1
|
Huber CM, Pavan TZ, Ullmann I, Heim C, Rupitsch SJ, Vossiek M, Alexiou C, Ermert H, Lyer S. A Review on Ultrasound-based Methods to Image the Distribution of Magnetic Nanoparticles in Biomedical Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:210-234. [PMID: 39537544 DOI: 10.1016/j.ultrasmedbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Magnetic nanoparticles (MNPs) have gained significant attention in biomedical engineering and imaging applications due to their unique magnetic and mechanical properties. With their high magnetization and small size, MNPs serve as excitation sources for magnetically heating to destroy tumors (magnetic hyperthermia) and magnetically controlled drug carriers in magnetic drug targeting. However, effectively visualizing the distribution of MNPs during research or potential clinical use with low-cost modalities remains a critical challenge. Although magnetic resonance imaging provides pre- and post-procedural imaging, it is considered to be high cost, and real-time imaging during clinical procedures is limited. In contrast, ultrasound-based imaging methods offer the advantage of providing the potential for immediate feedback during clinical use and are considered to be a low-cost modality. Ultrasound-based imaging techniques, including magnetomotive ultrasound, magnetoacoustic tomography, and thermoacoustic imaging, emerged as promising approaches for imaging the distribution of MNPs. These techniques offer the potential for real-time imaging, facilitating precise therapy monitoring. By exploring the strengths and limitations of various ultrasound-based imaging techniques for MNPs, this review seeks to provide comprehensive insights that can guide researchers in selecting suitable ultrasound-based modalities and inspire further advancements in this exciting field.
Collapse
Affiliation(s)
- Christian Marinus Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for Al-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Erlangen, Germany; Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Theo Z Pavan
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Ingrid Ullmann
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Heim
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Stefan J Rupitsch
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
| | - Martin Vossiek
- Institute of Microwaves and Photonics (LHFT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner Fresenius Foundation Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Helmut Ermert
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner Fresenius Foundation Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for Al-Controlled Nanomaterials (KINAM), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Gu Q, Zhu L. Heating Induced Nanoparticle Migration and Enhanced Delivery in Tumor Treatment Using Nanotechnology. Bioengineering (Basel) 2024; 11:900. [PMID: 39329642 PMCID: PMC11428587 DOI: 10.3390/bioengineering11090900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Nanoparticles have been developed as imaging contrast agents, heat absorbers to confine energy into targeted tumors, and drug carriers in advanced cancer treatment. It is crucial to achieve a minimal concentration of drug-carrying nanostructures or to induce an optimized nanoparticle distribution in tumors. This review is focused on understanding how local or whole-body heating alters transport properties in tumors, therefore leading to enhanced nanoparticle delivery or optimized nanoparticle distributions in tumors. First, an overview of cancer treatment and the development of nanotechnology in cancer therapy is introduced. Second, the importance of particle distribution in one of the hyperthermia approaches using nanoparticles in damaging tumors is discussed. How intensive heating during nanoparticle hyperthermia alters interstitial space structure to induce nanoparticle migration in tumors is evaluated. The next section reviews major obstacles in the systemic delivery of therapeutic agents to targeted tumors due to unique features of tumor microenvironments. Experimental observations on how mild local or whole-body heating boosts systemic nanoparticle delivery to tumors are presented, and possible physiological mechanisms are explored. The end of this review provides the current challenges facing clinicians and researchers in designing effective and safe heating strategies to maximize the delivery of therapeutic agents to tumors.
Collapse
Affiliation(s)
- Qimei Gu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Liang Zhu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Neelamraju PM, Gundepudi K, Sanki PK, Busi KB, Mistri TK, Sangaraju S, Dalapati GK, Ghosh KK, Ghosh S, Ball WB, Chakrabortty S. Potential applications for photoacoustic imaging using functional nanoparticles: A comprehensive overview. Heliyon 2024; 10:e34654. [PMID: 39166037 PMCID: PMC11334826 DOI: 10.1016/j.heliyon.2024.e34654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/22/2024] Open
Abstract
This paper presents a comprehensive overview of the potential applications for Photo-Acoustic (PA) imaging employing functional nanoparticles. The exploration begins with an introduction to nanotechnology and nanomaterials, highlighting the advancements in these fields and their crucial role in shaping the future. A detailed discussion of the various types of nanomaterials and their functional properties sets the stage for a thorough examination of the fundamentals of the PA effect. This includes a thorough chronological review of advancements, experimental methodologies, and the intricacies of the source and detection of PA signals. The utilization of amplitude and frequency modulation, design of PA cells, pressure sensor-based signal detection, and quantification methods are explored in-depth, along with additional mechanisms induced by PA signals. The paper then delves into the versatile applications of photoacoustic imaging facilitated by functional nanomaterials. It investigates the influence of nanomaterial shape, size variation, and the role of composition, alloys, and hybrid materials in harnessing the potential of PA imaging. The paper culminates with an insightful discussion on the future scope of this field, focusing specifically on the potential applications of photoacoustic (PA) effect in the domain of biomedical imaging and nanomedicine. Finally, by providing the comprehensive overview, the current work provides a valuable resource underscoring the transformative potential of PA imaging technique in biomedical research and clinical practice.
Collapse
Affiliation(s)
- Pavan Mohan Neelamraju
- Department of Electronics and Communication Engineering, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Karthikay Gundepudi
- Department of Electronics and Communication Engineering, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Pradyut Kumar Sanki
- Department of Electronics and Communication Engineering, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Kumar Babu Busi
- Department of Chemistry, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Tapan Kumar Mistri
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Goutam Kumar Dalapati
- Center for Nanofibers and Nanotechnology, Mechanical Engineering Department, National University of Singapore, Singapore, 117576
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921
| | - Siddhartha Ghosh
- Department of Physics, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | - Writoban Basu Ball
- Department of Biological Sciences, SRM University AP Andhra Pradesh, Andhra Pradesh, 522240, India
| | | |
Collapse
|
4
|
Alzahrani AR, Ibrahim IAA, Shahzad N, Shahid I, Alanazi IM, Falemban AH, Azlina MFN. An application of carbohydrate polymers-based surface-modified gold nanoparticles for improved target delivery to liver cancer therapy - A systemic review. Int J Biol Macromol 2023; 253:126889. [PMID: 37714232 DOI: 10.1016/j.ijbiomac.2023.126889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Gold nanoparticles have been broadly investigated as cancer diagnostic and therapeutic agents. Gold nanoparticles are a favorable drug delivery vehicle with their unique subcellular size and good biocompatibility. Chitosan, agarose, fucoidan, porphyran, carrageenan, ulvan and alginate are all examples of biologically active macromolecules. Since they are biocompatible, biodegradable, and irritant-free, they find extensive application in biomedical and macromolecules. The versatility of these compounds is enhanced because they are amenable to modification by functional groups like sulfation, acetylation, and carboxylation. In an eco-friendly preparation process, the biocompatibility and targeting of GNPs can be improved by functionalizing them with polysaccharides. This article provides an update on using carbohydrate-based GNPs in liver cancer treatment, imaging, and drug administration. Selective surface modification of several carbohydrate types and further biological uses of GNPs are focused on.
Collapse
Affiliation(s)
- Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohd Fahami Nur Azlina
- Department of Pharmacology, Faculty of Medicine, University Kebangsaan Malaysia, Malaysia
| |
Collapse
|
5
|
Silva DF, Melo ALP, Uchôa AFC, Pereira GMA, Alves AEF, Vasconcellos MC, Xavier-Júnior FH, Passos MF. Biomedical Approach of Nanotechnology and Biological Risks: A Mini-Review. Int J Mol Sci 2023; 24:16719. [PMID: 38069043 PMCID: PMC10706257 DOI: 10.3390/ijms242316719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has played a prominent role in biomedical engineering, offering innovative approaches to numerous treatments. Notable advances have been observed in the development of medical devices, contributing to the advancement of modern medicine. This article briefly discusses key applications of nanotechnology in tissue engineering, controlled drug release systems, biosensors and monitoring, and imaging and diagnosis. The particular emphasis on this theme will result in a better understanding, selection, and technical approach to nanomaterials for biomedical purposes, including biological risks, security, and biocompatibility criteria.
Collapse
Affiliation(s)
- Debora F. Silva
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
| | - Ailime L. P. Melo
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| | - Ana F. C. Uchôa
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Graziela M. A. Pereira
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Alisson E. F. Alves
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | | | - Francisco H. Xavier-Júnior
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Marcele F. Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| |
Collapse
|
6
|
Han S, Wang JTW, Yavuz E, Zam A, Rouatbi N, Utami RN, Liam-Or R, Griffiths A, Dickson W, Sosabowski J, Al-Jamal KT. Spatiotemporal tracking of gold nanorods after intranasal administration for brain targeting. J Control Release 2023; 357:606-619. [PMID: 37061195 PMCID: PMC10390340 DOI: 10.1016/j.jconrel.2023.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Intranasal administration is becoming increasingly more attractive as a fast delivery route to the brain for therapeutics circumventing the blood-brain barrier (BBB). Gold nanorods (AuNRs) demonstrate unique optical and biological properties compared to other gold nanostructures due to their high aspect ratio. In this study, we investigated for the first time the brain region-specific distribution of AuNRs and their potential as a drug delivery platform for central nervous system (CNS) therapy following intranasal administration to mice using a battery of analytical and imaging techniques. AuNRs were functionalized with a fluorescent dye (Cyanine5, Cy5) or a metal chelator (diethylenetriaminepentaacetic dianhydride, DTPA anhydride) to complex with Indium-111 via a PEG spacer for optical and nuclear imaging, respectively. Direct quantification of gold was achieved by inductively coupled plasma mass spectrometry. Rapid AuNRs uptake in mice brains was observed within 10 min following intranasal administration which gradually reduced over time. This was confirmed by the 3 imaging/analytical techniques. Autoradiography of sagittal brain sections suggested entry to the brain via the olfactory bulb followed by diffusion to other brain regions within 1 h of administration. The presence of AuNR in glioblastoma (GBM) tumors following intranasal administration was also proven which opens doors for AuNRs applications, as nose-to-brain drug delivery carriers, for treatment of a range of CNS diseases.
