheng YF, Yao KT. A novel three-dimensional tumorsphere culture system for the efficient and low-cost enrichment of cancer stem cells with natural polymers. Exp Ther Med 2017; 15:85-92. [PMID: 29387183 PMCID: PMC5769308 DOI: 10.3892/etm.2017.5419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are considered to serve a key role in tumor progression, recurrence and metastasis. Tumorsphere culture is the most important method for enriching CSCs and is widely used in basic research and drug screening. However, the traditional suspension cell culture system has several disadvantages, including low efficiency, high cost and difficult procedure, making it difficult to produce tumorspheres on a large scale. In the present study, two biomaterials, methylcellulose (MC) and gellan gum (GG), were used to construct a novel culture system based on the traditional system. Subsequently, the characteristics of the novel three-dimensional (3D) culture system were evaluated, the design scheme was optimized, and the morphological and biological features of the tumorspheres cultured in this 3D system were compared with the traditional system. The results revealed that the tumorspheres cultured in the novel 3D system presented a higher seeding density and improved morphology, while maintaining stem-like properties. This evidence suggests that a simple, efficient and low-cost culture system that produces tumorspheres on a large scale was successfully constructed, which can be widely used in various aspects of stem cell research.
Collapse
Affiliation(s)
- Zhen-Wei Zhu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| | - Lin Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jing-Xian Liu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jun-Wen Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Gang Wu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yan-Fang Zheng
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Kai-Tai Yao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
34
|
Tseng TC, Wong CW, Hsieh FY, Hsu SH. Biomaterial Substrate-Mediated Multicellular Spheroid Formation and Their Applications in Tissue Engineering. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700064] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/01/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ting-Chen Tseng
- Institute of Polymer Science and Engineering; National Taiwan University; Taipei Taiwan
| | - Chui-Wei Wong
- Institute of Polymer Science and Engineering; National Taiwan University; Taipei Taiwan
| | - Fu-Yu Hsieh
- Institute of Polymer Science and Engineering; National Taiwan University; Taipei Taiwan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering; National Taiwan University; Taipei Taiwan
- Institute of Cellular and System Medicine; National Health Research Institutes; Miaoli Taiwan
| |
Collapse
|
35
|
Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:242-262. [DOI: 10.1016/j.mrrev.2016.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
|
36
|
Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array. Sci Rep 2017; 7:4363. [PMID: 28663555 PMCID: PMC5491519 DOI: 10.1038/s41598-017-04718-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/18/2017] [Indexed: 01/09/2023] Open
Abstract
Biomaterial-based tissue culture platforms have emerged as useful tools to mimic in vivo physiological microenvironments in experimental cell biology and clinical studies. We describe herein a three-dimensional (3D) tissue culture platform using a polydimethylsiloxane (PDMS)-based hanging drop array (PDMS-HDA) methodology. Multicellular spheroids can be achieved within 24 h and further boosted by incorporating collagen fibrils in PDMS-HDA. In addition, the spheroids generated from different human tumor cells exhibited distinct sensitivities toward drug chemotherapeutic agents and radiation as compared with two-dimensional (2D) cultures that often lack in vivo-like biological insights. We also demonstrated that multicellular spheroids may enable key hallmarks of tissue-based bioassays, including drug screening, tumor dissemination, cell co-culture, and tumor invasion. Taken together, these results offer new opportunities not only to achieve the active control of 3D multicellular spheroids on demand, but also to establish a rapid and cost-effective platform to study anti-cancer therapeutics and tumor microenvironments.
