1
|
Raj G, Vasudev DS, Christopher S, Babulal A, Harsha P, Ram S, Tiwari M, Sauer M, Varghese R. Multifunctional siRNA/ferrocene/cyclodextrin nanoparticles for enhanced chemodynamic cancer therapy. NANOSCALE 2024; 16:3755-3763. [PMID: 38299362 DOI: 10.1039/d3nr06071c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The therapeutic outcome of chemodynamic therapy (CDT) is greatly hindered by the presence of oxidative damage repair proteins (MTH1) inside cancer cells. These oxidative damage repair proteins detoxify the action of radicals generated by Fenton or Fenton-like reactions. Hence, it is extremely important to develop a simple strategy for the downregulation of MTH1 protein inside cancer cells along with the delivery of metal ions into cancer cells. A one-pot host-guest supramolecular approach for the codelivery of MTH1 siRNA and metal ions into a cancer cell is reported. Our approach involves the fabrication of an inclusion complex between cationic β-cyclodextrin and a ferrocene prodrug, which spontaneously undergoes amphiphilicity-driven self-assembly to form spherical nanoparticles (NPs) having a positively charged surface. The cationic surface of the NPs was then explored for the loading of MTH1 siRNA through electrostatic interactions. Using HeLa cells as a representative example, efficient uptake of the NPs, delivery of MTH1 siRNA and the enhanced CDT of the nanoformulation are demonstrated. This work highlights the potential of the supramolecular approach as a simple yet efficient method for the delivery of siRNA across the cell membrane for enhanced chemodynamic therapy.
Collapse
Affiliation(s)
- Gowtham Raj
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - D S Vasudev
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Sarah Christopher
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Anupama Babulal
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - P Harsha
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Soumakanya Ram
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Mehul Tiwari
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Reji Varghese
- School of Chemistry, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, Trivandrum-695551, Kerala, India.
| |
Collapse
|
2
|
Jiang X, Yang M, Fang Y, Yang Z, Dai X, Gu P, Feng W, Chen Y. A Photo-Activated Thermoelectric Catalyst for Ferroptosis-/Pyroptosis-Boosted Tumor Nanotherapy. Adv Healthc Mater 2023; 12:e2300699. [PMID: 37086391 DOI: 10.1002/adhm.202300699] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) has gradually come into the limelight for oncological treatment due to its noninvasiveness, high specificity, and low side effects. However, upregulated heat-shock proteins (HSPs) and reactive oxygen species (ROS)-defensing system such as glutathione (GSH) or MutT homolog 1 (MTH1) protein in tumor microenvironment counteract the efficiency of single-modality therapy either PTT or PDT. Herein, the well-defined bismuth telluride nanoplates (Bi2 Te3 NPs) are engineered with a high-performance photo-thermo-electro-catalytic effect for tumor-synergistic treatment. Upon near-infrared light illumination, Bi2 Te3 NPs induce a significant temperature elevation for PTT, which effectively inhibits MTH1 expression. Especially, heating and cooling alteration caused temperature variations result in electron-hole separation for ROS generation, which not only damages HSPs to reduce the thermotolerance for enhance PTT, but also arouses tumor cell pyroptosis. Additionally, Bi2 Te3 NPs conspicuously reduce GSH, further improving ROS level and leading to decrease glutathione peroxidase 4 (GPX4) activity, which triggers tumor cell ferroptosis. Due to the photo-thermo-electro-catalytic synergistic therapy, Bi2 Te3 NPs are gifted with impressive tumor suppression on both ectopic and orthotopic ocular tumor models. This work highlights a high-performance multifunctional energy-conversion nanoplatform for reshaping tumor microenvironment to boost the tumor-therapeutic efficacy of phototherapy.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Muyue Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ying Fang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhenyu Yang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
3
|
Fang Z, Ma Y, Dong J. Boron trifluoride diethyl etherate catalyzed cyclotrimerization of enaminones for the synthesis of 1,3,5-Trisubstituted benzenes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Kankala RK, Han YH, Xia HY, Wang SB, Chen AZ. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. J Nanobiotechnology 2022; 20:126. [PMID: 35279150 PMCID: PMC8917689 DOI: 10.1186/s12951-022-01315-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
