1
|
Babaliari E, Kavatzikidou P, Xydias D, Psilodimitrakopoulos S, Ranella A, Stratakis E. Flow-Induced Shear Stress Combined with Microtopography Inhibits the Differentiation of Neuro-2a Cells. MICROMACHINES 2025; 16:341. [PMID: 40141952 PMCID: PMC11945430 DOI: 10.3390/mi16030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025]
Abstract
Considering that neurological injuries cannot typically self-recover, there is a need to develop new methods to study neuronal outgrowth in a controllable manner in vitro. In this study, a precise flow-controlled microfluidic system featuring custom-designed chambers that integrate laser-microstructured polyethylene terephthalate (PET) substrates comprising microgrooves (MGs) was developed to investigate the combined effect of shear stress and topography on Neuro-2a (N2a) cells' behavior. The MGs were positioned parallel to the flow direction and the response of N2a cells was evaluated in terms of growth and differentiation. Our results demonstrate that flow-induced shear stress could inhibit the differentiation of N2a cells. This microfluidic system could potentially be used as a new model system to study the impact of shear stress on cell differentiation.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
| | - Paraskevi Kavatzikidou
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
| | - Dionysios Xydias
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
- Department of Materials Science and Technology, University of Crete, 70013 Crete, Greece
| | - Sotiris Psilodimitrakopoulos
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
| | - Anthi Ranella
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
| | - Emmanuel Stratakis
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
- Department of Physics, University of Crete, 70013 Crete, Greece
| |
Collapse
|
2
|
Cao W, Zhang Y, Li L, Liu B, Ding J, Chen X. Physical cues of scaffolds promote peripheral nerve regeneration. APPLIED PHYSICS REVIEWS 2024; 11. [DOI: 10.1063/5.0189181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The effective treatment of long-gap peripheral nerve injury (PNI) remains a challenge in clinical settings. The autograft, the gold standard for the long-gap PNI therapy, has several limitations, including a limited supply of donor nerve, size mismatch between the donor and recipient sites, functional loss at the donor site, neuroma formation, and the requirement for two operations. With the increasing abundance of biocompatible materials with adjustable structures and properties, tissue engineering provides a promising avenue for bridging peripheral nerve gaps and addressing the above issues of autograft. The physical cues provided by tissue engineering scaffolds, essential for regulating the neural cell fate and microenvironments, have received considerable research attention. This review elaborates on three major physical cues of tissue engineering scaffolds for peripheral nerve regeneration: topological structure, mechanical support, and electrical stimulation. These three aspects are analogs to Lego bricks, wherein different combinations result in diverse functions. Innovative and more effective bricks, along with multi-level and all-around integration, are expected to provide new advances in tissue engineering for peripheral nerve generation.
Collapse
Affiliation(s)
- Wanqing Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China 2 , 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University 3 , 163 Xianlin Avenue, Nanjing 210023, People's Republic of China
| | - Luhe Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University 3 , 163 Xianlin Avenue, Nanjing 210023, People's Republic of China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University 4 , 1 Xinmin Street, Changchun 130061, People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China 2 , 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China 2 , 96 Jinzhai Road, Hefei 230026, People's Republic of China
| |
Collapse
|
3
|
Babaliari E, Ranella A, Stratakis E. Microfluidic Systems for Neural Cell Studies. Bioengineering (Basel) 2023; 10:902. [PMID: 37627787 PMCID: PMC10451731 DOI: 10.3390/bioengineering10080902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Whereas the axons of the peripheral nervous system (PNS) spontaneously regenerate after an injury, the occurring regeneration is rarely successful because axons are usually directed by inappropriate cues. Therefore, finding successful ways to guide neurite outgrowth, in vitro, is essential for neurogenesis. Microfluidic systems reflect more appropriately the in vivo environment of cells in tissues such as the normal fluid flow within the body, consistent nutrient delivery, effective waste removal, and mechanical stimulation due to fluid shear forces. At the same time, it has been well reported that topography affects neuronal outgrowth, orientation, and differentiation. In this review, we demonstrate how topography and microfluidic flow affect neuronal behavior, either separately or in synergy, and highlight the efficacy of microfluidic systems in promoting neuronal outgrowth.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece;
| | - Anthi Ranella
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece;
| | - Emmanuel Stratakis
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece;
- Department of Physics, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
4
|
Zhang Z, Lv Y, Harati J, Song J, Du P, Ou P, Liang J, Wang H, Wang PY. Submicron-Grooved Films Modulate the Directional Alignment and Biological Function of Schwann Cells. J Funct Biomater 2023; 14:jfb14050238. [PMID: 37233348 DOI: 10.3390/jfb14050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Topographical cues on material surfaces are crucial for guiding the behavior of nerve cells and facilitating the repair of peripheral nerve defects. Previously, micron-grooved surfaces have shown great potential in controlling nerve cell alignment for studying the behavior and functions of those cells and peripheral nerve regeneration. However, the effects of smaller-sized topographical cues, such as those in the submicron- and nano-scales, on Schwann cell behavior remain poorly understood. In this study, four different submicron-grooved polystyrene films (800/400, 800/100, 400/400, and 400/100) were fabricated to study the behavior, gene expression, and membrane potential of Schwann cells. The results showed that all submicron-grooved films could guide the cell alignment and cytoskeleton in a groove depth-dependent manner. Cell proliferation and cell cycle assays revealed that there was no significant difference between the submicron groove samples and the flat control. However, the submicron grooves can direct the migration of cells and upregulate the expression of critical genes in axon regeneration and myelination (e.g., MBP and Smad6). Finally, the membrane potential of the Schwann cells was significantly altered on the grooved sample. In conclusion, this study sheds light on the role of submicron-grooved patterns in regulating the behavior and function of Schwann cells, which provides unique insights for the development of implants for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhen Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanliang Lv
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Javad Harati
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
| | - Ping Du
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peiyan Ou
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Liang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
5
|
Angelaki D, Kavatzikidou P, Fotakis C, Stratakis E, Ranella A. Laser-Structured Si and PLGA Inhibit the Neuro2a Differentiation in Mono- and Co-Culture with Glia. Tissue Eng Regen Med 2022; 20:111-125. [PMID: 36538193 PMCID: PMC9852401 DOI: 10.1007/s13770-022-00497-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/31/2022] [Accepted: 09/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The first step towards a successful neural tissue engineering therapy is the development of an appropriate scaffold and the in vitro study of the cellular response onto it. METHODS Here, we fabricated nano- and micro- patterned Si surfaces via direct ultrafast laser irradiation, as well as their replicas in the biodegradable poly(lactide-co-glycolide), in order to use them as culture substrates for neuronal cells. The differentiation of neuro2a cells on the Si platforms and their replicas was studied both in a mono-culture and in a co-culture with glial cells (Schwann-SW10). RESULTS It was found that the substrate's roughness inhibits the differentiation of the neuronal cells even in the presence of the differentiation medium, and the higher the roughness is, the more the differentiation gets limited. CONCLUSION Our results highlight the importance of the substrate's topography for the controlled growth and differentiation of the neuronal cells and their further study via protein screening methods could shed light on the factors that lead to limited differentiation; thus, contributing to the long standing request for culture substrates that induce cells to differentiate.
Collapse
Affiliation(s)
- Despoina Angelaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece ,Department of Physics, University of Crete, 710 03 Heraklion, Greece
| | - Paraskevi Kavatzikidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece
| | - Costas Fotakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece ,Department of Physics, University of Crete, 710 03 Heraklion, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece ,Department of Physics, University of Crete, 710 03 Heraklion, Greece
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology- Hellas (IESL- FORTH), 711 10 Heraklion, Greece
| |
Collapse
|
6
|
Duan Y, Shen C, Zhang Y, Luo Y. Advanced diagnostic and therapeutic strategies in nanotechnology for lung cancer. Front Oncol 2022; 12:1031000. [PMID: 36568152 PMCID: PMC9767962 DOI: 10.3389/fonc.2022.1031000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
As a highly invasive thoracic malignancy with increasing prevalence, lung cancer is also the most lethal cancer worldwide due to the failure of effective early detection and the limitations of conventional therapeutic strategies for advanced-stage patients. Over the past few decades, nanotechnology has emerged as an important technique to obtain desired features by modifying and manipulating different objects on a molecular level and gained a lot of attention in many fields of medical applications. Studies have shown that in lung cancer, nanotechnology may be more effective and specific than traditional methods for detecting extracellular cancer biomarkers and cancer cells in vitro, as well as imaging cancer in vivo; Nanoscale drug delivery systems have developed rapidly to overcome various forms of multi-drug resistance and reduce detrimental side effects to normal tissues by targeting cancerous tissue precisely. There is no doubt that nanotechnology has the potential to enhance healthcare systems by simplifying and improving cancer diagnostics and treatment. Throughout this review, we summarize and highlight recent developments in nanotechnology applications for lung cancer in diagnosis and therapy. Moreover, the prospects and challenges in the translation of nanotechnology-based diagnostic and therapeutic methods into clinical applications are also discussed.
Collapse
Affiliation(s)
- Yujuan Duan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Shen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Yao Luo
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Manganas P, Kavatzikidou P, Kordas A, Babaliari E, Stratakis E, Ranella A. The role of mechanobiology on the Schwann cell response: A tissue engineering perspective. Front Cell Neurosci 2022; 16:948454. [PMID: 36035260 PMCID: PMC9399718 DOI: 10.3389/fncel.2022.948454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Schwann cells (SCs), the glial cells of the peripheral nervous system (PNS), do not only form myelin sheaths thereby insulating the electrical signal propagated by the axons, but also play an essential role in the regeneration of injured axons. SCs are inextricably connected with their extracellular environment and the mechanical stimuli that are received determine their response during development, myelination and injuries. To this end, the mechanobiological response of SCs is being actively researched, as it can determine the suitability of fabricated scaffolds for tissue engineering and regenerative medicine applications. There is growing evidence that SCs are sensitive to changes in the mechanical properties of the surrounding environment (such as the type of material, its elasticity and stiffness), different topographical features provided by the environment, as well as shear stress. In this review, we explore how different mechanical stimuli affect SC behaviour and highlight the importance of exploring many different avenues when designing scaffolds for the repair of PNS injuries.
