1
|
Almeida M, Inácio JM, Vital CM, Rodrigues MR, Araújo BC, Belo JA. Cell Reprogramming, Transdifferentiation, and Dedifferentiation Approaches for Heart Repair. Int J Mol Sci 2025; 26:3063. [PMID: 40243729 PMCID: PMC11988544 DOI: 10.3390/ijms26073063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death globally, with myocardial infarction (MI) being a major contributor. The current therapeutic approaches are limited in effectively regenerating damaged cardiac tissue. Up-to-date strategies for heart regeneration/reconstitution aim at cardiac remodeling through repairing the damaged tissue with an external cell source or by stimulating the existing cells to proliferate and repopulate the compromised area. Cell reprogramming is addressed to this challenge as a promising solution, converting fibroblasts and other cell types into functional cardiomyocytes, either by reverting cells to a pluripotent state or by directly switching cell lineage. Several strategies such as gene editing and the application of miRNA and small molecules have been explored for their potential to enhance cardiac regeneration. Those strategies take advantage of cell plasticity by introducing reprogramming factors that regress cell maturity in vitro, allowing for their later differentiation and thus endorsing cell transplantation, or promote in situ cell proliferation, leveraged by scaffolds embedded with pro-regenerative factors promoting efficient heart restoration. Despite notable advancements, important challenges persist, including low reprogramming efficiency, cell maturation limitations, and safety concerns in clinical applications. Nonetheless, integrating these innovative approaches offers a promising alternative for restoring cardiac function and reducing the dependency on full heart transplants.
Collapse
Affiliation(s)
| | - José M. Inácio
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (M.A.); (C.M.V.); (M.R.R.); (B.C.A.)
| | | | | | | | - José A. Belo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (M.A.); (C.M.V.); (M.R.R.); (B.C.A.)
| |
Collapse
|
2
|
Vellayappan MV, Duarte F, Sollogoub C, Dirrenberger J, Guinault A, Frith JE, Parkington HC, Molotnikov A, Cameron NR. Creation of Grooved Tissue Engineering Scaffolds from Architectured Multilayer Polymer Composites by a Tuneable One-Step Degradation Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401902. [PMID: 38949308 DOI: 10.1002/smll.202401902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/03/2024] [Indexed: 07/02/2024]
Abstract
The surface properties of biomaterials interact directly with biological systems, influencing cellular responses, tissue integration, and biocompatibility. Surface topography plays a critical role in cardiac tissue engineering by affecting electrical conductivity, cardiomyocyte alignment, and contractile function. Current methods for controlling surface properties and topography in cardiac tissue engineering scaffolds are limited, expensive, and lack precision. This study introduces a low-cost, one-step degradation process to create scaffolds with well-defined micro-grooves from multilayered 3D printed poly(lactic acid)/thermoplastic polyurethane composites. The approach provides control over erosion rate and surface morphology, allowing easy tuning of scaffold topographical cues for tissue engineering applications. The findings reported in this study provide a library of easily tuneable scaffold topographical cues. A strong dependence of neonatal rat cardiomyocyte (NRCM) contact guidance with the multilayers' dimension and shape in partially degraded polylactic acid (PLA)/thermoplastic polyurethane (TPU) samples is observed. NRCMs cultured on samples with a layer thickness of 13 ± 2 µm and depth of 4.7 ± 0.2 µm demonstrate the most regular contractions. Hence, the proposed fabrication scheme can be used to produce a new generation of biomaterials with excellent controllability determined by multilayer thickness, printing parameters, and degradation treatment duration.
Collapse
Affiliation(s)
- Muthu Vignesh Vellayappan
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
| | - Francisco Duarte
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
| | - Cyrille Sollogoub
- PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, 151 boulevard de l'Hopital, Paris, 75013, France
| | - Justin Dirrenberger
- PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, 151 boulevard de l'Hopital, Paris, 75013, France
| | - Alain Guinault
- PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, 151 boulevard de l'Hopital, Paris, 75013, France
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, 26, Innovation Walk, Victoria, 3800, Australia
| | - Andrey Molotnikov
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
- Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
3
|
Harati J, Du P, Galluzzi M, Li X, Lin J, Pan H, Wang PY. Tailored Physicochemical Cues Direct Human Mesenchymal Stem Cell Differentiation through Epigenetic Regulation Using Colloidal Self-Assembled Patterns. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35912-35924. [PMID: 38976770 DOI: 10.1021/acsami.4c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The extracellular matrix (ECM) shapes the stem cell fate during differentiation by exerting relevant biophysical cues. However, the mechanism of stem cell fate decisions in response to ECM-backed complex biophysical cues has not been fully understood due to the lack of versatile ECMs. Here, we designed two versatile ECMs using colloidal self-assembly technology to probe the mechanisms of their effects on mechanotransduction and stem cell fate regulation. Binary colloidal crystals (BCC) with a hexagonally close-packed structure, composed of silica (5 μm) and polystyrene (0.4 μm) particles as well as a polydimethylsiloxane-embedded BCC (BCCP), were fabricated. They have defined surface chemistry, roughness, stiffness, ion release, and protein adsorption properties, which can modulate the cell adhesion, proliferation, and differentiation of human adipose-derived stem cells (hASCs). On the BCC, hASCs preferred osteogenesis at an early stage but showed a higher tendency toward adipogenesis at later stages. In contrast, the results of BCCP diverged from those of BCC, suggesting a unique regulation of ECM-dependent mechanotransduction. The BCC-mediated cell adhesion reduced the size of the focal adhesion complex, accompanying an ordered spatial organization and cytoskeletal rearrangement. This morphological restriction led to the modulation of mechanosensitive transcription factors, such as c-FOS, the enrichment of transcripts in specific signaling pathways such as PI3K/AKT, and the activation of the Hippo signaling pathway. Epigenetic analyses showed changes in histone modifications across different substrates, suggesting that chromatin remodeling participated in BCC-mediated mechanotransduction. This study demonstrates that BCCs are versatile artificial ECMs that can regulate human stem cells' fate through unique biological signaling, which is beneficial in biomaterial design and stem cell engineering.
Collapse
Affiliation(s)
- Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Science, Beijing 101408, China
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Massimiliano Galluzzi
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong 518055, China
| | - Xian Li
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Haobo Pan
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
4
|
Chang D, Sun C, Tian X, Liu H, Jia Y, Guo Z. Regulation of cardiac fibroblasts reprogramming into cardiomyocyte-like cells with a cocktail of small molecule compounds. FEBS Open Bio 2024; 14:983-1000. [PMID: 38693086 PMCID: PMC11148126 DOI: 10.1002/2211-5463.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Myocardial infarction results in extensive cardiomyocyte apoptosis, leading to the formation of noncontractile scar tissue. Given the limited regenerative capacity of adult mammalian cardiomyocytes, direct reprogramming of cardiac fibroblasts (CFs) into cardiomyocytes represents a promising therapeutic strategy for myocardial repair, and small molecule drugs might offer a more attractive alternative to gene editing approaches in terms of safety and clinical feasibility. This study aimed to reprogram rat CFs into cardiomyocytes using a small molecular chemical mixture comprising CHIR99021, Valproic acid, Dorsomorphin, SB431542, and Forskolin. Immunofluorescence analysis revealed a significant increase in the expression of cardiomyocyte-specific markers, including cardiac troponin T (cTnT), Connexin 43 (Cx43), α-actinin, and Tbx5. Changes in intracellular calcium ion levels and Ca2+ signal transfer between adjacent cells were monitored using a calcium ion fluorescence probe. mRNA sequencing analysis demonstrated the upregulation of genes associated with cardiac morphogenesis, myocardial differentiation, and muscle fiber contraction during CF differentiation induced by the small-molecule compounds. Conversely, the expression of fibroblast-related genes was downregulated. These findings suggest that chemical-induced cell fate conversion of rat CFs into cardiomyocyte-like cells is feasible, offering a potential therapeutic solution for myocardial injury.
Collapse
Affiliation(s)
| | - Changye Sun
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Hongyin Liu
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| |
Collapse
|
5
|
Kainz M, Perak S, Stubauer G, Kopp S, Kauscheder S, Hemetzberger J, Martínez Cendrero A, Díaz Lantada A, Tupe D, Major Z, Hanetseder D, Hruschka V, Wolbank S, Marolt Presen D, Mühlberger M, Guillén E. Additive and Lithographic Manufacturing of Biomedical Scaffold Structures Using a Versatile Thiol-Ene Photocurable Resin. Polymers (Basel) 2024; 16:655. [PMID: 38475341 DOI: 10.3390/polym16050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Additive and lithographic manufacturing technologies using photopolymerisation provide a powerful tool for fabricating multiscale structures, which is especially interesting for biomimetic scaffolds and biointerfaces. However, most resins are tailored to one particular fabrication technology, showing drawbacks for versatile use. Hence, we used a resin based on thiol-ene chemistry, leveraging its numerous advantages such as low oxygen inhibition, minimal shrinkage and high monomer conversion. The resin is tailored to applications in additive and lithographic technologies for future biofabrication where fast curing kinetics in the presence of oxygen are required, namely 3D inkjet printing, digital light processing and nanoimprint lithography. These technologies enable us to fabricate scaffolds over a span of six orders of magnitude with a maximum of 10 mm and a minimum of 150 nm in height, including bioinspired porous structures with controlled architecture, hole-patterned plates and micro/submicro patterned surfaces. Such versatile properties, combined with noncytotoxicity, degradability and the commercial availability of all the components render the resin as a prototyping material for tissue engineers.