Collapse
Affiliation(s)
- Shunping Han
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Emine Yavuz
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; Advanced Technology Research and Application Center, Selcuk University, Aleaddin Keykubat Yerleskesi, Akademi Mah. Yeni Istanbul Cad. No: 355/C, Selcuklu, Konya, Turkey
| | - Alaa Zam
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Nadia Rouatbi
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Rifka Nurul Utami
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Revadee Liam-Or
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Alexander Griffiths
- London Metallomics Facility, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Wayne Dickson
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom; London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Jane Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom.
| |
Collapse
|
7
|
Somoza M, Rial R, Liu Z, Llovo IF, Reis RL, Mosqueira J, Ruso JM. Microfluidic Fabrication of Gadolinium-Doped Hydroxyapatite for Theragnostic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:501. [PMID: 36770462 PMCID: PMC9921701 DOI: 10.3390/nano13030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Among the several possible uses of nanoparticulated systems in biomedicine, their potential as theragnostic agents has received significant interest in recent times. In this work, we have taken advantage of the medical applications of Gadolinium as a contrast agent with the versatility and huge array of possibilities that microfluidics can help to create doped Hydroxyapatite nanoparticles with magnetic properties in an efficient and functional way. First, with the help of Computational Fluid Dynamics (CFD), we performed a complete and precise study of all the elements and phases of our device to guarantee that our microfluidic system worked in the laminar regime and was not affected by the presence of nanoparticles through the flow requisite that is essential to guarantee homogeneous diffusion between the elements or phases in play. Then the obtained biomaterials were physiochemically characterized by means of XRD, FE-SEM, EDX, confocal Raman microscopy, and FT-IR, confirming the successful incorporation of the lanthanide element Gadolinium in part of the Ca (II) binding sites. Finally, the magnetic characterization confirmed the paramagnetic behaviour of the nanoparticles, demonstrating that, with a simple and automatized system, it is possible to obtain advanced nanomaterials that can offer a promising and innovative solution in theragnostic applications.
Collapse
Affiliation(s)
- Manuel Somoza
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ramón Rial
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark—Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
| | - Iago F. Llovo
- QMatterPhotonics, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), Department of Applied Physics, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark—Parque de Ciência e Tecnologia Zona Industrial da Gandra Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Jesús Mosqueira
- QMatterPhotonics, Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials (iMATUS), Department of Applied Physics, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Recent advances on organelle specific Ru(II)/Ir(III)/Re(I) based complexes for photodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Zare A, Shamshiripour P, Lotfi S, Shahin M, Rad VF, Moradi AR, Hajiahmadi F, Ahmadvand D. Clinical theranostics applications of photo-acoustic imaging as a future prospect for cancer. J Control Release 2022; 351:805-833. [DOI: 10.1016/j.jconrel.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
|
10
|
Chang Y, Wang Q, Xu W, Huang X, Xu X, Han FY, Qiao R, Ediriweera GR, Peng H, Fu C, Liu K, Whittaker AK. Low-Fouling Gold Nanorod Theranostic Agents Enabled by a Sulfoxide Polymer Coating. Biomacromolecules 2022; 23:3866-3874. [PMID: 35977724 DOI: 10.1021/acs.biomac.2c00696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold nanorods (GNRs) are widely used in various biomedical applications such as disease imaging and therapy due to their unique plasmonic properties. To improve their bioavailability, GNRs often need to be coated with hydrophilic polymers so as to impart stealth properties. Poly(ethylene glycol) (PEG) has been long used as such a coating material for GNRs. However, there is increasing acknowledgement that the amphiphilic nature of PEG facilitates its interaction with protein molecules, leading to immune recognition and consequent side effects. This has motivated the search for new classes of low-fouling polymers with high hydrophilicity as alternative low-fouling surface coating materials for GNRs. Herein, we report the synthesis, characterization, and application of GNRs coated with highly hydrophilic sulfoxide-containing polymers. We investigated the effect of the sulfoxide polymer coating on the cellular uptake and in vivo circulation time of the GNRs and compared these properties with pegylated GNR counterparts. The photothermal effect and photoacoustic imaging of these polymer-coated GNRs were also explored, and the results show that these GNRs are promising as nanotheranostic particles for the treatment of cancer.
Collapse
Affiliation(s)
- Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Qiaoyun Wang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Weizhi Xu
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xin Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gayathri R Ediriweera
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
11
|
Zhuang D, Zhang H, Hu G, Guo B. Recent development of contrast agents for magnetic resonance and multimodal imaging of glioblastoma. J Nanobiotechnology 2022; 20:284. [PMID: 35710493 PMCID: PMC9204881 DOI: 10.1186/s12951-022-01479-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma (GBM) as the most common primary malignant brain tumor exhibits a high incidence and degree of malignancy as well as poor prognosis. Due to the existence of formidable blood–brain barrier (BBB) and the aggressive growth and infiltrating nature of GBM, timely diagnosis and treatment of GBM is still very challenging. Among different imaging modalities, magnetic resonance imaging (MRI) with merits including high soft tissue resolution, non-invasiveness and non-limited penetration depth has become the preferred tool for GBM diagnosis. Furthermore, multimodal imaging with combination of MRI and other imaging modalities would not only synergistically integrate the pros, but also overcome the certain limitation in each imaging modality, offering more accurate morphological and pathophysiological information of brain tumors. Since contrast agents contribute to amplify imaging signal output for unambiguous pin-pointing of tumors, tremendous efforts have been devoted to advances of contrast agents for MRI and multimodal imaging. Herein, we put special focus on summary of the most recent advances of not only MRI contrast agents including iron oxide-, manganese (Mn)-, gadolinium (Gd)-, 19F- and copper (Cu)-incorporated nanoplatforms for GBM imaging, but also dual-modal or triple-modal nanoprobes. Furthermore, potential obstacles and perspectives for future research and clinical translation of these contrast agents are discussed. We hope this review provides insights for scientists and students with interest in this area.
Collapse
Affiliation(s)
- Danping Zhuang
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, 518020, China
| | - Huifen Zhang
- Department of Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Genwen Hu
- Department of Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Han S, Lee H, Kim C, Kim J. Review on Multispectral Photoacoustic Analysis of Cancer: Thyroid and Breast. Metabolites 2022; 12:metabo12050382. [PMID: 35629886 PMCID: PMC9143964 DOI: 10.3390/metabo12050382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
In recent decades, photoacoustic imaging has been used widely in biomedical research, providing molecular and functional information from biological tissues in vivo. In addition to being used for research in small animals, photoacoustic imaging has also been utilized for in vivo human studies, achieving a multispectral photoacoustic response in deep tissue. There have been several clinical trials for screening cancer patients by analyzing multispectral responses, which in turn provide metabolomic information about the underlying biological tissues. This review summarizes the methods and results of clinical photoacoustic trials available in the literature to date to classify cancerous tissues, specifically of the thyroid and breast. From the review, we can conclude that a great potential exists for photoacoustic imaging to be used as a complementary modality to improve diagnostic accuracy for suspicious tumors, thus significantly benefitting patients’ healthcare.
Collapse
Affiliation(s)
- Seongyi Han
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.H.); (H.L.)
| | - Haeni Lee
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.H.); (H.L.)
| | - Chulhong Kim
- Departments of Convergence IT Engineering, Mechanical Engineering, and Electrical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Korea; (S.H.); (H.L.)
- Correspondence:
| |
Collapse
|
13
|
Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022; 51:2601-2680. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | | | - Giorgio Speranza
- CMM - FBK, v. Sommarive 18, 38123 Trento, Italy.,IFN - CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alireza Shourangiz Haghighi
- Department of Mechanical Engineering, Shiraz University of Technology, Modarres Boulevard, 13876-71557, Shiraz, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Cláudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, 8380492 Santiago, Chile
| | - Jee Woong Lee
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nicholas V Apollo
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Germany
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Michael R Hamblin
- Laser Research Center, University of Johannesburg, Doorfontein 2028, South Africa.
| |
Collapse
|
14
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
15
|
D’Hollander A, Van Roosbroeck R, Trekker J, Stakenborg T, Dresselaers T, Vande Velde G, Struys T, Lambrichts I, Lammertyn J, Lagae L, Himmelreich U. Synthetic Antiferromagnetic Gold Nanoparticles as Bimodal Contrast Agents in MRI and CT-An Experimental In Vitro and In Vivo Study. Pharmaceutics 2021; 13:pharmaceutics13091494. [PMID: 34575570 PMCID: PMC8472775 DOI: 10.3390/pharmaceutics13091494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/16/2023] Open
Abstract
The use of multimodal contrast agents can potentially overcome the intrinsic limitations of individual imaging methods. We have validated synthetic antiferromagnetic nanoparticles (SAF-NPs) as bimodal contrast agents for in vitro cell labeling and in vivo cell tracking using magnetic resonance imaging (MRI) and computed tomography (CT). SAF-NP-labeled cells showed high contrast in MRI phantom studies (r2* = 712 s−1 mM−1), while pelleted cells showed clear contrast enhancement in CT. After intravenous SAF-NP injection, nanoparticles accumulated in the liver and spleen, as visualized in vivo by significant MRI contrast enhancement. Intravenous injection of SAF-NP-labeled cells resulted in cell accumulation in the lungs, which was clearly detectable by using CT but not by using MRI. SAF-NPs proved to be very efficient cell labeling agents for complementary MRI- and CT-based cell tracking. Bimodal monitoring of SAF-NP labeled cells is in particular of interest for applications where the applied imaging methods are not able to visualize the particles and/or cells in all organs.