Despite exceptional morphological and physicochemical attributes, mesoporous silica nanoparticles (MSNs) are often employed as carriers or vectors. Moreover, these conventional MSNs often suffer from various limitations in biomedicine, such as reduced drug encapsulation efficacy, deprived compatibility, and poor degradability, resulting in poor therapeutic outcomes. To address these limitations, several modifications have been corroborated to fabricating hierarchically-engineered MSNs in terms of tuning the pore sizes, modifying the surfaces, and engineering of siliceous networks. Interestingly, the further advancements of engineered MSNs lead to the generation of highly complex and nature-mimicking structures, such as Janus-type, multi-podal, and flower-like architectures, as well as streamlined tadpole-like nanomotors. In this review, we present explicit discussions relevant to these advanced hierarchical architectures in different fields of biomedicine, including drug delivery, bioimaging, tissue engineering, and miscellaneous applications, such as photoluminescence, artificial enzymes, peptide enrichment, DNA detection, and biosensing, among others. Initially, we give a brief overview of diverse, innovative stimuli-responsive (pH, light, ultrasound, and thermos)- and targeted drug delivery strategies, along with discussions on recent advancements in cancer immune therapy and applicability of advanced MSNs in other ailments related to cardiac, vascular, and nervous systems, as well as diabetes. Then, we provide initiatives taken so far in clinical translation of various silica-based materials and their scope towards clinical translation. Finally, we summarize the review with interesting perspectives on lessons learned in exploring the biomedical applications of advanced MSNs and further requirements to be explored.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China.
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People's Republic of China.
| | - Ya-Hui Han
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
| | - Hong-Ying Xia
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People's Republic of China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, 361021, Fujian, People's Republic of China
| |
Collapse
|
5
|
Li XY, Deng FA, Zheng RR, Liu LS, Liu YB, Kong RJ, Chen AL, Yu XY, Li SY, Cheng H. Carrier Free Photodynamic Synergists for Oxidative Damage Amplified Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102470. [PMID: 34480417 DOI: 10.1002/smll.202102470] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)-defensing system, leading to a resistance to oxidation therapy. In this work, self-delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self-assembly of chlorine e6 (Ce6) and TH588 through π-π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588-mediated MTH1 inhibition could destroy the ROS-defensing system of tumor cells by preventing the elimination of 8-oxo-2'-deoxyguanosine triphosphate (8-oxo-dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self-delivery nanoplatforms in photodynamic tumor therapy in clinic.
Collapse
Affiliation(s)
- Xin-Yu Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fu-An Deng
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Rong-Rong Zheng
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ling-Shan Liu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yi-Bin Liu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ren-Jiang Kong
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - A-Li Chen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xi-Yong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shi-Ying Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
6
|
Kankala RK, Han YH, Na J, Lee CH, Sun Z, Wang SB, Kimura T, Ok YS, Yamauchi Y, Chen AZ, Wu KCW. Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907035. [PMID: 32319133 DOI: 10.1002/adma.201907035] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 05/19/2023]
Abstract
Mesoporous silica nanoparticles (MSNs), one of the important porous materials, have garnered interest owing to their highly attractive physicochemical features and advantageous morphological attributes. They are of particular importance for use in diverse fields including, but not limited to, adsorption, catalysis, and medicine. Despite their intrinsic stable siliceous frameworks, excellent mechanical strength, and optimal morphological attributes, pristine MSNs suffer from poor drug loading efficiency, as well as compatibility and degradability issues for therapeutic, diagnostic, and tissue engineering purposes. Collectively, the desirable and beneficial properties of MSNs have been harnessed by modifying the surface of the siliceous frameworks through incorporating supramolecular assemblies and various metal species, and through incorporating supramolecular assemblies and various metal species and their conjugates. Substantial advancements of these innovative colloidal inorganic nanocontainers drive researchers in promoting them toward innovative applications like stimuli (light/ultrasound/magnetic)-responsive delivery-associated therapies with exceptional performance in vivo. Here, a brief overview of the fabrication of siliceous frameworks, along with discussions on the significant advances in engineering of MSNs, is provided. The scope of the advancement in terms of structural and physicochemical attributes and their effects on biomedical applications with a particular focus on recent studies is emphasized. Finally, interesting perspectives are recapitulated, along with the scope toward clinical translation.