Collapse
Affiliation(s)
- Michael Kainz
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | - Stjepan Perak
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | - Gerald Stubauer
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | - Sonja Kopp
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | - Sebastian Kauscheder
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | - Julia Hemetzberger
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | | | - Andrés Díaz Lantada
- Department of Mechanical Engineering, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - Disha Tupe
- Institute of Polymer Product Engineering, Johannes Kepler University, 4040 Linz, Austria
| | - Zoltan Major
- Institute of Polymer Product Engineering, Johannes Kepler University, 4040 Linz, Austria
| | - Dominik Hanetseder
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Veronika Hruschka
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Michael Mühlberger
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| | - Elena Guillén
- Functional Surfaces and Nanostructures, Profactor GmbH, 4407 Steyr-Gleink, Austria
| |
Collapse
|
6
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
7
|
He X, Dutta S, Liang J, Paul C, Huang W, Xu M, Chang V, Ao I, Wang Y. Direct cellular reprogramming techniques for cardiovascular regenerative therapeutics. Can J Physiol Pharmacol 2024; 102:1-13. [PMID: 37903419 DOI: 10.1139/cjpp-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Cardiovascular diseases remain a leading cause of hospitalization affecting approximately 38 million people worldwide. While pharmacological and revascularization techniques can improve the patient's survival and quality of life, they cannot help reversing myocardial infarction injury and heart failure. Direct reprogramming of somatic cells to cardiomyocyte and cardiac progenitor cells offers a new approach to cellular reprogramming and paves the way for translational regenerative medicine. Direct reprogramming can bypass the pluripotent stage with the potential advantage of non-immunogenic cell products, reduced carcinogenic risk, and no requirement for embryonic tissue. The process of directly reprogramming cardiac cells was first achieved through the overexpression of transcription factors such as GATA4, MEF2C, and TBX5. However, over the past decade, significant work has been focused on enhancing direct reprogramming using a mixture of transcription factors, microRNAs, and small molecules to achieve cardiac cell fate. This review discusses the evolution of direct reprogramming, recent progress in achieving efficient cardiac cell fate conversion, and describes the reprogramming mechanisms at a molecular level. We also explore various viral and non-viral delivery methods currently being used to aid in the delivery of reprogramming factors to improve efficiency. However, further studies will be needed to overcome molecular and epigenetic barriers to successfully achieve translational cardiac regenerative therapeutics.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Suchandrima Dutta
- Department of Internal MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Christian Paul
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Wei Huang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Meifeng Xu
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Vivian Chang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Ian Ao
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| | - Yigang Wang
- Department of Pathology & Laboratory MedicineCollege of Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA
| |
Collapse
|
8
|
Yang X, Xiong M, Fu X, Sun X. Bioactive materials for in vivo sweat gland regeneration. Bioact Mater 2024; 31:247-271. [PMID: 37637080 PMCID: PMC10457517 DOI: 10.1016/j.bioactmat.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023] Open
Abstract
Loss of sweat glands (SwGs) commonly associated with extensive skin defects is a leading cause of hyperthermia and heat stroke. In vivo tissue engineering possesses the potential to take use of the body natural ability to regenerate SwGs, making it more conducive to clinical translation. Despite recent advances in regenerative medicine, reconstructing SwG tissue with the same structure and function as native tissue remains challenging. Elucidating the SwG generation mechanism and developing biomaterials for in vivo tissue engineering is essential for understanding and developing in vivo SwG regenerative strategies. Here, we outline the cell biology associated with functional wound healing and the characteristics of bioactive materials. We critically summarize the recent progress in bioactive material-based cell modulation approaches for in vivo SwG regeneration, including the recruitment of endogenous cells to the skin lesion for SwG regeneration and in vivo cellular reprogramming for SwG regeneration. We discussed the re-establishment of microenvironment via bioactive material-mediated regulators. Besides, we offer promising perspectives for directing in situ SwG regeneration via bioactive material-based cell-free strategy, which is a simple and effective approach to regenerate SwG tissue with both fidelity of structure and function. Finally, we discuss the opportunities and challenges of in vivo SwG regeneration in detail. The molecular mechanisms and cell fate modulation of in vivo SwG regeneration will provide further insights into the regeneration of patient-specific SwGs and the development of potential intervention strategies for gland-derived diseases.
Collapse
Affiliation(s)
- Xinling Yang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
9
|
Ma J, Wang W, Zhang W, Xu D, Ding J, Wang F, Peng X, Wang D, Li Y. The recent advances in cell delivery approaches, biochemical and engineering procedures of cell therapy applied to coronary heart disease. Biomed Pharmacother 2023; 169:115870. [PMID: 37952359 DOI: 10.1016/j.biopha.2023.115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Cell therapy is an important topic in the field of regeneration medicine that is gaining attention within the scientific community. However, its potential for treatment in coronary heart disease (CHD) has yet to be established. Several various strategies, types of cells, routes of distribution, and supporting procedures have been tried and refined to trigger heart rejuvenation in CHD. However, only a few of them result in a real considerable promise for clinical usage. In this review, we give an update on techniques and clinical studies of cell treatment as used to cure CHD that are now ongoing or have been completed in the previous five years. We also highlight the emerging efficacy of stem cell treatment for CHD. We specifically examine and comment on current breakthroughs in cell treatment applied to CHD, including the most effective types of cells, transport modalities, engineering, and biochemical approaches used in this context. We believe the current review will be helpful for the researcher to distill this information and design future studies to overcome the challenges faced by this revolutionary approach for CHD.
Collapse
Affiliation(s)
- Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 13000, China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Fang Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xia Peng
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dahai Wang
- Department of Rehabilitation, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Yanwei Li
- Department of General Practice and Family Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
10
|
Benko A, Webster TJ. How to fix a broken heart-designing biofunctional cues for effective, environmentally-friendly cardiac tissue engineering. Front Chem 2023; 11:1267018. [PMID: 37901157 PMCID: PMC10602933 DOI: 10.3389/fchem.2023.1267018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023] Open
Abstract
Cardiovascular diseases bear strong socioeconomic and ecological impact on the worldwide healthcare system. A large consumption of goods, use of polymer-based cardiovascular biomaterials, and long hospitalization times add up to an extensive carbon footprint on the environment often turning out to be ineffective at healing such cardiovascular diseases. On the other hand, cardiac cell toxicity is among the most severe but common side effect of drugs used to treat numerous diseases from COVID-19 to diabetes, often resulting in the withdrawal of such pharmaceuticals from the market. Currently, most patients that have suffered from cardiovascular disease will never fully recover. All of these factors further contribute to the extensive negative toll pharmaceutical, biotechnological, and biomedical companies have on the environment. Hence, there is a dire need to develop new environmentally-friendly strategies that on the one hand would promise cardiac tissue regeneration after damage and on the other hand would offer solutions for the fast screening of drugs to ensure that they do not cause cardiovascular toxicity. Importantly, both require one thing-a mature, functioning cardiac tissue that can be fabricated in a fast, reliable, and repeatable manner from environmentally friendly biomaterials in the lab. This is not an easy task to complete as numerous approaches have been undertaken, separately and combined, to achieve it. This review gathers such strategies and provides insights into which succeed or fail and what is needed for the field of environmentally-friendly cardiac tissue engineering to prosper.
Collapse
Affiliation(s)
| | - Thomas J. Webster
- Department of Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| |
Collapse
|
11
|
Soto J, Song Y, Wu Y, Chen B, Park H, Akhtar N, Wang P, Hoffman T, Ly C, Sia J, Wong S, Kelkhoff DO, Chu J, Poo M, Downing TL, Rowat AC, Li S. Reduction of Intracellular Tension and Cell Adhesion Promotes Open Chromatin Structure and Enhances Cell Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300152. [PMID: 37357983 PMCID: PMC10460843 DOI: 10.1002/advs.202300152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/13/2023] [Indexed: 06/27/2023]
Abstract
The role of transcription factors and biomolecules in cell type conversion has been widely studied. Yet, it remains unclear whether and how intracellular mechanotransduction through focal adhesions (FAs) and the cytoskeleton regulates the epigenetic state and cell reprogramming. Here, it is shown that cytoskeletal structures and the mechanical properties of cells are modulated during the early phase of induced neuronal (iN) reprogramming, with an increase in actin cytoskeleton assembly induced by Ascl1 transgene. The reduction of actin cytoskeletal tension or cell adhesion at the early phase of reprogramming suppresses the expression of mesenchymal genes, promotes a more open chromatin structure, and significantly enhances the efficiency of iN conversion. Specifically, reduction of intracellular tension or cell adhesion not only modulates global epigenetic marks, but also decreases DNA methylation and heterochromatin marks and increases euchromatin marks at the promoter of neuronal genes, thus enhancing the accessibility for gene activation. Finally, micro- and nano-topographic surfaces that reduce cell adhesions enhance iN reprogramming. These novel findings suggest that the actin cytoskeleton and FAs play an important role in epigenetic regulation for cell fate determination, which may lead to novel engineering approaches for cell reprogramming.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Yang Song
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Yifan Wu
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Binru Chen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Hyungju Park
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Navied Akhtar
- Department of Biomedical EngineeringUniversity of CaliforniaIrvineCA92617USA
| | - Peng‐Yuan Wang
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Oujiang LaboratoryKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceInstitute of AgingWenzhou Medical UniversityWenzhouZhejiang325024China
| | - Tyler Hoffman
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Chau Ly
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCA90095USA
| | - Junren Sia
- Department of BioengineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - SzeYue Wong
- Department of BioengineeringUniversity of CaliforniaBerkeleyCA94720USA
| | | | - Julia Chu
- Department of BioengineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Mu‐Ming Poo
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCA94720USA
| | - Timothy L. Downing
- Department of Biomedical EngineeringUniversity of CaliforniaIrvineCA92617USA
| | - Amy C. Rowat
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCA90095USA
| | - Song Li
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
- Department of MedicineUniversity of CaliforniaLos AngelesCA90095USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCA90095USA
- Jonsson Comprehensive Cancer CenterDavid Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCA90095USA
| |
Collapse
|
12
|
Rajendran AK, Sankar D, Amirthalingam S, Kim HD, Rangasamy J, Hwang NS. Trends in mechanobiology guided tissue engineering and tools to study cell-substrate interactions: a brief review. Biomater Res 2023; 27:55. [PMID: 37264479 DOI: 10.1186/s40824-023-00393-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Sensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues. Furthermore, as mechanobiology is gaining traction, so do the various techniques to ponder and gain insights into the still unraveled pathways. This review would briefly discuss some of the interesting works wherein it has been shown that specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids. This review would also cover various techniques that have been developed and employed to explore the effects of mechanosignalling, including imaging of mechanosensing proteins, atomic force microscopy (AFM), quartz crystal microbalance with dissipation measurements (QCMD), traction force microscopy (TFM), microdevice arrays, Spatio-temporal image analysis, optical tweezer force measurements, mechanoscanning ion conductance microscopy (mSICM), acoustofluidic interferometric device (AID) and so forth. This review would provide insights to the researchers who work on exploiting various mechanical properties of substrates to control the cellular and tissue functions for tissue engineering and regenerative applications, and also will shed light on the advancements of various techniques that could be utilized to unravel the unknown in the field of cellular mechanobiology.
