1
|
Zhou H, Bao P, Lin YT, Meng R, Yan X, Deng XC, Huang QX, Chen WH, Zhang XZ. Bimetallic nanoreactor mediates cascade amplification of oxidative stress for complementary chemodynamic-immunotherapy of tumor. Biomaterials 2025; 317:123075. [PMID: 39765024 DOI: 10.1016/j.biomaterials.2024.123075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
As a promising tumor treatment, chemodynamic therapy (CDT) can specifically catalyze H2O2 into the cytotoxic hydroxyl radical (·OH) via Fenton/Fenton-like reaction. However, the limited H2O2 and weakly acidic pH in tumor microenvironment (TME) would severely restrict the therapeutic efficiency of CDT. Here, a weakly acid activated, H2O2 self-supplied, hyaluronic acid (HA)-functionalized Ce/Cu bimetallic nanoreactor (CBPNs@HA) is elaborately designed for complementary chemodynamic-immunotherapy. In this nanoreactor, the component of peroxide group and Ce/Cu bimetals played the role of H2O2 self-supply and synergistic catalytic Fenton-like reaction, respectively. Specifically, CBPNs@HA can sensitively respond to TME (pH 6.8) and rapidly degrade to generate Ce4+, Cu+ and H2O2. The high-valence Ce4+ would be reduced by the intracellular glutathione (GSH) to generate Ce3+ and this process could be accelerated by Cu + via synergistic effect of Ce4+/Cu+. Particularly, the low-valence metallic ions (Ce3+ and Cu+) can react with the produced H2O2 to generate a multitude of reactive oxygen species (ROS). These cascaded effects can significantly amplify oxidative stress and seriously disturb the redox balance of tumor cells, inducing the potent immunogenic cell death (ICD) to release tumor-specific antigens and thereby activating the powerful antitumor immune responses. After combined with immune checkpoint blockade (ICB), CBPNs@HA can significantly heighten antitumor effects to inhibit the growth of primary and metastatic tumors, and dramatically prolong the survival lifetime of 4T1 tumor-bearing mice to 60 days. This work provides a materials-based strategy for enhanced CDT and highlights new opportunities for complementary chemodynamic-immunotherapy.
Collapse
Affiliation(s)
- Hao Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China
| | - Peng Bao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China
| | - Yan-Tong Lin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China
| | - Ran Meng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China
| | - Xiao Yan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China
| | - Xin-Chen Deng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China
| | - Qian-Xiao Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
2
|
Hu K, Xiao M, Chen S, Huang Y, Hou Z, Li X, Yang L. Innovative applications of natural polysaccharide polymers in intravesical therapy of bladder diseases. Carbohydr Polym 2025; 354:123307. [PMID: 39978897 DOI: 10.1016/j.carbpol.2025.123307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Natural polysaccharide polymers, characterized by their remarkable biocompatibility, biodegradability, and structural versatility, hold great promise for intravesical therapy in treating of bladder diseases. Conditions such as bladder cancer and interstitial cystitis compromise drug efficacy by affecting the permeability of the bladder wall. Traditional therapeutic approaches are often hindered by physiological challenges, including rapid drug clearance and the intrinsic permeability barrier of the bladder. Polysaccharides like hyaluronic acid (HA) and chitosan (CS) have emerged as promising materials for intravesical drug delivery systems (IDDS), owing to their ability to repair tight junctions in the bladder wall, mitigate inflammation, and enhance permeability. This review provides a comprehensive overview of the mechanisms through which polysaccharide-based natural polymers regulate bladder wall permeability and highlights their advancements in delivery platforms, including nanoparticles, hydrogels, floating systems, and composite materials. By improving drug retention, enhancing bioavailability, and promoting patient adherence, these materials offer a solid foundation for the development of innovative therapeutic strategies for bladder diseases.
Collapse
Affiliation(s)
- Ke Hu
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China; Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Miaomiao Xiao
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Siwen Chen
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Yuanbing Huang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| | - Xiancheng Li
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| |
Collapse
|
3
|
Zhang G, Jiang X, Xia Y, Qi P, Li J, Wang L, Wang Z, Tian X. Hyaluronic acid-conjugated lipid nanocarriers in advancing cancer therapy: A review. Int J Biol Macromol 2025; 299:140146. [PMID: 39842601 DOI: 10.1016/j.ijbiomac.2025.140146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Lipid nanoparticles are obtaining significant attention in cancer treatment because of their efficacy at delivering drugs and reducing side effects. These things are like a flexible platform for getting anticancer drugs to the tumor site, especially upon HA modification, a polymer that is known to target tumors overexpressing CD44. HA is promising in cancer therapy because it taregtes tumor cells by binding onto CD44 receptors, which are often upregulated in cancer cells. Lipid nanoparticles are not only beneficial in improving solubility and stability of drugs; they also use the EPR effect, meaning they accumulate more in tumor tissue than in healthy tissue. Adding HA to these nanoparticles expands their biocompatibility and makes them more accurate and specific towards tumor cells. Studies show that HA-modified nanoparticles carrying drugs such as paclitaxel or doxorubicin improve how well cells absorb the drugs, reduce drug resistance, and make tumor shrinking. These nanoparticles can respond to tumor microenvironment stimuli in targeted delivery. This targeted delivery diminishes side effects and improves anti-cancer activity of drugs. Thus, lipid-based nanoparticles conjugated with HA are a promising way to treat cancer by delivering drugs effectively, minimizing side effects, and giving us better therapeutic results.
Collapse
Affiliation(s)
- Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Xin Jiang
- Department of Clinical Pharmacy, Baoying People's Hospital, Affiliated Hospital of Medical School, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yitong Xia
- Department of Oral Medicine, Jining Medical College, Jining, Shandong, China
| | - Pengpeng Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jie Li
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, China
| | - Lizhen Wang
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, Shandong, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng City Hospital of Traditional Chinese Medicine, Liaocheng, Shandong, China.
| | - Xiuli Tian
- Department of Respiration, Liaocheng People's Hospital, Liaocheng, Shandong, China.
| |
Collapse
|
4
|
Jiang Y, Cao Y, Yao Y, Zhang D, Wang Y. Chitosan and hyaluronic acid in breast cancer treatment: Anticancer efficacy and nanoparticle and hydrogel development. Int J Biol Macromol 2025; 301:140144. [PMID: 39848359 DOI: 10.1016/j.ijbiomac.2025.140144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The pervasive global health concern of breast cancer necessitates the development of innovative therapeutic interventions to enhance efficacy and mitigate adverse effects. Chitosan and hyaluronic acid, recognized for their biocompatibility and biodegradability, present compelling options for the novel drug delivery systems and therapeutic platforms in the context of breast cancer management. This review will delineate the distinctive attributes of chitosan and hyaluronic acid, encompassing their inherent anticancer properties, targeting capabilities, and suitability for chemical modifications along with nanoparticle development. These characteristics render them exceptionally well-suited for the fabrication of nanoparticles and hydrogels. The intrinsic anticancer potential of chitosan, in conjunction with its mucoadhesive properties, and the robust binding affinity of hyaluronic acid to CD44 receptors, facilitate specific drug delivery to the malignant cells, thus circumventing the limitations inherent in traditional treatment modalities such as chemotherapy. The incorporation of these materials into nanocarriers allows for the co-delivery of therapeutic agents, thereby potentiating synergistic effects, while hydrogel systems provide localized, controlled drug release and facilitate tissue regeneration. An analysis of advancements in their synthesis, functionalization, and application is presented, while also acknowledging challenges pertaining to scalability and clinical translation.