Collapse
Affiliation(s)
- Antoine D’Hollander
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
| | - Ruben Van Roosbroeck
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
- Division of Mechatronics, Department of Biosystems, Biostatistics and Sensors, KU Leuven, 3001 Leuven, Belgium;
| | - Jesse Trekker
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
| | - Tim Stakenborg
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
| | - Tom Dresselaers
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
| | - Greetje Vande Velde
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
| | - Tom Struys
- Lab of Histology, Biomedical Research Institute, Hasselt University, Agora Laan Gebouw C, 3590 Diepenbeek, Belgium; (T.S.); (I.L.)
| | - Ivo Lambrichts
- Lab of Histology, Biomedical Research Institute, Hasselt University, Agora Laan Gebouw C, 3590 Diepenbeek, Belgium; (T.S.); (I.L.)
| | - Jeroen Lammertyn
- Division of Mechatronics, Department of Biosystems, Biostatistics and Sensors, KU Leuven, 3001 Leuven, Belgium;
| | - Liesbet Lagae
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
- Department of Physics, Faculty of Sciences, Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
- Correspondence: ; Tel.: +32-16-330-925
| |
Collapse
|
16
|
Chen Y, Xu C, Cheng Y, Cheng Q. Photostability enhancement of silica-coated gold nanostars for photoacoustic imaging guided photothermal therapy. PHOTOACOUSTICS 2021; 23:100284. [PMID: 34354923 PMCID: PMC8322131 DOI: 10.1016/j.pacs.2021.100284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 05/14/2023]
Abstract
Gold nanostars (GNSs) are promising contrast agents for simultaneous photothermal therapy and photoacoustic imaging (PAI) owing to their excellent photothermal conversion efficiency. However, GNSs are easily reshaped under transient high-intensity laser pulses, which can cause a rapid shift in the light absorption peak, resulting in a decrease in both therapeutic and monitoring effects. In this work, we synthesized GNSs without toxic surfactants and coated them with a silica shell to retain their shape, thus maintaining their photostability. The excellent performance of these silica-coated GNSs was verified through both in vitro and in vivo PAI experiments. The silica-coated GNSs exhibited a threefold improvement in photoacoustic stability, as compared with the non-coated GNSs. The proposed silica coating method for GNSs was found to improve the photostability of GNSs, making them efficient, safe, and reliable nanoparticles for PAI.
Collapse
Affiliation(s)
- Yingna Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Chang Xu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, PR China
| | - Yu Cheng
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, PR China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
17
|
Ximendes E, Marin R, Shen Y, Ruiz D, Gómez‐Cerezo D, Rodríguez‐Sevilla P, Lifante J, Viveros‐Méndez PX, Gámez F, García‐Soriano D, Salas G, Zalbidea C, Espinosa A, Benayas A, García‐Carrillo N, Cussó L, Desco M, Teran FJ, Juárez BH, Jaque D. Infrared-Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100077. [PMID: 34117667 PMCID: PMC11468761 DOI: 10.1002/adma.202100077] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/10/2021] [Indexed: 05/05/2023]
Abstract
Deliberate and local increase of the temperature within solid tumors represents an effective therapeutic approach. Thermal therapies embrace this concept leveraging the capability of some species to convert the absorbed energy into heat. To that end, magnetic hyperthermia (MHT) uses magnetic nanoparticles (MNPs) that can effectively dissipate the energy absorbed under alternating magnetic fields. However, MNPs fail to provide real-time thermal feedback with the risk of unwanted overheating and impeding on-the-fly adjustment of the therapeutic parameters. Localization of MNPs within a tissue in an accurate, rapid, and cost-effective way represents another challenge for increasing the efficacy of MHT. In this work, MNPs are combined with state-of-the-art infrared luminescent nanothermometers (LNTh; Ag2 S nanoparticles) in a nanocapsule that simultaneously overcomes these limitations. The novel optomagnetic nanocapsule acts as multimodal contrast agents for different imaging techniques (magnetic resonance, photoacoustic and near-infrared fluorescence imaging, optical and X-ray computed tomography). Most crucially, these nanocapsules provide accurate (0.2 °C resolution) and real-time subcutaneous thermal feedback during in vivo MHT, also enabling the attainment of thermal maps of the area of interest. These findings are a milestone on the road toward controlled magnetothermal therapies with minimal side effects.
Collapse
Affiliation(s)
- Erving Ximendes
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Yingli Shen
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Diego Ruiz
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Present address:
Madrid Institute of Materials Science(ICMM)CSIC. Sor Juana Inés de la CruzMadridCantoblanco28049Spain
| | | | | | - Jose Lifante
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Perla X. Viveros‐Méndez
- Universidad Autónoma de ZacatecasUnidad Académica de Ciencia y Tecnología de la Luz y la MateriaCarretera Zacatecas‐Guadalajara km. 6Ejido la escondidaZacatecasZacatecas98160México
| | - Francisco Gámez
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
- Present address:
Department of Physical Chemistry, Faculty of ScienceUniversity of GranadaAvenida de la Fuente Nueva S/NGranada18071Spain
| | | | - Gorka Salas
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Carmen Zalbidea
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
| | - Ana Espinosa
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Antonio Benayas
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| | | | - Lorena Cussó
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadrid28911Spain
- Instituto de Investigación Sanitaria Gregorio MarañónMadrid28007Spain
- Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)Madrid28029Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid28029Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadrid28911Spain
- Instituto de Investigación Sanitaria Gregorio MarañónMadrid28007Spain
- Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)Madrid28029Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid28029Spain
| | - Francisco J. Teran
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Beatriz H. Juárez
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| |
Collapse
|
18
|
Lavorato GC, Das R, Alonso Masa J, Phan MH, Srikanth H. Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications. NANOSCALE ADVANCES 2021; 3:867-888. [PMID: 36133290 PMCID: PMC9418677 DOI: 10.1039/d0na00828a] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/06/2021] [Indexed: 05/04/2023]
Abstract
Heating at the nanoscale is the basis of several biomedical applications, including magnetic hyperthermia therapies and heat-triggered drug delivery. The combination of multiple inorganic materials in hybrid magnetic nanoparticles provides versatile platforms to achieve an efficient heat delivery upon different external stimuli or to get an optical feedback during the process. However, the successful design and application of these nanomaterials usually require intricate synthesis routes and their magnetic response is still not fully understood. In this review we give an overview of the novel systems reported in the last few years, which have been mostly obtained by organic phase-based synthesis and epitaxial growth processes. Since the heating efficiency of hybrid magnetic nanoparticles often relies on the exchange-interaction between their components, we discuss various interface-phenomena that are responsible for their magnetic properties. Finally, followed by a brief comment on future directions in the field, we outline recent advances on multifunctional nanoparticles that can boost the heating power with light and combine heating and temperature sensing in a single nanomaterial.
Collapse
Affiliation(s)
- Gabriel C Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET), Universidad Nacional de La Plata 1900 La Plata Argentina
| | - Raja Das
- Faculty of Materials Science and Engineering and Phenikaa Institute for Advanced Study (PIAS), Phenikaa University Hanoi 10000 Vietnam
- Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group 167 Hoang Ngan Hanoi 10000 Vietnam
| | | | - Manh-Huong Phan
- Department of Physics, University of South Florida 33620 Tampa FL USA
| | | |
Collapse
|
19
|
Cavigli L, Khlebtsov BN, Centi S, Khlebtsov NG, Pini R, Ratto F. Photostability of Contrast Agents for Photoacoustics: The Case of Gold Nanorods. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E116. [PMID: 33419130 PMCID: PMC7825532 DOI: 10.3390/nano11010116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Plasmonic particles as gold nanorods have emerged as powerful contrast agents for critical applications as the photoacoustic imaging and photothermal ablation of cancer. However, their unique efficiency of photothermal conversion may turn into a practical disadvantage, and expose them to the risk of overheating and irreversible photodamage. Here, we outline the main ideas behind the technology of photoacoustic imaging and the use of relevant contrast agents, with a main focus on gold nanorods. We delve into the processes of premelting and reshaping of gold nanorods under illumination with optical pulses of a typical duration in the order of few ns, and we present different approaches to mitigate this issue. We undertake a retrospective classification of such approaches according to their underlying, often implicit, principles as: constraining the initial shape; or speeding up their thermal coupling to the environment by lowering their interfacial thermal resistance; or redistributing the input energy among more particles. We discuss advantages, disadvantages and contexts of practical interest where one solution may be more appropriate than the other.