Collapse
Affiliation(s)
- Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Deepthi Sankar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Lin Y, Zhang F, Chen S, Zhu X, Jiao J, Zhang Y, Li Z, Lin J, Ma B, Chen M, Wang PY, Cui C. Binary Colloidal Crystals Promote Cardiac Differentiation of Human Pluripotent Stem Cells via Nuclear Accumulation of SETDB1. ACS NANO 2023; 17:3181-3193. [PMID: 36655945 PMCID: PMC9933589 DOI: 10.1021/acsnano.3c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Biophysical cues can facilitate the cardiac differentiation of human pluripotent stem cells (hPSCs), yet the mechanism is far from established. One of the binary colloidal crystals, composed of 5 μm Si and 400 nm poly(methyl methacrylate) particles named 5PM, has been applied as a substrate for hPSCs cultivation and cardiac differentiation. In this study, cell nucleus, cytoskeleton, and epigenetic states of human induced pluripotent stem cells on the 5PM were analyzed using atomic force microscopy, molecular biology assays, and the assay for transposase-accessible chromatin sequencing (ATAC-seq). Cells were more spherical with stiffer cell nuclei on the 5PM compared to the flat control. ATAC-seq revealed that chromatin accessibility decreased on the 5PM, caused by the increased entry of histone lysine methyltransferase SETDB1 into the cell nuclei and the amplified level of histone H3K9me3 modification. Reducing cytoskeleton tension using a ROCK inhibitor attenuated the nuclear accumulation of SETDB1 on the 5PM, indicating that the effect is cytoskeleton-dependent. In addition, the knockdown of SETDB1 reversed the promotive effects of the 5PM on cardiac differentiation, demonstrating that biophysical cue-induced cytoskeletal tension, cell nucleus deformation, and then SETDB1 accumulation are critical outside-in signal transformations in cardiac differentiation. Human embryonic stem cells showed similar results, indicating that the biophysical impact of the 5PM surfaces on cardiac differentiation could be universal. These findings contribute to our understanding of material-assistant hPSC differentiation, which benefits materiobiology and stem cell bioengineering.
Collapse
Affiliation(s)
- Yongping Lin
- Department
of Cardiology, The First Affiliated Hospital
of Nanjing Medical University, Nanjing210000, Jiangsu, China
- Department
of Cardiology, The Affiliated Taizhou People’s Hospital of
Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou225300, Jiangsu, China
| | - Feng Zhang
- Department
of Cardiology, The First Affiliated Hospital
of Nanjing Medical University, Nanjing210000, Jiangsu, China
| | - Shaojie Chen
- Department
of Cardiology, The First Affiliated Hospital
of Nanjing Medical University, Nanjing210000, Jiangsu, China
| | - Xiyu Zhu
- Department
of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical
School, Nanjing210000, China
| | - Jincheng Jiao
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing210000, Jiangsu, China
| | - Yike Zhang
- Department
of Cardiology, The First Affiliated Hospital
of Nanjing Medical University, Nanjing210000, Jiangsu, China
| | - Zhaomin Li
- Department
of Cardiology, The First Affiliated Hospital
of Nanjing Medical University, Nanjing210000, Jiangsu, China
| | - Jiao Lin
- Shenzhen
Key Laboratory of Biomimetic Materials and Cellular Immunomodulation,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518000, Guangdong, China
| | - Biao Ma
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing210000, Jiangsu, China
| | - Minglong Chen
- Department
of Cardiology, The First Affiliated Hospital
of Nanjing Medical University, Nanjing210000, Jiangsu, China
- Department
of Cardiology, The Affiliated Taizhou People’s Hospital of
Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou225300, Jiangsu, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing210000, Jiangsu, China
| | - Peng-Yuan Wang
- Oujiang
Laboratory; Key Laboratory of Alzheimer’s Disease of Zhejiang
Province, Institute of Aging, Wenzhou Medical
University, Wenzhou325000, Zhejiang, China
| | - Chang Cui
- Department
of Cardiology, The First Affiliated Hospital
of Nanjing Medical University, Nanjing210000, Jiangsu, China
| |
Collapse
|
14
|
He X, Liang J, Paul C, Huang W, Dutta S, Wang Y. Advances in Cellular Reprogramming-Based Approaches for Heart Regenerative Repair. Cells 2022; 11:3914. [PMID: 36497171 PMCID: PMC9740402 DOI: 10.3390/cells11233914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Continuous loss of cardiomyocytes (CMs) is one of the fundamental characteristics of many heart diseases, which eventually can lead to heart failure. Due to the limited proliferation ability of human adult CMs, treatment efficacy has been limited in terms of fully repairing damaged hearts. It has been shown that cell lineage conversion can be achieved by using cell reprogramming approaches, including human induced pluripotent stem cells (hiPSCs), providing a promising therapeutic for regenerative heart medicine. Recent studies using advanced cellular reprogramming-based techniques have also contributed some new strategies for regenerative heart repair. In this review, hiPSC-derived cell therapeutic methods are introduced, and the clinical setting challenges (maturation, engraftment, immune response, scalability, and tumorigenicity), with potential solutions, are discussed. Inspired by the iPSC reprogramming, the approaches of direct cell lineage conversion are merging, such as induced cardiomyocyte-like cells (iCMs) and induced cardiac progenitor cells (iCPCs) derived from fibroblasts, without induction of pluripotency. The studies of cellular and molecular pathways also reveal that epigenetic resetting is the essential mechanism of reprogramming and lineage conversion. Therefore, CRISPR techniques that can be repurposed for genomic or epigenetic editing become attractive approaches for cellular reprogramming. In addition, viral and non-viral delivery strategies that are utilized to achieve CM reprogramming will be introduced, and the therapeutic effects of iCMs or iCPCs on myocardial infarction will be compared. After the improvement of reprogramming efficiency by developing new techniques, reprogrammed iCPCs or iCMs will provide an alternative to hiPSC-based approaches for regenerative heart therapies, heart disease modeling, and new drug screening.
Collapse
Affiliation(s)
- Xingyu He
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jialiang Liang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Christian Paul
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Wei Huang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Suchandrima Dutta
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yigang Wang
- Department of Pathology & Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
15
|
Rhodes ADY, Duran-Mota JA, Oliva N. Current progress in bionanomaterials to modulate the epigenome. Biomater Sci 2022; 10:5081-5091. [PMID: 35880652 DOI: 10.1039/d2bm01027e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in genomics during the 1990s have made it possible to study and identify genetic and epigenetic responses of cells and tissues to various drugs and environmental factors. This has accelerated the number of targets available to treat a range of diseases from cancer to wound healing disorders. Equally interesting is the understanding of how bio- and nanomaterials alter gene expression through epigenetic mechanisms, and whether they have the potential to elicit a positive therapeutic response without requiring additional biomolecule delivery. In fact, from a cell's perspective, a biomaterial is nothing more than an environmental factor, and so it has the power to epigenetically modulate gene expression of cells in contact with it. Understanding these epigenetic interactions between biomaterials and cells will open new avenues in the development of technologies that can not only provide biological signals (i.e. drugs, growth factors) necessary for therapy and regeneration, but also intimately interact with cells to promote the expression of genes of interest. This review article aims to summarise the current state-of-the-art and progress on the development of bio- and nanomaterials to modulate the epigenome.
Collapse
Affiliation(s)
- Anna D Y Rhodes
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK.
| | - Jose Antonio Duran-Mota
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK. .,Materials Engineering Group (GEMAT), IQS Barcelona, Barcelona 08017, Spain
| | - Nuria Oliva
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK.
| |
Collapse
|
16
|
Hsu CC, Serio A, Gopal S, Gelmi A, Chiappini C, Desai RA, Stevens MM. Biophysical Regulations of Epigenetic State and Notch Signaling in Neural Development Using Microgroove Substrates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32773-32787. [PMID: 35830496 PMCID: PMC9335410 DOI: 10.1021/acsami.2c01996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A number of studies have recently shown how surface topography can alter the behavior and differentiation patterns of different types of stem cells. Although the exact mechanisms and molecular pathways involved remain unclear, a consistent portion of the literature points to epigenetic changes induced by nuclear remodeling. In this study, we investigate the behavior of clinically relevant neural populations derived from human pluripotent stem cells when cultured on polydimethylsiloxane microgrooves (3 and 10 μm depth grooves) to investigate what mechanisms are responsible for their differentiation capacity and functional behavior. Our results show that microgrooves enhance cell alignment, modify nuclear geometry, and significantly increase cellular stiffness, which we were able to measure at high resolution with a combination of light and electron microscopy, scanning ion conductance microscopy (SICM), and atomic force microscopy (AFM) coupled with quantitative image analysis. The microgrooves promoted significant changes in the epigenetic landscape, as revealed by the expression of key histone modification markers. The main behavioral change of neural stem cells on microgrooves was an increase of neuronal differentiation under basal conditions on the microgrooves. Through measurements of cleaved Notch1 levels, we found that microgrooves downregulate Notch signaling. We in fact propose that microgroove topography affects the differentiation potential of neural stem cells by indirectly altering Notch signaling through geometric segregation and that this mechanism in parallel with topography-dependent epigenetic modulations acts in concert to enhance stem cell neuronal differentiation.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Andrea Serio
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Sahana Gopal
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Amy Gelmi
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Ciro Chiappini
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Ravi A. Desai
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| | - Molly M. Stevens
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Department
of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
- Institute
of Biomedical Engineering, Imperial College
London, Exhibition Road, London SW7 2AZ, U.K.