Collapse
Affiliation(s)
- Yanlin Jiang
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China
| | - Yu Cao
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiqun Yao
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China
| | - Dianlong Zhang
- Department of Breast and Thyroid Surgery, the Affiliated Zhongshan Hospital of Dalian University, China.
| | - Yuying Wang
- Department of Breast Surgery, The Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, China.
| |
Collapse
|
5
|
Mahajan S, Aalhate M, Chatterjee E, Singh H, Sharma A, Maji I, Gupta U, Guru SK, Singh PK. Harnessing the targeting potential of hyaluronic acid for augmented anticancer activity and safety of duvelisib-loaded nanoparticles in hematological malignancies. Int J Biol Macromol 2024; 282:136600. [PMID: 39427787 DOI: 10.1016/j.ijbiomac.2024.136600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Duvelisib (DUV) is effective against numerous hematological malignancies; however, it suffers from numerous setbacks like poor aqueous solubility, low cellular uptake and adverse effects. Hyaluronic acid is an excellent ligand for CD44 receptors that are overexpressed on cancer cell surfaces. Thus, for the targeted delivery of DUV in hematological malignancies, we have fabricated hyaluronic acid-coated polylactide-co-glycolide nanoparticles (DUV-P/CH/HA-NPs) through electrostatic interactions. DUV-P/CH/HA-NPs exhibited optimum characteristics such as mean particle size of 183.63 ± 0.23 nm, polydispersity index of 0.261 ± 0.02 and drug loading capacity of 5.75 ± 0.05 %. An in-vitro release study demonstrated sustained release behavior of DUV-P/CH/HA-NPs (77.65 ± 2.89 % release in 48 h). The flow cytometry experiments revealed 1.62-fold and 1.50-fold enhanced uptake of DUV-P/CH/HA-NPs compared to non-coated nanoparticles in MOLT-4 and HH cells, respectively. The DUV-P/CH/HA-NPs showed higher cytotoxicity, arrested the cell cycle in G0/G1 phase and showed increased apoptosis compared to non-coated nanoparticles and free DUV. An in-vivo pharmacokinetic study revealed 2.9-fold and 3.6-fold enhancement in AUC0-t and MRT with the DUV-P/CH/HA-NPs compared to free DUV. Further, toxicity evaluation and hemolysis assessment of DUV-P/CH/HA-NPs indicated good safety for intravenous administration. Conclusively, DUV-P/CH/HA-NPs are an excellent option for selectively targeting hematological malignant cells.
Collapse
Affiliation(s)
- Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad, India
| | - Essha Chatterjee
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad, India.
| |
Collapse
|
6
|
Tang Z, Xu YC, Wang S, Huang J, Liu J, Ding M, Sun Y, Li N, Li H, Lin Y, Qin C. Light-activated hypoxia-sensitive biomimetic decoy efficiently cascading photodynamic-chemo therapy for breast cancer. Colloids Surf B Biointerfaces 2024; 243:114145. [PMID: 39142000 DOI: 10.1016/j.colsurfb.2024.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
The hypoxic microenvironment within the tumor microenvironment of breast cancer imposes a challenge in overcoming chemotherapy resistance. In this investigation, we designed a novel strategy utilizing a light-controlled cascade targeting nanomedicine specifically tailored for enhanced immune therapy of breast cancer. Albumin nanoparticle was achieved by crosslinking, followed by loading TPZ and Ce6, and subsequent modification to enable selective binding with CD44 hyaluronic acid to form nanomedicine. Encouragingly, it was demonstrated the remarkable ability of the nanomedicine to effectively internalize into cellular entities, thereby inducing apoptosis in 4T1 cells efficiently in vitro when exposed to light irradiation. In vivo assessments showcased the exceptional aptitude of the nanomedicine not only for preferential accumulation within tumor tissues, but also for substantial suppression of tumor growth. Immune mechanisms have shown that nanomedicine treatment promoted the maturation of DCs in vivo, enhanced the proportion of CD8+ T cells in the spleen and tumor, and simultaneously upregulated the ratio of M1 macrophages favorable for anti-tumor effects. These outcomes collectively advance a fresh perspective for the clinical breast cancer therapy.
Collapse
Affiliation(s)
- Zihui Tang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Yu Cai Xu
- Department of Oncology, Pinghu Second People's Hospital, Zhapu Town, Jiaxing City, Zhejiang Province, China.
| | - Suyuan Wang
- National Key Laboratory of Immunity and Inflammation, Naval Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| | - Jian Huang
- Department of Interventional radiology,Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China.
| | - Jun Liu
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Min Ding
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yang Sun
- Department of Pediatric Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Ning Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Yan Lin
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Chenjie Qin
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Interventional radiology,Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
7
|
Wang G, Yu D. Novel Chemo-Photothermal Therapy in Hepatic Cancer Using Gemcitabine-Loaded Hyaluronic Acid Conjugated MoS 2/ZnO Nanocomposites. Appl Biochem Biotechnol 2024; 196:5181-5197. [PMID: 38150158 DOI: 10.1007/s12010-023-04796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Hepatocellular carcinoma is a serious illness with a high rate of mortality. A high dose of theranostic drugs with efficient diagnostic and therapeutic capabilities should be required. Chemo-photothermal therapy is presently recognized as a secure method of cancer treatment that specifically targets tumour tissue or cells. Additionally, the success of cancer therapy is increased by the use of targeted nanoparticles. The current study aims to investigate the interaction between phototherapy and the anti-hepatocellular carcinoma treatment combination HA-GEM-MoS2/ZnO nanocomposites (NCs) loaded with gemcitabine and molybdenum disulphide. NCs were synthesized and characterized using FT-IR, XRD, TEM, and DLS analyses. The present investigation shows that the synthesized HA-MoS2/ZnO nanocomposites were elongated spherical in shape and their sizes ranged from 62.3 to 75.7 nm according to the estimation using XRD results, which is consistent with TEM findings. Further, HA-MoS2/ZnO nanocomposites could effectively encapsulate the GEM, showing dual pH and thermal triggered drug release behaviour. The result of cell uptake tests clearly demonstrated improved cellular uptake of synthesized nanocomposites following HA and GEM-loaded NCs in hepatocellular carcinoma cell lines. In addition, combination therapies caused the highest incidence of cell death in hepatocellular carcinoma, according to cytotoxicity experiments and showed a good compatibility. In vitro studies prove that HA-GEM-MoS2/ZnO nanocomposites enhanced tumour treatment that combines chemotherapy and photothermal therapy to remove the tumour and prevent relapses. Still, no studies have been done to see if gemcitabine-encapsulated HA-MoS2/ZnO NCs inhibit human hepatocellular carcinoma cell. Hence, the current study can give a new paradigm for the diagnosis and treatment of cancer and the outcome may be helpful to improve the quality of cancer patient's life.
Collapse
Affiliation(s)
- Guoguang Wang
- Department of Radiology, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201599, China
| | - Dong Yu
- Department of General Surgery, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, 201599, China.
| |
Collapse
|
8
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
9
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Zhang J, Tang K, Liu Z, Zhang Z, Duan S, Wang H, Yang H, Yang D, Fan W. Tumor microenvironment-responsive degradable silica nanoparticles: design principles and precision theranostic applications. NANOSCALE HORIZONS 2024; 9:186-214. [PMID: 38164973 DOI: 10.1039/d3nh00388d] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Silica nanoparticles have emerged as promising candidates in the field of nanomedicine due to their remarkable versatility and customizable properties. However, concerns about their potential toxicity in healthy tissues and organs have hindered their widespread clinical translation. To address this challenge, significant attention has been directed toward a specific subset of silica nanoparticles, namely degradable silica nanoparticles, primarily because of their excellent biocompatibility and responsive biodegradability. In this review, we provide a comprehensive understanding of degradable silica nanoparticles, categorizing them into two distinct groups: inorganic species-doped and organic moiety-doped silica nanoparticles based on their framework components. Next, the recent progress of tumor microenvironment (TME)-responsive degradable silica nanoparticles for precision theranostic applications is summarized in detail. Finally, current bottlenecks and future opportunities of theranostic nanomedicines based on degradable silica nanoparticles in clinical applications are also outlined and discussed. The aim of this comprehensive review is to shed light on the potential of degradable silica nanoparticles in addressing current challenges in nanomedicine, offering insights into their design, applications in tumor diagnosis and treatment, and paving the way for future advancements in clinical theranostic nanomedicines.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Zilu Liu
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Zhijing Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Shufan Duan
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Dongliang Yang
- Nanjing Polytechnic Institute, Nanjing 210048, P. R. China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
11
|
Gao M, Deng H, Zhang Y, Wang H, Liu R, Hou W, Zhang W. Hyaluronan nanogel co-loaded with chloroquine to enhance intracellular cisplatin delivery through lysosomal permeabilization and lysophagy inhibition. Carbohydr Polym 2024; 323:121415. [PMID: 37940248 DOI: 10.1016/j.carbpol.2023.121415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 11/10/2023]
Abstract
Hyaluronan (HA) has been widely used to construct nanocarriers for cancer-targeted drug delivery, due to its excellent biocompatibility and intrinsic affinity towards CD44 that is overexpressed in most cancer types. However, the HA-based nanocarriers are prone to trapping in lysosomes following the HA-mediated endocytosis, which limited the delivered drug to access its pharmacological action sites and subsequently compromised the therapeutic efficacy. To overcome this intracellular obstacle, here we demonstrated the co-loading of chloroquine (CQ) in HA nanogel could efficiently promote the intracellular delivery of cisplatin. The cisplatin coordination with HA generated the nanogel that could also co-encapsulate CQ (HA/Cis/CQ nanogel). Compared with cisplatin-loaded HA nanogel (HA/Cis), HA/Cis/CQ significantly promoted the lysosomal escape of cisplatin as well as enhanced tumor inhibition in the triple-negative breast cancer model. Mechanism studies suggested that co-delivery of CQ not only induced the lysosomal membrane permeabilization but also inhibited the lysophagy, which collectively contributed to the lysosomal instability and cisplatin escape. This HA/Cis/CQ nanogel elicited less toxicity compared with the combination of free Cis and CQ, thus suggesting a promising HA nanocarrier to boost the cisplatin delivery towards cancer-targeted therapy.