Collapse
Affiliation(s)
- Lucia Cavigli
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| | - Boris N. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (B.N.K.); (N.G.K.)
| | - Sonia Centi
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| | - Nikolai G. Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia; (B.N.K.); (N.G.K.)
- Saratov State University, 83 Ulitsa Astrakhanskaya, 410026 Saratov, Russia
| | - Roberto Pini
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| | - Fulvio Ratto
- Istituto di Fisica Applicata Nello Carrara, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (S.C.); (R.P.); (F.R.)
| |
Collapse
|
20
|
Nicolson F, Kircher MF. Theranostics: Agents for Diagnosis and Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
21
|
Tian D, Xu H, Xiao B, Zhou X, Liu X, Zhou Z, Patra HK, Slater N, Tang J, Shen Y. Single-step formulation of levodopa-based nanotheranostics - strategy for ultra-sensitive high longitudinal relaxivity MRI guided switchable therapeutics. Biomater Sci 2020; 8:1615-1621. [PMID: 31967620 DOI: 10.1039/c9bm01799b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nanotheranostics (combined diagnosis and therapy) is emerging as an integral part of future therapeutic strategies. However, the development and fabrication of a nanotheranostic module involves multistep processes and always faces formulation challenges. The complexity involved in its multi-step formulations hinders its reproducible industrial production and clinical translation. Therefore, a facile synthesis of multifunctional nanotheranostics is critical to its translational success. In this report, we have developed a one-pot facile strategy to prepare a MRI-visible photothermal theranostic switchable module (T-SWITCH). These nanoparticles are synthesized through polymerization of levodopa together with the reduction of KMnO4 in the presence of silk sericin for the formation of manganese dioxide particles within the T-SWITCH. The synthesized T-SWITCH showed a uniform size distribution of around 95.77 nm and high longitudinal relaxivity coefficient (r1) of up to 61.94 mM-1 s-1. The reported r1 of the T-SWITCH is exceedingly higher than that of any other previously reported manganese-based contrast agents with first-rate in vitro and in vivo contrast enhancement capability. The T-SWITCH can be activated to switch its therapeutic mode using near-infrared (NIR) light. It exhibited strong excitable absorption in the safer and biological NIR window between 650 and 900 nm. We have validated the significant anti-cancer therapeutic efficacy of T-SWITCH both in vitro and in vivo through switchable photothermal therapy.
Collapse
Affiliation(s)
- Dan Tian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Biological Engineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China.
| | - Hongxia Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Biological Engineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China.
| | - Bing Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Biological Engineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China.
| | - Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Biological Engineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China.
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Biological Engineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China.
| | - Hirak K Patra
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Nigel Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Biological Engineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China.
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Biological Engineering, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China.
| |
Collapse
|
22
|
Xavierselvan M, Singh MKA, Mallidi S. In Vivo Tumor Vascular Imaging with Light Emitting Diode-Based Photoacoustic Imaging System. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4503. [PMID: 32806575 PMCID: PMC7472236 DOI: 10.3390/s20164503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
Abstract
Photoacoustic (PA) imaging has shown tremendous promise for imaging tumor vasculature and its function at deeper penetration depths without the use of exogenous contrast agents. Traditional PA imaging systems employ expensive and bulky class IV lasers with low pulse repetition rate, due to which its availability for preclinical cancer research is hampered. In this study, we evaluated the capability of a Light-Emitting Diode (LED)-based PA and ultrasound (US) imaging system for monitoring heterogeneous microvasculature in tumors (up to 10 mm in depth) and quantitatively compared the PA images with gold standard histology images. We used a combination of a 7 MHz linear array US transducer and 850 nm excitation wavelength LED arrays to image blood vessels in a subcutaneous tumor model. After imaging, the tumors were sectioned and stained for endothelial cells to correlate with PA images across similar cross-sections. Analysis of 30 regions of interest in tumors from different mice showed a statistically significant R-value of 0.84 where the areas with high blood vessel density had high PA response while low blood vessel density regions had low PA response. Our results confirm that LED-based PA and US imaging can provide 2D and 3D images of tumor vasculature and the potential it has as a valuable tool for preclinical cancer research.
Collapse
Affiliation(s)
- Marvin Xavierselvan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
| | - Mithun Kuniyil Ajith Singh
- Research & Business Development Division, Cyberdyne INC, Cambridge Innovation Center, 3013 Rotterdam, The Netherlands;
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
23
|
Yao C, Rudnitzki F, He Y, Zhang Z, Hüttmann G, Rahmanzadeh R. Cancer cell-specific protein delivery by optoporation with laser-irradiated gold nanorods. JOURNAL OF BIOPHOTONICS 2020; 13:e202000017. [PMID: 32306554 DOI: 10.1002/jbio.202000017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The delivery of macromolecules into living cells is challenging since in most cases molecules are endocytosed and remain in the endo-lysosomal pathway where they are degraded before reaching their target. Here, a method is presented to selectively improve cell membrane permeability by nanosecond laser irradiation of gold nanorods (GNRs) with visible or near-infrared irradiation in order to deliver proteins across the plasma membrane, avoiding the endo lysosomal pathway. GNRs were labeled with the anti-EGFR (epidermal growth factor receptor) antibody Erbitux to target human ovarian carcinoma cells OVCAR-3. Irradiation with nanosecond laser pulses at wavelengths of 532 nm or 730 nm is used for transient permeabilization of the cell membranes. As a result of the irradiation, the uptake of an anti-Ki-67 antibody was observed in about 50 % of the cells. The results of fluorescence lifetime imaging show that the GNR detached from the membrane after irradiation.
Collapse
Affiliation(s)
- Cuiping Yao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Institute of Biomedical Optics, University of lübeck, Lübeck, Germany
| | - Florian Rudnitzki
- Institute of Biomedical Optics, University of lübeck, Lübeck, Germany
| | - Yida He
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Gereon Hüttmann
- Institute of Biomedical Optics, University of lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), Member of the German Center for lung Research (dZl), Kiel, Germany
| | | |
Collapse
|
24
|
Tian Q, Cai Y, Li N, Liu Q, Gu B, Chen ZG, Song S. Ellagic acid-Fe nanoscale coordination polymer with higher longitudinal relaxivity for dual-modality T 1-weighted magnetic resonance and photoacoustic tumor imaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102219. [PMID: 32474078 DOI: 10.1016/j.nano.2020.102219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022]
Abstract
Dual-modality contrast agents for T1-weighted magnetic resonance imaging (MRI) and photoacoustic imaging have attracted substantial attention as they combine the advantages of unlimited penetration depth and high sensitivity. However, most of the reported agents are Gd-based materials that exhibit nephrotoxicity, and few studies have focused on Fe-based materials owing to their lower relaxivity. This work describes the development of an ellagic acid (EA)-Fe nanoscale coordination polymer with high longitudinal relaxivity and strong near-infrared absorption for dual-modality T1-weighted MRI and photoacoustic imaging. The longitudinal relaxivity (r1) of the prepared EA-Fe@BSA nanoparticles was 2.54 mM-1 s-1, an increase of 185% compared with previously reported gallic acid-Fe nanoparticles. Furthermore, in vitro and in vivo experiments demonstrate that the EA-Fe@BSA NPs are an excellent T1-weighted MRI and photoacoustic dual-modality contrast agent with the advantages of convenient synthesis and low toxicity, exhibiting great potential for clinical use in tumor imaging.
Collapse
Affiliation(s)
- Qiwei Tian
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China; College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Center for Biomedical Imaging, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Yu Cai
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Nan Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Center for Biomedical Imaging, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Center for Biomedical Imaging, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Center for Biomedical Imaging, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Zhi-Gang Chen
- School of Mechanical & Mining Engineering, University of Queensland, Brisbane, Australia.
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Center for Biomedical Imaging, Fudan University, Shanghai, China; Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.
| |
Collapse
|
25
|
Gold Nanoparticles in Glioma Theranostics. Pharmacol Res 2020; 156:104753. [PMID: 32209363 DOI: 10.1016/j.phrs.2020.104753] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Abstract
Despite many endeavors to treat malignant gliomas in the last decades, the median survival of patients has not significantly improved. The infiltrative nature of high-grade gliomas and the impermeability of the blood-brain barrier to the most therapeutic agents remain major hurdles, impeding an efficacious treatment. Theranostic platforms bridging diagnosis and therapeutic modalities aim to surmount the current limitations in diagnosis and therapy of glioma. Gold nanoparticles (AuNPs) due to their biocompatibility and tunable optical properties have widely been utilized for an assortment of theranostic purposes. In this Review, applications of AuNPs as imaging probes, drug/gene delivery systems, radiosensitizers, photothermal transducers, and multimodal theranostic agents in malignant gliomas are discussed. This Review also aims to provide a perspective on cancer theranostic applications of AuNPs in future clinical trials.