| |
Collapse
|
17
|
Mechanical Cues Regulate Histone Modifications and Cell Behavior. Stem Cells Int 2022; 2022:9179111. [PMID: 35599845 PMCID: PMC9117061 DOI: 10.1155/2022/9179111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/19/2022] [Indexed: 11/17/2022] Open
Abstract
Change of biophysical factors in tissue microenvironment is an important step in a chronic disease development process. A mechanical and biochemical factor from cell living microniche can regulate cell epigenetic decoration and, therefore, further induce change of gene expression. In this review, we will emphasize the mechanism that biophysical microenvironment manipulates cell behavior including gene expression and protein decoration, through modifying histone amino acid residue modification. The influence given by different mechanical forces, including mechanical stretch, substrate surface stiffness, and shear stress, on cell fate and behavior during chronic disease development including tumorigenesis will also be teased out. Overall, the recent work summarized in this review culminates on the hypothesis that a mechanical factor stimulates the modification on histone which could facilitate disease detection and potential therapeutic target.
Collapse
|
18
|
Safina I, Embree MC. Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta Biomater 2022; 143:26-38. [PMID: 35292413 PMCID: PMC9035107 DOI: 10.1016/j.actbio.2022.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
Over the past two decades in situ tissue engineering has emerged as a new approach where biomaterials are used to harness the body's own stem/progenitor cells to regenerate diseased or injured tissue. Immunomodulatory biomaterials are designed to promote a regenerative environment, recruit resident stem cells to diseased or injured tissue sites, and direct them towards tissue regeneration. This review explores advances gathered from in vitro and in vivo studies on in situ tissue regenerative therapies. Here we also examine the different ways this approach has been incorporated into biomaterial sciences in order to create customized biomaterial products for therapeutic applications in a broad spectrum of tissues and diseases. STATEMENT OF SIGNIFICANCE: Biomaterials can be designed to recruit stem cells and coordinate their behavior and function towards the restoration or replacement of damaged or diseased tissues in a process known as in situ tissue regeneration. Advanced biomaterial constructs with precise structure, composition, mechanical, and physical properties can be transplanted to tissue site and exploit local stem cells and their micro-environment to promote tissue regeneration. In the absence of cells, we explore the critical immunomodulatory, chemical and physical properties to consider in material design and choice. The application of biomaterials for in situ tissue regeneration has the potential to address a broad range of injuries and diseases.
Collapse
|
19
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
20
|
Xie Y, Liu J, Qian L. Direct cardiac reprogramming comes of age: Recent advance and remaining challenges. Semin Cell Dev Biol 2022; 122:37-43. [PMID: 34304993 PMCID: PMC8782931 DOI: 10.1016/j.semcdb.2021.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
The adult human heart has limited regenerative capacity. As such, the massive cardiomyocyte loss due to myocardial infarction leads to scar formation and adverse cardiac remodeling, which ultimately results in chronic heart failure. Direct cardiac reprogramming that converts cardiac fibroblast into functional cardiomyocyte-like cells (also called iCMs) holds great promise for heart regeneration. Cardiac reprogramming has been achieved both in vitro and in vivo by using a variety of cocktails that comprise transcription factors, microRNAs, or small molecules. During the past several years, great progress has been made in improving reprogramming efficiency and understanding the underlying molecular mechanisms. Here, we summarize the direct cardiac reprogramming methods, review the current advances in understanding the molecular mechanisms of cardiac reprogramming, and highlight the novel insights gained from single-cell omics studies. Finally, we discuss the remaining challenges and future directions for the field.
Collapse
|
21
|
Han P, Gomez GA, Duda GN, Ivanovski S, Poh PS. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater 2022; 163:259-274. [PMID: 35038587 DOI: 10.1016/j.actbio.2022.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/03/2023]
Abstract
The dynamics of cell mechanics and epigenetic signatures direct cell behaviour and fate, thus influencing regenerative outcomes. In recent years, the utilisation of 2D geometric (i.e. square, circle, hexagon, triangle or round-shaped) substrates for investigating cell mechanics in response to the extracellular microenvironment have gained increasing interest in regenerative medicine due to their tunable physicochemical properties. In contrast, there is relatively limited knowledge of cell mechanobiology and epigenetics in the context of 3D biomaterial matrices, i.e., hydrogels and scaffolds. Scaffold geometry provides biophysical signals that trigger a nucleus response (regulation of gene expression) and modulates cell behaviour and function. In this review, we explore the potential of additive manufacturing to incorporate multi length-scale geometry features on a scaffold. Then, we discuss how scaffold geometry direct cell and nuclear mechanosensing. We further discuss how cell epigenetics, particularly DNA/histone methylation and histone acetylation, are modulated by scaffold features that lead to specific gene expression and ultimately influence the outcome of tissue regeneration. Overall, we highlight that geometry of different magnitude scales can facilitate the assembly of cells and multicellular tissues into desired functional architectures through the mechanotransduction pathway. Moving forward, the challenge confronting biomedical engineers is the distillation of the vast knowledge to incorporate multiscaled geometrical features that would collectively elicit a favourable tissue regeneration response by harnessing the design flexibility of additive manufacturing. STATEMENT OF SIGNIFICANCE: It is well-established that cells sense and respond to their 2D geometric microenvironment by transmitting extracellular physiochemical forces through the cytoskeleton and biochemical signalling to the nucleus, facilitating epigenetic changes such as DNA methylation, histone acetylation, and microRNA expression. In this context, the current review presents a unique perspective and highlights the importance of 3D architectures (dimensionality and geometries) on cell and nuclear mechanics and epigenetics. Insight into current challenges around the study of mechanobiology and epigenetics utilising additively manufactured 3D scaffold geometries will progress biomaterials research in this space.
Collapse
|
22
|
Changes in chromatin accessibility landscape and histone H3 core acetylation during valproic acid-induced differentiation of embryonic stem cells. Epigenetics Chromatin 2021; 14:58. [PMID: 34955095 PMCID: PMC8711205 DOI: 10.1186/s13072-021-00432-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
Directed differentiation of mouse embryonic stem cells (mESCs) or induced pluripotent stem cells (iPSCs) provides powerful models to dissect the molecular mechanisms leading to the formation of specific cell lineages. Treatment with histone deacetylase inhibitors can significantly enhance the efficiency of directed differentiation. However, the mechanisms are not well understood. Here, we use CUT&RUN in combination with ATAC-seq to determine changes in both histone modifications and genome-wide chromatin accessibility following valproic acid (VPA) exposure. VPA induced a significant increase in global histone H3 acetylation (H3K56ac), a core histone modification affecting nucleosome stability, as well as enrichment at loci associated with cytoskeletal organization and cellular morphogenesis. In addition, VPA altered the levels of linker histone H1 subtypes and the total histone H1/nucleosome ratio indicative of initial differentiation events. Notably, ATAC-seq analysis revealed changes in chromatin accessibility of genes involved in regulation of CDK serine/threonine kinase activity and DNA duplex unwinding. Importantly, changes in chromatin accessibility were evident at several key genomic loci, such as the pluripotency factor Lefty, cardiac muscle troponin Tnnt2, and the homeodomain factor Hopx, which play critical roles in cardiomyocyte differentiation. Massive parallel transcription factor (TF) footprinting also indicates an increased occupancy of TFs involved in differentiation toward mesoderm and endoderm lineages and a loss of footprints of POU5F1/SOX2 pluripotency factors following VPA treatment. Our results provide the first genome-wide analysis of the chromatin landscape following VPA-induced differentiation in mESCs and provide new mechanistic insight into the intricate molecular processes that govern departure from pluripotency and early lineage commitment.
Collapse
|
23
|
Mellis IA, Edelstein HI, Truitt R, Goyal Y, Beck LE, Symmons O, Dunagin MC, Linares Saldana RA, Shah PP, Pérez-Bermejo JA, Padmanabhan A, Yang W, Jain R, Raj A. Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro. Cell Syst 2021; 12:885-899.e8. [PMID: 34352221 PMCID: PMC8522198 DOI: 10.1016/j.cels.2021.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/27/2020] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
Identifying the particular transcription factors that maintain cell type in vitro is important for manipulating cell type. Identifying such transcription factors by their cell-type-specific expression or their involvement in developmental regulation has had limited success. We hypothesized that because cell type is often resilient to perturbations, the transcriptional response to perturbations would reveal identity-maintaining transcription factors. We developed perturbation panel profiling (P3) as a framework for perturbing cells across many conditions and measuring gene expression responsiveness transcriptome-wide. In human iPSC-derived cardiac myocytes, P3 showed that transcription factors important for cardiac myocyte differentiation and maintenance were among the most frequently upregulated (most responsive). We reasoned that one function of responsive genes may be to maintain cellular identity. We identified responsive transcription factors in fibroblasts using P3 and found that suppressing their expression led to enhanced reprogramming. We propose that responsiveness to perturbations is a property of transcription factors that help maintain cellular identity in vitro. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Ian A Mellis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hailey I Edelstein
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Truitt
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yogesh Goyal
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren E Beck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Orsolya Symmons
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ricardo A Linares Saldana
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Parisha P Shah
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Arun Padmanabhan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA; Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Wenli Yang
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Mohindra P, Desai TA. Micro- and nanoscale biophysical cues for cardiovascular disease therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 34:102365. [PMID: 33571682 PMCID: PMC8217090 DOI: 10.1016/j.nano.2021.102365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022]
Abstract
After cardiovascular injury, numerous pathological processes adversely impact the homeostatic function of cardiomyocyte, macrophage, fibroblast, endothelial cell, and vascular smooth muscle cell populations. Subsequent malfunctioning of these cells may further contribute to cardiovascular disease onset and progression. By modulating cellular responses after injury, it is possible to create local environments that promote wound healing and tissue repair mechanisms. The extracellular matrix continuously provides these mechanosensitive cell types with physical cues spanning the micro- and nanoscale to influence behaviors such as adhesion, morphology, and phenotype. It is therefore becoming increasingly compelling to harness these cell-substrate interactions to elicit more native cell behaviors that impede cardiovascular disease progression and enhance regenerative potential. This review discusses recent in vitro and preclinical work that have demonstrated the therapeutic implications of micro- and nanoscale biophysical cues on cell types adversely affected in cardiovascular diseases - cardiomyocytes, macrophages, fibroblasts, endothelial cells, and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA.