Collapse
Affiliation(s)
- Ranjith Kumar Kankala
- College of Chemical Engineering, Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ya-Hui Han
- College of Chemical Engineering, Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Jongbeom Na
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD, 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Ziqi Sun
- Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Shi-Bin Wang
- College of Chemical Engineering, Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Tatsuo Kimura
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, 463-8560, Japan
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD, 4072, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ai-Zheng Chen
- College of Chemical Engineering, Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, P. R. China
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
7
|
Youssef Z, Yesmurzayeva N, Larue L, Jouan-Hureaux V, Colombeau L, Arnoux P, Acherar S, Vanderesse R, Frochot C. New Targeted Gold Nanorods for the Treatment of Glioblastoma by Photodynamic Therapy. J Clin Med 2019; 8:E2205. [PMID: 31847227 PMCID: PMC6947424 DOI: 10.3390/jcm8122205] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023] Open
Abstract
This study describes the employment of gold nanorods (AuNRs), known for their good reputation in hyperthermia-based cancer therapy, in a hybrid combination of photosensitizers (PS) and peptides (PP). We report here, the design and the synthesis of this nanosystem and its application as a vehicle for the selective drug delivery and the efficient photodynamic therapy (PDT). AuNRs were functionalized by polyethylene glycol, phototoxic pyropheophorbide-a (Pyro) PS, and a "KDKPPR" peptide moiety to target neuropilin-1 receptor (NRP-1). The physicochemical characteristics of AuNRs, the synthesized peptide and the intermediate PP-PS conjugates were investigated. The photophysical properties of the hybrid AuNRs revealed that upon conjugation, the AuNRs acquired the characteristic properties of Pyro concerning the extension of the absorption profile and the capability to fluoresce (Φf = 0.3) and emit singlet oxygen (ΦΔ = 0.4) when excited at 412 nm. Even after being conjugated onto the surface of the AuNRs, the molecular affinity of "KDKPPR" for NRP-1 was preserved. Under irradiation at 652 nm, in vitro assays were conducted on glioblastoma U87 cells incubated with different PS concentrations of free Pyro, intermediate PP-PS conjugate and hybrid AuNRs. The AuNRs showed no cytotoxicity in the absence of light even at high PS concentrations. However, they efficiently decreased the cell viability by 67% under light exposure. This nanosystem possesses good efficiency in PDT and an expected potential effect in a combined photodynamic/photothermal therapy guided by NIR fluorescence imaging of the tumors due to the presence of both the hyperthermic agent, AuNRs, and the fluorescent active phototoxic PS.
Collapse
Affiliation(s)
- Zahraa Youssef
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | - Nurlykyz Yesmurzayeva
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
- Kazakh National Research Technical University after K.I Satpayev, 22 Satpayev str., Almaty 050013, Kazakhstan
| | - Ludivine Larue
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | | | - Ludovic Colombeau
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | - Philippe Arnoux
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| | - Samir Acherar
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France; (S.A.); (R.V.)
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, 54000 Nancy, France; (S.A.); (R.V.)
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, Université de Lorraine, 54000 Nancy, France; (Z.Y.); (N.Y.); (L.L.); (L.C.); (P.A.)
| |
Collapse
|
8
|
Hu JJ, Chen Y, Li ZH, Peng SY, Sun Y, Zhang XZ. Augment of Oxidative Damage with Enhanced Photodynamic Process and MTH1 Inhibition for Tumor Therapy. NANO LETTERS 2019; 19:5568-5576. [PMID: 31262183 DOI: 10.1021/acs.nanolett.9b02112] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Tumor cells adapt to reactive oxygen species (ROS) attacking by launching DNA damage repairing mechanisms such as nucleotide pool sanitizing enzyme mutt homologue 1 (MTH1) to mitigate the oxidatively induced DNA lesions, which could greatly limit the therapeutic efficiency of current oxidation therapy. Here, an amplified oxidative damage strategy for tumor therapy was proposed that was focused not only on the enhancement of ROS generation but also the inhibition of subsequent MTH1 enzyme activity simultaneously. In our formulation, mesoporous silica-coated Prussian blue nanoplatforms (PB@MSN) with excellent catalase-like activity and drug loading capability were employed to encapsulate MTH1 inhibitor TH287, followed by the modification of tetraphenylporphrin zinc (Zn-Por) via metallo-supramolecular coordination (PMPT), where Zn-Por behaved as photodynamic and fluorescence imaging agents, as well as acid-responsive gatekeepers. The intelligent PMPT nanosystems could induce the decomposition of H2O2 to relieve the hypoxic tumor environment, thus elevating the generation of singlet oxygen for improved oxidative damage. In the meantime, controllable-released TH287 from pores could hinder MTH1-mediated damage repairing process and aggravate oxidative damage, thereby resulting in cellular toxicity as well as tumor growth inhibition.