Collapse
|
26
|
Espinosa A, Reguera J, Curcio A, Muñoz-Noval Á, Kuttner C, Van de Walle A, Liz-Marzán LM, Wilhelm C. Janus Magnetic-Plasmonic Nanoparticles for Magnetically Guided and Thermally Activated Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904960. [PMID: 32077633 DOI: 10.1002/smll.201904960] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/15/2020] [Indexed: 04/14/2023]
Abstract
Progress of thermal tumor therapies and their translation into clinical practice are limited by insufficient nanoparticle concentration to release therapeutic heating at the tumor site after systemic administration. Herein, the use of Janus magneto-plasmonic nanoparticles, made of gold nanostars and iron oxide nanospheres, as efficient therapeutic nanoheaters whose on-site delivery can be improved by magnetic targeting, is proposed. Single and combined magneto- and photo-thermal heating properties of Janus nanoparticles render them as compelling heating elements, depending on the nanoparticle dose, magnetic lobe size, and milieu conditions. In cancer cells, a much more effective effect is observed for photothermia compared to magnetic hyperthermia, while combination of the two modalities into a magneto-photothermal treatment results in a synergistic cytotoxic effect in vitro. The high potential of the Janus nanoparticles for magnetic guiding confirms them to be excellent nanostructures for in vivo magnetically enhanced photothermal therapy, leading to efficient tumor growth inhibition.
Collapse
Affiliation(s)
- Ana Espinosa
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205, Paris cedex 13, France
- IMDEA Nanociencia, c/ Faraday, 9, 28049, Madrid, Spain
| | - Javier Reguera
- CIC biomaGUNE and Ciber-BBN, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Alberto Curcio
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205, Paris cedex 13, France
| | - Álvaro Muñoz-Noval
- Dpto. Física Materiales, Facultad CC. Físicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Christian Kuttner
- CIC biomaGUNE and Ciber-BBN, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain
| | - Aurore Van de Walle
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205, Paris cedex 13, France
| | - Luis M Liz-Marzán
- CIC biomaGUNE and Ciber-BBN, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205, Paris cedex 13, France
| |
Collapse
|
27
|
Li NS, Lin WL, Hsu YP, Chen YT, Shiue YL, Yang HW. Combined Detection of CA19-9 and MUC1 Using a Colorimetric Immunosensor Based on Magnetic Gold Nanorods for Ultrasensitive Risk Assessment of Pancreatic Cancer. ACS APPLIED BIO MATERIALS 2019; 2:4847-4855. [PMID: 35021484 DOI: 10.1021/acsabm.9b00616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We herein report a facile approach for developing an enzyme-free colorimetric immunosensor based on a magnetic iron oxide (IO)-coated gold nanorod (MGNR) nanocomposite with high electron transfer ability to accelerate the color bleaching reaction of methyl orange (MO) in the presence of NaBH4 for ultrasensitive detection of cancer antigens. In the case of MO, the reaction rate of MGNRs showed approximately 45.6-fold and 1520.8-fold higher than that of Cys-GNRs and NaBH4, respectively. The proposed colorimetric immunosensor was demonstrated to enable simple, cost-effective, sensitive, and specific carbohydrate antigen 19-9 (CA19-9) and mucin 1 (MUC1) detection for risk evaluation of pancreatic cancer (PC) with a small volume of serum sample without the use of any enhancing solutions or enzymes. By increasing the concentration of CA19-9 and MUC1, more MGNRs remained in the plate well to enhance the color bleaching of MO. As a proof-of-concept, the limit of detection (LOD) of 3.5 × 10-5 U/mL for CA19-9 and 5.2 × 10-6 U/mL for MUC1 was obtained with a wide linear quantification range from 8.6 × 10-5 U/mL to 1.4 × 10-2 U/mL for CA19-9 and 1.3 × 10-5 U/mL to 2.1 × 10-3 U/mL for MUC1, suggesting potential clinical applications for the early risk evaluation of PC.
Collapse
Affiliation(s)
- Nan-Si Li
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Weng-Ling Lin
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Ying-Pei Hsu
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ying-Tzu Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
28
|
Wang P, Sun S, Ma H, Sun S, Zhao D, Wang S, Liang X. Treating tumors with minimally invasive therapy: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110198. [PMID: 31923997 DOI: 10.1016/j.msec.2019.110198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
With high level of morbidity and mortality, tumor is one of the deadliest diseases worldwide. Aiming to tackle tumor, researchers have developed a lot of strategies. Among these strategies, the minimally invasive therapy (MIT) is very promising, for its capability of targeting tumor cells and resulting in a small incision or no incisions. In this review, we will first illustrate some mechanisms and characteristics of tumor metastasis from the primary tumor to the secondary tumor foci. Then, we will briefly introduce the history, characteristics, and advantages of some of the MITs. Finally, emphasis will be, respectively, focused on an overview of the state-of-the-art of the HIFU-, PDT-, PTT-and SDT-based anti-tumor strategies on each stage of tumor metastasis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Huide Ma
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Sujuan Sun
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Duo Zhao
- Ordos Center Hospital, Ordos, Inner Mongolia, 017000, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
29
|
Yang Q, Jin H, Gao Y, Lin J, Yang H, Yang S. Photostable Iridium(III)-Cyanine Complex Nanoparticles for Photoacoustic Imaging Guided Near-Infrared Photodynamic Therapy in Vivo. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15417-15425. [PMID: 30964627 DOI: 10.1021/acsami.9b04098] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The iridium(III)-cyanine complex (IrCy) was fabricated by conjugating an iridium(III) complex to a cyanine dye with an intense near-infrared (NIR) absorption. IrCy complex nanoparticles (NPs) with high water solubility and photostability were prepared by a solvent evaporation-induced self-assembly strategy. Considering their effective photacoustic (PA) imaging and generation of 1O2 property with 808 nm laser irradiation in aqueous solution, PA imaging guided NIR-driven photodynamic therapy in vivo was effectively conducted in the 4T1 xenograft model. We developed a real-time PA imaging methodology to investigate the pharmacokinetics, tumor targeting, and biodistribution of IrCy NPs. Taking advantage of the analysis of the PA signal of the common iliac vein, the blood circulation half-life of IrCy NPs in mice was calculated to be ∼18 h, and the enhanced permeability and retention effect of IrCy NPs offered the maximum targeting property in the tumor at about 24 h. The obvious change of PA imaging signal in kidney and bladder confirmed IrCy NPs should be excreted partially from the urine system, and the PA signal decreased from 12.5× to 2.8× in the liver, and from 28.8× to 9.4× in the spleen also confirmed the hepatic metabolic pathway.
Collapse
Affiliation(s)
- Qi Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 , China
| | - Hongyu Jin
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 , China
| | - Yucong Gao
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 , China
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 , China
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 , China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials , Shanghai Normal University , Shanghai , 200234 , China
| |
Collapse
|
30
|
Das P, Fatehbasharzad P, Colombo M, Fiandra L, Prosperi D. Multifunctional Magnetic Gold Nanomaterials for Cancer. Trends Biotechnol 2019; 37:995-1010. [PMID: 30862388 DOI: 10.1016/j.tibtech.2019.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
Abstract
The integration of multiple imaging and therapeutic agents into a customizable nanoplatform for accurate identification and rapid prevention of cancer is attracting great attention. Among the available theranostic nanosystems, magnetic gold nanoparticles are particularly promising as they exhibit unique physicochemical properties that can support multiple functions, including cancer diagnosis by magnetic resonance imaging, X-ray computed tomography, Raman and photoacoustic imaging, drug delivery, and plasmonic photothermal and photodynamic therapies. This review gives an overview of recent advances in the fabrication of multifunctional gold nanohybrids with magnetic and optical properties and their successful demonstration in multimodal imaging and therapy of cancer. Concerns around toxicity of these nanomaterials are also discussed in view of an imminent transition to clinical practice.
Collapse
Affiliation(s)
- Pradip Das
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Parisa Fatehbasharzad
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Nizza 52, 10126 Torino, Italy
| | - Miriam Colombo
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Luisa Fiandra
- Dipartimento di Scienze dell'Ambiente e della Terra, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | - Davide Prosperi
- NanoBioLab, Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy; Nanomedicine Laboratory, ICS Maugeri S.p.A. SB, via S. Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
31
|
Qin L, Niu D, Jiang Y, He J, Jia X, Zhao W, Li P, Li Y. Confined growth of multiple gold nanorices in dual-mesoporous silica nanospheres for improved computed tomography imaging and photothermal therapy. Int J Nanomedicine 2019; 14:1519-1532. [PMID: 30880962 PMCID: PMC6396883 DOI: 10.2147/ijn.s184192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION In this work, we have developed a novel "confined-growth" strategy to synthesize PEGylated multiple gold nanorices-encapsulated dual-mesoporous silica nanospheres (designated as PEGylated MGNRs@DMSSs) containing both small mesopores (2.5 nm) in the shell and large mesopores (21.7 nm) in the core based on a well-established, seed-mediated growth method. The photothermal effect and CT imaging ability were also studied. METHODS The nanoparticles were characterized by Fourier transform infrared (FT-IR) spectra, N2 absorption isotherms, Field-emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Confocal microscopy. RESULTS The longitudinally-localized surface (LSPR) absorption properties of MGNRs@DMSSs can be easily tuned by altering the amount of HAuCl4 in the gold growth solution. Additionally, the resultant PEGylated MGNRs@DMSSs have monodispersed, spherical morphology and good colloidal stability in an aqueous solution. More importantly, when exposed to NIR irradiation, the PEGylated MGNRs@DMSSs exhibit both higher temperature increments and better photothermal effects than that of single PEGylated gold nanorods at nearly an equivalent LSPR absorption. In addition, as CT contrast agents, the PEGylated MGNRs@DMSSs display a better CT imaging performance, in comparison with single PEGylated gold nanorods at the same Au concentration. CONCLUSION Taken together, results indicate the potential for MGNRs@DMSSs used in CT imaging-guided photothermal therapy. Such a simple "confined-growth" strategy within a porous matrix offers a promising platform to design and prepare novel metal(s) oxide@silica nanocomposites for use in further cancer bio-imaging and therapy.