| |
Collapse
|
25
|
Van Handel B, Wang L, Ardehali R. Environmental factors influence somatic cell reprogramming to cardiomyocyte-like cells. Semin Cell Dev Biol 2021; 122:44-49. [PMID: 34083115 DOI: 10.1016/j.semcdb.2021.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022]
Abstract
Direct cardiac reprogramming, which refers to somatic cell (i.e. fibroblast) fate conversion to cardiomyocyte-like cell without transitioning through an intermediate pluripotent state, provides a novel therapeutic strategy for heart regeneration by converting resident cardiac fibroblasts to cardiomyocytes in situ. However, several limitations need to be addressed prior to clinical translation of this technology. They include low efficiency of reprogramming, heterogeneity of starting fibroblasts, functional immaturity of induced cardiomyocytes (iCMs), virus immunogenicity and toxicity, incomplete understanding of changes in the epigenetic landscape as fibroblasts undergo reprogramming, and the environmental factors that influence fate conversion. Several studies have demonstrated that a combination of enforced expression of cardiac transcription factors along with certain cytokines and growth factors in the presence of favorable environmental cues (including extracellular matrix, topography, and mechanical properties) enhance the efficiency and quality of direct reprogramming. This paper reviews the literature on the influence of the microenvironment on direct cardiac reprogramming in vitro and in vivo.
Collapse
Affiliation(s)
- Ben Van Handel
- Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Department of Orthopedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA, 90033, USA
| | - Lingjun Wang
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Pennacchio FA, Nastały P, Poli A, Maiuri P. Tailoring Cellular Function: The Contribution of the Nucleus in Mechanotransduction. Front Bioeng Biotechnol 2021; 8:596746. [PMID: 33490050 PMCID: PMC7820809 DOI: 10.3389/fbioe.2020.596746] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cells sense a variety of different mechanochemical stimuli and promptly react to such signals by reshaping their morphology and adapting their structural organization and tensional state. Cell reactions to mechanical stimuli arising from the local microenvironment, mechanotransduction, play a crucial role in many cellular functions in both physiological and pathological conditions. To decipher this complex process, several studies have been undertaken to develop engineered materials and devices as tools to properly control cell mechanical state and evaluate cellular responses. Recent reports highlight how the nucleus serves as an important mechanosensor organelle and governs cell mechanoresponse. In this review, we will introduce the basic mechanisms linking cytoskeleton organization to the nucleus and how this reacts to mechanical properties of the cell microenvironment. We will also discuss how perturbations of nucleus-cytoskeleton connections, affecting mechanotransduction, influence health and disease. Moreover, we will present some of the main technological tools used to characterize and perturb the nuclear mechanical state.
Collapse
Affiliation(s)
- Fabrizio A. Pennacchio
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paulina Nastały
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Alessandro Poli
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paolo Maiuri
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
27
|
Maynard SA, Winter CW, Cunnane EM, Stevens MM. Advancing Cell-Instructive Biomaterials Through Increased Understanding of Cell Receptor Spacing and Material Surface Functionalization. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 7:553-547. [PMID: 34805482 PMCID: PMC8594271 DOI: 10.1007/s40883-020-00180-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract Regenerative medicine is aimed at restoring normal tissue function and can benefit from the application of tissue engineering and nano-therapeutics. In order for regenerative therapies to be effective, the spatiotemporal integration of tissue-engineered scaffolds by the native tissue, and the binding/release of therapeutic payloads by nano-materials, must be tightly controlled at the nanoscale in order to direct cell fate. However, due to a lack of insight regarding cell–material interactions at the nanoscale and subsequent downstream signaling, the clinical translation of regenerative therapies is limited due to poor material integration, rapid clearance, and complications such as graft-versus-host disease. This review paper is intended to outline our current understanding of cell–material interactions with the aim of highlighting potential areas for knowledge advancement or application in the field of regenerative medicine. This is achieved by reviewing the nanoscale organization of key cell surface receptors, the current techniques used to control the presentation of cell-interactive molecules on material surfaces, and the most advanced techniques for characterizing the interactions that occur between cell surface receptors and materials intended for use in regenerative medicine. Lay Summary The combination of biology, chemistry, materials science, and imaging technology affords exciting opportunities to better diagnose and treat a wide range of diseases. Recent advances in imaging technologies have enabled better understanding of the specific interactions that occur between human cells and their immediate surroundings in both health and disease. This biological understanding can be used to design smart therapies and tissue replacements that better mimic native tissue. Here, we discuss the advances in molecular biology and technologies that can be employed to functionalize materials and characterize their interaction with biological entities to facilitate the design of more sophisticated medical therapies.
Collapse
Affiliation(s)
- Stephanie A. Maynard
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Charles W. Winter
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Eoghan M. Cunnane
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
28
|
Gong Y, Chen Z, Yang L, Ai X, Yan B, Wang H, Qiu L, Tan Y, Witman N, Wang W, Zhao Y, Fu W. Intrinsic Color Sensing System Allows for Real-Time Observable Functional Changes on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ACS NANO 2020; 14:8232-8246. [PMID: 32609489 DOI: 10.1021/acsnano.0c01745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stem-cell based in vitro differentiation for disease modeling offers great value to explore the molecular and functional underpinnings driving many types of cardiomyopathy and congenital heart diseases. Nevertheless, one major caveat in the application of in vitro differentiation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) involves the immature phenotype of the CMs. Most of the existing methods need complex apparatus and require laborious procedures in order to monitor the cardiac differentiation/maturation process and often result in cell death. Here we developed an intrinsic color sensing system utilizing a microgroove structural color methacrylated gelatin film, which allows us to monitor the cardiac differentiation process of hiPSC-derived cardiac progenitor cells in real time. Subsequently this system can be employed as an assay system to live monitor induced functional changes on hiPSC-CMs stemming from drug treatment, the effects of which are simply revealed through color diversity. Our research shows that early intervention of cardiac differentiation through simple physical cues can enhance cardiac differentiation and maturation to some extent. Our system also simplifies the previous complex experimental processes for evaluating the physiological effects of successful differentiation and drug treatment and lays a solid foundation for future transformational applications.
Collapse
Affiliation(s)
- Yiqi Gong
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Zhuoyue Chen
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Li Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai 200032, China
| | - Xuefeng Ai
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Bingqian Yan
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Liya Qiu
- Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, Shanghai 200083, China
| | - Yao Tan
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Nevin Witman
- Department of Medicine and Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Wei Wang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wei Fu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
29
|
Dai EN, Heo S, Mauck RL. "Looping In" Mechanics: Mechanobiologic Regulation of the Nucleus and the Epigenome. Adv Healthc Mater 2020; 9:e2000030. [PMID: 32285630 DOI: 10.1002/adhm.202000030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Cells respond to physical cues in their microenvironment. These cues result in changes in cell behavior, some of which are transient, and others of which are permanent. Understanding and leveraging permanent alteration of cell behavior induced by mechanical cues, or "mechanical memories," is an important aim in cell and tissue engineering. Herein, this paper reviews the existing literature outlining how cells may store memories of biophysical cues with a specific focus on the nucleus, the storehouse of information in eukaryotic cells. In particular, this review details mechanically driven adaptations in nuclear structure and genome organization and outlines potential mechanisms by which mechanical memories may be encoded within the structure and organization of the nucleus and chromatin.