Collapse
Affiliation(s)
- Menghan Gao
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hong Deng
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Huimin Wang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Runmeng Liu
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Wei Hou
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Weiqi Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
12
|
Chen P, Paraiso WKD, Cabral H. Revitalizing Cytokine-Based Cancer Immunotherapy through Advanced Delivery Systems. Macromol Biosci 2023; 23:e2300275. [PMID: 37565723 DOI: 10.1002/mabi.202300275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Cytokines can coordinate robust immune responses, holding great promise as therapeutics against infections, autoimmune diseases, and cancers. In cancer treatment, numerous pro-inflammatory cytokines have displayed promising efficacy in preclinical studies. However, their clinical application is hindered by poor pharmacokinetics, significant toxicity and unsatisfactory anticancer efficacy. Thus, while IFN-α and IL-2 are approved for specific cancer treatments, other cytokines still remain subject of intense investigation. To accelerate the application of cytokines as cancer immunotherapeutics, strategies need to be directed to improve their safety and anticancer performance. In this regard, delivery systems could be used to generate innovative therapies by targeting the cytokines or nucleic acids, such as DNA and mRNA, encoding the cytokines to tumor tissues. This review centers on these innovative delivery strategies for cytokines, summarizing key approaches, such as gene delivery and protein delivery, and critically examining their potential and challenges for clinical translation.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | | | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
13
|
Wang A, Yang X, Li R, Shao L, Zhao W, Hu X, Fang K, Chai K, Shi S, Dong C. Immunomodulator-Mediated Suppressive Tumor Immune Microenvironment Remodeling Nanoplatform for Enhanced Immuno/Chemo/Photothermal Combination Therapy of Triple Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53318-53332. [PMID: 37943829 DOI: 10.1021/acsami.3c14137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Despite immunotherapy having revolutionized cancer therapy, the efficacy of immunotherapy in triple-negative breast cancer (TNBC) is seriously restricted due to the insufficient infiltration of mature dendritic cells (DCs) and the highly diffusion of immunosuppressive cells in the tumor microenvironment. Herein, an immunomodulatory nanoplatform (HA/Lipo@MTO@IMQ), in which the DCs could be maximally activated, was engineered to remarkably eradicate the tumor via the combination of suppressive tumor immune microenvironment reversal immunotherapy, chemotherapy, and photothermal therapy. It was noticed that the immunotherapy efficacy could be significantly facilitated by this triple-assistance therapy: First, a robust immunogenic cell death (ICD) effect was induced by mitoxantrone hydrochloride (MTO) to boost DCs maturation and cytotoxic T lymphocytes infiltration. Second, the powerful promaturation property of the toll-like receptor 7/8 (TLR7/8) agonist on DCs simultaneously strengthened the ICD effect and restricted antitumor immunity to the tumor bed and lymph nodes. On this basis, tumor-associated macrophages were also dramatically repolarized toward the antitumor M1 phenotype in response to TLR7/8 agonist to intensify the phagocytosis and reverse the immunosuppressive microenvironment. Furthermore, the recruitment of immunocompetent cells and tumor growth inhibition were further promoted by the photothermal characteristic. The nanoplatform with no conspicuous untoward effects exhibited a splendid ability to activate the systemic immune system so as to increase the immunogenicity of the tumor microenvironment, thus enhancing the tumor killing effect. Taken together, HA/Lipo@MTO@IMQ might highlight an efficient combination of therapeutic modality for TNBC.
Collapse
Affiliation(s)
- Anqi Wang
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xinda Yang
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ruihao Li
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Lujing Shao
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenrong Zhao
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiaochun Hu
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kang Fang
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Keke Chai
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuo Shi
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chunyan Dong
- Oncology Department, Shanghai East Hospital, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
14
|
Wang P, Yang Y, Wen H, Li D, Zhang H, Wang Y. Progress in construction and release of natural polysaccharide-platinum nanomedicines: A review. Int J Biol Macromol 2023; 250:126143. [PMID: 37544564 DOI: 10.1016/j.ijbiomac.2023.126143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Natural polysaccharides are natural biomaterials that have become candidate materials for nano-drug delivery systems due to their excellent biodegradability and biocompatibility. Platinum (Pt) drugs have been widely used in the clinical therapy for various solid tumors. However, their extensive systemic toxicity and the drug resistance acquired by cancer cells limit the applications of platinum drugs. Modern nanobiotechnology provides the possibility for targeted delivery of platinum drugs to the tumor site, thereby minimizing toxicity and optimizing the efficacies of the drugs. In recent years, numerous natural polysaccharide-platinum nanomedicine delivery carriers have been developed, such as nanomicelles, nanospheres, nanogels, etc. Herein, we provide an overview on the construction and drug release of natural polysaccharide-Pt nanomedicines in recent years. Current challenges and future prospectives in this field are also put forward. In general, combining with irradiation and tumor microenvironment provides a significant research direction for the construction of natural polysaccharide-platinum nanomedicines and the release of responsive drugs in the future.
Collapse
Affiliation(s)
- Pengge Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; College of Biological and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 211816, China
| | - Yunxia Yang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng 224007, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng 224007, China.
| | - Haoyu Wen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Dongqing Li
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Hongmei Zhang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Yanqing Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|
15
|
Zhang R, Zhao X, Jia A, Wang C, Jiang H. Hyaluronic acid-based prodrug nanomedicines for enhanced tumor targeting and therapy: A review. Int J Biol Macromol 2023; 249:125993. [PMID: 37506794 DOI: 10.1016/j.ijbiomac.2023.125993] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Hyaluronic acid (HA) represents a natural polysaccharide which has attracted significant attention owing to its improved tumor targeting capacity, enzyme degradation capacity, and excellent biocompatibility. Its receptors, such as CD44, are overexpressed in diverse cancer cells and are closely related with tumor progress and metastasis. Accordingly, numerous researchers have designed various kinds of HA-based drug delivery platforms for CD44-mediated tumor targeting. Specifically, the HA-based nanoprodrugs possess distinct advantages such as good bioavailability, long circulation time, and controlled drug release and retention ability and have been extensively studied during the past years. In this review, the potential strategies and applications of HA-modified nanoprodrugs for drug molecule delivery in anti-tumor therapy are summarized.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China
| | - Xiaohua Zhao
- Department of Thoracic surgery, Affiliated Hospital of Weifang Medical University, No.2428, Yuhe road, Kuiwen district, Weifang 261000, China
| | - Ang Jia
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Chao Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| |
Collapse
|
16
|
Liu Z, Chen X, Jin Q, Li M, Zhu S, Zhang Y, Zhi D, Zhao Y, Li L, Zhang S. Dual functionalized hyaluronic acid micelles loading paclitaxel for the therapy of breast cancer. Front Bioeng Biotechnol 2023; 11:1230585. [PMID: 37600308 PMCID: PMC10436080 DOI: 10.3389/fbioe.2023.1230585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Although many carriers for the delivery of chemotherapeutic drugs have been investigated, the disadvantages of passive targeting and uncontrolled drug release limit their utility. Herein, hyaluronic acid (HA) was hydrophobically modified to serve as a carrier for binding to cluster determinant 44 (CD44) overexpressed on tumor cell surfaces. Specifically, after deacetylation, HA was grafted to dodecylamine or tetradecylamine to afford amphiphilic zwitterionic polymer micelles, designated dHAD and dHAT, respectively, for the delivery of paclitaxel (PTX). The micelles were negatively charged at pH 7.4 and positively charged at pH 5.6, and this pH sensitivity facilitated PTX release under acidic conditions. The cell uptake efficiencies of the dHAD-PTX and dHAT-PTX micelles by MCF-7 cells after 4 h of incubation were 96.9% and 95.4%, respectively, and their affinities for CD44 were twice that of HA. Furthermore, the micelles markedly inhibited tumor growth both in vitro and in vivo, with IC50 values of 1.943 μg/mL for dHAD-PTX and 1.874 μg/mL for dHAT-PTX for MCF-7 cells; the tumor inhibition rate of dHAD-PTX (92.96%) was higher than that of dHAT-PTX (78.65%). Importantly, dHAD and dHAT micelles showed negligible systemic toxicity. Our findings suggest that these micelles are promising delivery vehicles for antitumor drugs.