Collapse
Affiliation(s)
- Limei Qin
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| | - Dechao Niu
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| | - Yu Jiang
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| | - Jianping He
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| | - Xiaobo Jia
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| | - Wenru Zhao
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| | - Pei Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yongsheng Li
- Laboratory of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China, ;
| |
Collapse
|
32
|
Wang J, Yao C, Shen B, Zhu X, Li Y, Shi L, Zhang Y, Liu J, Wang Y, Sun L. Upconversion-Magnetic Carbon Sphere for Near Infrared Light-Triggered Bioimaging and Photothermal Therapy. Theranostics 2019; 9:608-619. [PMID: 30809296 PMCID: PMC6376195 DOI: 10.7150/thno.27952] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
Nanoparticle-based theranostics combines tumor imaging and cancer therapy in one platform, but the synthesis of theranostic agents is impeded by chemical groups on the surface and the size and morphology of the components. Strategies to construct a multifunctional platform for bioimaging and photothermal therapy (PTT) are urgently needed. A new upconversion-magnetic agent (FeCUPs) based on hollow carbon spheres, which is both a photothermal agent and a dual carrier of luminescent and magnetic nanoparticles, provides an effective approach for tumor elimination. Methods: The morphology of FeCUPs was characterized for the construction and size adjustment of the theranostic agent using transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy and high angle annular dark field scanning transmission electron microscopy. The distribution of FeCUPs was tracked under in-situ upconversion luminescence (UCL) imaging and magnetic resonance imaging (MRI) in vivo. Photothermal therapy was carried out on tumor-bearing mice, after which the toxicity of PTT was evaluated by a blood biochemistry test and histological section analysis. Results: Stable and uniform loading of luminescent nanocomposites on three-dimensional carbon materials is reported for the first time. Based on the mechanism of synthesis, the size of the hybrid particles was adjusted from micrometers to nanometers. External magnetic field-enhanced photothermal therapy with multi-model imaging was accomplished using FeCUPs. Moreover, no cancer recurrence was found during 14 days of recovery without PTT. Conclusions: Hollow carbon spheres, photothermal agents loaded with upconversion nanoparticles inside and magnetic nanoparticles outside were prepared for photothermal therapy. The aggregation of FeCUPs in tumors by the local magnetic field was verified by MRI and UCL imaging, and PTT was enhanced.
Collapse
Affiliation(s)
- Jiaxin Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, P. R. China
| | - Chenjie Yao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Bin Shen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Liyi Shi
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, P. R. China
| | - Yong Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, P. R. China
| | - Yanli Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lining Sun
- Research Center of Nano Science and Technology, Shanghai University, Shanghai, 200444, P. R. China
- School of Material Science and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
33
|
Mou C, Yang Y, Bai Y, Yuan P, Wang Y, Zhang L. Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy. J Mater Chem B 2019; 7:1246-1257. [DOI: 10.1039/c8tb03056a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy.
Collapse
Affiliation(s)
- Chongyan Mou
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yang Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Yan Bai
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Pei Yuan
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yiwu Wang
- Experimental Teaching and Management Center
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Liangke Zhang
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| |
Collapse
|
34
|
Maturi M, Locatelli E, Monaco I, Comes Franchini M. Current concepts in nanostructured contrast media development for in vivo photoacoustic imaging. Biomater Sci 2019; 7:1746-1775. [DOI: 10.1039/c8bm01444b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To overcome the endogenous photoacoustic contrast arising from endogenous species, specific contrast agents need to be developed, allowing PAI to successfully identify targeted contrast in the range of wavelength in which the interference from the biomatrix is minimized.
Collapse
Affiliation(s)
- Mirko Maturi
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- 40136 Bologna
- Italy
| | - Erica Locatelli
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- 40136 Bologna
- Italy
| | - Ilaria Monaco
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- 40136 Bologna
- Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- 40136 Bologna
- Italy
| |
Collapse
|
35
|
Li P, Wu Y, Li D, Su X, Luo C, Wang Y, Hu J, Li G, Jiang H, Zhang W. Seed-Mediated Synthesis of Tunable-Aspect-Ratio Gold Nanorods for Near-Infrared Photoacoustic Imaging. NANOSCALE RESEARCH LETTERS 2018; 13:313. [PMID: 30288620 PMCID: PMC6172158 DOI: 10.1186/s11671-018-2734-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/25/2018] [Indexed: 05/20/2023]
Abstract
Tunable-aspect ratio gold nanorods have been synthesized by a modified seed-mediated synthesis method. Ascorbic acid was employed as a shape controller to induce anisotropic growth, which made the aspect ratio of the synthesized gold nanorods range from 8.5 to 15.6. These nanorods possess tunable longitudinal surface plasmon resonance absorption band, covering a broad near-infrared (NIR) range, from ~ 680 to 1100 nm. When modified with thiol-polyethylene glycol (SH-PEG), the synthesized Au nanorods showed excellent biocompatibility and stability, which foreshadowed the great potential of their NIR application as photoacoustic contrast agent. Due to their adjustable absorbance in the NIR, the synthesized Au nanorods could offer stronger contrast (3.1 times to the control group without contrast agent used) and higher signal-noise ratio values (SNR; 5.6 times to the control group) in photoacoustic imaging, both in vitro and in vivo experiments. Our work presented here not only added some novel Au-based photoacoustic contrast agents but also described a possibility of contrast agent preparation covering the whole biological NIR window.
Collapse
Affiliation(s)
- Pengwei Li
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024 Shanxi China
| | - Yiduo Wu
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024 Shanxi China
| | - Dingding Li
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024 Shanxi China
| | - Xiaoxiao Su
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024 Shanxi China
| | - Cuixian Luo
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024 Shanxi China
| | - Ying Wang
- College of Mechanics, Taiyuan University of Technology, Taiyuan, 030024 Shanxi China
| | - Jie Hu
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024 Shanxi China
| | - Gang Li
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024 Shanxi China
| | - Huabei Jiang
- Biomedical Optics Laboratory, Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620 USA
| | - Wendong Zhang
- Micro-Nano System Research Center, College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024 Shanxi China
| |
Collapse
|
36
|
Cheng Y, Zhang H. Novel Bismuth-Based Nanomaterials Used for Cancer Diagnosis and Therapy. Chemistry 2018; 24:17405-17418. [DOI: 10.1002/chem.201801588] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Yan Cheng
- Laboratory of Chemical Biology; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun Jilin 130022 China
| |
Collapse
|
37
|
Zhang Y, Wang G, Yang L, Wang F, Liu A. Recent advances in gold nanostructures based biosensing and bioimaging. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Estelrich J, Busquets MA. Iron Oxide Nanoparticles in Photothermal Therapy. Molecules 2018; 23:E1567. [PMID: 29958427 PMCID: PMC6100614 DOI: 10.3390/molecules23071567] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 12/22/2022] Open
Abstract
Photothermal therapy is a kind of therapy based on increasing the temperature of tumoral cells above 42 °C. To this aim, cells must be illuminated with a laser, and the energy of the radiation is transformed in heat. Usually, the employed radiation belongs to the near-infrared radiation range. At this range, the absorption and scattering of the radiation by the body is minimal. Thus, tissues are almost transparent. To improve the efficacy and selectivity of the energy-to-heat transduction, a light-absorbing material, the photothermal agent, must be introduced into the tumor. At present, a vast array of compounds are available as photothermal agents. Among the substances used as photothermal agents, gold-based compounds are one of the most employed. However, the undefined toxicity of this metal hinders their clinical investigations in the long run. Magnetic nanoparticles are a good alternative for use as a photothermal agent in the treatment of tumors. Such nanoparticles, especially those formed by iron oxides, can be used in combination with other substances or used themselves as photothermal agents. The combination of magnetic nanoparticles with other photothermal agents adds more capabilities to the therapeutic system: the nanoparticles can be directed magnetically to the site of interest (the tumor) and their distribution in tumors and other organs can be imaged. When used alone, magnetic nanoparticles present, in theory, an important limitation: their molar absorption coefficient in the near infrared region is low. The controlled clustering of the nanoparticles can solve this drawback. In such conditions, the absorption of the indicated radiation is higher and the conversion of energy in heat is more efficient than in individual nanoparticles. On the other hand, it can be designed as a therapeutic system, in which the heat generated by magnetic nanoparticles after irradiation with infrared light can release a drug attached to the nanoparticles in a controlled manner. This form of targeted drug delivery seems to be a promising tool of chemo-phototherapy. Finally, the heating efficiency of iron oxide nanoparticles can be increased if the infrared radiation is combined with an alternating magnetic field.
Collapse
Affiliation(s)
- Joan Estelrich
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda., Joan XXIII, 27⁻31, 08028 Barcelona, Catalonia, Spain.