Collapse
Affiliation(s)
- Eric N. Dai
- Departments of Orthopaedic Surgery and Bioengineering University of Pennsylvania Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J. Crescenz VA Medical Center Philadelphia PA 19104 USA
| | - Su‐Jin Heo
- Departments of Orthopaedic Surgery and Bioengineering University of Pennsylvania Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J. Crescenz VA Medical Center Philadelphia PA 19104 USA
| | - Robert L. Mauck
- Departments of Orthopaedic Surgery and Bioengineering University of Pennsylvania Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J. Crescenz VA Medical Center Philadelphia PA 19104 USA
- McKay Orthopaedic Research Laboratory University of Pennsylvania Philadelphia PA 19104‐6081 USA
| |
Collapse
|
30
|
Fang J, Hsueh YY, Soto J, Sun W, Wang J, Gu Z, Khademhosseini A, Li S. Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS NANO 2020; 14:1296-1318. [PMID: 32011856 PMCID: PMC10067273 DOI: 10.1021/acsnano.9b04837] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cell reprogramming is a revolutionized biotechnology that offers a powerful tool to engineer cell fate and function for regenerative medicine, disease modeling, drug discovery, and beyond. Leveraging advances in biomaterials and micro/nanotechnologies can enhance the reprogramming performance in vitro and in vivo through the development of delivery strategies and the control of biophysical and biochemical cues. In this review, we present an overview of the state-of-the-art technologies for cell reprogramming and highlight the recent breakthroughs in engineering biomaterials with micro/nanotechnologies to improve reprogramming efficiency and quality. Finally, we discuss future directions and challenges for reprogramming technologies and clinical translation.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yuan-Yu Hsueh
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Division of Plastic Surgery, Department of Surgery, College of Medicine , National Cheng Kung University Hospital , Tainan 70456 , Taiwan
| | - Jennifer Soto
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Wujin Sun
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| | - Jinqiang Wang
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| | - Zhen Gu
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
- Jonsson Comprehensive Cancer Center , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Ali Khademhosseini
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
- Department of Chemical and Biomolecular Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Radiology , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Song Li
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Medicine , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute , University of California, Los Angeles , Los Angles , California 90095 , United States
| |
Collapse
|
31
|
Song Y, Soto J, Chen B, Yang L, Li S. Cell engineering: Biophysical regulation of the nucleus. Biomaterials 2020; 234:119743. [PMID: 31962231 DOI: 10.1016/j.biomaterials.2019.119743] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/02/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Cells live in a complex and dynamic microenvironment, and a variety of microenvironmental cues can regulate cell behavior. In addition to biochemical signals, biophysical cues can induce not only immediate intracellular responses, but also long-term effects on phenotypic changes such as stem cell differentiation, immune cell activation and somatic cell reprogramming. Cells respond to mechanical stimuli via an outside-in and inside-out feedback loop, and the cell nucleus plays an important role in this process. The mechanical properties of the nucleus can directly or indirectly modulate mechanotransduction, and the physical coupling of the cell nucleus with the cytoskeleton can affect chromatin structure and regulate the epigenetic state, gene expression and cell function. In this review, we will highlight the recent progress in nuclear biomechanics and mechanobiology in the context of cell engineering, tissue remodeling and disease development.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Los Angeles, CA, USA; School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Binru Chen
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Li Yang
- School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA; Department of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
32
|
HORISAWA K, SUZUKI A. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:131-158. [PMID: 32281550 PMCID: PMC7247973 DOI: 10.2183/pjab.96.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cells of multicellular organisms have diverse characteristics despite having the same genetic identity. The distinctive phenotype of each cell is determined by molecular mechanisms such as epigenetic changes that occur throughout the lifetime of an individual. Recently, technologies that enable modification of the fate of somatic cells have been developed, and the number of studies using these technologies has increased drastically in the last decade. Various cell types, including neuronal cells, cardiomyocytes, and hepatocytes, have been generated using these technologies. Although most direct reprogramming methods employ forced transduction of a defined sets of transcription factors to reprogram cells in a manner similar to induced pluripotent cell technology, many other strategies, such as methods utilizing chemical compounds and microRNAs to change the fate of somatic cells, have also been developed. In this review, we summarize transcription factor-based reprogramming and various other reprogramming methods. Additionally, we describe the various industrial applications of direct reprogramming technologies.
Collapse
Affiliation(s)
- Kenichi HORISAWA
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi SUZUKI
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Correspondence should be addressed: A. Suzuki, Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan (e-mail: )
| |
Collapse
|
33
|
Alvarez-Elizondo MB, Li CW, Marom A, Tung YT, Drillich G, Horesh Y, Lin SC, Wang GJ, Weihs D. Micropatterned topographies reveal measurable differences between cancer and benign cells. Med Eng Phys 2020; 75:5-12. [DOI: 10.1016/j.medengphy.2019.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/24/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
|
34
|
Hansel CS, Holme MN, Gopal S, Stevens MM. Advances in high-resolution microscopy for the study of intracellular interactions with biomaterials. Biomaterials 2020; 226:119406. [DOI: 10.1016/j.biomaterials.2019.119406] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
|
35
|
Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Adv Drug Deliv Rev 2020; 161-162:124-144. [PMID: 32822682 DOI: 10.1016/j.addr.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
The discovery of induced pluripotent stem cells (iPSCs), reprogrammed to pluripotency from somatic cells, has transformed the landscape of regenerative medicine, disease modelling and drug discovery pipelines. Since the first generation of iPSCs in 2006, there has been enormous effort to develop new methods that increase reprogramming efficiency, and obviate the need for viral vectors. In parallel to this, the promise of in vivo reprogramming to convert cells into a desired cell type to repair damage in the body, constitutes a new paradigm in approaches for tissue regeneration. This review article explores the current state of reprogramming techniques for iPSC generation with a specific focus on alternative methods that use biophysical and biochemical stimuli to reduce or eliminate exogenous factors, thereby overcoming the epigenetic barrier towards vector-free approaches with improved clinical viability. We then focus on application of iPSC for therapeutic approaches, by giving an overview of ongoing clinical trials using iPSCs for a variety of health conditions and discuss future scope for using materials and reagents to reprogram cells in the body.
Collapse
|
36
|
Hasani S, Javeri A, Asadi A, Fakhr Taha M. Cardiac Differentiation of Adipose Tissue-Derived Stem Cells Is Driven by BMP4 and bFGF but Counteracted by 5-Azacytidine and Valproic Acid. CELL JOURNAL 2019; 22:273-282. [PMID: 31863652 PMCID: PMC6947007 DOI: 10.22074/cellj.2020.6582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/14/2019] [Indexed: 12/16/2022]
Abstract
Objective Bone morphogenetic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) play important roles in embryonic heart development. Also, two epigenetic modifying molecules, 5'-azacytidine (5'-Aza) and valproic acid (VPA) induce cardiomyogenesis in the infarcted heart. In this study, we first evaluated the role of BMP4 and bFGF in cardiac trans-differentiation and then the effectiveness of 5´-Aza and VPA in reprogramming and cardiac differentiation of human adipose tissue-derived stem cells (ADSCs). Materials and Methods In this experimental study, human ADSCs were isolated by collagenase I digestion. For cardiac differentiation, third to fifth-passaged ADSCs were treated with BMP4 alone or a combination of BMP4 and bFGF with or without 5'-Aza and VPA pre-treatment. After 21 days, the expression of cardiac-specific markers was evaluated by reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR, immunocytochemistry, flow cytometry and western blot analyses. Results BMP4 and more prominently a combination of BMP4 and bFGF induced cardiac differentiation of human ADSCs. Epigenetic modification of the ADSCs by 5'-Aza and VPA significantly upregulated the expression of OCT4A, SOX2, NANOG, Brachyury/T and GATA4 but downregulated GSC and NES mRNAs. Furthermore, pre-treatment with 5'-Aza and VPA upregulated the expression of TBX5, ANF, CX43 and CXCR4 mRNAs in three-week differentiated ADSCs but downregulated the expression of some cardiac-specific genes and decreased the population of cardiac troponin I-expressing cells. Conclusion Our findings demonstrated the inductive role of BMP4 and especially BMP4 and bFGF combination in cardiac trans-differentiation of human ADSCs. Treatment with 5'-Aza and VPA reprogrammed ADSCs toward a more pluripotent state and increased tendency of the ADSCs for mesodermal differentiation. Although pre-treatment with 5'-Aza and VPA counteracted the cardiogenic effects of BMP4 and bFGF, it may be in favor of migration, engraftment and survival of the ADSCs after transplantation.
Collapse
Affiliation(s)
- Sanaz Hasani
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.,Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Arash Javeri
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Masoumeh Fakhr Taha
- Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. Elrctronic Address:
| |
Collapse
|
37
|
Zhang K, Xiao X, Wang X, Fan Y, Li X. Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies. J Mater Chem B 2019; 7:7090-7109. [PMID: 31702754 DOI: 10.1039/c9tb01682a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Topographical patterning has recently attracted lots of attention in regulating cell fate, understanding the mechanism of cell-microenvironment interactions, and solving the great issues of regenerative medicine. The introduced patterns offer topographical cues that can affect the reconstruction of the cytoskeleton or stimulate cell membrane receptors. Numerous studies have focused on these effects on cell behavior including attachment, migration, proliferation, and differentiation. In this review, five aspects of topographical patterning are discussed: (1) the process of typical micro-/nanotechniques and their advantages and limitations; (2) the effects of patterning on the mechanical properties and surface properties of substrates; (3) the influences of micro-/nanopatterns on the behavior of mesenchymal stem cells, as well as the underlying mechanisms; (4) the application of patterns to solve the issues of targeted organs (e.g., skin, nerves, blood vessels, bones, and heart). In the end, future perspectives that would help promote the efficiency of topographical patterning are proposed.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiongfu Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China and Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
38
|
Gopal S, Chiappini C, Armstrong JPK, Chen Q, Serio A, Hsu CC, Meinert C, Klein TJ, Hutmacher DW, Rothery S, Stevens MM. Immunogold FIB-SEM: Combining Volumetric Ultrastructure Visualization with 3D Biomolecular Analysis to Dissect Cell-Environment Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900488. [PMID: 31197896 PMCID: PMC6778054 DOI: 10.1002/adma.201900488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/20/2019] [Indexed: 05/03/2023]
Abstract
Volumetric imaging techniques capable of correlating structural and functional information with nanoscale resolution are necessary to broaden the insight into cellular processes within complex biological systems. The recent emergence of focused ion beam scanning electron microscopy (FIB-SEM) has provided unparalleled insight through the volumetric investigation of ultrastructure; however, it does not provide biomolecular information at equivalent resolution. Here, immunogold FIB-SEM, which combines antigen labeling with in situ FIB-SEM imaging, is developed in order to spatially map ultrastructural and biomolecular information simultaneously. This method is applied to investigate two different cell-material systems: the localization of histone epigenetic modifications in neural stem cells cultured on microstructured substrates and the distribution of nuclear pore complexes in myoblasts differentiated on a soft hydrogel surface. Immunogold FIB-SEM offers the potential for broad applicability to correlate structure and function with nanoscale resolution when addressing questions across cell biology, biomaterials, and regenerative medicine.