Collapse
Affiliation(s)
- Jing-Jing Hu
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Ying Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Zi-Hao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Si-Yuan Peng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Yunxia Sun
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry , Wuhan University , Wuhan 430072 , P.R. China
| |
Collapse
|
9
|
Gao P, Pan W, Li N, Tang B. Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26529-26558. [PMID: 31136142 DOI: 10.1021/acsami.9b01370] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ultimate goal of cancer therapy is to eliminate malignant tumors while causing no damage to normal tissues. In the past decades, numerous nanoagents have been employed for cancer treatment because of their unique properties over traditional molecular drugs. However, lack of selectivity and unwanted therapeutic outcomes have severely limited the therapeutic index of traditional nanodrugs. Recently, a series of nanomaterials that can accumulate in specific organelles (nucleus, mitochondrion, endoplasmic reticulum, lysosome, Golgi apparatus) within cancer cells have received increasing interest. These rationally designed nanoagents can either directly destroy the subcellular structures or effectively deliver drugs into the proper targets, which can further activate certain cell death pathways, enabling them to boost the therapeutic efficiency, lower drug dosage, reduce side effects, avoid multidrug resistance, and prevent recurrence. In this Review, the design principles, targeting strategies, therapeutic mechanisms, current challenges, and potential future directions of organelle-targeted nanomaterials will be introduced.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| |
Collapse
|
10
|
Gao X, Wei K, Hu B, Xu K, Tang B. Ascorbic acid induced HepG2 cells' apoptosis via intracellular reductive stress. Am J Cancer Res 2019; 9:4233-4240. [PMID: 31281544 PMCID: PMC6592181 DOI: 10.7150/thno.33783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Goals: Destruction of the redox balance in tumor cells is of great significance for triggering their apoptosis in clinical applications. We designed a pH sensitive multifunctional drug nanocarrier with controllable release of ascorbic acid under hypoxic environment to induce tumor cells' apoptosis via enhancing reductive stress, thereby dealing minimum damage to normal tissues. Methods: A core-shell nanostructure of CdTe quantum dots with mesoporous silica coating was developed and functionalized with poly(2-vinylpyridine)-polyethylene glycol-folic acid, which achieves cancer cells' targeting delivery and reversibly pH controlled release of ascorbic acid both in vitro and in vivo. Results: The result demonstrated that ascorbic acid can indeed lead liver cancer cells' death with the increase of nicotinamide adenine dinucleotide phosphate, while normal cells not being affected. The molecular mechanism of apoptosis induced by ascorbic acid was firstly elucidated at cellular levels, and further confirmed via in vivo investigations. Conclusion: For the first time we proposed the concept for applying reductive stress into cancer treatments, which brings great advantage of toxicity free and less damage to normal tissues. In general, this technique has taken an important step in the development of a targeted tumor treatment system, providing perspectives for the design of medicines via reductive stress, and offers new insights into future clinical mild-therapies.