- Nstitut de Nanociència i Nanotecnologia, IN2UB, Facultat de Química, Diagonal 645, 08028 Barcelona, Catalonia, Spain.
| | - Maria Antònia Busquets
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda., Joan XXIII, 27⁻31, 08028 Barcelona, Catalonia, Spain.
- Nstitut de Nanociència i Nanotecnologia, IN2UB, Facultat de Química, Diagonal 645, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
39
|
Wang Y, Pang X, Wang J, Cheng Y, Song Y, Sun Q, You Q, Tan F, Li J, Li N. Magnetically-targeted and near infrared fluorescence/magnetic resonance/photoacoustic imaging-guided combinational anti-tumor phototherapy based on polydopamine-capped magnetic Prussian blue nanoparticles. J Mater Chem B 2018; 6:2460-2473. [PMID: 32254463 DOI: 10.1039/c8tb00483h] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, Prussian blue (PB)-based nanoagents have become a new platform in photothermal cancer treatment. However, there is little research for PB-based nanoagents to achieve synergistic phototherapy guided by multimodal imaging diagnosis and monitoring. Herein, a novel single wavelength near infrared (NIR) laser-induced magnetically targeted theranostic nanoplatform has been successfully designed and synthesized for the first time based on polydopamine (PDA)/aluminum phthalocyanine (AlPc)/bovine serum albumin (BSA) coated magnetic Prussian blue nanoparticles (Fe3O4@PB NPs) for multiple imaging-guided combinatorial cancer therapy. The resultant multifunctional Fe3O4@PB@PDA/AlPc/BSA nanocomposites show excellent stability and superparamagnetism, facilitating them to achieve superior photothermal therapy in physiological environments under magnetic guidance. In addition, the delivery vehicles can remarkably increase tumor accumulation of AlPc, thus leading to an enhanced photodynamic therapy efficacy. Furthermore, Fe3O4@PB@PDA/AlPc/BSA can be utilized as a multimodality nanoprobe for simultaneous diversified imaging, including near-infrared fluorescence imaging (NIRFI), magnetic resonance imaging (MRI), and photoacoustic imaging (PAI). Most importantly, without noticeable dark toxicity, the obtained Fe3O4@PB@PDA/AlPc/BSA nanocomposites are able to significantly suppress tumor growth via combined photothermal and photodynamic therapies upon a single 660 nm laser irradiation, achieving a superior synergetic manner compared to monotherapy both in vitro and in vivo. Therefore, our strategy provides Fe3O4@PB@PDA/AlPc/BSA nanocomposites for trimodality cancer imaging-guided synergistic therapy, with a great potential for new generation theranostics nanoagents.
Collapse
Affiliation(s)
- Yidan Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li J, Rao J, Pu K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 2018; 155:217-235. [PMID: 29190479 PMCID: PMC5978728 DOI: 10.1016/j.biomaterials.2017.11.025] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/21/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
As a new class of organic optical nanomaterials, semiconducting polymer nanoparticles (SPNs) have the advantages of excellent optical properties, high photostability, facile surface functionalization, and are considered to possess good biocompatibility for biomedical applications. This review surveys recent progress made on the design and synthesis of SPNs for molecular imaging and cancer phototherapy. A variety of novel polymer design, chemical modification and nanoengineering strategies have been developed to precisely tune up optoelectronic properties of SPNs to enable fluorescence, chemiluminescence and photoacoustic (PA) imaging in living animals. With these imaging modalities, SPNs have been demonstrated not only to image tissues such as lymph nodes, vascular structure and tumors, but also to detect disease biomarkers such as reactive oxygen species (ROS) and protein sulfenic acid as well as physiological indexes such as pH and blood glucose concentration. The potentials of SPNs in cancer phototherapy including photodynamic and photothermal therapy are also highlighted with recent examples. Future efforts should further expand the use of SPNs in biomedical research and may even move them beyond pre-clinical studies.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Departments of Radiology and Chemistry, Stanford University, 1201 Welch Road, Stanford, CA 94305-5484, USA.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| |
Collapse
|
41
|
Zhang H, Guo L, Ding S, Xiong J, Chen B. Targeted photo-chemo therapy of malignancy on the chest wall while cardiopulmonary avoidance based on Fe3O4@ZnO nanocomposites. Oncotarget 2017; 7:36602-36613. [PMID: 27153557 PMCID: PMC5095024 DOI: 10.18632/oncotarget.9123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/18/2016] [Indexed: 12/11/2022] Open
Abstract
Treatment of malignancies on the chest wall, like chest wall recurrence of tumor, advanced cutaneous neoplasm and lymphoma, is still a challenge due to the involvement of the critical structures of heart and lung by the conventional strategy. The aim of the current study was to investigate targeted photo-chemo therapy mediated by Fe3O4@ZnO nanocomposites for malignancy on the chest wall while cardiopulmonary avoidance. Fe3O4@ZnO/Dox nanocomposites, the synthesis of the core-shell Fe3O4@ZnO nanocomposites followed by loading doxorubicin (Dox), were prepared to act as multifunctional drug delivery system (DDS). The synergistic anticancer effects on tumor on the chest wall and protection performance of heart and lung were evaluated in vitro and in vivo using cell viability assay, apoptosis detection, histopathologic examination, and serum biochemistry tests. Our observations demonstrated that Fe3O4@ZnO/Dox nanocomposites, could play the role of magnetic drug targeting to deliver Dox into tumor tissues and cells to enhance its chemotherapeutic efficiency. Besides, with ultraviolet (UV) illumination, Fe3O4@ZnO showed the excellent property of photosensitizer, further attacking the cancer cells by photodynamic therapy (PDT). Thus, apoptosis was synergistically induced by the photo-chemo therapy, resulting in a distinct improvement in anticancer activity. Since UV has a limited penetration distance in tissue, causing PDT to fail in the critical structures of heart and lung, cardiopulmonary hurt could be avoided during the treatment. Therefore, targeted photo-chemo therapy mediated by Fe3O4@ZnO nanocomposites may have promise as a potent treatment option for superficial malignancies on the chest wall while cardiopulmonary avoidance.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Liting Guo
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Shuang Ding
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Jian Xiong
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Baoan Chen
- Department of Hematology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
42
|
Zhou J, Cao Z, Panwar N, Hu R, Wang X, Qu J, Tjin SC, Xu G, Yong KT. Functionalized gold nanorods for nanomedicine: Past, present and future. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Kumar A, Tan A, Wong J, Spagnoli JC, Lam J, Blevins BD, G N, Thorne L, Ashkan K, Xie J, Liu H. Nanotechnology for Neuroscience: Promising Approaches for Diagnostics, Therapeutics and Brain Activity Mapping. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1700489. [PMID: 30853878 PMCID: PMC6404766 DOI: 10.1002/adfm.201700489] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Unlocking the secrets of the brain is a task fraught with complexity and challenge - not least due to the intricacy of the circuits involved. With advancements in the scale and precision of scientific technologies, we are increasingly equipped to explore how these components interact to produce a vast range of outputs that constitute function and disease. Here, an insight is offered into key areas in which the marriage of neuroscience and nanotechnology has revolutionized the industry. The evolution of ever more sophisticated nanomaterials culminates in network-operant functionalized agents. In turn, these materials contribute to novel diagnostic and therapeutic strategies, including drug delivery, neuroprotection, neural regeneration, neuroimaging and neurosurgery. Further, the entrance of nanotechnology into future research arenas including optogenetics, molecular/ion sensing and monitoring, and piezoelectric effects is discussed. Finally, considerations in nanoneurotoxicity, the main barrier to clinical translation, are reviewed, and direction for future perspectives is provided.
Collapse
Affiliation(s)
- Anil Kumar
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Aaron Tan
- UCL Medical School, University College London (UCL), London, United Kingdom
| | - Joanna Wong
- Imperial College School of Medicine, Imperial College London,London, United Kingdom
| | - Jonathan Clayton Spagnoli
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - James Lam
- UCL Medical School, University College London (UCL), London, United Kingdom
| | - Brianna Diane Blevins
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Natasha G
- UCL Medical School, University College London (UCL), London, United Kingdom
| | - Lewis Thorne
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, King's College London, London, United Kingdom
| | - Jin Xie
- Department of Chemistry, Bio-Imaging Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
44
|
Min KH, Kim YH, Wang Z, Kim J, Kim JS, Kim SH, Kim K, Kwon IC, Kiesewetter DO, Chen X. Engineered Zn(II)-Dipicolylamine-Gold Nanorod Provides Effective Prostate Cancer Treatment by Combining siRNA Delivery and Photothermal Therapy. Theranostics 2017; 7:4240-4254. [PMID: 29158823 PMCID: PMC5695010 DOI: 10.7150/thno.22435] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023] Open
Abstract
Combination cancer treatment has emerged as a critical approach to achieve remarkable anticancer effect. In this study, we prepared a theranostic nanoformulation that allows for photoacoustic imaging as well as combination gene and photothermal therapy. Gold nanorods (GNR) were coated with dipicolyl amine (DPA), which forms stable complexes with Zn2+ cations. The resulting nanoparticles, Zn(II)/DPA-GNR, recognize phosphate-containing molecules, including siRNA, because of the specific interaction between Zn(II) and the phosphates. We chose anti-polo-like kinase 1 siRNA (siPLK) as our example for gene silencing. The strong complexation between Zn(II)/DPA-GNR and siPLK provided high stability to the nano-complexes, which efficiently delivered siRNA into the targeted cancer cells in vitro and in vivo. The particle served as a theranostic agent because the GNRs of nano-complexes permitted effective photothermal therapy as well as photoacoustic imaging upon laser irradiation. This gene/photothermal combination therapy using siPLK/Zn(II)DPA-GNRs exhibited significant antitumor activity in a PC-3 tumor mouse model. The concept described in this work may be extended to the development of efficient delivery strategies for other polynucleotides as well as advanced anticancer therapy.