Collapse
Affiliation(s)
- Sahana Gopal
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Ciro Chiappini
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - James P K Armstrong
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Qu Chen
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Andrea Serio
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Chia-Chen Hsu
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Christoph Meinert
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
| | - Travis J Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
- Australian Research Council Industrial Transformation Training Centre, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
- Australian Research Council Industrial Transformation Training Centre, Queensland University of Technology, Brisbane, Queensland, 4059, Australia
| | - Stephen Rothery
- Facility for Light Microscopy, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
39
|
Madonna R, Van Laake LW, Botker HE, Davidson SM, De Caterina R, Engel FB, Eschenhagen T, Fernandez-Aviles F, Hausenloy DJ, Hulot JS, Lecour S, Leor J, Menasché P, Pesce M, Perrino C, Prunier F, Van Linthout S, Ytrehus K, Zimmermann WH, Ferdinandy P, Sluijter JPG. ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc Res 2019; 115:488-500. [PMID: 30657875 PMCID: PMC6383054 DOI: 10.1093/cvr/cvz010] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Morbidity and mortality from ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and are increasing worldwide. Patients with IHD or HF might benefit from novel therapeutic strategies, such as cell-based therapies. We recently discussed the therapeutic potential of cell-based therapies and provided recommendations on how to improve the therapeutic translation of these novel strategies for effective cardiac regeneration and repair. Despite major advances in optimizing these strategies with respect to cell source and delivery method, the clinical outcome of cell-based therapy remains unsatisfactory. Major obstacles are the low engraftment and survival rate of transplanted cells in the harmful microenvironment of the host tissue, and the paucity or even lack of endogenous cells with repair capacity. Therefore, new ways of delivering cells and their derivatives are required in order to empower cell-based cardiac repair and regeneration in patients with IHD or HF. Strategies using tissue engineering (TE) combine cells with matrix materials to enhance cell retention or cell delivery in the transplanted area, and have recently received much attention for this purpose. Here, we summarize knowledge on novel approaches emerging from the TE scenario. In particular, we will discuss how combinations of cell/bio-materials (e.g. hydrogels, cell sheets, prefabricated matrices, microspheres, and injectable matrices) combinations might enhance cell retention or cell delivery in the transplantation areas, thereby increase the success rate of cell therapies for IHD and HF. We will not focus on the use of classical engineering approaches, employing fully synthetic materials, because of their unsatisfactory material properties which render them not clinically applicable. The overall aim of this Position Paper from the ESC Working Group Cellular Biology of the Heart is to provide recommendations on how to proceed in research with these novel TE strategies combined with cell-based therapies to boost cardiac repair in the clinical settings of IHD and HF.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Institute of Cardiology and Center of Excellence on Aging, “G. d’Annunzio” University—Chieti, Italy
- University of Texas Medical School in Houston, USA
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, The Netherlands
| | - Hans Erik Botker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Raffaele De Caterina
- Institute of Cardiology and Center of Excellence on Aging, “G. d’Annunzio” University—Chieti, Italy
- University of Texas Medical School in Houston, USA
- University of Pisa, Pisa University Hospital, Pisa, Italy
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Muscle Research Center Erlangen, MURCE
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Francesco Fernandez-Aviles
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, UK
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Jean-Sebastien Hulot
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- Paris Cardiovascular Research Center (PARCC), INSERM UMRS 970, Paris, France
- Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Sandrine Lecour
- Hatter Cardiovascular Research Institute, University of Cape Town, South Africa
| | - Jonathan Leor
- Tamman and Neufeld Cardiovascular Research Institutes, Sackler Faculty of Medicine, Tel-Aviv University and Sheba Medical Center, Tel-Hashomer, Israel
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
- INSERM UMRS 970, Paris, France
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Fabrice Prunier
- Institut Mitovasc, INSERM, CNRS, Université d’Angers, Service de Cardiologie, CHU Angers, Angers, France
| | - Sophie Van Linthout
- Berlin-Brandenburg Center for Regenerative Therapies, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- Department of Cardiology, Charité, University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT, The Arctic University of Norway, Norway
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, III-V Floor, H-1089 Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, CX Utrecht, the Netherlands
| |
Collapse
|
40
|
Killaars AR, Grim JC, Walker CJ, Hushka EA, Brown TE, Anseth KS. Extended Exposure to Stiff Microenvironments Leads to Persistent Chromatin Remodeling in Human Mesenchymal Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801483. [PMID: 30775233 PMCID: PMC6364489 DOI: 10.1002/advs.201801483] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/16/2018] [Indexed: 05/02/2023]
Abstract
Bone marrow derived human mesenchymal stem cells (hMSCs) are a promising cell source for regenerative therapies; however, ex vivo expansion is often required to achieve clinically useful cells numbers. Recent results reveal that when MSCs are cultured in stiff microenvironments, their regenerative capacity can be altered in a manner that is dependent on time (e.g., a mechanical dosing analogous to a chemical one). It is hypothesized that epigenomic modifications are involved in storing these mechanical cues, regulating gene expression, and ultimately leading to a mechanical memory. Using hydrogels containing an allyl sulfide cross-linker and a radical-mediated addition-fragmentation chain transfer process, in situ softened hMSC-laden hydrogels at different time points are achieved and the effects of short-term and long-term mechanical dosing on epigenetic modifications in hMSCs are quantified. Results show that histone acetylation and chromatin organization adapt rapidly after softening and can be reversible or irreversible depending on time of exposure to stiff microenvironments. Furthermore, epigenetic modulators are differentially expressed depending on the culture history. Collectively, these experiments suggest that epigenetic remodeling can be persistent and might be a memory keeper.
Collapse
Affiliation(s)
- Anouk R. Killaars
- Program of Materials Science and Engineering and BioFrontiers InstituteUniversity of Colorado BoulderJennie Smoly Caruthers Biotechnology Building, 3415 Colorado AveBoulderCO80303USA
| | - Joseph C. Grim
- Department of Chemical and Biological Engineering and BioFrontiers InstituteUniversity of Colorado BoulderJennie Smoly Caruthers Biotechnology Building, 3415 Colorado AveBoulderCO80303USA
| | - Cierra J. Walker
- Program of Materials Science and Engineering and BioFrontiers InstituteUniversity of Colorado BoulderJennie Smoly Caruthers Biotechnology Building, 3415 Colorado AveBoulderCO80303USA
| | - Ella A. Hushka
- Department of Chemical and Biological Engineering and BioFrontiers InstituteUniversity of Colorado BoulderJennie Smoly Caruthers Biotechnology Building, 3415 Colorado AveBoulderCO80303USA
| | - Tobin E. Brown
- Department of Chemical and Biological Engineering and BioFrontiers InstituteUniversity of Colorado BoulderJennie Smoly Caruthers Biotechnology Building, 3415 Colorado AveBoulderCO80303USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering and BioFrontiers InstituteUniversity of Colorado BoulderJennie Smoly Caruthers Biotechnology Building, 3415 Colorado AveBoulderCO80303USA
| |
Collapse
|
41
|
Cui C, Wang J, Qian D, Huang J, Lin J, Kingshott P, Wang PY, Chen M. Binary Colloidal Crystals Drive Spheroid Formation and Accelerate Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3679-3689. [PMID: 30614683 DOI: 10.1021/acsami.8b17090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provides significant advances to cell therapy, disease modeling, and drug screening applications. However, the current differentiation protocol is inefficient in mimicking biophysical and biochemical characteristics of cardiac niche. Hence, immature cardiomyocytes are often generated. In this study, hiPSC-CMs were generated on a new family of substrates called monolayer binary colloidal crystals (BCCs). Four BCCs were fabricated with different sizes (2 or 5 or 0.4 or 0.2 μm) and materials [Si or polystyrene (PS) or poly(methyl methacrylate)] abbreviated as 2PS, 5PS, 2PM, and 5PM. BCCs have complex surface micro-/nanotopographies and heterogeneous chemistries which are important modulators in microenvironments in vitro. The results showed that hiPSCs formed adhered spheroids with strong pluripotent markers ( Oct4, Nanog, and Sox2) on PM surfaces compared to PS and flat surfaces. After 30-day differentiation, hiPSC-CMs on PM surfaces showed markedly improved myofibril ultrastructures, Ca2+ handling, and electrophysiological properties, indicating that more mature hiPSC-CMs were generated. hiPSC-CMs generated on 5PM are more similar to adult heart tissue compared to other surfaces in terms of genes ( ACTC1, TNNT2, RYR2, SERCA2a, SCN5a, KCNJ2, CACNA1c, ITGB1, GJA1, MYH6, and MYH7) and protein (ssTnI and cTnI) expressions. We further demonstrated that 5PM surfaces facilitated cadherin switching (from E- to N-) during cardiac differentiation and mature N-cadherin expression, which were positively correlated with the cardiogensis markers ( GATA4, MEF2c, and NKX2.5). This study illuminated that a tailored surface nanotopography was beneficial in hiPSC culture and in situ cardiac differentiation. This one-step approach and BCCs can be a next-generation tool for hiPSC expansion and CM differentiation.