Collapse
|
37
|
Li S, Han Y, Lei H, Zeng Y, Cui Z, Zeng Q, Zhu D, Lian R, Zhang J, Chen Z, Chen J. In vitro biomimetic platforms featuring a perfusion system and 3D spheroid culture promote the construction of tissue-engineered corneal endothelial layers. Sci Rep 2017; 7:777. [PMID: 28396609 PMCID: PMC5429708 DOI: 10.1038/s41598-017-00914-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/16/2017] [Indexed: 11/08/2022] Open
Abstract
Corneal endothelial cells (CECs) are very important for the maintenance of corneal transparency. However, in vitro, CECs display limited proliferation and loss of phenotype via endothelial to mesenchymal transformation (EMT) and cellular senescence. In this study, we demonstrate that continuous supplementary nutrition using a perfusion culture bioreactor and three-dimensional (3D) spheroid culture can be used to improve CEC expansion in culture and to construct a tissue-engineered CEC layer. Compared with static culture, perfusion-derived CECs exhibited an increased proliferative ability as well as formed close cell-cell contact junctions and numerous surface microvilli. We also demonstrated that the CEC spheroid culture significantly down-regulated gene expression of the proliferation marker Ki67 and EMT-related markers Vimentin and α-SMA, whereas the gene expression level of the CEC marker ATP1A1 was significantly up-regulated. Furthermore, use of the perfusion system in conjunction with a spheroid culture on decellularized corneal scaffolds and collagen sheets promoted the generation of CEC monolayers as well as neo-synthesized ECM formation. This study also confirmed that a CEC spheroid culture on a curved collagen sheet with controlled physiological intraocular pressure could generate a CEC monolayer. Thus, our results show that the use of a perfusion system and 3D spheroid culture can promote CEC expansion and the construction of tissue-engineered corneal endothelial layers in vitro.
Collapse
Affiliation(s)
- Shanyi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, P.R. China
| | - Yuting Han
- The Department of Ophthalmology, the First Clinical Medical College, Jinan University, Guangzhou, 510632, P.R. China
| | - Hao Lei
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou, 510632, P.R. China
| | - Yingxin Zeng
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou, 510632, P.R. China
- Department of Applied Physics, South China Agricultural University, Guangzhou, 510632, P.R. China
| | - Zekai Cui
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, P.R. China
| | - Qiaolang Zeng
- The Department of Ophthalmology, the First Clinical Medical College, Jinan University, Guangzhou, 510632, P.R. China
| | - Deliang Zhu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, P.R. China
| | - Ruiling Lian
- The Department of Ophthalmology, the First Clinical Medical College, Jinan University, Guangzhou, 510632, P.R. China
| | - Jun Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou, 510632, P.R. China
| | - Zhe Chen
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou, 510632, P.R. China.
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510632, P.R. China.
- Institute of Ophthalmology, Medical College, Jinan University, Jinan University, Guangzhou, 510632, P.R. China.
- The Department of Ophthalmology, the First Clinical Medical College, Jinan University, Guangzhou, 510632, P.R. China.
- Aier Eye Institute, #198 Furong Middle Road, Changsha, 410015, P.R. China.
| |
Collapse
|
38
|
Long J, Kim H, Kim D, Lee JB, Kim DH. A biomaterial approach to cell reprogramming and differentiation. J Mater Chem B 2017; 5:2375-2379. [PMID: 28966790 PMCID: PMC5616208 DOI: 10.1039/c6tb03130g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell reprogramming of somatic cells into pluripotent states and subsequent differentiation into certain phenotypes has helped progress regenerative medicine research and other medical applications. Recent research has used viral vectors to induce this reprogramming; however, limitations include low efficiency and safety concerns. In this review, we discuss how biomaterial methods offer potential avenues for either increasing viability and downstream applicability of viral methods, or providing a safer alternative. The use of non-viral delivery systems, such as electroporation, micro/nanoparticles, nucleic acids and the modulation of culture substrate topography and stiffness have generated valuable insights regarding cell reprogramming.