Collapse
Affiliation(s)
- Zhanbiao Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Qian Jin
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Min Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Siqing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Yi Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Defu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, China
| |
Collapse
|
17
|
Panwar D, Thakor P, Sharma M, Bakshi AK, Bhavana V, Srivastava V, Mishra PR, Singh SB, Mehra NK. Hyaluronic acid-engineered Bcl-2 inhibitor nanocrystals for site-specific delivery to breast tumor cells. Nanomedicine (Lond) 2023; 18:1005-1023. [PMID: 37530043 DOI: 10.2217/nnm-2023-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Aim: This investigation aims to repurpose venetoclax using hyaluronic acid-coated venetoclax nanocrystals (HA-VEN-NCs) to target breast cancer. Materials & methods: An antisolvent precipitation method was used to fabricate the nanocrystals and optimize them using central composite design. Hyaluronic acid (HA)-coated and -uncoated nanocrystals were compared in terms of in vitro drug release, cell line studies, CD44-expressing breast tumor cell binding capability and anticancer activity. Results: HA-VEN-NCs and venetoclax nanocrystals (VEN-NCs) showed pH-responsive drug-release behavior, exhibiting sustained release at pH 6.8. Our extensive in vitro cell line investigation showed that HA-VEN-NCs efficiently bind to CD44-expressing breast tumor cells and possess excellent anticancer activity (IC50: 2.00 μg/ml) compared with VEN-NCs. Conclusion: Our findings anticipate that HA-VEN-NCs could serve as valuable nanoplatforms for cancer treatments in the future.
Collapse
Affiliation(s)
- Dilip Panwar
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Madhu Sharma
- Division of Pharmaceutics, Council of Scientific & Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226017, Uttar Pradesh, India
| | - Avijit Kumar Bakshi
- Division of Pharmaceutics, Council of Scientific & Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226017, Uttar Pradesh, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Vaibhavi Srivastava
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics, Council of Scientific & Industrial Research-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226017, Uttar Pradesh, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, Telangana, India
| |
Collapse
|
18
|
Fu CP, Cai XY, Chen SL, Yu HW, Fang Y, Feng XC, Zhang LM, Li CY. Hyaluronic Acid-Based Nanocarriers for Anticancer Drug Delivery. Polymers (Basel) 2023; 15:polym15102317. [PMID: 37242892 DOI: 10.3390/polym15102317] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Hyaluronic acid (HA), a main component of the extracellular matrix, is widely utilized to deliver anticancer drugs due to its biocompatibility, biodegradability, non-toxicity, non-immunogenicity and numerous modification sites, such as carboxyl and hydroxyl groups. Moreover, HA serves as a natural ligand for tumor-targeted drug delivery systems, as it contains the endocytic HA receptor, CD44, which is overexpressed in many cancer cells. Therefore, HA-based nanocarriers have been developed to improve drug delivery efficiency and distinguish between healthy and cancerous tissues, resulting in reduced residual toxicity and off-target accumulation. This article comprehensively reviews the fabrication of anticancer drug nanocarriers based on HA in the context of prodrugs, organic carrier materials (micelles, liposomes, nanoparticles, microbubbles and hydrogels) and inorganic composite nanocarriers (gold nanoparticles, quantum dots, carbon nanotubes and silicon dioxide). Additionally, the progress achieved in the design and optimization of these nanocarriers and their effects on cancer therapy are discussed. Finally, the review provides a summary of the perspectives, the lessons learned so far and the outlook towards further developments in this field.
Collapse
Affiliation(s)
- Chao-Ping Fu
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai 200438, China
| | - Xing-Yu Cai
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Si-Lin Chen
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Hong-Wei Yu
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Ying Fang
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Xiao-Chen Feng
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chang-Yong Li
- Institute of Biomaterials and Tissue Engineering & Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
19
|
Chen TY, Lin NY, Wen CH, Lin CA, Venkatesan P, Wijerathna P, Lin CY, Lai PS. Development of triamcinolone acetonide-hyaluronic acid conjugates with selective targeting and less osteoporosis effect for rheumatoid arthritis treatments. Int J Biol Macromol 2023; 237:124047. [PMID: 36933598 DOI: 10.1016/j.ijbiomac.2023.124047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Rheumatoid arthritis (RA) is a common systemic autoimmune disease in developed countries. In clinical treatment, steroids have been used as bridging and adjunctive therapy after disease-modifying anti-rheumatic drug administration. However, the severe side effects caused by the nonspecific targeting of organs followed by long-term administration have limited their usage in RA. In this study, poorly water-soluble triamcinolone acetonide (TA), a highly potent corticosteroid for intra-articular injection, is conjugated on hyaluronic acid (HA) for intravenous purposes with increased specific drug accumulation in inflamed parts for RA. Our results demonstrate that the designed HA/TA coupling reaction reveals >98 % conjugation efficiency in the dimethyl sulfoxide/water system, and the resulting HA-TA conjugates show lower osteoblastic apoptosis compared with that in free TA-treated osteoblast-like NIH3T3 cells. Furthermore, in a collagen-antibody-induced arthritis animal study, HA-TA conjugates enhanced the initiative targeting ability to inflame tissue and reduce the histopathological arthritic changes (score = 0). Additionally, the level of bone formation marker P1NP in HA-TA-treated ovariectomized mice (303.6 ± 40.6 pg/mL) is significantly higher than that in the free TA-treated group (143.1 ± 3.9 pg/mL), indicating the potential for osteoporotic reduction using an efficient HA conjugation strategy for the long-term administration of steroids against RA.
Collapse
Affiliation(s)
- Tzu-Yang Chen
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Basic Research Division, Holy Stone Healthcare Co., Ltd., 114 Taipei, Taiwan.
| | - Neng-Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chih-Hao Wen
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-An Lin
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Parthiban Venkatesan
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Prasanna Wijerathna
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Yu Lin
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
20
|
Liu Q, Hu L, Wang C, Cheng M, Liu M, Wang L, Pan P, Chen J. Renewable marine polysaccharides for microenvironment-responsive wound healing. Int J Biol Macromol 2023; 225:526-543. [PMID: 36395940 DOI: 10.1016/j.ijbiomac.2022.11.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Marine polysaccharides (MPs) are an eco-friendly and renewable resource with a distinctive set of biological functions and are regarded as biological materials that can be in contact with tissues and body fluids for an extended time and promote tissue or organ regeneration. Skin tissue is easily invaded by the external environment due to its softness and large surface area. However, the body's natural physiological healing process is often too slow or suffers from the incomplete restoration of skin structure and function. Functional wound dressings are crucial for skin tissue engineering. Herein, popular MPs from different sources are summarized systematically. In particular, the structure-effectiveness of MP-based wound dressings and the physiological remodeling process of different wounds are reviewed in detail. Finally, the prospect of MP-based smart wound dressings is stated in conjunction with the wound microenvironment and provides new opportunities for high-value biomedical applications of MPs.