Collapse
|
11
|
Chenab KK, Eivazzadeh-Keihan R, Maleki A, Pashazadeh-Panahi P, Hamblin MR, Mokhtarzadeh A. Biomedical applications of nanoflares: Targeted intracellular fluorescence probes. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 17:342-358. [PMID: 30826476 PMCID: PMC6520197 DOI: 10.1016/j.nano.2019.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/08/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022]
Abstract
Nanoflares are intracellular probes consisting of oligonucleotides immobilized on various nanoparticles that can recognize intracellular nucleic acids or other analytes, thus releasing a fluorescent reporter dye. Single-stranded DNA (ssDNA) complementary to mRNA for a target gene is constructed containing a 3'-thiol for binding to gold nanoparticles. The ssDNA "recognition sequence" is prehybridized to a shorter DNA complement containing a fluorescent dye that is quenched. The functionalized gold nanoparticles are easily taken up into cells. When the ssDNA recognizes its complementary target, the fluorescent dye is released inside the cells. Different intracellular targets can be detected by nanoflares, such as mRNAs coding for genes over-expressed in cancer (epithelial-mesenchymal transition, oncogenes, thymidine kinase, telomerase, etc.), intracellular levels of ATP, pH values and inorganic ions can also be measured. Advantages include high transfection efficiency, enzymatic stability, good optical properties, biocompatibility, high selectivity and specificity. Multiplexed assays and FRET-based systems have been designed.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| |
Collapse
|
12
|
Li Y, Gao X, Yu Z, Liu B, Pan W, Li N, Tang B. Reversing Multidrug Resistance by Multiplexed Gene Silencing for Enhanced Breast Cancer Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15461-15466. [PMID: 29663807 DOI: 10.1021/acsami.8b02800] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multidrug resistance (MDR), as one of the main problems in clinical breast cancer chemotherapy, is closely related with the over expression of drug efflux transporter P-glycoprotein (P-gp). In this study, a novel drug-loaded nanosystem was developed for inhibiting the P-gp expression and reversing MDR by multiplexed gene silencing, which composes of graphene oxide (GO) modified with two molecular beacons (MBs) and Doxorubicin (Dox). When the nanosystem was uptaken by the MDR breast cancer cells, Dox was released in the acidic endosomes and MBs were hybridized with target sequences. The intracellular multidrug resistance 1 (MDR1) mRNA and upstream erythroblastosis virus E26 oncogene homolog 1 (ETS1) mRNA can be silenced by MBs, which can effectively inhibit the expression of P-gp and further prevent the efflux of Dox and reverse MDR. In vitro and in vivo studies indicated that the strategy of reversing MDR by multiplexed gene silencing could obviously increase MCF-7/Adr cells' Dox accumulation and enormously enhance the therapeutic efficacy of MDR breast cancer chemotherapy.
Collapse
Affiliation(s)
- Yanli Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Zhengze Yu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Bo Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China
| |
Collapse
|
13
|
Castillo RR, Hernández-Escobar D, Gómez-Graña S, Vallet-Regí M. Reversible Nanogate System for Mesoporous Silica Nanoparticles Based on Diels-Alder Adducts. Chemistry 2018; 24:6992-7001. [PMID: 29493820 DOI: 10.1002/chem.201706100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Indexed: 12/29/2022]
Abstract
The implementation of nanoparticles as nanomedicines requires sophisticated surface modifications to reduce the immune response and enhance recognition abilities. Mesoporous silica nanoparticles present extraordinary host-guest abilities and facile surface functionalization. These two factors make them ideal candidates for the development of novel drug-delivery systems, at the expense of increasing structural complexity. With this idea in mind, a system composed of triggerable and tunable silica nanoparticles was developed for application as drug-delivery nanocarriers. Diels-Alder cycloaddition adducts were chosen as thermal-responsive units that permitted the binding of gold nanocaps able to block the pores and allow the incorporation of targeting fragments. The capping efficiency was tested under different thermal conditions to give outstanding efficiencies within the physiological range and mild temperatures, as well as enhanced release under pulsing heating cycles, which showed the best release profiles.
Collapse
Affiliation(s)
- Rafael R Castillo
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER), Spain
| | - David Hernández-Escobar
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Dept. of Chemical Engineering and Materials Science, Michigan State University, East Lansing, 48824, MI, USA
| | - Sergio Gómez-Graña
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.,Centro de Investigación Biomédica en Red (CIBER), Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Spain
| |
Collapse
|
14
|
Gao W, Sun Y, Cai M, Zhao Y, Cao W, Liu Z, Cui G, Tang B. Copper sulfide nanoparticles as a photothermal switch for TRPV1 signaling to attenuate atherosclerosis. Nat Commun 2018; 9:231. [PMID: 29335450 PMCID: PMC5768725 DOI: 10.1038/s41467-017-02657-z] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Abstract
Atherosclerosis is characterized by the accumulation of lipids within the arterial wall. Although activation of TRPV1 cation channels by capsaicin may reduce lipid storage and the formation of atherosclerotic lesions, a clinical use for capsaicin has been limited by its chronic toxicity. Here we show that coupling of copper sulfide (CuS) nanoparticles to antibodies targeting TRPV1 act as a photothermal switch for TRPV1 signaling in vascular smooth muscle cells (VSMCs) using near-infrared light. Upon irradiation, local increases of temperature open thermo-sensitive TRPV1 channels and cause Ca2+ influx. The increase in intracellular Ca2+ activates autophagy and impedes foam cell formation in VSMCs treated with oxidized low-density lipoprotein. In vivo, CuS-TRPV1 allows photoacoustic imaging of the cardiac vasculature and reduces lipid storage and plaque formation in ApoE-/- mice fed a high-fat diet, with no obvious long-term toxicity. Together, this suggests CuS-TRPV1 may represent a therapeutic tool to locally and temporally attenuate atherosclerosis.