Collapse
Affiliation(s)
- Joseph Long
- Department of Bioengineering, University of Washington, Seattle WA, 98195, USA
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine; University of Washington; Seattle, WA, 98109, USA
| | - Hyejin Kim
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Dajeong Kim
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, South Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle WA, 98195, USA
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine; University of Washington; Seattle, WA, 98109, USA
| |
Collapse
|
39
|
Chimenti I, Massai D, Morbiducci U, Beltrami AP, Pesce M, Messina E. Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up. J Cardiovasc Transl Res 2017; 10:150-166. [PMID: 28289983 DOI: 10.1007/s12265-017-9741-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
Abstract
Improved protocols/devices for in vitro culture of 3D cell spheroids may provide essential cues for proper growth and differentiation of stem/progenitor cells (S/PCs) in their niche, allowing preservation of specific features, such as multi-lineage potential and paracrine activity. Several platforms have been employed to replicate these conditions and to generate S/PC spheroids for therapeutic applications. However, they incompletely reproduce the niche environment, with partial loss of its highly regulated network, with additional hurdles in the field of cardiac biology, due to debated resident S/PCs therapeutic potential and clinical translation. In this contribution, the essential niche conditions (metabolic, geometric, mechanical) that allow S/PCs maintenance/commitment will be discussed. In particular, we will focus on both existing bioreactor-based platforms for the culture of S/PC as spheroids, and on possible criteria for the scaling-up of niche-like spheroids, which could be envisaged as promising tools for personalized cardiac regenerative medicine, as well as for high-throughput drug screening.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Rome, Italy
| | - Diana Massai
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino", IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Pediatrics and Infant Neuropsychiatry, "Umberto I" Hospital, "La Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
40
|
Fang Y, Wang B, Zhao Y, Xiao Z, Li J, Cui Y, Han S, Wei J, Chen B, Han J, Meng Q, Hou X, Luo J, Dai J, Jing Z. Collagen scaffold microenvironments modulate cell lineage commitment for differentiation of bone marrow cells into regulatory dendritic cells. Sci Rep 2017; 7:42049. [PMID: 28169322 PMCID: PMC5294561 DOI: 10.1038/srep42049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/05/2017] [Indexed: 01/05/2023] Open
Abstract
The microenvironment plays a pivotal role for cell survival and functional regulation, and directs the cell fate determination. The biological functions of DCs have been extensively investigated to date. However, the influences of the microenvironment on the differentiation of bone marrow cells (BMCs) into dendritic cells (DCs) are not well defined. Here, we established a 3D collagen scaffold microenvironment to investigate whether such 3D collagen scaffolds could provide a favourable niche for BMCs to differentiate into specialised DCs. We found that BMCs embedded in the 3D collagen scaffold differentiated into a distinct subset of DC, exhibiting high expression of CD11b and low expression of CD11c, co-stimulator (CD40, CD80, CD83, and CD86) and MHC-II molecules compared to those grown in 2D culture. DCs cultured in the 3D collagen scaffold possessed weak antigen uptake ability and inhibited T-cell proliferation in vitro; in addition, they exhibited potent immunoregulatory function to alleviate allo-delay type hypersensitivity when transferred in vivo. Thus, DCs differentiated in the 3D collagen scaffold were defined as regulatory DCs, indicating that collagen scaffold microenvironments probably play an important role in modulating the lineage commitment of DCs and therefore might be applied as a promising tool for generation of specialised DCs.
Collapse
Affiliation(s)
- Yongxiang Fang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Bin Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Cui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing 100191, China
| | - Sufang Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianshu Wei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jin Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingyuan Meng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agricultural Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
41
|
Wang R, Sun Q, Wang P, Liu M, Xiong S, Luo J, Huang H, Du Q, Geller DA, Cheng B. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells. Oncotarget 2016; 7:5754-68. [PMID: 26735577 PMCID: PMC4868719 DOI: 10.18632/oncotarget.6805] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/09/2015] [Indexed: 12/28/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is driven and maintained by liver cancer stem cells (LCSCs) that display stem cell properties. These LCSCs are promoted by the intersecting of Notch and Wnt/β-Catenin signaling pathways. In this study, we demonstrate that LCSCs with markers CD90, CD24, CD13, and CD133 possess stem properties of self-renewal and tumorigenicity in NOD/SCID mice. The increased expression of these markers was correlated with advanced disease stage, larger tumors, and worse overall survival in 61 HCC cases. We also found that both Notch and Wnt/β-catenin signaling pathways played important roles in increasing the stem-ness characteristics of LCSCs. Our data suggested that Notch1 was downstream of Wnt/β-catenin. The active form of Notch1 intracellular domain (NICD) expression depended on Wnt/β-catenin pathway activation. Moreover, Notch1 negatively contributed to Wnt/β-catenin signaling modulation. Knock down of Notch1 with lentivirus N1ShRNA up-regulated the active form of β-catenin. Ectopic expression of NICD with LV-Notch1 in LCSCs attenuated β-catenin/TCF dependent luciferase activity significantly. In addition, there was a non-proteasome mediated feedback loop between Notch1 and Wnt/β-catenin signaling in LCSCs. The central role of Notch and the Wnt/β-catenin signaling pathway in LCSCs may provide an attractive therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Qian Sun