Collapse
Affiliation(s)
- Phanee Manganas
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
| | - Paraskevi Kavatzikidou
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
- Ultrafast Laser Micro and Nano Processing Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
| | - Antonis Kordas
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece
| | - Eleftheria Babaliari
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
- Ultrafast Laser Micro and Nano Processing Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
| | - Emmanuel Stratakis
- Ultrafast Laser Micro and Nano Processing Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
| | - Anthi Ranella
- Tissue Engineering, Regenerative Medicine and Immunoengineering Laboratory, Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion, Greece
- *Correspondence: Anthi Ranella
| |
Collapse
|
8
|
Zhang Y, Habibovic P. Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110267. [PMID: 35385176 DOI: 10.1002/adma.202110267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Biochemical signals, such as growth factors, cytokines, and transcription factors are known to play a crucial role in regulating a variety of cellular activities as well as maintaining the normal function of different tissues and organs. If the biochemical signals are assumed to be one side of the coin, the other side comprises biophysical cues. There is growing evidence showing that biophysical signals, and in particular mechanical cues, also play an important role in different stages of human life ranging from morphogenesis during embryonic development to maturation and maintenance of tissue and organ function throughout life. In order to investigate how mechanical signals influence cell and tissue function, tremendous efforts have been devoted to fabricating various materials and devices for delivering mechanical stimuli to cells and tissues. Here, an overview of the current state of the art in the design and development of such materials and devices is provided, with a focus on their design principles, and challenges and perspectives for future research directions are highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
9
|
Dedroog LM, Deschaume O, Abrego CJG, Koos E, de Coene Y, Vananroye A, Thielemans W, Bartic C, Lettinga MP. Stress-controlled shear flow alignment of collagen type I hydrogel systems. Acta Biomater 2022; 150:128-137. [PMID: 35842033 DOI: 10.1016/j.actbio.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Disease research and drug screening platforms require in vitro model systems with cellular cues resembling those of natural tissues. Fibrillar alignment, occurring naturally in extracellular matrices, is one of the crucial attributes in tissue development. Obtaining fiber alignment in 3D, in vitro remains an important challenge due to non-linear material characteristics. Here, we report a cell-compatible, shear stress-based method allowing to obtain 3D homogeneously aligned fibrillar collagen hydrogels. Controlling the shear-stress during gelation results in low strain rates, with negligible effects on the viability of embedded SH-SY5Y cells. Our approach offers reproducibility and tunability through a paradigm shift: The shear-stress initiation moment, being the critical optimization parameter in the process, is related to the modulus of the developing gel, whereas state of the art methods often rely on a predefined time to initiate the alignment procedure. After curing, the induced 3D alignment is maintained after the release of stress, with a linear relation between the total acquired strain and the fiber alignment. This method is generally applicable to 3D fibrillar materials and stress/pressure-controlled setups, making it a valuable addition to the fast-growing field of tissue engineering. STATEMENT OF SIGNIFICANCE: Controlling fiber alignment in vitro 3D hydrogels is crucial for developing physiologically relevant model systems. However, it remains challenging due to the non-linear material characteristics of fibrillar hydrogels, limiting the scalability and repeatability. Our approach tackles these challenges by utilizing a stress-controlled rheometer allowing us to monitor structural changes in situ and determine the optimal moment for applying a shear-stress inducing alignment. By careful parameter control, we infer the relationship between time, induced strain, alignment and biocompatibility. This tunable and reproducible method is both scalable and generally applicable to any fibrillar hydrogel, therefore, we believe it is useful for research investigating the link between matrix anisotropy and cell behavior in 3D systems, organ-on-chip technologies and drug research.
Collapse
Affiliation(s)
- Lens M Dedroog
- Soft Matter Physics and Biophysics Unit, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Olivier Deschaume
- Soft Matter Physics and Biophysics Unit, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Christian J Garcia Abrego
- Soft Matter Physics and Biophysics Unit, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Erin Koos
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Yovan de Coene
- Molecular Imaging and Photonics Unit, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Anja Vananroye
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab Research Group, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, 8500 Kortrijk, Belgium
| | - Carmen Bartic
- Soft Matter Physics and Biophysics Unit, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium
| | - Minne P Lettinga
- Soft Matter Physics and Biophysics Unit, Department of Physics and Astronomy, KU Leuven, 3001 Leuven, Belgium; Biological Information Processing IB-4, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
10
|
Tudureanu R, Handrea-Dragan IM, Boca S, Botiz I. Insight and Recent Advances into the Role of Topography on the Cell Differentiation and Proliferation on Biopolymeric Surfaces. Int J Mol Sci 2022; 23:7731. [PMID: 35887079 PMCID: PMC9315624 DOI: 10.3390/ijms23147731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
It is well known that surface topography plays an important role in cell behavior, including adhesion, migration, orientation, elongation, proliferation and differentiation. Studying these cell functions is essential in order to better understand and control specific characteristics of the cells and thus to enhance their potential in various biomedical applications. This review proposes to investigate the extent to which various surface relief patterns, imprinted in biopolymer films or in polymeric films coated with biopolymers, by utilizing specific lithographic techniques, influence cell behavior and development. We aim to understand how characteristics such as shape, dimension or chemical functionality of surface relief patterns alter the orientation and elongation of cells, and thus, finally make their mark on the cell proliferation and differentiation. We infer that such an insight is a prerequisite for pushing forward the comprehension of the methodologies and technologies used in tissue engineering applications and products, including skin or bone implants and wound or fracture healing.
Collapse
Affiliation(s)
- Raluca Tudureanu
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Iuliana M. Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| |
Collapse
|
11
|
Zhang Y, Zhang C, Chen S, Hu J, Shen L, Yu Y. Research Progress Concerning a Novel Intraocular Lens for the Prevention of Posterior Capsular Opacification. Pharmaceutics 2022; 14:1343. [PMID: 35890240 PMCID: PMC9318653 DOI: 10.3390/pharmaceutics14071343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/12/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Posterior capsular opacification (PCO) is the most common complication resulting from cataract surgery and limits the long-term postoperative visual outcome. Using Nd:YAG laser-assisted posterior capsulotomy for the clinical treatment of symptomatic PCO increases the risks of complications, such as glaucoma, retinal diseases, uveitis, and intraocular lens (IOL) pitting. Therefore, finding how to prevent PCO development is the subject of active investigations. As a replacement organ, the IOL is implanted into the lens capsule after cataract surgery, but it is also associated with the occurrence of PCO. Using IOL as a medium for PCO prophylaxis is a more facile and efficient method that has demonstrated various clinical application prospects. Thus, scientists have conducted a lot of research on new intraocular lens fabrication methods, such as optimizing IOL materials and design, and IOL surface modification (including plasma/ultraviolet/ozone treatment, chemical grafting, drug loading, coating modification, and layer-by-layer self-assembly methods). This paper summarizes the research progress for different types of intraocular lenses prepared by different surface modifications, including anti-biofouling IOLs, enhanced-adhesion IOLs, micro-patterned IOLs, photothermal IOLs, photodynamic IOLs, and drug-loading IOLs. These modified intraocular lenses inhibit PCO development by reducing the residual intraoperative lens epithelial cells or by regulating the cellular behavior of lens epithelial cells. In the future, more works are needed to improve the biosecurity and therapeutic efficacy of these modified IOLs.
Collapse
Affiliation(s)
- Yidong Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Chengshou Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Silong Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Jianghua Hu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
- Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lifang Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| | - Yibo Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (C.Z.); (S.C.); (J.H.); (L.S.)
| |
Collapse
|
12
|
Procès A, Luciano M, Kalukula Y, Ris L, Gabriele S. Multiscale Mechanobiology in Brain Physiology and Diseases. Front Cell Dev Biol 2022; 10:823857. [PMID: 35419366 PMCID: PMC8996382 DOI: 10.3389/fcell.2022.823857] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that mechanics play a critical role in regulating brain function at different scales. Downstream integration of mechanical inputs into biochemical signals and genomic pathways causes observable and measurable effects on brain cell fate and can also lead to important pathological consequences. Despite recent advances, the mechanical forces that influence neuronal processes remain largely unexplored, and how endogenous mechanical forces are detected and transduced by brain cells into biochemical and genetic programs have received less attention. In this review, we described the composition of brain tissues and their pronounced microstructural heterogeneity. We discuss the individual role of neuronal and glial cell mechanics in brain homeostasis and diseases. We highlight how changes in the composition and mechanical properties of the extracellular matrix can modulate brain cell functions and describe key mechanisms of the mechanosensing process. We then consider the contribution of mechanobiology in the emergence of brain diseases by providing a critical review on traumatic brain injury, neurodegenerative diseases, and neuroblastoma. We show that a better understanding of the mechanobiology of brain tissues will require to manipulate the physico-chemical parameters of the cell microenvironment, and to develop three-dimensional models that can recapitulate the complexity and spatial diversity of brain tissues in a reproducible and predictable manner. Collectively, these emerging insights shed new light on the importance of mechanobiology and its implication in brain and nerve diseases.