Collapse
Affiliation(s)
- Qing Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Le Hu
- Marine College, Shandong University, Weihai 264209, China
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Meiqi Cheng
- Marine College, Shandong University, Weihai 264209, China
| | - Man Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Lin Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
21
|
He J, Pang W, Gu B, Lin X, Ye J. The stiffness-dependent tumor cell internalization of liquid metal nanoparticles. NANOSCALE 2022; 14:16902-16917. [PMID: 36342434 DOI: 10.1039/d2nr04293b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The properties of nanoparticle (NP) carriers, such as size, shape and surface state, have been proven to dramatically affect their uptake by tumor cells, thereby influencing and determining the effect of nanomedicine on tumor theranostics. However, the effect of the stiffness of NPs on their cellular internalization remains unclear, especially for circumstances involving active or passive NP targeting. In this work, we constructed eutectic gallium indium liquid metal NPs with the same particle size, shape and surface charge properties but distinct stiffness via tailoring the surface oxidation and silica coating. It has been found that the softer NPs would be endocytosed much slower than their stiffer counterparts in the presence of specific ligand-receptor interaction. Interestingly, once the interaction is eliminated, softer NPs are internalized faster than the stiffer ones. Based on experimental observations and theoretical verification, we demonstrate that this phenomenon is mainly caused by varying degrees of deformation of soft NPs induced by ligand-receptor interactions. Such a finding of the stiffness effect of NPs implies great potential for fundamental biomedical applications, such as the rational design of nanomedicines.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Wen Pang
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Bobo Gu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
| | - Xubo Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100191, P. R. China
| | - Jian Ye
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
22
|
Honeycomb-like porous silica nanoparticles for photo and chemo combination therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Chaudhuri A, Ramesh K, Kumar DN, Dehari D, Singh S, Kumar D, Agrawal AK. Polymeric micelles: A novel drug delivery system for the treatment of breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Redox-Sensitive Multifunctional Hyaluronic acid-based Nanomicelles with Fine-controlled Anticancer Drug Release. Int J Pharm 2022; 629:122402. [DOI: 10.1016/j.ijpharm.2022.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
|
25
|
Redox-responsive waterborne polyurethane nanocarriers for targeted doxorubicin delivery. Int J Pharm 2022; 628:122275. [DOI: 10.1016/j.ijpharm.2022.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
|
26
|
Endocytosis-mediated triple-activable prodrug nanotherapeutics potentiating therapeutic efficacy and security towards solid tumors. Colloids Surf B Biointerfaces 2022; 218:112723. [DOI: 10.1016/j.colsurfb.2022.112723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 12/24/2022]
|
27
|
Wang J, Liu N, Su Q, Lv Y, Yang C, Zhan H. Green Synthesis of Gold Nanoparticles and Study of Their Inhibitory Effect on Bulk Cancer Cells and Cancer Stem Cells in Breast Carcinoma. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193324. [PMID: 36234451 PMCID: PMC9565927 DOI: 10.3390/nano12193324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 05/29/2023]
Abstract
Chemo-resistance from cancer stem cells (CSCs) subpopulation is a current issue in cancer treatment. It is important to select alternative therapies to efficiently eradicate both bulk cancer cells and CSCs. Here, gold nanoparticles (AuNPs) have been selected regarding their biocompatibility, facile and controllable synthesis, potent anti-cancer activity and photothermal conversion performance. We reported a green synthesis of functionalized AuNPs using hyaluronic acid (HA) as a reductant, capping, stabilizing and hydrophilic substance. The resultant AuNPs were spherical-shaped with an average diameter of around 30 nm. These AuNPs displayed improved physico-chemical (yield, stability, photothermal effect) and biological properties (cellular uptake, cytotoxicity and apoptotic effect) against bulk MDA-MB-231 cells, in comparison with other organic anti-cancer drugs. The intensified bioactivity was dependent on a mitochondria-mediated cascade, reflected by the damage in mitochondria, oxidative stress, intensified Caspase 3 activity and increased/decreased expression of certain pro-apoptotic (Bax, P53, Caspase 3)/anti-apoptotic (Bcl-2) genes. Moreover, these AuNPs posed a dramatically improved inhibitory effect in cell viability and self-renewable capacity on CSC subpopulation. All the results were attributed from the nano-scaled structure of AuNPs and combined effect from NIR-induced hyperthermia. In addition, the biocompatible nature of these AuNPs supported them to be a potential candidate in the development of novel chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jihui Wang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
- Department of Bioengineering, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
| | - Na Liu
- Department of Bioengineering, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qing Su
- Department of Bioengineering, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yulong Lv
- Department of Bioengineering, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chang Yang
- Department of Bioengineering, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
| | - Honglei Zhan
- Department of Bioengineering, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
28
|
Niu J, Yuan M, Zhang Z, Wang L, Fan Y, Liu X, Liu X, Ya H, Zhang Y, Xu Y. Hyaluronic Acid Micelles for Promoting the Skin Permeation and Deposition of Curcumin. Int J Nanomedicine 2022; 17:4009-4022. [PMID: 36105622 PMCID: PMC9464638 DOI: 10.2147/ijn.s372711] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background The poor skin permeation and deposition of topical therapeutic drugs is a major issue in topical drug delivery, improving this issue is conducive to improving the topical therapeutic effect of drugs. Methods In this study, octadecylamine modified hyaluronic acid (OHA) copolymer was synthesized by amide reaction technique to prepare curcumin (CUR)-loaded micelles (CUR-M) for topical transdermal administration. CUR-M was successfully prepared by dialysis, and the formulation was evaluated for particle size, zeta potential, surface morphology, entrapment effciency (EE%), drug loading (DL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and the in vitro drug release. Additionally, in vitro skin permeation and retention, in vivo topical analgesic and anti-inflammatory activity, and skin irritation were assessed. Results The mean drug loading (DL), drug entrapment efficiency (EE), hydrodynamic diameter and zeta potential of CUR-M were 8.26%, 90.86%, 165.64 nm and −26.85 mV, respectively. CUR-M was characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), it was found that there was an interaction between CUR and OHA, and CUR existed in CUR-M in an amorphous form. CUR-M exhibited sustained release in 48 h and good stability at 4 °C for 21days. CUR-M could significantly increase the skin penetration and retention of CUR and had better analgesic and anti-inflammatory activities in vivo when compared with CUR solution. Hematoxylin-eosin staining results revealed that the transdermal penetration mechanism of CUR-M might be related to the hydration of stratum corneum by HA. In addition, CUR-M showed no skin irritation to mouse skin. Conclusion CUR-M might be a promising and safe drug delivery system for the treatment of topical diseases.
Collapse
Affiliation(s)
- Jiangxiu Niu
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Ming Yuan
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Zhaowei Zhang
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Liye Wang
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Yanli Fan
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Xianghui Liu
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Xianming Liu
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Huiyuan Ya
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Yansong Zhang
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| | - Yang Xu
- College of Food and Drug, Henan Functional Cosmetics Engineering & Technology Research Center, Luoyang Normal University, Luoyang, 471934, People's Republic of China
| |
Collapse
|
29
|
Buckley C, Murphy EJ, Montgomery TR, Major I. Hyaluronic Acid: A Review of the Drug Delivery Capabilities of This Naturally Occurring Polysaccharide. Polymers (Basel) 2022; 14:polym14173442. [PMID: 36080515 PMCID: PMC9460006 DOI: 10.3390/polym14173442] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The inclusion of physiologically active molecules into a naturally occurring polymer matrix can improve the degradation, absorption, and release profile of the drug, thus boosting the therapeutic impact and potentially even reducing the frequency of administration. The human body produces significant amounts of polysaccharide hyaluronic acid, which boasts exceptional biocompatibility, biodegradability, and one-of-a-kind physicochemical features. In this review, we will examine the clinical trials currently utilizing hyaluronic acid and address the bright future of this versatile polymer, as well as summarize the numerous applications of hyaluronic acid in drug delivery and immunomodulation.
Collapse
Affiliation(s)
- Ciara Buckley
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Biosciences Research Institute, Technological University of the Shannon, V94 EC5T Limerick, Ireland
| | - Emma J. Murphy
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- LIFE Research Institute, Technological University of the Shannon, V94 EC5T Limerick, Ireland
| | - Therese R. Montgomery
- School of Science and Computing, Atlantic Technological University, H91 T8NW Galway, Ireland
| | - Ian Major
- PRISM Research Institute, Technological University of the Shannon, N37 HD68 Athlone, Ireland
- Correspondence:
| |
Collapse
|
30
|
Puluhulawa LE, Joni IM, Elamin KM, Mohammed AFA, Muchtaridi M, Wathoni N. Chitosan-Hyaluronic Acid Nanoparticles for Active Targeting in Cancer Therapy. Polymers (Basel) 2022; 14:polym14163410. [PMID: 36015667 PMCID: PMC9416118 DOI: 10.3390/polym14163410] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the most common cause of death worldwide; therefore, there is a need to discover novel treatment modalities to combat it. One of the cancer treatments is nanoparticle technology. Currently, nanoparticles have been modified to have desirable pharmacological effects by using chemical ligands that bind with their specific receptors on the surface of malignant cells. Chemical grafting of chitosan nanoparticles with hyaluronic acid as a targeted ligand can become an attractive alternative for active targeting. Hence, these nanoparticles can control drug release with pH- responsive stimuli, and high selectivity of hyaluronic acid to CD44 receptors makes these nanoparticles accumulate more inside cells that overexpress these receptors (cancer cells). In this context, we discuss the benefits and recent findings of developing and utilizing chitosan–hyaluronic acid nanoparticles against distinct forms of cancer malignancy. From here we know that chitosan–hyaluronic acid nanoparticles (CHA-Np) can produce a nanoparticle system with good characteristics, effectiveness, and a good active targeting on various types of cancer cells. Therefore, this system is a good candidate for targeted drug delivery for cancer therapy, anticipating that CHA-Np could be further developed for various cancer therapy applications.
