1
|
Deng W, Yang X, Yu J, Omari-Siaw E, Xu X. Recent advances of physiochemical cues on surfaces for directing cell fates. Colloids Surf B Biointerfaces 2025; 250:114550. [PMID: 39929022 DOI: 10.1016/j.colsurfb.2025.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/12/2025]
Abstract
Surface modification plays an essential role in dictating cell behavior and fate, as it creates a microenvironment that profoundly influences cell attachment, migration, proliferation, and differentiation. This review aims to the intricate interplay of culture surface properties, including topography, stiffness, charge, and chemical modifications, demonstrating their profound impact on cell destiny. We explore the nuanced responses of cells to varying surface topographies, from nano- to microscale features, elucidating the influence of geometric patterns and roughness. We also investigate the impact of substrate stiffness, highlighting the way cells perceive and respond to mechanical cues mimicking their native environments. The role of surface charge is examined, revealing how electrostatic interactions influence cell adhesion, signaling, and cell fate decisions. Finally, we delve into the diverse effects of chemical modifications, including the presentation of bioactive molecules, growth factors, and extracellular matrix (ECM) components, demonstrating their ability to guide cell behavior and stimulate specific cellular responses. This review offers comprehensive insights into the important role of surface properties in shaping cell fate, offering promising avenues for developing sophisticated cell culture platforms for applications in drug discovery, regenerative medicine, and fundamental research.
Collapse
Affiliation(s)
- Wenwen Deng
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Xiufen Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China
| | - Emmanuel Omari-Siaw
- Department of Pharmaceutical Science, Kumasi Technical University, PO Box 854, Kumasi, Ashanti, Ghana
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, China; The International Institute on Natural Products and Stem Cells (iNPS), Zhenjiang, China; Key Lab for Drug Delivery & Tissue Regeneration, Zhenjiang, China; Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, China.
| |
Collapse
|
2
|
Subramanian D, Tjahjono NS, Nammi S, Miron-Mendoza M, Varner VD, Petroll WM, Schmidtke DW. Effects of Cell Seeding Density, Extracellular Matrix Composition, and Geometry on Yes-Associated Protein Translocation in Corneal Fibroblasts. Int J Mol Sci 2025; 26:1183. [PMID: 39940950 PMCID: PMC11818043 DOI: 10.3390/ijms26031183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Corneal fibroblasts are central to normal and abnormal wound healing in the cornea. During the wound healing process, several biochemical and biophysical signals that are present in the extracellular matrix (ECM) play critical roles in regulating corneal fibroblast behavior. The translocation and activation of Yes-associated protein (YAP)-a main transcriptional factor in the Hippo signaling pathway-is one example of mechanotransduction involving these signals. However, how corneal fibroblasts integrate these simultaneous cues is unknown. In this study, we utilized well-defined micropatterns of aligned collagen fibrils and other ECM proteins to explore the effects of cell density, topography, geometric confinement, and ECM composition on the translocation of YAP in corneal fibroblasts. We observed that when human corneal fibroblasts (HTKs) were confined to narrow micropatterns (50 μm and 100 μm) of proteins, there was a high degree of cell alignment irrespective of cell seeding density. However, the location of YAP was dependent upon the cell seeding density, ECM composition, and topography. YAP was more nuclear-localized on substrates coated with aligned collagen fibrils or fibronectin as compared to substrates coated with monomeric collagen, random collagen fibrils, or poly-L-Lysine. In addition, we also observed that YAP nuclear localization was significantly reduced when HTKs were cultured on aligned collagen fibrils, monomeric collagen, or fibronectin in the presence of monoclonal blocking antibodies against α5 or β1 integrin subunits. Finally, we observed that HTK cells formed fibrillar fibronectin on both monomeric collagen and aligned collagen fibrils. These findings provide new insights into how simultaneous biochemical and biophysical cues affect YAP localization in corneal fibroblasts.
Collapse
Affiliation(s)
- Divya Subramanian
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (D.S.); (N.S.T.); (S.N.); (V.D.V.)
| | - Nathaniel S. Tjahjono
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (D.S.); (N.S.T.); (S.N.); (V.D.V.)
| | - Satweka Nammi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (D.S.); (N.S.T.); (S.N.); (V.D.V.)
| | - Miguel Miron-Mendoza
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.M.-M.); (W.M.P.)
| | - Victor D. Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (D.S.); (N.S.T.); (S.N.); (V.D.V.)
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W. Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.M.-M.); (W.M.P.)
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David W. Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (D.S.); (N.S.T.); (S.N.); (V.D.V.)