Collapse
Affiliation(s)
- Anthony Procès
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium.,Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marine Luciano
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Yohalie Kalukula
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
13
|
Regulating MDA-MB-231 breast cancer cell adhesion on laser-patterned surfaces with micro- and nanotopography. Biointerphases 2022; 17:021002. [PMID: 35291767 DOI: 10.1116/6.0001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common type of cancer observed in women. Communication with the tumor microenvironment allows invading breast cancer cells, such as triple negative breast cancer cells, to adapt to specific substrates. The substrate topography modulates the cellular behavior among other factors. Several different materials and micro/nanofabrication techniques have been employed to develop substrates for cell culture. Silicon-based substrates present a lot of advantages as they are amenable to a wide range of processing techniques and they permit rigorous control over the surface structure. We investigate and compare the response of the triple negative breast cancer cells (MDA-MB-231) on laser-patterned silicon substrates with two different topographical scales, i.e., the micro- and the nanoscale, in the absence of any other biochemical modification. We develop silicon surfaces with distinct morphological characteristics by employing two laser systems with different pulse durations (nanosecond and femtosecond) and different processing environments (vacuum, SF6 gas, and water). Our findings demonstrate that surfaces with microtopography are repellent, while those with nanotopography are attractive for MDA-MB-231 cell adherence.
Collapse
|
14
|
Chalmantzi V, Simitzi C, Papadopoulos A, Bagli E, Murphy C, Stratakis E, Fotsis T. Culturing Human Pluripotent Stem Cells on Micropatterned Silicon Surfaces. Methods Mol Biol 2022; 2454:49-59. [PMID: 34907510 DOI: 10.1007/7651_2021_428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human pluripotent stem cell culture conditions are constantly being optimized, thus providing insight to the environmental cues that affect cell choices. A wide variety of media, coating materials, and substrates is now available for use, serving different scientific needs. Factors such as material stiffness, roughness, and topography are being recognized to contribute or even direct the acquisition of specific phenotypes. Here, we describe the use of patterned silicon substrates coated with Matrigel for the propagation and differentiation of human pluripotent stem cells.
Collapse
Affiliation(s)
- Varvara Chalmantzi
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Ioannina, Greece
| | - Chara Simitzi
- Institute of Electronic Structure and Laser (IESL), Foundation of Research and Technology Hellas (FORTH), Vassilika Vouton, Heraklion, Greece
- Institute of Materials Discovery, University College London, London, UK
| | - Angelos Papadopoulos
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Ioannina, Greece
| | - Eleni Bagli
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Ioannina, Greece
| | - Carol Murphy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Ioannina, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation of Research and Technology Hellas (FORTH), Vassilika Vouton, Heraklion, Greece.
- Materials Science and Technology Department, University of Crete, Vassilika Voutes, Heraklion, Greece.
| | - Theodore Fotsis
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Ioannina, Greece.
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
15
|
Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater 2021; 6:4141-4160. [PMID: 33997498 PMCID: PMC8099454 DOI: 10.1016/j.bioactmat.2021.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of long-gap (>10 mm) peripheral nerve injury (PNI) and spinal cord injury (SCI) remains a continuous challenge due to limited native tissue regeneration capabilities. The current clinical strategy of using autografts for PNI suffers from a source shortage, while the pharmacological treatment for SCI presents dissatisfactory results. Tissue engineering, as an alternative, is a promising approach for regenerating peripheral nerves and spinal cords. Through providing a beneficial environment, a scaffold is the primary element in tissue engineering. In particular, scaffolds with anisotropic structures resembling the native extracellular matrix (ECM) can effectively guide neural outgrowth and reconnection. In this review, the anatomy of peripheral nerves and spinal cords, as well as current clinical treatments for PNI and SCI, is first summarized. An overview of the critical components in peripheral nerve and spinal cord tissue engineering and the current status of regeneration approaches are also discussed. Recent advances in the fabrication of anisotropic surface patterns, aligned fibrous substrates, and 3D hydrogel scaffolds, as well as their in vitro and in vivo effects are highlighted. Finally, we summarize potential mechanisms underlying the anisotropic architectures in orienting axonal and glial cell growth, along with their challenges and prospects.
Collapse
Affiliation(s)
- Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
16
|
Vedaraman S, Perez‐Tirado A, Haraszti T, Gerardo‐Nava J, Nishiguchi A, De Laporte L. Anisometric Microstructures to Determine Minimal Critical Physical Cues Required for Neurite Alignment. Adv Healthc Mater 2021; 10:e2100874. [PMID: 34197054 PMCID: PMC11468524 DOI: 10.1002/adhm.202100874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Indexed: 12/17/2022]
Abstract
In nerve regeneration, scaffolds play an important role in providing an artificial extracellular matrix with architectural, mechanical, and biochemical cues to bridge the site of injury. Directed nerve growth is a crucial aspect of nerve repair, often introduced by engineered scaffolds imparting linear tracks. The influence of physical cues, determined by well-defined architectures, has been mainly studied for implantable scaffolds and is usually limited to continuous guiding features. In this report, the potential of short anisometric microelements in inducing aligned neurite extension, their dimensions, and the role of vertical and horizontal distances between them, is investigated. This provides crucial information to create efficient injectable 3D materials with discontinuous, in situ magnetically oriented microstructures, like the Anisogel. By designing and fabricating periodic, anisometric, discreet guidance cues in a high-throughput 2D in vitro platform using two-photon lithography techniques, the authors are able to decipher the minimal guidance cues required for directed nerve growth along the major axis of the microelements. These features determine whether axons grow unidirectionally or cross paths via the open spaces between the elements, which is vital for the design of injectable Anisogels for enhanced nerve repair.
Collapse
Affiliation(s)
- Sitara Vedaraman
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH AachenWorringerweg 1–2Aachen52074Germany
| | - Amaury Perez‐Tirado
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
| | - Tamas Haraszti
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH AachenWorringerweg 1–2Aachen52074Germany
| | - Jose Gerardo‐Nava
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
| | - Akihiro Nishiguchi
- Biomaterials FieldResearch Center for Functional MaterialsNational Institute for Materials ScienceTsukuba305‐0044Japan
| | - Laura De Laporte
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH AachenWorringerweg 1–2Aachen52074Germany
- Institute of Applied Medical EngineeringDepartment of Advanced Materials for BiomedicineRWTH UniversityForckenbeckstraße 55Aachen52074Germany
| |
Collapse
|
17
|
Fan S, Qi L, Li J, Pan D, Zhang Y, Li R, Zhang C, Wu D, Lau P, Hu Y, Bi G, Ding W, Chu J. Guiding the Patterned Growth of Neuronal Axons and Dendrites Using Anisotropic Micropillar Scaffolds. Adv Healthc Mater 2021; 10:e2100094. [PMID: 34019723 DOI: 10.1002/adhm.202100094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/27/2021] [Indexed: 12/31/2022]
Abstract
The patterning of axonal and dendritic growth is an important topic in neural tissue engineering and critical for generating directed neuronal networks in vitro. Evidence shows that artificial micro/nanotopography can better mimic the environment for neuronal growth in vivo. However, the potential mechanisms by which neurons interact with true three dimensional (3D) topographical cues and form directional networks are unclear. Herein, 3D micropillar scaffolds are designed to guide the growth of neural stem cells and hippocampal neurons in vitro. Discontinuous and anisotropic micropillars are fabricated by femtosecond direct laser writing to form patterned scaffolds with various spacings and heights, which are found to affect the branching and orientation of axons and dendrites. Interestingly, axons and dendrites tend to grow on an array of 3D micropillar scaffolds of the same height and form functionally connected neuronal networks, as reflected by synchronous neuronal activity visualized by calcium imaging. This method may represent a promising tool for studying neuron behavior and directed neuronal networks in a 3D environment.
Collapse
Affiliation(s)
- Shengying Fan
- Center for Biomedical Engineering Department of Electronic Science and Technology University of Science and Technology of China Hefei 230026 China
| | - Lei Qi
- CAS Key Laboratory of Brain Function and Disease School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei 230026 China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Jiawen Li
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Deng Pan
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Yiyuan Zhang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Rui Li
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Cong Zhang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Dong Wu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Pakming Lau
- CAS Key Laboratory of Brain Function and Disease School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei 230026 China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Yanlei Hu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Guoqiang Bi
- CAS Key Laboratory of Brain Function and Disease School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei 230026 China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Weiping Ding
- Center for Biomedical Engineering Department of Electronic Science and Technology University of Science and Technology of China Hefei 230026 China
| | - Jiaru Chu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
18
|
Milos F, Tullii G, Gobbo F, Lodola F, Galeotti F, Verpelli C, Mayer D, Maybeck V, Offenhäusser A, Antognazza MR. High Aspect Ratio and Light-Sensitive Micropillars Based on a Semiconducting Polymer Optically Regulate Neuronal Growth. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23438-23451. [PMID: 33983012 PMCID: PMC8161421 DOI: 10.1021/acsami.1c03537] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many nano- and microstructured devices capable of promoting neuronal growth and network formation have been previously investigated. In certain cases, topographical cues have been successfully complemented with external bias, by employing electrically conducting scaffolds. However, the use of optical stimulation with topographical cues was rarely addressed in this context, and the development of light-addressable platforms for modulating and guiding cellular growth and proliferation remains almost completely unexplored. Here, we develop high aspect ratio micropillars based on a prototype semiconducting polymer, regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT), as an optically active, three-dimensional platform for embryonic cortical neurons. P3HT micropillars provide a mechanically compliant environment and allow a close contact with neuronal cells. The combined action of nano/microtopography and visible light excitation leads to effective optical modulation of neuronal growth and orientation. Embryonic neurons cultured on polymer pillars show a clear polarization effect and, upon exposure to optical excitation, a significant increase in both neurite and axon length. The biocompatible, microstructured, and light-sensitive platform developed here opens up the opportunity to optically regulate neuronal growth in a wireless, repeatable, and spatio-temporally controlled manner without genetic modification. This approach may be extended to other cell models, thus uncovering interesting applications of photonic devices in regenerative medicine.