Collapse
Affiliation(s)
- Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yuhui Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Michelle Cai
- Faculty of Science, Western University, London, ON, N6A 3K7, Canada
| | - Yujie Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Wenhua Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Guanwei Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
15
|
Wu D, Wang L, Li W, Xu X, Jiang W. DNA nanostructure-based drug delivery nanosystems in cancer therapy. Int J Pharm 2017; 533:169-178. [PMID: 28923770 DOI: 10.1016/j.ijpharm.2017.09.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 01/04/2023]
Abstract
DNA as a novel biomaterial can be used to fabricate different kinds of DNA nanostructures based on its principle of GC/AT complementary base pairing. Studies have shown that DNA nanostructure is a nice drug carrier to overcome big obstacles existing in cancer therapy such as systemic toxicity and unsatisfied drug efficacy. Thus, different types of DNA nanostructure-based drug delivery nanosystems have been designed in cancer therapy. To improve treating efficacy, they are also developed into more functional drug delivery nanosystems. In recent years, some important progresses have been made. The objective of this review is to make a retrospect and summary about these different kinds of DNA nanostructure-based drug delivery nanosystems and their latest progresses: (1) active targeting; (2) mutidrug co-delivery; (3) construction of stimuli-responsive/intelligent nanosystems.
Collapse
Affiliation(s)
- Dandan Wu
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Lei Wang
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Wei Li
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China
| | - Wei Jiang
- Key Laboratory of Natural Products Chemical Biology, Ministry of Education, School of Pharmacy, Shandong University, Jinan, 250012, PR China; School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, PR China.
| |
Collapse
|
16
|
Li X, Kim J, Yoon J, Chen X. Cancer-Associated, Stimuli-Driven, Turn on Theranostics for Multimodality Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201606857. [PMID: 28370546 PMCID: PMC5544499 DOI: 10.1002/adma.201606857] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/11/2017] [Indexed: 04/14/2023]
Abstract
Advances in bioinformatics, genomics, proteomics, and metabolomics have facilitated the development of novel anticancer agents that have decreased side effects and increased safety. Theranostics, systems that have combined therapeutic effects and diagnostic capabilities, have garnered increasing attention recently because of their potential use in personalized medicine, including cancer-targeting treatments for patients. One interesting approach to achieving this potential involves the development of cancer-associated, stimuli-driven, turn on theranostics. Multicomponent constructs of this type would have the capability of selectively delivering therapeutic reagents into cancer cells or tumor tissues while simultaneously generating unique signals that can be readily monitored under both in vitro and in vivo conditions. Specifically, their combined anticancer activities and selective visual signal respond to cancer-associated stimuli, would make these theranostic agents more highly efficient and specific for cancer treatment and diagnosis. This article focuses on the progress of stimuli-responsive turn on theranostics that activate diagnostic signals and release therapeutic reagents in response to the cancer-associated stimuli. The present article not only provides the fundamental backgrounds of diagnostic and therapeutic tools that have been widely utilized for developing theranostic agents, but also discusses the current approaches for developing stimuli-responsive turn on theranostics.