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Rashidi N, Harasymowicz NS, Savadipour A, Steward N, Tang R, Oswald S, Guilak F. PIEZO1-mediated mechanotransduction regulates collagen synthesis on nanostructured 2D and 3D models of fibrosis. Acta Biomater 2025; 193:242-254. [PMID: 39675497 DOI: 10.1016/j.actbio.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Progressive fibrosis can lead to tissue malfunction and organ failure due to the pathologic accumulation of a collagen-rich extracellular matrix. In vitro models provide useful tools for deconstructing the roles of specific biomechanical or biological mechanisms, such as substrate micro- and nanoscale architecture, in these processes for identifying potential therapeutic targets. Here, we investigated how the mechanosensitive ion channel PIEZO1 influences fibrotic gene and protein expression in adipose-derived stem cells (hASCs). Specifically, we examined the role of PIEZO1 and the mechanosensitive transcription factors YAP/TAZ in sensing aligned or non-aligned substrate architecture to regulate collagen formation. We utilized both 2D microphotopatterned substrates and 3D electrospun polycaprolactone (PCL) substrates to study the role of culture dimensionality. We found that PIEZO1 regulates collagen synthesis in hASCs in a manner that is sensitive to substrate architecture. Activation of PIEZO1 induced significant morphological changes in hASCs, particularly when cultured on aligned substrates, leading to a 30-40 % reduction in cell spreading area and increased cell elongation, in 3D-aligned cultures. Picrosirius Red staining and immunoblotting revealed that PIEZO1 activation reduced collagen accumulation in 3D culture. While YAP translocated to the cytoplasm following PIEZO1 activation, depleting YAP and TAZ did not change collagen expression significantly downstream of PIEZO1 activation, implying that YAP/TAZ translocation from the nucleus and decreased collagen synthesis may be independent consequences of PIEZO1 activation. Our studies demonstrate a role for PIEZO1 in cellular mechanosensing of substrate architecture and provide targetable pathways for treating fibrosis and for enhancing tissue-engineered and regenerative approaches for fibrous tissue repair. STATEMENT OF SIGNIFICANCE: This study examines how cells sense and respond to their physical environment via PIEZO1 mechanotransduction. We discovered that cells use PIEZO1 to detect the alignment of surrounding structures, influencing the production of collagen - a key component in fibrosis. Our study used both 2D and 3D models to mimic different tissue environments, providing new insights into how cellular responses change in more complex settings. Importantly, we found that activating PIEZO1 alters cell shape and collagen production, especially on aligned surfaces. Interestingly, while PIEZO1 activation caused YAP translocation to the cytoplasm, this translocation did not directly affect collagen production. This work advances our understanding of fibrosis development and identifies PIEZO1 as a potential target for new therapies.
Collapse
Affiliation(s)
- Neda Rashidi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Nancy Steward
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara Oswald
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA; Cytex Therapeutics, Inc., Durham, NC 27704, USA.
| |
Collapse
|
4
|
Liu S, Chen H, Xie H, Liu X, Zhang M. Substrate Stiffness Modulates Stemness and Differentiation of Rabbit Corneal Endothelium Through the Paxillin-YAP Pathway. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38466286 DOI: 10.1167/iovs.65.3.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Purpose To explore the role of substrate stiffness and the mechanism beneath corneal endothelial cells' (CECs') stemness maintenance and differentiation. Methods CECs were divided into central zone (8 mm trephined boundary) and peripheral zone (8 mm trephined edge with attached limbal). Two zones were analyzed by hematoxylin-eosin staining and scanning electron microscopy for anatomic structure. The elastic modulus of Descemet's membrane (DM) was analyzed by atomic force microscopy. Compressed type I collagen gels with different stiffness were constructed as an in vitro model system to test the role of stiffness on phenotype using cultured rabbit CECs. Cell morphology, expression and intracellular distribution of Yes-associated protein (YAP), differentiation (ZO-1, Na+/K+-ATPase), stemness (FOXD3, CD34, Sox2, Oct3/4), and endothelial-mesenchymal transition (EnMT) markers were analyzed by immunofluorescence, quantitative RT-PCR, and Western blot. Results The results showed that the peripheral area of rabbit and human DM is softer than the central area ex vivo. Using the biomimetic extracellular matrix collagen gels in vitro model, we then demonstrated that soft substrate weakens the differentiation and EnMT in the culture of CECs. It was further proved by the inhibitor experiment that soft substrate enhances stemness maintenance via inhibition of paxillin-YAP signaling, which was activated on a stiff substrate. Conclusions Our findings confirm that substrate stiffness modulates the stemness maintenance and differentiation of CECs and suggest a potential strategy for CEC-based corneal tissue engineering.