Collapse
Affiliation(s)
- Frano Milos
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- RWTH
University Aachen, 52062 Aachen, Germany
| | - Gabriele Tullii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Federico Gobbo
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
- Physics
Department, Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy
| | - Francesco Lodola
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| | - Francesco Galeotti
- Istituto
di Scienze e Tecnologie Chimiche G. Natta (SCITEC), Consiglio Nazionale delle Ricerche, 20133 Milano, Italy
| | - Chiara Verpelli
- Istituto
di Neuroscienze, Consiglio Nazionale delle
Ricerche, 20133 Milano, Italy
| | - Dirk Mayer
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Vanessa Maybeck
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing IBI-3, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- RWTH
University Aachen, 52062 Aachen, Germany
| | - Maria Rosa Antognazza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milano, Italy
| |
Collapse
|
19
|
Babaliari E, Kavatzikidou P, Mitraki A, Papaharilaou Y, Ranella A, Stratakis E. Combined effect of shear stress and laser-patterned topography on Schwann cell outgrowth: synergistic or antagonistic? Biomater Sci 2021; 9:1334-1344. [PMID: 33367414 DOI: 10.1039/d0bm01218a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the peripheral nervous system exhibits a higher rate of regeneration than that of the central nervous system through a spontaneous regeneration after injury, the functional recovery is fairly infrequent and misdirected. Thus, the development of successful methods to guide neuronal outgrowth, in vitro, is of great importance. In this study, a precise flow controlled microfluidic system with specific custom-designed chambers, incorporating laser-microstructured polyethylene terephthalate (PET) substrates comprising microgrooves, was fabricated to assess the combined effect of shear stress and topography on Schwann cells' behavior. The microgrooves were positioned either parallel or perpendicular to the direction of the flow inside the chambers. Additionally, the cell culture results were combined with computational flow simulations to calculate accurately the shear stress values. Our results demonstrated that wall shear stress gradients may be acting either synergistically or antagonistically depending on the substrate groove orientation relative to the flow direction. The ability to control cell alignment in vitro could potentially be used in the fields of neural tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Foundation for Research and Technology - Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.) Vassilika Vouton, 70013 Heraklion, Greece.
| | | | | | | | | | | |
Collapse
|
20
|
Fornaro M, Marcus D, Rattin J, Goral J. Dynamic Environmental Physical Cues Activate Mechanosensitive Responses in the Repair Schwann Cell Phenotype. Cells 2021; 10:cells10020425. [PMID: 33671410 PMCID: PMC7922665 DOI: 10.3390/cells10020425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/10/2023] Open
Abstract
Schwann cells plastically change in response to nerve injury to become a newly reconfigured repair phenotype. This cell is equipped to sense and interact with the evolving and unusual physical conditions characterizing the injured nerve environment and activate intracellular adaptive reprogramming as a consequence of external stimuli. Summarizing the literature contributions on this matter, this review is aimed at highlighting the importance of the environmental cues of the regenerating nerve as key factors to induce morphological and functional changes in the Schwann cell population. We identified four different microenvironments characterized by physical cues the Schwann cells sense via interposition of the extracellular matrix. We discussed how the physical cues of the microenvironment initiate changes in Schwann cell behavior, from wrapping the axon to becoming a multifunctional denervated repair cell and back to reestablishing contact with regenerated axons.
Collapse
Affiliation(s)
- Michele Fornaro
- Department of Anatomy, College of Graduate Studies (CGS), Midwestern University, Downers Grove, IL 60515, USA;
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
- Correspondence: ; Tel.: +001-630-515-6055
| | - Dominic Marcus
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
| | - Jacob Rattin
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
| | - Joanna Goral
- Department of Anatomy, College of Graduate Studies (CGS), Midwestern University, Downers Grove, IL 60515, USA;
- Department of Anatomy, Chicago College of Osteopathic Medicine (CCOM), Midwestern University, Downers Grove, IL 60515, USA; (D.M.); (J.R.)
| |
Collapse
|
21
|
Seo J, Lanara C, Choi JY, Kim J, Cho H, Chang Y, Kang K, Stratakis E, Choi IS. Neuronal Migration on Silicon Microcone Arrays with Different Pitches. Adv Healthc Mater 2021; 10:e2000583. [PMID: 32815647 DOI: 10.1002/adhm.202000583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Indexed: 11/10/2022]
Abstract
Neuronal migration is a complicated but fundamental process for proper construction and functioning of neural circuits in the brain. Many in vivo studies have suggested the involvement of environmental physical features of a neuron in its migration, but little effort has been made for the in vitro demonstration of topography-driven neuronal migration. This work investigates migratory behaviors of primary hippocampal neurons on a silicon microcone (SiMC) array that presents 14 different pitch domains (pitch: 2.5-7.3 µm). Neuronal migration becomes the maximum at the pitch of around 3 µm, with an upper migration threshold of about 4 µm. Immunocytochemical studies indicate that the speed and direction of migration, as well as its probability of occurrence, are correlated with the morphology of the neuron, which is dictated by the pitch and shape of underlying SiMC structures. In addition to the effects on neuronal migration, the real-time imaging of migrating neurons on the topographical substrate reveals new in vitro modes of neuronal migration, which have not been observed on the conventional flat culture plate, but been suggested by in vivo studies.
Collapse
Affiliation(s)
- Jeongyeon Seo
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Christina Lanara
- Institute of Electronic Structure and Laser Foundation for Research and Technology Hellas (FORTH) Nikolaou Plastira 100 Heraklion Crete GR‐70013 Greece
| | - Ji Yu Choi
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Jungnam Kim
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Hyeoncheol Cho
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Young‐Tae Chang
- Department of Chemistry POSTECH Center for Self‐Assembly and Complexity Institute for Basic Science (IBS) Pohang 37673 Korea
| | - Kyungtae Kang
- Department of Applied Chemistry Kyung Hee University Yongin Gyeonggi 17104 Korea
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser Foundation for Research and Technology Hellas (FORTH) Nikolaou Plastira 100 Heraklion Crete GR‐70013 Greece
| | - Insung S. Choi
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
- Department of Bio and Brain Engineering KAIST Daejeon 34141 Korea
| |
Collapse
|
22
|
Response of NIH 3T3 Fibroblast Cells on Laser-Induced Periodic Surface Structures on a 15×(Ti/Zr)/Si Multilayer System. NANOMATERIALS 2020; 10:nano10122531. [PMID: 33339399 PMCID: PMC7767124 DOI: 10.3390/nano10122531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
Ultrafast laser processing with the formation of periodic surface nanostructures on the 15×(Ti/Zr)/Si multilayers is studied in order to the improve cell response. A novel nanocomposite structure in the form of 15x(Ti/Zr)/Si multilayer thin films, with satisfying mechanical properties and moderate biocompatibility, was deposited by ion sputtering on an Si substrate. The multilayer 15×(Ti/Zr)/Si thin films were modified by femtosecond laser pulses in air to induce the following modifications: (i) mixing of components inside of the multilayer structures, (ii) the formation of an ultrathin oxide layer at the surfaces, and (iii) surface nano-texturing with the creation of laser-induced periodic surface structure (LIPSS). The focus of this study was an examination of the novel Ti/Zr multilayer thin films in order to create a surface texture with suitable composition and structure for cell integration. Using the SEM and confocal microscopies of the laser-modified Ti/Zr surfaces with seeded cell culture (NIH 3T3 fibroblasts), it was found that cell adhesion and growth depend on the surface composition and morphological patterns. These results indicated a good proliferation of cells after two and four days with some tendency of the cell orientation along the LIPSSs.
Collapse
|
23
|
The Role of Crystalline Orientation in the Formation of Surface Patterns on Solids Irradiated with Femtosecond Laser Double Pulses. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A theoretical investigation of the underlying ultrafast processes upon irradiation of rutile TiO2 of (001) and (100) surface orientation with femtosecond (fs) double pulsed lasers was performed in ablation conditions, for which, apart from mass removal, phase transformation and surface modification of the heated solid were induced. A parametric study was followed to correlate the transient carrier density and the produced lattice temperature with the laser fluence, pulse separation and the induced damage. The simulations showed that both temporal separation and crystal orientation influence the surface pattern, while both the carrier density and temperature drop gradually to a minimum value at temporal separation equal to twice the pulse separation that remain constant at long delays. Carrier dynamics, interference of the laser beam with the excited surface waves, thermal response and fluid transport at various pulse delays explained the formation of either subwavelength or suprawavelength structures. The significant role of the crystalline anisotropy is illustrated through the presentation of representative experimental results correlated with the theoretical predictions.
Collapse
|
24
|
Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020; 8:551505. [PMID: 33195116 PMCID: PMC7642591 DOI: 10.3389/fbioe.2020.551505] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Topography of the extracellular environment is now recognized as a major biophysical regulator of cell behavior and function. The study of the influence of patterned substrates on cells, named contact guidance, has greatly benefited from the development of micro and nano-fabrication techniques, allowing the emergence of increasingly diverse and elaborate engineered platforms. The purpose of this review is to provide a comprehensive view of the process of contact guidance from cellular to subcellular scales. We first classify and illustrate the large diversity of topographies reported in the literature by focusing on generic cellular responses to diverse topographical cues. Subsequently, and in a complementary fashion, we adopt the opposite approach and highlight cell type-specific responses to classically used topographies (arrays of pillars or grooves). Finally, we discuss recent advances on the key subcellular and molecular players involved in topographical sensing. Throughout the review, we focus particularly on neuronal cells, whose unique morphology and behavior have inspired a large body of studies in the field of topographical sensing and revealed fascinating cellular mechanisms. We conclude by using the current understanding of the cell-topography interactions at different scales as a springboard for identifying future challenges in the field of contact guidance.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR 7646, Ecole Polytechnique, Palaiseau, France
| | - Catherine Villard
- Physico-Chimie Curie, CNRS UMR 168, Université PSL, Sorbonne Université, Paris, France
| |
Collapse
|
25
|
Wu T, Xue J, Xia Y. Engraving the Surface of Electrospun Microfibers with Nanoscale Grooves Promotes the Outgrowth of Neurites and the Migration of Schwann Cells. Angew Chem Int Ed Engl 2020; 59:15626-15632. [PMID: 32168409 PMCID: PMC7487060 DOI: 10.1002/anie.202002593] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/08/2020] [Indexed: 12/21/2022]
Abstract
We report a simple method based upon coaxial electrospinning for the fabrication of aligned microfibers engraved with nanoscale grooves to promote neurite outgrowth and cell migration. The success of this method relies on the immiscibility between poly(ϵ-caprolactone) (PCL) and poly(vinyl pyrrolidone) (PVP) in 2,2,2-trifluoroethanol (TFE) for the generation of PVP/TFE pockets on the surface of a PCL jet. The pockets are stretched and elongated along with the jet, eventually resulting in the formation of nanoscale grooves upon the removal of PVP. The presence of nanoscale grooves greatly enhances the outgrowth of neurites from both PC12 cells and chick embryonic dorsal root ganglia (DRG) bodies, as well as the migration of Schwann cells. The enhancements can be maximized by optimizing the dimensions of the grooves for potential use in applications involving neurite extension and wound closure.