Collapse
Affiliation(s)
- Lisa Efriani Puluhulawa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | - Muchtaridi Muchtaridi
- Departement of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: ; Tel.: +62-22-824-888888
| |
Collapse
|
31
|
Curcio M, Vittorio O, Bell JL, Iemma F, Nicoletta FP, Cirillo G. Hyaluronic Acid within Self-Assembling Nanoparticles: Endless Possibilities for Targeted Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162851. [PMID: 36014715 PMCID: PMC9413373 DOI: 10.3390/nano12162851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 05/27/2023]
Abstract
Self-assembling nanoparticles (SANPs) based on hyaluronic acid (HA) represent unique tools in cancer therapy because they combine the HA targeting activity towards cancer cells with the advantageous features of the self-assembling nanosystems, i.e., chemical versatility and ease of preparation and scalability. This review describes the key outcomes arising from the combination of HA and SANPs, focusing on nanomaterials where HA and/or HA-derivatives are inserted within the self-assembling nanostructure. We elucidate the different HA derivatization strategies proposed for this scope, as well as the preparation methods used for the fabrication of the delivery device. After showing the biological results in the employed in vivo and in vitro models, we discussed the pros and cons of each nanosystem, opening a discussion on which approach represents the most promising strategy for further investigation and effective therapeutic protocol development.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Jessica Lilian Bell
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sidney, NSW 2052, Australia
- School of Women’s and Children’s Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
32
|
PEGylated Cisplatin Nanoparticles for Treating Colorectal Cancer in a pH-Responsive Manner. J Immunol Res 2022; 2022:8023915. [PMID: 36033392 PMCID: PMC9410866 DOI: 10.1155/2022/8023915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor, and its incidence ranks third and mortality rate ranks second in the world. Cisplatin cannot target CRC cells and has notable toxicity, which significantly limits its clinical application. The emerging PEGylated nanodrug delivery system can improve circulation time and enhance tumor targeting. In this study, the HA-mPEG-Cis NPs were synthesized by self-assembly, which can target CD44-positive CRC cells and dissolve the PEG hydration layer responsive to the weakly acidic tumor environment. The average hydrodynamic diameter of HA-mPEG-Cis NPs was 48 nm with the polydispersity index of 0.13. The in vitro cisplatin release was in a pH-responsive manner. The HA-mPEG-Cis NPs group showed the highest apoptosis rate (25.1%). The HA-mPEG-Cis NPs exhibited antitumor efficacy via the PI3K/AKT/mTOR signaling pathway. The HA-mPEG-Cis NPs showed the lowest tumor volume and weight among all the groups in CT26 cell-bearing mouse model. The HA-mPEG-Cis nanodrug delivery system not only increases the stability and circulation time but also reduces the side effects of loaded cisplatin. Overall, the in vitro and in vivo experiments confirmed the satisfied antitumor efficacy of HA-mPEG-Cis NPs. Therefore, this study provides a rational design for application of pH-responsive HA-mPEG-Cis nanodrug delivery system in the future.
Collapse
|
33
|
Li W, Xingzhuo zhou, Yan W, Wang R, Yang Z, Hu Y, Liu Y, Jia Z, Li Y. Lysozyme-encapsulated gold nanoclusters for ultrasensitive detection of folic acid and in vivo imaging. Talanta 2022; 251:123789. [DOI: 10.1016/j.talanta.2022.123789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
34
|
Yasin A, Ren Y, Li J, Sheng Y, Cao C, Zhang K. Advances in Hyaluronic Acid for Biomedical Applications. Front Bioeng Biotechnol 2022; 10:910290. [PMID: 35860333 PMCID: PMC9289781 DOI: 10.3389/fbioe.2022.910290] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Hyaluronic acid (HA) is a large non-sulfated glycosaminoglycan that is the main component of the extracellular matrix (ECM). Because of its strong and diversified functions applied in broad fields, HA has been widely studied and reported previously. The molecular properties of HA and its derivatives, including a wide range of molecular weights but distinct effects on cells, moisture retention and anti-aging, and CD44 targeting, promised its role as a popular participant in tissue engineering, wound healing, cancer treatment, ophthalmology, and cosmetics. In recent years, HA and its derivatives have played an increasingly important role in the aforementioned biomedical fields in the formulation of coatings, nanoparticles, and hydrogels. This article highlights recent efforts in converting HA to smart formulation, such as multifunctional coatings, targeted nanoparticles, or injectable hydrogels, which are used in advanced biomedical application.
Collapse
Affiliation(s)
- Aqeela Yasin
- School of Materials Science and Engineering, and Henan Key Laboratory of Advanced Magnesium Alloy and Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou, China
| | - Ying Ren
- School of Materials Science and EngineeringHenan University of Technology, Zhengzhou, China
| | - Jingan Li
- School of Materials Science and Engineering, and Henan Key Laboratory of Advanced Magnesium Alloy and Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou, China
| | - Yulong Sheng
- School of Materials Science and Engineering, and Henan Key Laboratory of Advanced Magnesium Alloy and Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou, China
| | - Chang Cao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Huang X, Mu N, Ding Y, Lam HW, Yue L, Gao C, Chen T, Yuan Z, Wang R. Targeted delivery and enhanced uptake of chemo-photodynamic nanomedicine for melanoma treatment. Acta Biomater 2022; 147:356-365. [PMID: 35577046 DOI: 10.1016/j.actbio.2022.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023]
Abstract
Nanoparticles (NPs) modified with targeting ligands have often shown great potential in targeted drug delivery for tumor therapy. However, the clearance of NPs by the monocyte-phagocyte system (MPS) and the relatively low cellular uptake by tumor cells have significantly limited the antitumor efficacy of a variety of nanomedicines. Tumor microenvironment-mediated multidrug resistance also reduces the antitumor efficacy of internalized nanomedicines. Herein, we developed an innovative nanomedicine for combined chemo-photodynamic therapy of melanoma through targeted drug delivery and significantly improved the cellular uptake of the nanomedicine through the charge-reversal phenomenon. An amphiphilic platinum (IV)-polyethylenimine-chlorin e6 (Pt(IV)-PEI-Ce6) polymer was designed, prepared, and self-assembled into NPs (PPC) in an aqueous solution, and these NPs were subsequently coated with hyaluronic acid (HA) to afford PPC@HA. The surface-coated HA provided PPC with a negatively charged surface potential to reduce the clearance by the MPS during systemic circulation and enhanced the targeted delivery of PPC to CD44-overexpressing melanoma cells. Upon accumulation in the tumor site, hyaluronidase overexpressed in the tumor induced HA degradation to release the positively charged PPC, resulting in an increased internalization of PPC into tumor cells. Bioactive Pt(II) was released in response to high glutathione level in the tumor cells for effective tumor chemotherapy. Under 650 nm laser irradiation, Ce6 produced reactive oxygen species (ROS), thus driving photodynamic therapy. Finally, PPC@HA exhibited combined photodynamic-chemotherapeutic antitumor efficacy against the melanoma cells in mice. STATEMENT OF SIGNIFICANCE: Tumors are one of the greatest threats to human health, and chemotherapy has been one of the most common therapeutic modalities for treating tumors; however, many challenges related to chemotherapy remain, such as low delivery efficiency, side effects, and unsatisfactory therapeutic efficacy. Nanomedicines modified with targeting ligands have often shown great potential in improving targeted drug delivery for tumor therapy; however, the clearance of nanomaterials by the monocyte-phagocyte system and the relatively low cellular uptake by tumor cells have significantly limited the antitumor efficacy of a variety of nanomedicines. Herein, we developed a novel charge-reversal-based, hyaluronic acid-coated, Pt(IV) prodrug and chlorin e6-based nanomedicine to improve systemic circulation and targeted accumulation of the nanomedicine in the tumor tissue and to enhance its intracellular uptake. This nanomedicine may provide a potential new platform to improve the drug content inside tumor cells and to effectively inhibit tumor growth through combined chemotherapy and photodynamic therapy.
Collapse
|
36
|
Wang J, Zhao H, Song W, Gu M, Liu Y, Liu B, Zhan H. Gold Nanoparticle-Decorated Drug Nanocrystals for Enhancing Anticancer Efficacy and Reversing Drug Resistance Through Chemo-/Photothermal Therapy. Mol Pharm 2022; 19:2518-2534. [PMID: 35549267 DOI: 10.1021/acs.molpharmaceut.2c00150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Limited chemotherapeutic efficiency, drug resistance, and side effects are primary obstacles for cancer treatment. The development of co-delivery systems with synergistic treatment modes should be a promising strategy. Here, we fabricated a multifunctionalized nanocarrier with a combination of chemotherapeutic agents and gold nanoparticles (AuNPs), which could integrate chemo-photothermal therapy, thus enhancing overall anticancer efficacy, sensitizing drug-resistant cancer cells, and diminishing cancer stem cells (CSCs). To be specific, camptothecin nanocrystals (CPT NCs) were prepared as a platform, on the surface of which AuNPs were decorated and a hyaluronic acid layer acted as capping, stabilizing, targeting, and hydrophilic agents for CPT NCs, and reducing agents for AuNPs, providing a bridge connecting AuNPs to CPT. These AuNP-decorated CPT NCs exhibited good physico-chemical properties such as optimal sizes, payload, stability, and photothermal efficiency. Compared to other CPT formulations, they displayed considerably improved biocompatibility, selectivity, intracellular uptake, cytotoxicity, apoptosis induction activity, Pgp inhibitory capability, and anti-CSC activity, owing to a synergistic/cooperative effect from AuNPs, CPT, near-infrared treatment, pH/photothermal-triggered drug release, and nanoscaled structure. A mitochondrial-mediated signaling pathway is the underlying mechanism for cytotoxic and apoptotic effects from AuNP-decorated CPT NCs, in terms of mitochondrial dysfunction, intensified oxidative stress, DNA fragmentation, caspase 3 activation, upregulation of proapoptotic genes such as p53, Bax, and caspase 3, and lower levels of antiapoptotic Bcl-2.