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Luo
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Huang
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Qiang Du
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David A Geller
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Liu Y, Muñoz N, Tsai AC, Logan TM, Ma T. Metabolic Reconfiguration Supports Reacquisition of Primitive Phenotype in Human Mesenchymal Stem Cell Aggregates. Stem Cells 2016; 35:398-410. [DOI: 10.1002/stem.2510] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Yijun Liu
- Department of Chemical and Biomedical Engineering; Florida State University; Tallahassee Florida USA
| | - Nathalie Muñoz
- Graduate Program in Molecular Biophysics, Florida State University; Tallahassee Florida USA
| | - Ang-Chen Tsai
- Department of Chemical and Biomedical Engineering; Florida State University; Tallahassee Florida USA
| | - Timothy M. Logan
- Graduate Program in Molecular Biophysics, Florida State University; Tallahassee Florida USA
- Department of Chemistry and Biochemistry; Florida State University; Tallahassee Florida USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering; Florida State University; Tallahassee Florida USA
- Graduate Program in Molecular Biophysics, Florida State University; Tallahassee Florida USA
| |
Collapse
|
43
|
Ning ST, Lee SY, Wei MF, Peng CL, Lin SYF, Tsai MH, Lee PC, Shih YH, Lin CY, Luo TY, Shieh MJ. Targeting Colorectal Cancer Stem-Like Cells with Anti-CD133 Antibody-Conjugated SN-38 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17793-804. [PMID: 27348241 DOI: 10.1021/acsami.6b04403] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cancer stem-like cells play a key role in tumor development, and these cells are relevant to the failure of conventional chemotherapy. To achieve favorable therapy for colorectal cancer, PEG-PCL-based nanoparticles, which possess good biological compatibility, were fabricated as nanocarriers for the topoisomerase inhibitor, SN-38. For cancer stem cell therapy, CD133 (prominin-1) is a theoretical cancer stem-like cell (CSLC) marker for colorectal cancer and is a proposed therapeutic target. Cells with CD133 overexpression have demonstrated enhanced tumor-initiating ability and tumor relapse probability. To resolve the problem of chemotherapy failure, SN-38-loaded nanoparticles were conjugated with anti-CD133 antibody to target CD133-positive (CD133(+)) cells. In this study, anti-CD133 antibody-conjugated SN-38-loaded nanoparticles (CD133Ab-NPs-SN-38) efficiently bound to HCT116 cells, which overexpress CD133 glycoprotein. The cytotoxic effect of CD133Ab-NPs-SN-38 was greater than that of nontargeted nanoparticles (NPs-SN-38) in HCT116 cells. Furthermore, CD133Ab-NPs-SN-38 could target CD133(+) cells and inhibit colony formation compared with NPs-SN-38. In vivo studies in an HCT116 xenograft model revealed that CD133Ab-NPs-SN-38 suppressed tumor growth and retarded recurrence. A reduction in CD133 expression in HCT116 cells treated with CD133Ab-NPs-SN-38 was also observed in immunohistochemistry results. Therefore, this CD133-targeting nanoparticle delivery system could eliminate CD133-positive cells and is a potential cancer stem cell targeted therapy.
Collapse
Affiliation(s)
- Sin-Tzu Ning
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Shin-Yu Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Ming-Feng Wei
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research , Longtan, Taoyuan 325, Taiwan
| | - Susan Yun-Fan Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Ming-Hsien Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Pei-Chi Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Ying-Hsia Shih
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
- Isotope Application Division, Institute of Nuclear Energy Research , Longtan, Taoyuan 325, Taiwan
| | - Chun-Yen Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
| | - Tsai-Yueh Luo
- Isotope Application Division, Institute of Nuclear Energy Research , Longtan, Taoyuan 325, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University , Taipei 100, Taiwan
- Department of Oncology, National Taiwan University Hospital and College of Medicine , Taipei 100, Taiwan
| |
Collapse
|
44
|
Francipane MG, Lagasse E. Towards Organs on Demand: Breakthroughs and Challenges in Models of Organogenesis. CURRENT PATHOBIOLOGY REPORTS 2016; 4:77-85. [PMID: 28979828 DOI: 10.1007/s40139-016-0111-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, functional three-dimensional (3D) tissue generation in vitro has been significantly advanced by tissue-engineering methods, achieving better reproduction of complex native organs compared to conventional culture systems. This review will discuss traditional 3D cell culture techniques as well as newly developed technology platforms. These recent techniques provide new possibilities in the creation of human body parts and provide more accurate predictions of tissue response to drug and chemical challenges. Given the rapid advancement in the human induced pluripotent stem cell (iPSC) field, these platforms also hold great promise in the development of patient-specific, transplantable tissues and organs on demand.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
- Ri.MED Foundation, 90133 Palermo, Italy
| | - Eric Lagasse
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
45
|
Liu H, Liu J, Qi C, Fang Y, Zhang L, Zhuo R, Jiang X. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater 2016; 35:228-37. [PMID: 26911882 DOI: 10.1016/j.actbio.2016.02.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/11/2015] [Accepted: 02/18/2016] [Indexed: 12/21/2022]