Collapse
Affiliation(s)
- Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
26
|
Angelaki D, Kavatzikidou P, Fotakis C, Stratakis E, Ranella A. Laser-induced topographies enable the spatial patterning of co-cultured peripheral nervous system cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111144. [PMID: 32600731 DOI: 10.1016/j.msec.2020.111144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
The peripheral nervous system comprises glia and neurons that receive the necessary cues for their adhesion and proliferation from their extracellular milieu. In this study, a spatial platform of pseudoperiodic morphologies including patterns of nano- and micro- structures on Si were developed via direct ultrafast-laser structuring and were used as substrates for the patterning of co-cultured neuronal cells. The response of murine Schwann (SW10) and Neuro2a (N2a) cells were investigated both in monocultures and in a glia and neuronal co-culture system. Our results denoted that different types of neural tissue cells respond differently to the underlying topography, but furthermore, the presence of the glial cells alters the adhesion behavior of the neuronal cells in their co-culture. Therefore, we envisage that direct laser structuring that enables spatial patterning of the cells of the nervous system in a controllable manner according to the research needs, could in the future be a useful tool for understanding neural network interfaces and their electrical activity, synaptic processes and myelin formation.
Collapse
Affiliation(s)
- D Angelaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion 711 10, Greece; Department of Physics, University of Crete, Heraklion 710 03, Greece.
| | - P Kavatzikidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion 711 10, Greece.
| | - C Fotakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion 711 10, Greece; Department of Physics, University of Crete, Heraklion 710 03, Greece.
| | - E Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion 711 10, Greece; Department of Physics, University of Crete, Heraklion 710 03, Greece.
| | - A Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), Heraklion 711 10, Greece.
| |
Collapse
|
27
|
Tsibidis GD, Stratakis E. Ionisation processes and laser induced periodic surface structures in dielectrics with mid-infrared femtosecond laser pulses. Sci Rep 2020; 10:8675. [PMID: 32457397 PMCID: PMC7250856 DOI: 10.1038/s41598-020-65613-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/06/2020] [Indexed: 12/02/2022] Open
Abstract
Irradiation of solids with ultrashort pulses and laser processing in the mid-Infrared (mid-IR) spectral region is a yet predominantly unexplored field with a large potential for a wide range of applications. In this work, laser driven physical phenomena associated with processes following irradiation of fused silica (SiO2) with ultrashort laser pulses in the mid-IR region are investigated in detail. A multiscale modelling approach is performed that correlates conditions for formation of perpendicular or parallel to the laser polarisation low spatial frequency periodic surface structures for low and high intensity mid-IR pulses (not previously explored in dielectrics at those wavelengths), respectively. Results demonstrate a remarkable domination of tunneling effects in the photoionisation rate and a strong influence of impact ionisation for long laser wavelengths. The methodology presented in this work is aimed to shed light on the fundamental mechanisms in a previously unexplored spectral area and allow a systematic novel surface engineering with strong mid-IR fields for advanced industrial laser applications.
Collapse
Affiliation(s)
- George D Tsibidis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece.
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece
- Department of Physics, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
28
|
Seo J, Youn W, Choi JY, Cho H, Choi H, Lanara C, Stratakis E, Choi IS. Neuro-taxis: Neuronal movement in gradients of chemical and physical environments. Dev Neurobiol 2020; 80:361-377. [PMID: 32304173 DOI: 10.1002/dneu.22749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Environmental chemical and physical cues dynamically interact with migrating neurons and sprouting axons, and in particular, the gradients of environmental cues are regarded as one of the factors intimately involved in the neuronal movement. Since a growth cone was first described by Cajal, more than one century ago, chemical gradients have been suggested as one of the mechanisms by which the neurons determine proper paths and destinations. However, the gradients of physical cues, such as stiffness and topography, which also interact constantly with the neurons and their axons as a component of the extracellular environments, have rarely been noted regarding the guidance of neurons, despite their gradually increasingly reported influences in the case of nonneuronal-cell migration. In this review, we discuss chemical (i.e., chemo- and hapto-) and physical (i.e., duro-) taxis phenomena on the movement of neurons including axonal elongation. In addition, we suggest topotaxis, the most recently proposed physical-taxis phenomenon, as another potential mechanism in the neuronal movement, based on the reports of neuronal recognition of and responses to nanotopography.
Collapse
Affiliation(s)
| | - Wongu Youn
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Ji Yu Choi
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | | | - Christina Lanara
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece.,Physics Department, University of Crete, Heraklion, Crete, Greece
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon, Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| |
Collapse
|
29
|
Wu T, Xue J, Xia Y. Engraving the Surface of Electrospun Microfibers with Nanoscale Grooves Promotes the Outgrowth of Neurites and the Migration of Schwann Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemistry and Biochemistry School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
30
|
Pisani S, Genta I, Dorati R, Kavatzikidou P, Angelaki D, Manousaki A, Karali K, Ranella A, Stratakis E, Conti B. Biocompatible polymeric electrospun matrices: Micro–nanotopography effect on cell behavior. J Appl Polym Sci 2020. [DOI: 10.1002/app.49223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Silvia Pisani
- Department of Drug SciencesUniversity of Pavia Pavia Italy
| | - Ida Genta
- Department of Drug SciencesUniversity of Pavia Pavia Italy
| | - Rossella Dorati
- Department of Drug SciencesUniversity of Pavia Pavia Italy
- Polymerix s.r.l., Parco Tecnico Scientifico, Via Taramelli 20 Pavia Italy
| | - Paraskevi Kavatzikidou
- Institute of Electronic Structure and LaserFoundation for Research and Technology ‐ Hellas Heraklion, Crete Greece
| | - Despoina Angelaki
- Institute of Electronic Structure and LaserFoundation for Research and Technology ‐ Hellas Heraklion, Crete Greece
| | - Aleka Manousaki
- Institute of Electronic Structure and LaserFoundation for Research and Technology ‐ Hellas Heraklion, Crete Greece
| | - Kanelina Karali
- Institute of Electronic Structure and LaserFoundation for Research and Technology ‐ Hellas Heraklion, Crete Greece
- Department of PhysicsUniversity of Crete Heraklion, Crete Greece
| | - Anthi Ranella
- Institute of Electronic Structure and LaserFoundation for Research and Technology ‐ Hellas Heraklion, Crete Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and LaserFoundation for Research and Technology ‐ Hellas Heraklion, Crete Greece
- Department of PhysicsUniversity of Crete Heraklion, Crete Greece
| | - Bice Conti
- Department of Drug SciencesUniversity of Pavia Pavia Italy
- Polymerix s.r.l., Parco Tecnico Scientifico, Via Taramelli 20 Pavia Italy
| |
Collapse
|
31
|
Papadimitriou L, Manganas P, Ranella A, Stratakis E. Biofabrication for neural tissue engineering applications. Mater Today Bio 2020; 6:100043. [PMID: 32190832 PMCID: PMC7068131 DOI: 10.1016/j.mtbio.2020.100043] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
Unlike other tissue types, the nervous tissue extends to a wide and complex environment that provides a plurality of different biochemical and topological stimuli, which in turn defines the advanced functions of that tissue. As a consequence of such complexity, the traditional transplantation therapeutic methods are quite ineffective; therefore, the restoration of peripheral and central nervous system injuries has been a continuous scientific challenge. Tissue engineering and regenerative medicine in the nervous system have provided new alternative medical approaches. These methods use external biomaterial supports, known as scaffolds, to create platforms for the cells to migrate to the injury site and repair the tissue. The challenge in neural tissue engineering (NTE) remains the fabrication of scaffolds with precisely controlled, tunable topography, biochemical cues, and surface energy, capable of directing and controlling the function of neuronal cells toward the recovery from neurological disorders and injuries. At the same time, it has been shown that NTE provides the potential to model neurological diseases in vitro, mainly via lab-on-a-chip systems, especially in cases for which it is difficult to obtain suitable animal models. As a consequence of the intense research activity in the field, a variety of synthetic approaches and 3D fabrication methods have been developed for the fabrication of NTE scaffolds, including soft lithography and self-assembly, as well as subtractive (top-down) and additive (bottom-up) manufacturing. This article aims at reviewing the existing research effort in the rapidly growing field related to the development of biomaterial scaffolds and lab-on-a-chip systems for NTE applications. Besides presenting recent advances achieved by NTE strategies, this work also delineates existing limitations and highlights emerging possibilities and future prospects in this field.