Collapse
Affiliation(s)
- Xingshu Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Jihoon Kim
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| |
Collapse
|
17
|
Dai D, Zhou L, Zhu X, You R, Zhong L. Combined multi-pharmacophore, molecular docking and molecular dynamic study for discovery of promising MTH1 inhibitors. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.02.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Gao W, Li S, Liu Z, Sun Y, Cao W, Tong L, Cui G, Tang B. Targeting and destroying tumor vasculature with a near-infrared laser-activated "nanobomb" for efficient tumor ablation. Biomaterials 2017; 139:1-11. [PMID: 28578297 DOI: 10.1016/j.biomaterials.2017.05.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/24/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022]
Abstract
Attacking the supportive vasculature network of a tumor offers an important new avenue for cancer therapy. Herein, a near-infrared (NIR) laser-activated "nanobomb" was developed as a noninvasive and targeted physical therapeutic strategy to effectively disrupt tumor neovasculature in an accurate and expeditious manner. This "nanobomb" was rationally fabricated via the encapsulation of vinyl azide (VA) into c(RGDfE) peptide-functionalized, hollow copper sulfide (HCuS) nanoparticles. The resulting RGD@HCuS(VA) was selectively internalized into integrin αvβ3-expressing tumor vasculature endothelial cells and dramatically increased the photoacoustic signals from the tumor neovasculature, achieving a maximum signal-to-noise ratio at 4 h post-injection. Upon NIR irradiation, the local temperature increase triggered VA to release N2 bubbles rapidly. Subsequently, these N2 bubbles could instantly explode to destroy the neovasculature and further induce necrosis of the surrounding tumor cells. A single-dose injection of RGD@HCuS(VA) led to complete tumor regression after laser irradiation, with no tumor regrowth for 30 days. More importantly, high-resolution photoacoustic angiography, combined with excellent biodegradability, facilitated the precise destruction of tumor neovasculature by RGD@HCuS(VA) without damaging normal tissues. These results demonstrate the great potential of this "nanobomb" for clinical translation to treat cancer patients with NIR laser-accessible orthotopic tumors.
Collapse
Affiliation(s)
- Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Shuangshuang Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Yuhui Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Wenhua Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Guanwei Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
19
|
Sun Y, Gao W, Zhao Y, Cao W, Liu Z, Cui G, Tong L, Lei F, Tang B. Visualization and Inhibition of Mitochondria-Nuclear Translocation of Apoptosis Inducing Factor by a Graphene Oxide-DNA Nanosensor. Anal Chem 2017; 89:4642-4647. [PMID: 28359155 DOI: 10.1021/acs.analchem.7b00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High concentrations of oxidized low density lipoprotein (oxLDL) induce aberrant apoptosis of vascular smooth muscle cells (VSMCs) in atherosclerotic plaques. This apoptosis cannot be blocked completely by the inhibition of caspase, and it eventually potentiates plaque disruption and risk for cardiovascular disease. Given the important role of apoptosis inducing factor (AIF) in caspase-independent apoptosis, here we develop an AIF-targeting nanosensor by the assembly of graphene oxide (GO) nanosheets and dye-labeled DNA hybrid structures. This nanosensor selectively localizes in the cytosol of VSMCs, where it exhibits a "turn-off" fluorescence signal. Under oxLDL stimuli, the release of AIF from mitochondria into cytosol liberates the DNA hybrid structures from the surface of GO and results in a "turn-on" fluorescence signal. This nanosensor is shown to possess rapid response, high sensitivity, and selectivity for AIF that enables real-time imaging of AIF translocation in VSMCs. Using this novel nanosensor, a better assessment of the apoptotic level of VSMCs and a more accurate evaluation of the extent of atherosclerotic lesions can be obtained. More importantly, the abundant binding between DNA hybrid structures and AIF inhibits the translocation of AIF into the nucleus and subsequent apoptosis in VSMCs. This inhibition may help stabilize plaque and reduce the risk of heart attack and stroke.
Collapse
Affiliation(s)
- Yuhui Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Yujie Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Wenhua Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Guanwei Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| |
Collapse
|
20
|
Li L, Song L, Liu X, Yang X, Li X, He T, Wang N, Yang S, Yu C, Yin T, Wen Y, He Z, Wei X, Su W, Wu Q, Yao S, Gong C, Wei Y. Artificial Virus Delivers CRISPR-Cas9 System for Genome Editing of Cells in Mice. ACS NANO 2017; 11:95-111. [PMID: 28114767 DOI: 10.1021/acsnano.6b04261] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CRISPR-Cas9 has emerged as a versatile genome-editing platform. However, due to the large size of the commonly used CRISPR-Cas9 system, its effective delivery has been a challenge and limits its utility for basic research and therapeutic applications. Herein, a multifunctional nucleus-targeting "core-shell" artificial virus (RRPHC) was constructed for the delivery of CRISPR-Cas9 system. The artificial virus could efficiently load with the CRISPR-Cas9 system, accelerate the endosomal escape, and promote the penetration into the nucleus without additional nuclear-localization signal, thus enabling targeted gene disruption. Notably, the artificial virus is more efficient than SuperFect, Lipofectamine 2000, and Lipofectamine 3000. When loaded with a CRISPR-Cas9 plasmid, it induced higher targeted gene disruption efficacy than that of Lipofectamine 3000. Furthermore, the artificial virus effectively targets the ovarian cancer via dual-receptor-mediated endocytosis and had minimum side effects. When loaded with the Cas9-hMTH1 system targeting MTH1 gene, RRPHC showed effective disruption of MTH1 in vivo. This strategy could be adapted for delivering CRISPR-Cas9 plasmid or other functional nucleic acids in vivo.