Collapse
Affiliation(s)
- Jihui Wang
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China.,School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, Guangzhou Province, P. R. China
| | - He Zhao
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Wenjing Song
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Mingyang Gu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Yujia Liu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Bingnan Liu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Honglei Zhan
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| |
Collapse
|
37
|
Birlik Demirel G, Bayrak Ş. Ultrasound/redox/pH-responsive hybrid nanoparticles for triple-triggered drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Poley M, Mora-Raimundo P, Shammai Y, Kaduri M, Koren L, Adir O, Shklover J, Shainsky-Roitman J, Ramishetti S, Man F, de Rosales RTM, Zinger A, Peer D, Ben-Aharon I, Schroeder A. Nanoparticles Accumulate in the Female Reproductive System during Ovulation Affecting Cancer Treatment and Fertility. ACS NANO 2022; 16:5246-5257. [PMID: 35293714 PMCID: PMC7613117 DOI: 10.1021/acsnano.1c07237] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Throughout the female menstrual cycle, physiological changes occur that affect the biodistribution of nanoparticles within the reproductive system. We demonstrate a 2-fold increase in nanoparticle accumulation in murine ovaries and uterus during ovulation, compared to the nonovulatory stage, following intravenous administration. This biodistribution pattern had positive or negative effects when drug-loaded nanoparticles, sized 100 nm or smaller, were used to treat different cancers. For example, treating ovarian cancer with nanomedicines during mouse ovulation resulted in higher drug accumulation in the ovaries, improving therapeutic efficacy. Conversely, treating breast cancer during ovulation, led to reduced therapeutic efficacy, due to enhanced nanoparticle accumulation in the reproductive system rather than at the tumor site. Moreover, chemotherapeutic nanoparticles administered during ovulation increased ovarian toxicity and decreased fertility compared to the free drug. The menstrual cycle should be accounted for when designing and implementing nanomedicines for females.
Collapse
Affiliation(s)
- Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Patricia Mora-Raimundo
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Shammai
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Maya Kaduri
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Lilach Koren
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Omer Adir
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Srinivas Ramishetti
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Center for Nanoscience and Nanotechnology, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, and Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Francis Man
- School of Biomedical Engineering & Imaging Sciences, King's College London, Lambeth Wing, St. Thomas Hospital, London, SE1 7EH, UK
| | - Rafael T. M. de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, Lambeth Wing, St. Thomas Hospital, London, SE1 7EH, UK
- London Centre for Nanotechnology, King's College London, Strand Campus, London, WC2R 2LS, UK
| | - Assaf Zinger
- Laboratory for Bioinspired Nano Engineering and Translational Therapeutics, Department of Chemical Engineering, Technion–Israel Institute of Technology, Haifa, 3200003 Israel
- Cardiovascular Sciences and Neurosurgery Departments, Houston Methodist Academic Institute, Houston, 77030 TX, USA
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Shmunis School for Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Center for Nanoscience and Nanotechnology, Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, and Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Irit Ben-Aharon
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, 320000, Haifa, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
39
|
Picheth GF, Ganzella FADO, Filizzola JO, Canquerino YK, Cardoso GC, Collini MB, Colauto LB, Figueroa-Magalhães MC, Cavalieri EA, Klassen G. Ligand-mediated nanomedicines against breast cancer: a review. Nanomedicine (Lond) 2022; 17:645-664. [PMID: 35438008 DOI: 10.2217/nnm-2021-0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligand-mediated targeting represents the cutting edge in precision-guided therapy for several diseases. Surface engineering of nanomedicines with ligands exhibiting selective or tailored affinity for overexpressed biomolecules of a specific disease may increase therapeutic efficiency and reduce side effects and recurrence. This review focuses on newly developed approaches and strategies to improve treatment and overcome the mechanisms associated with breast cancer resistance.
Collapse
Affiliation(s)
- Guilherme F Picheth
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil.,School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | | | - João Oc Filizzola
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Yan K Canquerino
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Gabriela C Cardoso
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Michelle B Collini
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Leonardo B Colauto
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Edneia Asr Cavalieri
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
40
|
Collyer SE, Stack GD, Walsh JJ. Selective delivery of clinically approved tubulin binding agents through covalent conjugation to an active targeting moiety. Curr Med Chem 2022; 29:5179-5211. [DOI: 10.2174/0929867329666220401105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
The efficacy and tolerability of tubulin binding agents are hampered by their low specificity for cancer cells, like most clinically used anticancer agents. To improve specificity, tubulin binding agents have been covalently conjugated to agents which target cancer cells to give actively targeted drug conjugates. These conjugates are designed to increase uptake of the drug by cancer cells, while having limited uptake by normal cells thereby improving efficacy and tolerability.
Approaches used include attachment to small molecules, polysaccharides, peptides, proteins and antibodies that exploit the overexpression of receptors for these substances. Antibody targeted strategies have been the most successful to date with six such examples having gained clinical approval. Many other conjugate types, especially those targeting the folate receptor, have shown promising efficacy and toxicity profiles in pre-clinical models and in early-stage clinical studies. Presented herein is a discussion of the success or otherwise of the recent strategies used to form these actively targeted conjugates.
Collapse
Affiliation(s)
- Samuel E. Collyer
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Gary D. Stack
- Department of Nursing and Healthcare, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland
| | - John J. Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
41
|
Kesharwani P, Chadar R, Sheikh A, Rizg WY, Safhi AY. CD44-Targeted Nanocarrier for Cancer Therapy. Front Pharmacol 2022; 12:800481. [PMID: 35431911 PMCID: PMC9008230 DOI: 10.3389/fphar.2021.800481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Cluster of differentiation 44 (CD44) is a cell surface glycoprotein overexpressed in varieties of solid tumors including pancreatic, breast, ovary, brain, and lung cancers. It is a multi-structural glycoprotein of the cell surface which is majorly involved in cell proliferation, cell-to-cell interaction, cellular migration, inflammation, and generation of immune responses. Numerous studies focus on the development of nanocarriers for active targeting of the CD44 receptor to improve efficacy of targeting chemotherapy and achieve precise chemotherapy by defining the release, uptake, and accumulation of therapeutic agents. The CD44 receptor has a selective binding affinity towards hyaluronic and chondroitin sulfate (CS). Taking this into consideration, this review focused on the role of CD44 in cancer and its therapy using several nanocarriers such as polymeric/non-polymeric nanoparticles, dendrimer, micelles, carbon nanotubes, nanogels, nanoemulsions etc., for targeted delivery of several chemotherapeutic molecules and nucleic acid. This review also illuminates the role of hyaluronic acid (HA) in cancer therapy, interaction of HA with CD44, and various approaches to target CD44-overexpressed neoplastic cells.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- *Correspondence: Prashant Kesharwani,
| | - Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
42
|
Du J, Zong L, Li M, Yu K, Qiao Y, Yuan Q, Pu X. Two-Pronged Anti-Tumor Therapy by a New Polymer-Paclitaxel Conjugate Micelle with an Anti-Multidrug Resistance Effect. Int J Nanomedicine 2022; 17:1323-1341. [PMID: 35345783 PMCID: PMC8957348 DOI: 10.2147/ijn.s348598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Cancerous tumors are still a major disease that threatens human life, with tumor multidrug resistance (MDR) being one of the main reasons for the failure of chemotherapy. Thus, reversing tumor MDR has become a research focus of medical scientists. Methods Here, a reduction-sensitive polymer prodrug micelle, mPEG-DCA-SS-PTX (PDSP), was manufactured with a new polymer inhibitor of drug resistance as a carrier to overcome MDR and improve the anti-tumor effect of PTX. Results The PDSP micelles display good stability, double-responsive drug release, and excellent biocompatibility. The PDSP micelles reduced the cytotoxicity of PTX to normal HL-7702 cells and enhanced that to SMMC-7721 and MCF-7 cells in vitro. Improved sensitivity of A549/ADR to PDSP was also observed in vitro. Furthermore, in vivo experiments show reduced systemic toxicity and enhanced therapeutic efficacy of PTX to H22 subcutaneous tumor-bearing mice. Conclusion This work proves that the reduction-sensitive polymer prodrug micelles carried by the new polymer inhibitor can be used as an alternative delivery system to target tumors and reverse MDR for paclitaxel and other tumor-resistant drugs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People’s Republic of China
| | - Lanlan Zong
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Mengmeng Li
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Keke Yu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yonghui Qiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People’s Republic of China
| | - Qi Yuan
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Xiaohui Pu
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|
43
|
Zeng X, Wang H, Zhang Y, Xu X, Yuan X, Li J. pH-Responsive Hyaluronic Acid Nanoparticles for Enhanced Triple Negative Breast Cancer Therapy. Int J Nanomedicine 2022; 17:1437-1457. [PMID: 35369031 PMCID: PMC8965017 DOI: 10.2147/ijn.s360500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Xiangle Zeng
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
| | - Hairong Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
| | - Yawen Zhang
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
| | - Xue Xu
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
| | - Xinyi Yuan
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China
- Correspondence: Jianchun Li, School of Pharmacy, Bengbu Medical College, Bengbu, 233030, People’s Republic of China, Tel +86 552-3175066, Email
| |
Collapse
|
44
|
Mundel R, Thakur T, Chatterjee M. Emerging uses of PLA-PEG copolymer in cancer drug delivery. 3 Biotech 2022; 12:41. [PMID: 35070631 PMCID: PMC8748584 DOI: 10.1007/s13205-021-03105-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
Traditional therapies need high systematic dosages that not only destroys cancerous cells but also healthy cells. To overcome this problem recent advancement in nanotechnology specifically in nanomaterials has been extensively done for various biological applications, such as targeted drug delivery. Nanotechnology, as a frontier science, has the potential to break down all the obstacles to be more effective and secure drug delivery system. It is possible to develop nanopolymer based drug carrier that can target drugs with extreme accuracy. Polymers can advance drug delivery technologies by allowing controlled release of therapeutic drugs in stable amounts over long duration of time. For controlled drug delivery, biodegradable synthetic polymers have various benefits over non-biodegradable polymers. Biodegradable polymer either are less toxic or non-toxic. Polylactic Acid (PLA) is one of the most remarkable amphipathic polymers which make it one of the most suitable materials for polymeric micelles. Amphiphilic nanomaterial, such as Polyethylene Glycol (PEG), is one of the most promising carrier for tumor targeting. PLA-PEG as a copolymer has been generally utilized as drug delivery system for the various types of cancer. Chemotherapeutic drugs are stacked into PLA-PEG copolymer and as a result their duration time delays, hence medications arrive at specific tumor site.