Collapse
Affiliation(s)
- Shuting Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Chen
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Huatao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
McKinley JP, O'Connell GD. Review of state-of-the-art micro and macro-bioreactors for the intervertebral disc. J Biomech 2024; 165:111964. [PMID: 38412621 DOI: 10.1016/j.jbiomech.2024.111964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
Lower back pain continues to be a global epidemic, limiting quality of life and ability to work, due in large part to symptomatic disc degeneration. Development of more effective and less invasive biological strategies are needed to treat disc degeneration. In vitro models such as macro- or micro-bioreactors or mechanically active organ-chips hold great promise in reducing the need for animal studies that may have limited clinical translatability, due to harsher and more complex mechanical loading environments in human discs than in most animal models. This review highlights the complex loading conditions of the disc in situ, evaluates state-of-the-art designs for applying such complex loads across multiple length scales, from macro-bioreactors that load whole discs to organ-chips that aim to replicate cellular or engineered tissue loading. Emphasis was placed on the rapidly evolving more customizable organ-chips, given their greater potential for studying the progression and treatment of symptomatic disc degeneration. Lastly, this review identifies new trends and challenges for using organ-chips to assess therapeutic strategies.
Collapse
Affiliation(s)
- Jonathan P McKinley
- Berkeley BioMechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley 94720, CA, USA.
| | - Grace D O'Connell
- Berkeley BioMechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley 94720, CA, USA.
| |
Collapse
|
6
|
Kim E, Riehl BD, Bouzid T, Yang R, Duan B, Donahue HJ, Lim JY. YAP mechanotransduction under cyclic mechanical stretch loading for mesenchymal stem cell osteogenesis is regulated by ROCK. Front Bioeng Biotechnol 2024; 11:1306002. [PMID: 38274006 PMCID: PMC10809151 DOI: 10.3389/fbioe.2023.1306002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
While yes-associated protein (YAP) is now recognized as a potent mechanosensitive transcriptional regulator to affect cell growth and differentiation including the osteogenic transcription of mesenchymal stem cells (MSCs), most studies have reported the YAP mechanosensing of static mechanophysical cues such as substrate stiffness. We tested MSC response to dynamic loading, i.e., cyclic mechanical stretching, and assessed YAP mechanosensing and resultant MSC osteogenesis. We showed that cyclic stretching at 10% strain and 1 Hz frequency triggered YAP nuclear import in MSCs. YAP phosphorylation at S127 and S397, which is required for YAP cytoplasmic retention, was suppressed by cyclic stretch. We also observed that anti-YAP-regulatory Hippo pathway, LATS phosphorylation, was significantly decreased by stretch. We confirmed the stretch induction of MSC osteogenic transcription and differentiation, and this was impaired under YAP siRNA suggesting a key role of YAP dynamic mechanosensing in MSC osteogenesis. As an underlying mechanism, we showed that the YAP nuclear transport by cyclic stretch was abrogated by ROCK inhibitor, Y27632. ROCK inhibitor also impaired the stretch induction of F-actin formation and MSC osteogenesis, thus implicating the role of the ROCK-F-actin cascade in stretch-YAP dynamic mechanosensing-MSC osteogenesis. Our results provide insight into bone tissue engineering and skeletal regenerative capacity of MSCs especially as regards the role of dynamic mechanical loading control of YAP-mediated MSC osteogenic transcription.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Brandon D. Riehl
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Tasneem Bouzid
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Bin Duan
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Henry J. Donahue
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
7
|
Kobayashi S, Cox AG, Harvey KF, Hogan BM. Vasculature is getting Hip(po): Hippo signaling in vascular development and disease. Dev Cell 2023; 58:2627-2640. [PMID: 38052179 DOI: 10.1016/j.devcel.2023.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/29/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
The Hippo signaling pathway regulates developmental organ growth, regeneration, and cell fate decisions. Although the role of the Hippo pathway, and its transcriptional effectors YAP and TAZ, has been well documented in many cell types and species, only recently have the roles for this pathway come to light in vascular development and disease. Experiments in mice, zebrafish, and in vitro have uncovered roles for the Hippo pathway, YAP, and TAZ in vasculogenesis, angiogenesis, and lymphangiogenesis. In addition, the Hippo pathway has been implicated in vascular cancers and cardiovascular diseases, thus identifying it as a potential therapeutic target for the treatment of these conditions. However, despite recent advances, Hippo's role in the vasculature is still underappreciated compared with its role in epithelial tissues. In this review, we appraise our current understanding of the Hippo pathway in blood and lymphatic vessel development and highlight the current knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Sakurako Kobayashi
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew G Cox
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kieran F Harvey
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin M Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
8
|
Seymour AJ, Kilian D, Navarro RS, Hull SM, Heilshorn SC. 3D printing microporous scaffolds from modular bioinks containing sacrificial, cell-encapsulating microgels. Biomater Sci 2023; 11:7598-7615. [PMID: 37824082 PMCID: PMC10842430 DOI: 10.1039/d3bm00721a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Microgel-based biomaterials have inherent porosity and are often extrudable, making them well-suited for 3D bioprinting applications. Cells are commonly introduced into these granular inks post-printing using cell infiltration. However, due to slow cell migration speeds, this strategy struggles to achieve depth-independent cell distributions within thick 3D printed geometries. To address this, we leverage granular ink modularity by combining two microgels with distinct functions: (1) structural, UV-crosslinkable microgels made from gelatin methacryloyl (GelMA) and (2) sacrificial, cell-laden microgels made from oxidized alginate (AlgOx). We hypothesize that encapsulating cells within sacrificial AlgOx microgels would enable the simultaneous introduction of void space and release of cells at depths unachievable through cell infiltration alone. Blending the microgels in different ratios produces a family of highly printable GelMA : AlgOx microgel inks with void fractions ranging from 0.03 to 0.35. As expected, void fraction influences the morphology of human umbilical vein endothelial cells (HUVEC) within GelMA : AlgOx inks. Crucially, void fraction does not alter the ideal HUVEC distribution seen throughout the depth of 3D printed samples. This work presents a strategy for fabricating constructs with tunable porosity and depth-independent cell distribution, highlighting the promise of microgel-based inks for 3D bioprinting.