Collapse
Affiliation(s)
- L. Papadimitriou
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - P. Manganas
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - A. Ranella
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
| | - E. Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, 71003, Greece
- Physics Department, University of Crete, Heraklion, 71003, Crete, Greece
| |
Collapse
|
32
|
Cutarelli A, Ghio S, Zasso J, Speccher A, Scarduelli G, Roccuzzo M, Crivellari M, Maria Pugno N, Casarosa S, Boscardin M, Conti L. Vertically-Aligned Functionalized Silicon Micropillars for 3D Culture of Human Pluripotent Stem Cell-Derived Cortical Progenitors. Cells 2019; 9:E88. [PMID: 31905823 PMCID: PMC7017050 DOI: 10.3390/cells9010088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Silicon is a promising material for tissue engineering since it allows to produce micropatterned scaffolding structures resembling biological tissues. Using specific fabrication methods, it is possible to build aligned 3D network-like structures. In the present study, we exploited vertically-aligned silicon micropillar arrays as culture systems for human iPSC-derived cortical progenitors. In particular, our aim was to mimic the radially-oriented cortical radial glia fibres that during embryonic development play key roles in controlling the expansion, radial migration and differentiation of cortical progenitors, which are, in turn, pivotal to the establishment of the correct multilayered cerebral cortex structure. Here we show that silicon vertical micropillar arrays efficiently promote expansion and stemness preservation of human cortical progenitors when compared to standard monolayer growth conditions. Furthermore, the vertically-oriented micropillars allow the radial migration distinctive of cortical progenitors in vivo. These results indicate that vertical silicon micropillar arrays can offer an optimal system for human cortical progenitors' growth and migration. Furthermore, similar structures present an attractive platform for cortical tissue engineering.
Collapse
Affiliation(s)
- Alessandro Cutarelli
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.C.); (J.Z.)
| | - Simone Ghio
- Fondazione Bruno Kessler-Center for Material and Microsystem, 38123 Trento, Italy; (S.G.); (M.C.)
| | - Jacopo Zasso
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.C.); (J.Z.)
| | - Alessandra Speccher
- Laboratory of Neural Development and Regeneration, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.S.); (S.C.)
| | - Giorgina Scarduelli
- Advanced Imaging Facility, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (G.S.); (M.R.)
| | - Michela Roccuzzo
- Advanced Imaging Facility, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (G.S.); (M.R.)
| | - Michele Crivellari
- Fondazione Bruno Kessler-Center for Material and Microsystem, 38123 Trento, Italy; (S.G.); (M.C.)
| | - Nicola Maria Pugno
- Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy;
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
- Ket-Lab, Edoardo Amaldi Foundation, via del Politecnico snc, I-00133 Roma, Italy
| | - Simona Casarosa
- Laboratory of Neural Development and Regeneration, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.S.); (S.C.)
| | - Maurizio Boscardin
- Fondazione Bruno Kessler-Center for Material and Microsystem, 38123 Trento, Italy; (S.G.); (M.C.)
| | - Luciano Conti
- Laboratory of Stem Cell Biology, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy; (A.C.); (J.Z.)
| |
Collapse
|
33
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
34
|
Gonzalez M, Guo X, Lin M, Stancescu M, Molnar P, Spradling S, Hickman JJ. Polarity Induced in Human Stem Cell Derived Motoneurons on Patterned Self-Assembled Monolayers. ACS Chem Neurosci 2019; 10:2756-2764. [PMID: 31063682 DOI: 10.1021/acschemneuro.8b00682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The control of polarized human neurite/axon development at the single neuron level is critical in geographically directing signal propagation in engineered neural networks, for both in vitro and in vivo applications. While there is an increasing need to exert control over axonal growth for the successful development and establishment of integrative and functional in vitro systems, controlled, polarized distribution of either human-derived neurons or motoneurons in vitro has yet to be reported. In this study, we established the polarized distribution of stem cell derived human motoneurons, using a patterned surface, and maintained the cells in a serum-free system. A surface pattern with defined polarity was developed using self-assembled monolayers (SAMs). A cell permissive SAM, DETA (trimethoxysilyl propyldiethylenetri-amine), combined with photolithography and a nonpermissive fluorinated silane, 13F (tridecafluoro-1,1,2,2-tetrahydroctyl-1-dimethylchloro-silane), generated a surface where neurons only adhered to the designed attachment sites and did so with preferred orientation. In addition, 75% of the cells attached to the patterns were motoneurons compared to their percentage in the standard unpatterned surface which was used as a control condition (20%), demonstrating the preference of these human motoneurons in adhering to the patterns. The ability to dictate the distribution and polarity of human motoneurons will be essential to the engineering of human-based functional in vitro systems in which the control of signal propagation is necessary but more importantly for cell implantation studies. Such systems will greatly benefit the study of motor function as well as aid the development of high-throughput systems for drug screening and test beds for use in preclinical studies related to conditions such as spinal cord injury, ALS, and muscular dystrophy.
Collapse
Affiliation(s)
- Mercedes Gonzalez
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Xiufang Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Min Lin
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Maria Stancescu
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
- Department of Chemistry, University of Central Florida, Physical Sciences Building (PS) Room 255, 4000 Central Florida Blvd., Orlando, Florida 32816-2366, United States
| | - Peter Molnar
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Severo Spradling
- Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - James J. Hickman
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
- Department of Chemistry, University of Central Florida, Physical Sciences Building (PS) Room 255, 4000 Central Florida Blvd., Orlando, Florida 32816-2366, United States
- Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| |
Collapse
|
35
|
Fraggelakis F, Giannuzzi G, Gaudiuso C, Manek-Hönninger I, Mincuzzi G, Ancona A, Kling R. Double- and Multi-Femtosecond Pulses Produced by Birefringent Crystals for the Generation of 2D Laser-Induced Structures on a Stainless Steel Surface. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1257. [PMID: 30999570 PMCID: PMC6514971 DOI: 10.3390/ma12081257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 11/16/2022]
Abstract
Laser-induced textures have been proven to be excellent solutions for modifying wetting, friction, biocompatibility, and optical properties of solids. The possibility to generate 2D-submicron morphologies by laser processing has been demonstrated recently. Employing double-pulse irradiation, it is possible to control the induced structures and to fabricate novel and more complex 2D-textures. Nevertheless, double-pulse irradiation often implies the use of sophisticated setups for modifying the pulse polarization and temporal profile. Here, we show the generation of homogeneous 2D-LIPSS (laser-induced periodic surface structures) over large areas utilizing a simple array of birefringent crystals. Linearly and circularly polarized pulses were applied, and the optimum process window was defined for both. The results are compared to previous studies, which include a delay line, and the reproducibility between the two techniques is validated. As a result of a systematic study of the process parameters, the obtained morphology was found to depend both on the interplay between fluence and inter-pulse delay, as well as on the number of incident pulses. The obtained structures were characterized via SEM (scanning electron microscopy) and atomic force microscopy. We believe that our results represent a novel approach to surface structuring, primed for introduction in an industrial environment.
Collapse
Affiliation(s)
- Fotis Fraggelakis
- ALPhANOV, Technological Centre for Optics and Lasers, Optic Institute of Aquitaine, rue F. Mitterrand, 33400 Talence, France.
- CELIA, University of Bordeaux-CNRS-CEA UMR5107, 33405 Talence, France.
| | - Giuseppe Giannuzzi
- Istituto di Fotonica e Nanotecnologie (INF)-CNR U.O.S. Bari, via Amendola 173, I-70126 Bari, Italy.
- Dipartimento Interuniversitario di Fisica, Università degli Studi di Bari, via Amendola 173, I-70126 Bari, Italy.
| | - Caterina Gaudiuso
- Istituto di Fotonica e Nanotecnologie (INF)-CNR U.O.S. Bari, via Amendola 173, I-70126 Bari, Italy.
- Dipartimento Interuniversitario di Fisica, Università degli Studi di Bari, via Amendola 173, I-70126 Bari, Italy.
| | | | - Girolamo Mincuzzi
- ALPhANOV, Technological Centre for Optics and Lasers, Optic Institute of Aquitaine, rue F. Mitterrand, 33400 Talence, France.
| | - Antonio Ancona
- Istituto di Fotonica e Nanotecnologie (INF)-CNR U.O.S. Bari, via Amendola 173, I-70126 Bari, Italy.
| | - Rainer Kling
- ALPhANOV, Technological Centre for Optics and Lasers, Optic Institute of Aquitaine, rue F. Mitterrand, 33400 Talence, France.
| |
Collapse
|
36
|
Recent Advances in Femtosecond Laser-Induced Surface Structuring for Oil–Water Separation. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081554] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Femtosecond (FS) laser-induced surface structuring is a robust, maskless, non-contact, and single-step process for producing micro- and nanoscale structures on a material’s surface, which remarkably alters the optical, chemical, wetting, and tribological properties of that material. Wettability control, in particular, is of high significance in various applications, including self-cleaning, anti-fouling, anti-icing, anti-corrosion, and, recently, oil–water separation. Due to growing energy demands and rapid industrialization, oil spill accidents and organic industrial discharges frequently take place. This poses an imminent threat to the environment and has adverse effects on the economy and the ecosystem. Oil–water separation and oil waste management require mechanically robust, durable, low-cost, and highly efficient oil–water manipulation systems. To address this challenge superhydrophobic–superoleophilic and superhydrophilic–underwater superoleophobic membrane filters have shown promising results. However, the recyclability and durability issues of such filters are limiting factors in their industrial application, as well as in their use in oil spill accidents. In this article, we review and discuss the recent progress in the application of FS laser surface structuring in producing durable and robust oil–water separation membrane filters. The wide variety of surface structures produced by FS laser nano- and micromachining are initially presented here, while the excellent wetting characteristics shown by specific femtosecond-induced structures are demonstrated. Subsequently, the working principles of oil–water separation membranes are elaborated, and the most recent advances in the topic are analyzed and discussed.