Collapse
Affiliation(s)
- Rohit Mundel
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Sector-25, South Campus, Chandigarh, 160014 India
| | - Tanya Thakur
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Sector-25, South Campus, Chandigarh, 160014 India
| | - Mary Chatterjee
- Biotechnology Branch, University Institute of Engineering and Technology, Panjab University, Sector-25, South Campus, Chandigarh, 160014 India
| |
Collapse
|
45
|
Liu K, Huang X. Synthesis of self-assembled hyaluronan based nanoparticles and their applications in targeted imaging and therapy. Carbohydr Res 2022; 511:108500. [PMID: 35026559 PMCID: PMC8792315 DOI: 10.1016/j.carres.2022.108500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
Hyaluronan (HA) is a polysaccharide consisting of repeating disaccharides of N-acetyl-d-glucosamine and d-glucuronic acid. There are increasing interests in utilizing self-assembled HA nanoparticles (HA-NPs) for targeted imaging and therapy. The principal endogenous receptor of HA, cluster of differentiation 44 (CD44), is overexpressed on many types of tumor cells as well as inflammatory cells in human bodies. Active targeting from HA-CD44 mediated interaction and passive targeting due to the enhanced permeability retention (EPR) effect could lead to selective accumulation of HA-NPs at targeted disease sites. This review focuses on the synthesis strategies of self-assembled HA-NPs, as well as their applications in therapy and biomedical imaging.
Collapse
Affiliation(s)
- Kunli Liu
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
46
|
Dynamic nano-assemblies based on two-dimensional inorganic nanoparticles: Construction and preclinical demonstration. Adv Drug Deliv Rev 2022; 180:114031. [PMID: 34736985 DOI: 10.1016/j.addr.2021.114031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Dynamic drug delivery systems (DDSs) have the ability of transforming their morphology and functionality in response to the biological microenvironments at the disease site and/or external stimuli, show spatio-temporally controllable drug delivery, and enhance the treatment efficacy. Due to the large surface area and modification flexibility, two-dimensional (2D) inorganic nanomaterials are being increasingly exploited for developing intelligent DDSs for biomedical applications. In this review, we summarize the engineering methodologies used to construct transformable 2D DDSs, including changing compositions, creating defects, and surface dot-coating with polymers, biomolecules, or nanodots. Then we present and discuss dynamic inorganic 2D DDSs whose transformation is driven by the diseased characteristics, such as pH gradient, redox, hypoxia, and enzyme in the tumor microenvironment as well as the external stimuli including light, magnetism, and ultrasound. Finally, the limitations and challenges of current transformable inorganic DDSs for clinical translation and their in vivo safety assessment are discussed.
Collapse
|
47
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
48
|
Zhang J, Zhang Y, Zhao B, Lv M, Chen E, Zhao C, Jiang L, Qian H, Huang D, Zhong Y, Chen W. Cascade-Responsive Hierarchical Nanosystems for Multisite Specific Drug Exposure and Boosted Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58319-58328. [PMID: 34855343 DOI: 10.1021/acsami.1c16636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The precise delivery of multiple drugs to their distinct destinations plays a significant role in safe and efficient combination therapy; however, it is highly challenging to simultaneously realize the targets and overcome the intricate biological hindrances using an all-in-one nanosystem. Herein, a cascade-responsive hierarchical nanosystem containing checkpoint inhibitor anti-PD-L1 antibody (αPD-L1) and paclitaxel (PTX) is developed for spatially programed delivery of multiple drugs and simultaneously overcoming biological pathway barriers. The hierarchical nanoparticles (MPH-NP@A) are composed of pH-sensitive hyaluronic acid-acetal-PTX prodrugs (HA-ace-PTX(SH)) chaperoned by αPD-L1 and metalloproteinase-9 (MMP-9)-responsive outer shells, which could be fast cleaved to release αPD-L1 in the tumor microenvironment (TME). The released αPD-L1 sequentially synergizes with PTX released in the cytoplasm for boosted chemoimmunotherapy due to direct killing of PTX and intensified immune responses through immunogenic cell death (ICD) as well as suppression of immune escape by blocking the PD-1/PD-L1 axis. The in vitro and in vivo studies demonstrate that MPH-NP@A evokes distinct ICD, enhanced cytotoxic T lymphocytes infiltration, as well as significant tumor inhibition, thus providing a promising therapeutic nano-platform for safe and efficient combination therapy.
Collapse
Affiliation(s)
- Junmei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Mengtong Lv
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Enping Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Linyang Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
49
|
Imiquimod-gemcitabine nanoparticles harness immune cells to suppress breast cancer. Biomaterials 2021; 280:121302. [PMID: 34894584 DOI: 10.1016/j.biomaterials.2021.121302] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Monotherapy with a single chemotherapeutic regimen has met with significant hurdles in terms of clinical efficacy. The complexity of cancer accentuates the need for an alternative approach with a combination of two or more therapeutic regimens to win the battle. However, it is still a challenge to develop a successful combination of drugs with high efficiency and low toxicity to control cancer growth. While gemcitabine monotherapy remains a choice of standard treatment for advanced breast cancer, the approach has not prolonged the median survival time of metastatic breast cancer patients. Here, we report a hyaluronic acid (HA)-based drug combination of gemcitabine (GEM) with imiquimod (IMQ) to stimulate immune cells for anticancer activity. Treatment of the drug combination (IMQ-HA-GEM) showed enhanced anticancer activity against 4T1 breast tumor cells in vitro. Our study with a microfluidics-based 3D, compartmentalized cancer model showed that infiltration of THP-1 monocytes occurred particularly at the site of cancer cells treated with IMQ-HA-GEM. Moreover, IMQ-HA-GEM significantly suppressed the volume of 4T1 breast tumor of mice in vivo. Flow cytometry study displayed a significantly higher activation of CD11b+ immune cells in the blood of mice treated with IMQ-HA-GEM, whereas immunohistochemistry study revealed greater prevalence of CD68+ tumor-associated macrophages in the tumor. Histological examination of isolated tumors of mice treated with IMQ-HA-GEM further confirmed the efficacy of drug combination on cancer cells. This study supports the conclusion that imiquimod potentiates the effect of gemcitabine by activating immune cells to suppress tumors in the form of combination nanoparticles.
Collapse
|
50
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|