Abstract
Injectable hydrogels have gained great attentions for cell therapy and tissue regeneration as a result of the applications in minimally invasive surgical procedures with the ease of handling and complete filling of the defect area. Here, a novel biodegradable, thermosensitive and injectable carboxymethyl chitin (CMCH) hydrogel was developed for three-dimensional (3D) cell culture. The obtained CMCH solution remained transparent liquid flowing easily at low temperatures and gelled rapidly at 37°C. The gelation time of CMCH hydrogels could be easily tuned by varying temperature and the degree of carboxymethylation, which facilitates the cell encapsulation process at room temperature and in-situ forming hydrogel at body temperature. Moreover, the CMCH-14 hydrogels in PBS buffer remained stable and continuous porous structure and could be degraded in the presence of lysozyme or hyaluronidase. HeLa cells proliferated sustainably and self-assembled to form 3D multicellular spheroids with high cell activity on the surface of CMCH-14 hydrogel. Encapsulation of COS-7 cells within the in-situ forming CMCH hydrogel demonstrated that CMCH hydrogels promoted cell survival and proliferation. In vivo mouse study of the CMCH hydrogels showed good in-situ gel formation and tissue biocompatibility. Thus, the biodegradable thermosensitive injectable CMCH hydrogels hold potential for 3D cell culture and biomedical applications. STATEMENT OF SIGNIFICANCE Biodegradable hydrogels have been widely studied for cell therapy and tissue regeneration. Herein, we report a novel thermosensitive injectable carboxymethyl chitin (CMCH) hydrogel for 3D cell culture, which was synthesized homogeneously from the bioactive natural chitin through the "green" process avoiding using organic solvent. The CMCH solutions exhibited rapid thermoresponsive sol-to-gel phase transition behavior at 37°C with controllable gelation times, which facilitates the cell encapsulation process at room temperature and in-situ forming hydrogel at body temperature. Importantly, in vitro 3D cell culture and in vivo mouse study of the CMCH hydrogel showed promotion of cell survival and proliferation, good in-situ gel formation and biocompatibility. We believe that such thermosensitive injectable CMCH hydrogels would be very useful for biomedical applications, such as tumor model for cancer research, post-operative adhesion prevention, the regeneration of cartilage and central nervous system and so on.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Jia Liu
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Chao Qi
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, PR China
| | - Yapeng Fang
- Glyn O. Phillips Hydrocolloid Research Centre, Hubei University of Technology, Wuhan 43006, PR China
| | - Lina Zhang
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
46
|
Corvaglia S, Rodriguez S, Bardi G, Torres FG, Lopez D. Chitin whiskers reinforced carrageenan films as low adhesion cell substrates. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1149846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Stefania Corvaglia
- Istituto Italiano di Tecnologia (IIT), Center for Bio-Molecular Nanotechnology@UniLe, Lecce, Italy
| | - Sol Rodriguez
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú (PUCP), Lima, Peru
| | | | - Fernando G. Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú (PUCP), Lima, Peru
| | - Daniel Lopez
- Institute of Polymer Science and Technology, Spanish Council for Scientific Research (CSIC), Madrid, Spain
| |
Collapse
|
47
|
Henry E, Cores J, Hensley MT, Anthony S, Vandergriff A, de Andrade JBM, Allen T, Caranasos TG, Lobo LJ, Cheng K. Adult Lung Spheroid Cells Contain Progenitor Cells and Mediate Regeneration in Rodents With Bleomycin-Induced Pulmonary Fibrosis. Stem Cells Transl Med 2015; 4:1265-74. [PMID: 26359426 DOI: 10.5966/sctm.2015-0062] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Lung diseases are devastating conditions and ranked as one of the top five causes of mortality worldwide according to the World Health Organization. Stem cell therapy is a promising strategy for lung regeneration. Previous animal and clinical studies have focused on the use of mesenchymal stem cells (from other parts of the body) for lung regenerative therapies. We report a rapid and robust method to generate therapeutic resident lung progenitors from adult lung tissues. Outgrowth cells from healthy lung tissue explants are self-aggregated into three-dimensional lung spheroids in a suspension culture. Without antigenic sorting, the lung spheroids recapitulate the stem cell niche and contain a natural mixture of lung stem cells and supporting cells. In vitro, lung spheroid cells can be expanded to a large quantity and can form alveoli-like structures and acquire mature lung epithelial phenotypes. In severe combined immunodeficiency mice with bleomycin-induced pulmonary fibrosis, intravenous injection of human lung spheroid cells inhibited apoptosis, fibrosis, and infiltration but promoted angiogenesis. In a syngeneic rat model of pulmonary fibrosis, lung spheroid cells outperformed adipose-derived mesenchymal stem cells in reducing fibrotic thickening and infiltration. Previously, lung spheroid cells (the spheroid model) had only been used to study lung cancer cells. Our data suggest that lung spheroids and lung spheroid cells from healthy lung tissues are excellent sources of regenerative lung cells for therapeutic lung regeneration. SIGNIFICANCE The results from the present study will lead to future human clinical trials using lung stem cell therapies to treat various incurable lung diseases, including pulmonary fibrosis. The data presented here also provide fundamental knowledge regarding how injected stem cells mediate lung repair in pulmonary fibrosis.