Collapse
|
37
|
Zerva I, Katsoni E, Simitzi C, Stratakis E, Athanassakis I. Laser micro-structured Si scaffold-implantable vaccines against Salmonella Typhimurium. Vaccine 2019; 37:2249-2257. [DOI: 10.1016/j.vaccine.2019.02.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 11/26/2022]
|
38
|
Simitzi C, Harimech P, Spanou S, Lanara C, Heuer-Jungemann A, Manousaki A, Fotakis C, Ranella A, Kanaras AG, Stratakis E. Cells on hierarchically-structured platforms hosting functionalized nanoparticles. Biomater Sci 2018; 6:1469-1479. [PMID: 29623309 DOI: 10.1039/c7bm00904f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, we report on a novel approach to develop hierarchically-structured cell culture platforms incorporating functionalized gold nanoparticles (AuNPs). In particular, the hierarchical substrates comprise primary pseudo-periodic arrays of silicon microcones combined with a secondary nanoscale pattern of homogeneously deposited AuNPs terminated with bio-functional moieties. AuNPs with various functionalities (i.e. oligopeptides, small molecules and oligomers) were successfully attached onto the microstructures. Experiments with PC12 cells on hierarchical substrates incorporating AuNPs carrying the RGD peptide showed an impressive growth and NGF-induced differentiation of the PC12 cells, compared to that on the NP-free, bare, micropatterned substrates. The exploitation of the developed methodology for the binding of AuNPs as carriers of specific bio-functional moieties onto micropatterned culture substrates for cell biology studies is envisaged.
Collapse
Affiliation(s)
- Chara Simitzi
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Heraklion, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim BJ, Park M, Park JH, Joo S, Kim MH, Kang K, Choi IS. Pioneering Effects and Enhanced Neurite Complexity of Primary Hippocampal Neurons on Hierarchical Neurotemplated Scaffolds. Adv Healthc Mater 2018; 7:e1800289. [PMID: 30088694 DOI: 10.1002/adhm.201800289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/27/2018] [Indexed: 12/14/2022]
Abstract
In this work, the use of scaffolds is reported, templated from live neurons as an advanced culture platform for primary neurons. Hippocampal neurons cultured on neurotemplated scaffolds exhibit an affinity for templated somas, revealing a preference for micrometric structures amidst nanotopographical features. It is also reported, for the first time, that neurite complexity can be topographically controlled by increasing the density of nanometric features on neurotemplated scaffolds. Neurotemplated scaffolds are versatile, hierarchical topographies that feature biologically relevant structures, in both form and scale, and capture the true complexity of an in vivo environment. The introduction and implementation of neurotemplated scaffolds is sure to advance research in the fields of neurodevelopment, network development, and neuroregeneration.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| | - Matthew Park
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| | - Ji Hun Park
- Department of Science Education; Ewha Womans University; Seoul 03760 Republic of Korea
| | - Sunghoon Joo
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| | - Mi-Hee Kim
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry; Kyung Hee University; Yongin Gyeonggi 17104 Republic of Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Republic of Korea
| |
Collapse
|
40
|
Seo J, Kim J, Joo S, Choi JY, Kang K, Cho WK, Choi IS. Nanotopography-Promoted Formation of Axon Collateral Branches of Hippocampal Neurons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801763. [PMID: 30028572 DOI: 10.1002/smll.201801763] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/23/2018] [Indexed: 06/08/2023]
Abstract
Axon collateral branches, as a key structural motif of neurons, allow neurons to integrate information from highly interconnected, divergent networks by establishing terminal boutons. Although physical cues are generally known to have a comprehensive range of effects on neuronal development, their involvement in axonal branching remains elusive. Herein, it is demonstrated that the nanopillar arrays significantly increase the number of axon collateral branches and also promote their growth. Immunostaining and biochemical analyses indicate that the physical interactions between the nanopillars and the neurons give rise to lateral filopodia at the axon shaft via cytoskeletal changes, leading to the formation of axonal branches. This report, demonstrates that nanotopography regulates axonal branching, and provides a guideline for the design of sophisticated neuron-based devices and scaffolds for neuro-engineering.
Collapse
Affiliation(s)
- Jeongyeon Seo
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| | - Juan Kim
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| | - Sunghoon Joo
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| | - Ji Yu Choi
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Insung S Choi
- Department of Chemistry, Center for Cell-Encapsulation Research, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
41
|
Babaliari E, Kavatzikidou P, Angelaki D, Chaniotaki L, Manousaki A, Siakouli-Galanopoulou A, Ranella A, Stratakis E. Engineering Cell Adhesion and Orientation via Ultrafast Laser Fabricated Microstructured Substrates. Int J Mol Sci 2018; 19:E2053. [PMID: 30011926 PMCID: PMC6073590 DOI: 10.3390/ijms19072053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/02/2022] Open
Abstract
Cell responses depend on the stimuli received by the surrounding extracellular environment, which provides the cues required for adhesion, orientation, proliferation, and differentiation at the micro and the nano scales. In this study, discontinuous microcones on silicon (Si) and continuous microgrooves on polyethylene terephthalate (PET) substrates were fabricated via ultrashort pulsed laser irradiation at various fluences, resulting in microstructures with different magnitudes of roughness and varying geometrical characteristics. The topographical models attained were specifically developed to imitate the guidance and alignment of Schwann cells for the oriented axonal regrowth that occurs in nerve regeneration. At the same time, positive replicas of the silicon microstructures were successfully reproduced via soft lithography on the biodegradable polymer poly(lactide-co-glycolide) (PLGA). The anisotropic continuous (PET) and discontinuous (PLGA replicas) microstructured polymeric substrates were assessed in terms of their influence on Schwann cell responses. It is shown that the micropatterned substrates enable control over cellular adhesion, proliferation, and orientation, and are thus useful to engineer cell alignment in vitro. This property is potentially useful in the fields of neural tissue engineering and for dynamic microenvironment systems that simulate in vivo conditions.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 711 10 Heraklion, Greece.
- Department of Materials Science and Technology, University of Crete, 70013 Crete, Greece.
| | - Paraskevi Kavatzikidou
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 711 10 Heraklion, Greece.
| | - Despoina Angelaki
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 711 10 Heraklion, Greece.
- Department of Physics, University of Crete, 70013 Crete, Greece.
| | - Lefki Chaniotaki
- Department of Materials Science and Technology, University of Crete, 70013 Crete, Greece.
| | - Alexandra Manousaki
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 711 10 Heraklion, Greece.
| | | | - Anthi Ranella
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 711 10 Heraklion, Greece.
| | - Emmanuel Stratakis
- Foundation for Research and Technology-Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vassilika Vouton, 711 10 Heraklion, Greece.
- Department of Materials Science and Technology, University of Crete, 70013 Crete, Greece.
| |
Collapse
|
42
|
Jun I, Kim K, Chung YW, Shin HJ, Han HS, Edwards JR, Ok MR, Kim YC, Seok HK, Shin H, Jeon H. Effect of spatial arrangement and structure of hierarchically patterned fibrous scaffolds generated by a femtosecond laser on cardiomyoblast behavior. J Biomed Mater Res A 2018; 106:1732-1742. [DOI: 10.1002/jbm.a.36374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Indong Jun
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS); University of Oxford; Oxford OX3 7LD United Kingdom
| | - Kyeongsoo Kim
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
| | - Yong-Woo Chung
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
| | - Hyeok Jun Shin
- Department of Bioengineering; Hanyang University; Seoul 04763 Republic of Korea
| | - Hyung-Seop Han
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS); University of Oxford; Oxford OX3 7LD United Kingdom
| | - James R. Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS); University of Oxford; Oxford OX3 7LD United Kingdom
| | - Myoung-Ryul Ok
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
| | - Yu-Chan Kim
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
- Division of Bio-Medical Science and Technology; KIST School, Korea University of Science and Technology; Seoul 02792 Republic of Korea
| | - Hyun-Kwang Seok
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
- Division of Bio-Medical Science and Technology; KIST School, Korea University of Science and Technology; Seoul 02792 Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering; Hanyang University; Seoul 04763 Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials; Korea Institute of Science and Technology (KIST); Seoul 02792 Republic of Korea
- Division of Bio-Medical Science and Technology; KIST School, Korea University of Science and Technology; Seoul 02792 Republic of Korea
| |
Collapse
|
43
|
Kostal E, Stroj S, Kasemann S, Matylitsky V, Domke M. Fabrication of Biomimetic Fog-Collecting Superhydrophilic-Superhydrophobic Surface Micropatterns Using Femtosecond Lasers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2933-2941. [PMID: 29364677 DOI: 10.1021/acs.langmuir.7b03699] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The exciting functionalities of natural superhydrophilic and superhydrophobic surfaces served as inspiration for a variety of biomimetic designs. In particular, the combination of both extreme wetting states to micropatterns opens up interesting applications, as the example of the fog-collecting Namib Desert beetle shows. In this paper, the beetle's elytra were mimicked by a novel three-step fabrication method to increase the fog-collection efficiency of glasses. In the first step, a double-hierarchical surface structure was generated on Pyrex wafers using femtosecond laser structuring, which amplified the intrinsic wetting property of the surface and made it superhydrophilic (water contact angle < 10°). In the second step, a Teflon-like polymer (CF2) n was deposited by a plasma process that turned the laser-structured surface superhydrophobic (water contact angle > 150°). In the last step, the Teflon-like coating was selectively removed by fs-laser ablation to uncover superhydrophilic spots below the superhydrophobic surface, following the example of the Namib Desert beetle's fog-collecting elytra. To investigate the influence on the fog-collection behavior, (super)hydrophilic, (super)hydrophobic, and low and high contrast wetting patterns were fabricated on glass wafers using selected combinations of these three processing steps and were exposed to fog in an artificial nebulizer setup. This experiment revealed that high-contrast wetting patterns collected the highest amount of fog and enhanced the fog-collection efficiency by nearly 60% compared to pristine Pyrex glass. The comparison of the fog-collection behavior of the six samples showed that the superior fog-collection efficiency of surface patterns with extreme wetting contrast is due to the combination of water attraction and water repellency: the superhydrophilic spots act as drop accumulation areas, whereas the surrounding superhydrophobic areas allow a fast water transportation caused by gravity. The presented method enables a fast and flexible surface functionalization of a broad range of materials including transparent substrates, which offers exciting possibilities for the design of biomedical and microfluidic devices.