Collapse
Affiliation(s)
- Ling Li
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Linjiang Song
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaowei Liu
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Xi Yang
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Xia Li
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Tao He
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Ning Wang
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Suleixin Yang
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Chuan Yu
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Tao Yin
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Yanzhu Wen
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Zhiyao He
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Xiawei Wei
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Weijun Su
- School
of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Qinjie Wu
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Shaohua Yao
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Changyang Gong
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| | - Yuquan Wei
- State
Key Laboratory of Biotherapy and Cancer Center,
West China Hospital and Collaborative
Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
21
|
Duo Y, Li Y, Chen C, Liu B, Wang X, Zeng X, Chen H. DOX-loaded pH-sensitive mesoporous silica nanoparticles coated with PDA and PEG induce pro-death autophagy in breast cancer. RSC Adv 2017. [DOI: 10.1039/c7ra05135b] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The development of multifunctional nano drug delivery carriers has been one of the most effective and prevailing approaches to overcome drug non-selectivity, low cell uptake efficiency and various side effects of traditional chemotherapy drugs.
Collapse
Affiliation(s)
- Yanhong Duo
- Key Laboratory of Plant Cell Activities and Stress Adaptation
- Ministry of Education
- School of Life Sciences
- Lanzhou University
- Lanzhou 730000
| | - Yang Li
- Department of Hepatobiliary and Pancreas Surgery
- Second Clinical Medical College of Jinan University
- Shenzhen People's Hospital
- Shenzhen 518000
- P. R. China
| | - Changke Chen
- The Shenzhen Key Lab of Gene and Antibody Therapy
- Division of Life and Health Sciences
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Baiyun Liu
- Key Laboratory of Plant Cell Activities and Stress Adaptation
- Ministry of Education
- School of Life Sciences
- Lanzhou University
- Lanzhou 730000
| | - Xinyu Wang
- Key Laboratory of Plant Cell Activities and Stress Adaptation
- Ministry of Education
- School of Life Sciences
- Lanzhou University
- Lanzhou 730000
| | - Xiaowei Zeng
- The Shenzhen Key Lab of Gene and Antibody Therapy
- Division of Life and Health Sciences
- Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
22
|
Wang JY, Jin L, Yan XG, Sherwin S, Farrelly M, Zhang YY, Liu F, Wang CY, Guo ST, Yari H, La T, McFarlane J, Lei FX, Tabatabaee H, Chen JZ, Croft A, Jiang CC, Zhang XD. Reactive Oxygen Species Dictate the Apoptotic Response of Melanoma Cells to TH588. J Invest Dermatol 2016; 136:2277-2286. [DOI: 10.1016/j.jid.2016.06.625] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022]
|
23
|
Ye H, Guo Z, Peng M, Cai C, Chen Y, Cao Y, Zhang W. Methyl Parathion Degrading Enzyme-based Nano-hybrid Biosensor for Enhanced Methyl Parathion Recognition. ELECTROANAL 2016. [DOI: 10.1002/elan.201501102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haixia Ye
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education; Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
| | - Zhenzhong Guo
- School of Public Health, Medical College; Wuhan University of Science and Technology; Wuhan 430056 PR China
| | - Min Peng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education; Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
| | - Chunyan Cai
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education; Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
| | - Yong Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education; Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
- Ecole Normale Supérieure; CNRS-ENS-UPMC UMR 8640; 24 Rue Lhomond Paris 75005 France
| | - Yiping Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education; Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
| | - Weiying Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education; Institute for Interdisciplinary Research; Jianghan University; Wuhan 430056 PR China
| |
Collapse
|