Collapse
Affiliation(s)
- Eric Henry
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, and North Carolina State University, Raleigh, North Carolina, USA
| | - Jhon Cores
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, and North Carolina State University, Raleigh, North Carolina, USA
| | - M Taylor Hensley
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Shirena Anthony
- Department of Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Adam Vandergriff
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, and North Carolina State University, Raleigh, North Carolina, USA
| | - James B M de Andrade
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Tyler Allen
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Thomas G Caranasos
- Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leonard J Lobo
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
48
|
Stepanenko A, Dmitrenko V. HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene 2015; 569:182-90. [DOI: 10.1016/j.gene.2015.05.065] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/11/2015] [Accepted: 05/26/2015] [Indexed: 01/18/2023]
|
49
|
Xue G, Ren Z, Grabham PW, Chen Y, Zhu J, Du Y, Pan D, Li X, Hu B. Reprogramming mediated radio-resistance of 3D-grown cancer cells. JOURNAL OF RADIATION RESEARCH 2015; 56:656-62. [PMID: 25883172 PMCID: PMC4497391 DOI: 10.1093/jrr/rrv018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/27/2015] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
In vitro 3D growth of tumors is a new cell culture model that more closely mimics the features of the in vivo environment and is being used increasingly in the field of biological and medical research. It has been demonstrated that cancer cells cultured in 3D matrices are more radio-resistant compared with cells in monolayers. However, the mechanisms causing this difference remain unclear. Here we show that cancer cells cultured in a 3D microenvironment demonstrated an increase in cells with stem cell properties. This was confirmed by the finding that cells in 3D cultures upregulated the gene and protein expression of the stem cell reprogramming factors such as OCT4, SOX2, NANOG, LIN28 and miR-302a, compared with cells in monolayers. Moreover, the expression of β-catenin, a regulating molecule of reprogramming factors, also increased in 3D-grown cancer cells. These findings suggest that cancer cells were reprogrammed to become stem cell-like cancer cells in a 3D growth culture microenvironment. Since cancer stem cell-like cells demonstrate an increased radio-resistance and chemo-resistance, our results offer a new perspective as to why. Our findings shed new light on understanding the features of the 3D growth cell model and its application in basic research into clinical radiotherapy and medicine.
Collapse
Affiliation(s)
- Gang Xue
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenxin Ren
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China
| | - Peter W Grabham
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, 10032
| | - Yaxiong Chen
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China
| | - Jiayun Zhu
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China
| | - Yarong Du
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China
| | - Dong Pan
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoman Li
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Burong Hu
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Building 5-204, Lanzhou 730000, China
| |
Collapse
|
50
|
Anand P, Fu A, Teoh SH, Luo KQ. Application of a fluorescence resonance energy transfer (FRET)-based biosensor for detection of drug-induced apoptosis in a 3D breast tumor model. Biotechnol Bioeng 2015; 112:1673-82. [DOI: 10.1002/bit.25572] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Padmaja Anand
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 70 Nanyang Drive, Singapore 637457
| | - Afu Fu
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 70 Nanyang Drive, Singapore 637457
| | - Swee H. Teoh
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 70 Nanyang Drive, Singapore 637457
| | - Kathy Q. Luo
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 70 Nanyang Drive, Singapore 637457
| |
Collapse
|