Collapse
|
44
|
Wang Z, Zhou R, Wen F, Zhang R, Ren L, Teoh SH, Hong M. Reliable laser fabrication: the quest for responsive biomaterials surface. J Mater Chem B 2018; 6:3612-3631. [DOI: 10.1039/c7tb02545a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review presents current efforts in laser fabrication, focusing on the surface features of biomaterials and their biological responses; this provides insight into the engineering of bio-responsive surfaces for future medical devices.
Collapse
Affiliation(s)
- Zuyong Wang
- College of Materials Science and Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Rui Zhou
- School of Aerospace Engineering
- Xiamen University
- Xiamen 361005
- P. R. China
| | - Feng Wen
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Rongkai Zhang
- The Third Affiliated Hospital of Southern Medical University
- Guangzhou 510630
- P. R. China
| | - Lei Ren
- College of Materials Science
- Xiamen University
- Xiamen 361005
- P. R. China
| | - Swee Hin Teoh
- College of Materials Science and Engineering
- Hunan University
- Changsha 410082
- P. R. China
- School of Chemical and Biomedical Engineering
| | - Minghui Hong
- School of Aerospace Engineering
- Xiamen University
- Xiamen 361005
- P. R. China
- Department of Electrical and Computer Engineering
| |
Collapse
|
45
|
Yiannakou C, Simitzi C, Manousaki A, Fotakis C, Ranella A, Stratakis E. Cell patterning via laser micro/nano structured silicon surfaces. Biofabrication 2017; 9:025024. [PMID: 28485302 DOI: 10.1088/1758-5090/aa71c6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The surface topography of biomaterials can have an important impact on cellular adhesion, growth and proliferation. Apart from the overall roughness, the detailed morphological features, at all length scales, significantly affect the cell-biomaterial interactions in a plethora of applications including structural implants, tissue engineering scaffolds and biosensors. In this study, we present a simple, one-step direct laser patterning technique to fabricate nanoripples and dual-rough hierarchical micro/nano structures to control SW10 cell attachment and migration. It is shown that, depending on the laser processing conditions, distinct cell-philic or cell-repellant patterned areas can be attained with a desired motif. We envisage that our technique could enable spatial patterning of cells in a controllable manner, giving rise to advanced capabilities in cell biology research.
Collapse
Affiliation(s)
- Ch Yiannakou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion, 71110, Crete, Greece. Department of Physics, University of Crete, Heraklion, 71003, Crete, Greece
| | | | | | | | | | | |
Collapse
|
46
|
Skoulas E, Manousaki A, Fotakis C, Stratakis E. Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci Rep 2017; 7:45114. [PMID: 28327611 PMCID: PMC5361190 DOI: 10.1038/srep45114] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/16/2017] [Indexed: 12/23/2022] Open
Abstract
We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.
Collapse
Affiliation(s)
- Evangelos Skoulas
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece.,Materials Science and Technology Department, University of Crete, 71003 Heraklion, Greece
| | - Alexandra Manousaki
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | - Costas Fotakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece.,Physics Department, University of Crete, 71003 Heraklion, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece.,Materials Science and Technology Department, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
47
|
Simitzi C, Ranella A, Stratakis E. Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography. Acta Biomater 2017; 51:21-52. [PMID: 28069509 DOI: 10.1016/j.actbio.2017.01.023] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Unlike other tissue types, like epithelial tissue, which consist of cells with a much more homogeneous structure and function, the nervous tissue spans in a complex multilayer environment whose topographical features display a large spectrum of morphologies and size scales. Traditional cell cultures, which are based on two-dimensional cell-adhesive culture dishes or coverslips, are lacking topographical cues and mainly simulate the biochemical microenvironment of the cells. With the emergence of micro- and nano-fabrication techniques new types of cell culture platforms are developed, where the effect of various topographical cues on cellular morphology, proliferation and differentiation can be studied. Different approaches (regarding the material, fabrication technique, topographical characteristics, etc.) have been implemented. The present review paper aims at reviewing the existing body of literature on the use of artificial micro- and nano-topographical features to control neuronal and neuroglial cells' morphology, outgrowth and neural network topology. The cell responses-from phenomenology to investigation of the underlying mechanisms- on the different topographies, including both deterministic and random ones, are summarized. STATEMENT OF SIGNIFICANCE There is increasing evidence that physical cues, such as topography, can have a significant impact on the neural cell functions. With the aid of micro-and nanofabrication techniques, new types of cell culture platforms are developed and the effect of surface topography on the cells has been studied. The present review article aims at reviewing the existing body of literature reporting on the use of various topographies to study and control the morphology and functions of cells from nervous tissue, i.e. the neuronal and the neuroglial cells. The cell responses-from phenomenology to investigation of the underlying mechanisms- on the different topographies, including both deterministic and random ones, are summarized.
Collapse
Affiliation(s)
- C Simitzi
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion 71003, Greece
| | - A Ranella
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion 71003, Greece
| | - E Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion 71003, Greece.
| |
Collapse
|
48
|
Limongi T, Tirinato L, Pagliari F, Giugni A, Allione M, Perozziello G, Candeloro P, Di Fabrizio E. Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering. NANO-MICRO LETTERS 2017; 9:1. [PMID: 30460298 PMCID: PMC6223775 DOI: 10.1007/s40820-016-0103-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/28/2016] [Indexed: 05/17/2023]
Abstract
Nanotechnology allows the realization of new materials and devices with basic structural unit in the range of 1-100 nm and characterized by gaining control at the atomic, molecular, and supramolecular level. Reducing the dimensions of a material into the nanoscale range usually results in the change of its physiochemical properties such as reactivity, crystallinity, and solubility. This review treats the convergence of last research news at the interface of nanostructured biomaterials and tissue engineering for emerging biomedical technologies such as scaffolding and tissue regeneration. The present review is organized into three main sections. The introduction concerns an overview of the increasing utility of nanostructured materials in the field of tissue engineering. It elucidates how nanotechnology, by working in the submicron length scale, assures the realization of a biocompatible interface that is able to reproduce the physiological cell-matrix interaction. The second, more technical section, concerns the design and fabrication of biocompatible surface characterized by micro- and submicroscale features, using microfabrication, nanolithography, and miscellaneous nanolithographic techniques. In the last part, we review the ongoing tissue engineering application of nanostructured materials and scaffolds in different fields such as neurology, cardiology, orthopedics, and skin tissue regeneration.
Collapse
Affiliation(s)
- Tania Limongi
- SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Sciences and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Luca Tirinato
- SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Sciences and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Francesca Pagliari
- Department of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Andrea Giugni
- SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Sciences and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Marco Allione
- SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Sciences and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Gerardo Perozziello
- Laboratory of Nanotechnology BioNEM, Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Viale Europa - Loc. Germaneto, 88100 Catanzaro, Italy
| | - Patrizio Candeloro
- Laboratory of Nanotechnology BioNEM, Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Viale Europa - Loc. Germaneto, 88100 Catanzaro, Italy
| | - Enzo Di Fabrizio
- SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Sciences and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
49
|
Guo J, Liu L, Liu H, Gan K, Liu X, Song X, Niu D, Chen T. Influence of femtosecond laser on the osteogenetic efficiency of polyetheretherketone and its composite. HIGH PERFORM POLYM 2016. [DOI: 10.1177/0954008316667460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: This study aimed to evaluate the effect of a femtosecond laser on the osteogenetic efficiency of polyetheretherketone (PEEK) and its composite for clinical applications. Methods: One hundred pieces of PEEK and its composite (6 × 4 × 2 mm3) were randomly divided into four groups and treated as follows: group A1, PEEK; group A2, PEEK + femtosecond laser; group B1, PEEK composite; and group B2, PEEK composite + femtosecond. The surface morphology of the pieces of each group was observed through scanning electron microscopy. The surface roughness and wettability, which were considered as the main parameters affecting cell adhesion characteristics of implants, were measured. The animals whose mandibles were implanted with the four groups of materials were killed at the end of 6 and 12 weeks. Various characterization tests, such as Cone Beam Computed Tomography (CBCT), push-out test, microscope test, and bone implant contact , were conducted to investigate the healing effect between materials and bones. Results: In group B1, the nanoparticles in PEEK were uniformly distributed. In groups A2 and B2, many periodic nanostructures were observed. The surface roughness and wettability of group B2 were significantly increased compared to those of the other groups ( p < 0.05). At each time point, the number of trabecular bones, contact strength, and BIC of group B2 were higher than those of the three other groups ( p < 0.05). Compared with those of group A1, the test results of group B1 were significantly improved. Conclusion: Femtosecond lasers can effectively enhance the biological activity of PEEK and its composite; PEEK composite exhibits better biological activity than PEEK.
Collapse
Affiliation(s)
- Jing Guo
- School and Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Lijun Liu
- School and Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Hong Liu
- School and Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Kang Gan
- School and Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Xiuju Liu
- School and Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Xiaoqing Song
- School and Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Deli Niu
- School and Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Tianjie Chen
- School and Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
50
|
Hu X, Hu T, Shen G, Lian M, Guan G, Wang F, Wang L. PCL films of varying porosity influence ICAM-1 expression of HUVECs. J Biomed Mater Res A 2016; 104:2775-84. [PMID: 27345288 DOI: 10.1002/jbm.a.35818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/12/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Xingyou Hu
- Department of textile engineering, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| | - Tao Hu
- Department of Immunology; Binzhou Medical College; Yantai 264003 China
| | - Gaotian Shen
- Department of textile engineering, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| | - Mingqiang Lian
- Department of textile engineering, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| | - Guoping Guan
- Department of textile engineering, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| | - Fujun Wang
- Department of textile engineering, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| | - Lu Wang
- Department of textile engineering, Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles; Donghua University; Shanghai 201620 China
| |
Collapse
|