Collapse
Affiliation(s)
- Chang Cui
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Jiaxian Wang
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
- Department of R&D , HELP Stem Cell Therapeutics , Nanjing 210010 , China
| | - Duoduo Qian
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Jiayi Huang
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Jiao Lin
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Peter Kingshott
- Department of Chemistry and Biotechnology , Swinburne University of Technology , Victoria 3122 , Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology , Swinburne University of Technology , Victoria 3122 , Australia
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Minglong Chen
- Division of Cardiology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| |
Collapse
|
42
|
Werner JH, Rosenberg JH, Um JY, Moulton MJ, Agrawal DK. Molecular discoveries and treatment strategies by direct reprogramming in cardiac regeneration. Transl Res 2019; 203:73-87. [PMID: 30142308 PMCID: PMC6289806 DOI: 10.1016/j.trsl.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022]
Abstract
Cardiac tissue has minimal endogenous regenerative capacity in response to injury. Treatment options are limited following tissue damage after events such as myocardial infarction. Current strategies are aimed primarily at injury prevention, but attention has been increasingly targeted toward the development of regenerative therapies. This review focuses on recent developments in the field of cardiac fibroblast reprogramming into induced cardiomyocytes. Early efforts to produce cardiac regeneration centered around induced pluripotent stem cells, but clinical translation has proved elusive. Currently, techniques are being developed to directly transdifferentiate cardiac fibroblasts into induced cardiomyocytes. Viral vector-driven expression of a combination of transcription factors including Gata4, Mef2c, and Tbx5 induced cardiomyocyte development in mice. Subsequent combinational modifications have extended these results to human cell lines and increased efficacy. The miRNAs including combinations of miR-1, miR-133, miR-208, and miR-499 can improve or independently drive regeneration of cardiomyocytes. Similar results could be obtained by combinations of small molecules with or without transcription factor or miRNA expression. The local tissue environment greatly impacts favorability for reprogramming. Modulation of signaling pathways, especially those mediated by VEGF and TGF-β, enhance differentiation to cardiomyocytes. Current reprogramming strategies are not ready for clinical application, but recent breakthroughs promise regenerative cardiac therapies in the near future.
Collapse
Affiliation(s)
- John H Werner
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska
| | - John H Rosenberg
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska
| | - John Y Um
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Michael J Moulton
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska.
| |
Collapse
|
43
|
Cerf ME. Cardiac Glucolipotoxicity and Cardiovascular Outcomes. ACTA ACUST UNITED AC 2018; 54:medicina54050070. [PMID: 30344301 PMCID: PMC6262512 DOI: 10.3390/medicina54050070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 01/12/2023]
Abstract
Cardiac insulin signaling can be impaired due to the altered fatty acid metabolism to induce insulin resistance. In diabetes and insulin resistance, the metabolic, structural and ultimately functional alterations in the heart and vasculature culminate in diabetic cardiomyopathy, coronary artery disease, ischemia and eventually heart failure. Glucolipotoxicity describes the combined, often synergistic, adverse effects of elevated glucose and free fatty acid concentrations on heart structure, function, and survival. The quality of fatty acid shapes the cardiac structure and function, often influencing survival. A healthy fatty acid balance is therefore critical for maintaining cardiac integrity and function.
Collapse
Affiliation(s)
- Marlon E Cerf
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg 7505, South Africa.
| |
Collapse
|
44
|
Klose K, Gossen M, Stamm C. Turning fibroblasts into cardiomyocytes: technological review of cardiac transdifferentiation strategies. FASEB J 2018; 33:49-70. [DOI: 10.1096/fj.201800712r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kristin Klose
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT) Berlin Germany
- Charité–Universitätsmedizin Berlin Berlin Germany
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Helmholtz‐Zentrum Geesthacht (HZG)Institute of Biomaterial Science Teltow Germany
| | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT) Berlin Germany
- Charité–Universitätsmedizin Berlin Berlin Germany
- German Centre for Cardiovascular Research (DZHK)Partner Site Berlin Berlin Germany
- Department of Cardiothoracic and Vascular SurgeryDeutsches Herzzentrum Berlin (DHZB) Berlin Germany
| |
Collapse
|
45
|
Bergholt NL, Foss M, Saeed A, Gadegaard N, Lysdahl H, Lind M, Foldager CB. Surface chemistry, substrate, and topography guide the behavior of human articular chondrocytes cultured in vitro. J Biomed Mater Res A 2018; 106:2805-2816. [PMID: 29907992 DOI: 10.1002/jbm.a.36467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/22/2018] [Accepted: 05/22/2018] [Indexed: 01/18/2023]
Abstract
Understanding the behavior of chondrocytes in contact with artificial culture surfaces is becoming increasingly important in attaining appropriate ex vivo culture conditions of chondrocytes in cartilage regeneration. Chondrocyte transplantation-based cartilage repair requires efficiently expanded chondrocytes, and the culture surface plays an important role in guiding the behavior of the cell. Micro- and nano-engineered surfaces make it possible to modulate cell behavior. We hypothesized that the combined influence of topography, substrate, and surface chemistry may affect the chondrocyte culturing in terms of proliferation and phenotypic means. Human chondrocytes were cultured on polystyrene fabricated microstructures, flat polydimethylsiloxane (PDMS), or polystyrene treated with fibronectin or oxygen plasma and cultured for 1, 4, 7, and 10 days. The behavior of chondrocytes was evaluated by proliferation, viability, chondrogenic gene expression, and cell morphology. Contrary to our hypothesis, microstructures in polystyrene did not significantly influence the behavior of chondrocytes neither under normoxic- nor hypoxic conditions. However, changes in the substrate stiffness and surface chemistry were found to influence cell viability, gene expression, and morphology of human chondrocytes. Oxygen plasma treatment was the most important parameter followed by the softer substrate type PDMS. The findings indicate the culture of human chondrocytes on softer substratum and surface activation by oxygen plasma may prevent dedifferentiation and may improve chondrocyte transplantation-based cartilage repair. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2805-2816, 2018.
Collapse
Affiliation(s)
| | - Morten Foss
- Interdisciplinary Nanoscience Center, iNANO, University Aarhus, Aarhus, Denmark
| | - Anwer Saeed
- Division of Biomedical Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - Helle Lysdahl
- Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Lind
- Sports Trauma Clinic, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
46
|
Paoletti C, Divieto C, Chiono V. Impact of Biomaterials on Differentiation and Reprogramming Approaches for the Generation of Functional Cardiomyocytes. Cells 2018; 7:E114. [PMID: 30134618 PMCID: PMC6162411 DOI: 10.3390/cells7090114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/15/2022] Open
Abstract
The irreversible loss of functional cardiomyocytes (CMs) after myocardial infarction (MI) represents one major barrier to heart regeneration and functional recovery. The combination of different cell sources and different biomaterials have been investigated to generate CMs by differentiation or reprogramming approaches although at low efficiency. This critical review article discusses the role of biomaterial platforms integrating biochemical instructive cues as a tool for the effective generation of functional CMs. The report firstly introduces MI and the main cardiac regenerative medicine strategies under investigation. Then, it describes the main stem cell populations and indirect and direct reprogramming approaches for cardiac regenerative medicine. A third section discusses the main techniques for the characterization of stem cell differentiation and fibroblast reprogramming into CMs. Another section describes the main biomaterials investigated for stem cell differentiation and fibroblast reprogramming into CMs. Finally, a critical analysis of the scientific literature is presented for an efficient generation of functional CMs. The authors underline the need for biomimetic, reproducible and scalable biomaterial platforms and their integration with external physical stimuli in controlled culture microenvironments for the generation of functional CMs.
Collapse
Affiliation(s)
- Camilla Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy.
| | - Carla Divieto
- Division of Metrology for Quality of Life, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Turin, Italy.
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy.
| |
Collapse
|
47
|
Chen X, Li J, Huang Y, Liu P, Fan Y. Insoluble Microenvironment Facilitating the Generation and Maintenance of Pluripotency. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:267-278. [PMID: 29327674 DOI: 10.1089/ten.teb.2017.0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induced pluripotent stem cells (iPSCs) hold enormous potential as a tool to generate cells for tissue engineering and regenerative medicine. Since the initial report of iPSCs in 2006, many different methods have been developed to enhance the safety and efficiency of this technology. Recent studies indicate that the extracellular signals can promote the production of iPSCs, and even replace the Yamanaka factors. Noticeably, abundant evidences suggest that the insoluble microenvironment, including the culture substrate and neighboring cells, directly regulates the expression of core pluripotency genes and the epigenetic modification of the chromatins, hence, impacts the reprogramming dynamics. These studies provide new strategies for developing safer and more efficient method for iPSC generation. In this review, we examine the publications addressing the insoluble extracellular microenvironment that boosts iPSC generation and self-renewal. We also discuss cell adhesion-mediated molecular mechanisms, through which the insoluble extracellular cues interplay with reprogramming.
Collapse
Affiliation(s)
- Xiaofang Chen
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
- 2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University , Beijing, China
| | - Jiaqi Li
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
| | - Yan Huang
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
- 2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University , Beijing, China
| | - Peng Liu
- 3 Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University , Beijing, China
| | - Yubo Fan
- 1 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
- 2 Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University , Beijing, China
- 4 National Research Center for Rehabilitation Technical Aids , Beijing, China
| |
Collapse
|
48
|
Jafarkhani M, Salehi Z, Kowsari-Esfahan R, Shokrgozar MA, Rezaa Mohammadi M, Rajadas J, Mozafari M. Strategies for directing cells into building functional hearts and parts. Biomater Sci 2018; 6:1664-1690. [PMID: 29767196 DOI: 10.1039/c7bm01176h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
The increasing population of patients with heart disease and the limited availability of organs for transplantation have encouraged multiple strategies to fabricate healthy implantable cardiac tissues. One of the main challenges in cardiac tissue engineering is to direct cell behaviors to form functional three-dimensional (3D) biomimetic constructs. This article provides a brief review on various cell sources used in cardiac tissue engineering and highlights the effect of scaffold-based signals such as topographical and biochemical cues and stiffness. Then, conventional and novel micro-engineered bioreactors for the development of functional cardiac tissues will be explained. Bioreactor-based signals including mechanical and electrical cues to control cardiac cell behavior will also be elaborated in detail. Finally, the application of computational fluid dynamics to design suitable bioreactors will be discussed. This review presents the current state-of-the-art, emerging directions and future trends that critically appraise the concepts involved in various approaches to direct cells for building functional hearts and heart parts.
Collapse
Affiliation(s)
- Mahboubeh Jafarkhani
- School of Chemical Engineering, College of Engineering, University of Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Parthiv Kant Chaudhuri
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- University Scholars Programme, National University of Singapore, Singapore 138593, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
50
|
|