Collapse
|
45
|
Chen J, Sheng Z, Li P, Wu M, Zhang N, Yu XF, Wang Y, Hu D, Zheng H, Wang GP. Indocyanine green-loaded gold nanostars for sensitive SERS imaging and subcellular monitoring of photothermal therapy. NANOSCALE 2017; 9:11888-11901. [PMID: 28561825 DOI: 10.1039/c7nr02798b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have demonstrated that a typical nanothermometer was incorporated in a bovine serum albumin stabilized gold nanostar-indocyanine green (denoted as GNS-ICG-BSA) nanoprobe to realize surface-enhanced Raman scattering (SERS) imaging-based real-time sensitive monitoring of intracellular temperature in photothermal therapy (PTT), which significantly improved the spatial resolution compared to infrared thermal imaging. Herein, an exogenous thermosensitive molecule, ICG, acting as a tri-functional agent, was selected as the Raman reporter instead of direct cellular biochemical changes. The triggering of the obtained probe was unaffected by the cellular microenvironment, so it can act as a monitor of PTT in various cell types. High-resolution mass spectrometry (HRMS) was used to investigate the thermosensitive mechanism of ICG. The actively targeted GNS-ICG-BSA nanotags were used to induce SERS mapping-guided in vitro PTT of U87 glioma cells. Meanwhile, small temperature variations within a cell during PTT can be precisely monitored through the SERS fingerprint information, with a spatial resolution at the subcellular level and a sensitivity of 0.37 °C. Thus, the integrated GNS-ICG-BSA nanotags can be treated as a theranostic probe, a SERS imaging probe and an intracellular thermometer. Moreover, the good biocompatibility and the low cytotoxicity of GNS-ICG-BSA nanotags, together with their superior photothermal ablation effect on U87 glioma cells have been confirmed. This suggested that the implanted nanothermometry approach would be promising for a better understanding of the biological processes at subcellular level and provide new insights into the fabrication of a multifunctional nanoplatform. Furthermore, this study revealed that the SERS-based monitoring technique can offer great potential for theranostics as an emerging strategy.
Collapse
Affiliation(s)
- Jing Chen
- College of Electronic Science and Technology, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Guo J, Rahme K, He Y, Li LL, Holmes JD, O’Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomedicine 2017; 12:6131-6152. [PMID: 28883725 PMCID: PMC5574664 DOI: 10.2147/ijn.s140772] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of multifunctional nanomaterials, one of the most interesting and advanced research areas in the field of nanotechnology, is anticipated to revolutionize cancer diagnosis and treatment. Gold nanoparticles (AuNPs) are now being widely utilized in bio-imaging and phototherapy due to their tunable and highly sensitive optical and electronic properties (the surface plasmon resonance). As a new concept, termed "theranostics," multifunctional AuNPs may contain diagnostic and therapeutic functions that can be integrated into one system, thereby simultaneously facilitating diagnosis and therapy and monitoring therapeutic responses. In this review, the important properties of AuNPs relevant to diagnostic and phototherapeutic applications such as structure, shape, optics, and surface chemistry are described. Barriers for translational development of theranostic AuNPs and recent advances in the application of AuNPs for cancer diagnosis, photothermal, and photodynamic therapy are discussed.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon
- Department of Chemistry, Tyndall National Institute, University College Cork, Cork
- AMBER@CRANN, Trinity College Dublin, Dublin, Ireland
| | - Yan He
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Lin-Lin Li
- The First Hospital of Jilin University, Changchun, China
| | - Justin D Holmes
- Department of Chemistry, Tyndall National Institute, University College Cork, Cork
- AMBER@CRANN, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
47
|
Abstract
The fields of biomedical nanotechnology and theranostics have enjoyed exponential growth in recent years. The "Molecular Imaging in Nanotechnology and Theranostics" (MINT) Interest Group of the World Molecular Imaging Society (WMIS) was created in order to provide a more organized and focused forum on these topics within the WMIS and at the World Molecular Imaging Conference (WMIC). The interest group was founded in 2015 and was officially inaugurated during the 2016 WMIC. The overarching goal of MINT is to bring together the many scientists who work on molecular imaging approaches using nanotechnology and those that work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials and approaches that drive these fields. In this short review, we attempt to provide a condensed overview over some of the key areas covered by MINT. Given the breadth of the fields and the given space constraints, we have limited the coverage to the realm of nanoconstructs, although theranostics is certainly not limited to this domain. We will also focus only on the most recent developments of the last 3-5 years, in order to provide the reader with an intuition of what is "in the pipeline" and has potential for clinical translation in the near future.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suchetan Pal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lara Rotter
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jiang Yang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
48
|
Basal LA, Yan Y, Shen Y, Haacke EM, Mehrmohammadi M, Allen MJ. Oxidation-Responsive, Eu II/III-Based, Multimodal Contrast Agent for Magnetic Resonance and Photoacoustic Imaging. ACS OMEGA 2017; 2:800-805. [PMID: 28393130 PMCID: PMC5377279 DOI: 10.1021/acsomega.6b00514] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 05/08/2023]
Abstract
We report, for the first time, a multimodal, oxidation-responsive contrast agent for magnetic resonance imaging and photoacoustic imaging that uses the differences in the properties between Eu in the +2 and +3 oxidation states. The enhancement of contrast in T1-weighted magnetic resonance and photoacoustic imaging was observed in the +2 but not in the +3 oxidation state, and the complex is a known chemical exchange saturation transfer agent for magnetic resonance imaging in the +3 oxidation state.
Collapse
Affiliation(s)
- Lina A. Basal
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Yan Yan
- Department
of Biomedical Engineering, Wayne State University, 818 W. Hancock, Detroit, Michigan 48201, United States
| | - Yimin Shen
- Department
of Radiology, Wayne State University, Detroit, Michigan 48201, United States
| | - E. Mark Haacke
- Department
of Radiology, Wayne State University, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Mohammad Mehrmohammadi
- Department
of Biomedical Engineering, Wayne State University, 818 W. Hancock, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Matthew J. Allen
- Department
of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
49
|
Dykman LA, Khlebtsov NG. Biomedical Applications of Multifunctional Gold-Based Nanocomposites. BIOCHEMISTRY (MOSCOW) 2017; 81:1771-1789. [PMID: 28260496 DOI: 10.1134/s0006297916130125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Active application of gold nanoparticles for various diagnostic and therapeutic purposes started in recent decades due to the emergence of new data on their unique optical and physicochemical properties. In addition to colloidal gold conjugates, growth in the number of publications devoted to the synthesis and application of multifunctional nanocomposites has occurred in recent years. This review considers the application in biomedicine of multifunctional nanoparticles that can be produced in three different ways. The first method involves design of composite nanostructures with various components intended for either diagnostic or therapeutic functions. The second approach uses new bioconjugation techniques that allow functionalization of gold nanoparticles with various molecules, thus combining diagnostic and therapeutic functions in one medical procedure. Finally, the third method for production of multifunctional nanoparticles combines the first two approaches, in which a composite nanoparticle is additionally functionalized by molecules having different properties.
Collapse
Affiliation(s)
- L A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, 410049, Russia
| | | |
Collapse
|
50
|
Sun Z, Zhao Y, Li Z, Cui H, Zhou Y, Li W, Tao W, Zhang H, Wang H, Chu PK, Yu XF. TiL 4 -Coordinated Black Phosphorus Quantum Dots as an Efficient Contrast Agent for In Vivo Photoacoustic Imaging of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602896. [PMID: 28060458 DOI: 10.1002/smll.201602896] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/20/2016] [Indexed: 05/19/2023]
Abstract
Black phosphorus quantum dots coordinated with a sulfonic ester of the titanium ligand are prepared and exhibit enhanced stability. In vitro and in vivo photoacoustic imaging applications demonstrate that the quantum dots can efficiently accumulate inside the tumor producing tumor profiles with high spatial resolution, demonstrating their potential as an efficient agent for photoacoustic imaging.
Collapse
Affiliation(s)
- Zhengbo Sun
- Shenzhen Key Laboratory of Two-Dimensional Materials and Devices (SKTMD), SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yuetao Zhao
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zhibin Li
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 99077, China
| | - Haodong Cui
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yayan Zhou
- Department of Radiation Therapy, Shenzhen People's Hospital, 2nd Clinical Medical Collage of Jinan University, Shenzhen, Guangdong, 518055, P. R. China
| | - Weihao Li
- Department of Radiation Therapy, Shenzhen People's Hospital, 2nd Clinical Medical Collage of Jinan University, Shenzhen, Guangdong, 518055, P. R. China
| | - Wei Tao
- Shenzhen Key Laboratory of Two-Dimensional Materials and Devices (SKTMD), SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Han Zhang
- Shenzhen Key Laboratory of Two-Dimensional Materials and Devices (SKTMD), SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 99077, China
| | - Xue-Feng Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|