Collapse
Affiliation(s)
- Alexis J Seymour
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - David Kilian
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Renato S Navarro
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Xiao Y, Tian Y, Zhang J, Li Q, Shi W, Huang X. Small intestinal submucosa promotes angiogenesis via the Hippo pathway to improve vaginal repair. BIOMOLECULES & BIOMEDICINE 2023; 23:838-847. [PMID: 37183705 PMCID: PMC10494851 DOI: 10.17305/bb.2023.9052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023]
Abstract
Vaginal reconstruction has incorporated the use of gastrointestinal segments for decades, but the technique is inevitably associated with complications. Tissue-engineering techniques, however, have brought great hope for vaginal reconstruction. This study aimed to evaluate the utility of small intestinal submucosa (SIS) in reconstructing clinically significant large vaginal defects in a porcine model and to investigate the role of the Hippo pathway in the vascular remodeling process. The composition and mechanical properties of SIS were characterized. Full-thickness vaginal defects were established in 10 minipig donors, with 4 cm lengths removed and replaced by an equal sized SIS scaffolds. The neovaginas were subjected to macroscopic, histological, immunohistochemical and molecular evaluations at 4 and 12 weeks after the surgery. Four weeks after the operation, extracellular matrix reorganization and complete coverage of the surface of the luminal matrix by vaginal epithelium were observed, accompanied by the formation of a microvascular network and the regeneration of smooth muscles, albeit disorderly arranged. Twelve weeks after implantation, enhancements were seen in the formation of the multi-layered squamous epithelium, angiogenesis, and large muscle bundle formation in the vagina. Additionally, the expression levels of angiogenesis-related proteins, proliferation-related proteins and Hippo pathway-related proteins in the neovagina were significantly increased. These results indicate that SIS could be used to reconstruct large vaginal defects and that the vascular remodeling process is potentially regulated by the Hippo pathway.
Collapse
Affiliation(s)
- Yanlai Xiao
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Obstetrics and Gynecology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingkun Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qian Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenxin Shi
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Jebeli M, Lopez SK, Goldblatt ZE, McCollum D, Mana-Capelli S, Wen Q, Billiar K. Multicellular aligned bands disrupt global collective cell behavior. Acta Biomater 2023; 163:117-130. [PMID: 36306982 PMCID: PMC10334361 DOI: 10.1016/j.actbio.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
Abstract
Mechanical stress patterns emerging from collective cell behavior have been shown to play critical roles in morphogenesis, tissue repair, and cancer metastasis. In our previous work, we constrained valvular interstitial cell (VIC) monolayers on circular protein islands to study emergent behavior in a controlled manner and demonstrated that the general patterns of cell alignment, size, and apoptosis correlate with predicted mechanical stress fields if radially increasing stiffness or contractility are used in the computational models. However, these radially symmetric models did not predict the existence of local regions of dense aligned cells observed in seemingly random locations of individual aggregates. The goal of this study is to determine how the heterogeneities in cell behavior emerge over time and diverge from the predicted collective cell behavior. Cell-cell interactions in circular multicellular aggregates of VICs were studied with time-lapse imaging ranging from hours to days, and migration, proliferation, and traction stresses were measured. Our results indicate that elongated cells create strong local alignment within preconfluent cell populations on the microcontact printed protein islands. These cells influence the alignment of additional cells to create dense, locally aligned bands of cells which disrupt the predicted global behavior. Cells are highly elongated at the endpoints of the bands yet have decreased spread area in the middle and reduced mobility. Although traction stresses at the endpoints of bands are enhanced, even to the point of detaching aggregates from the culture surface, the cells in dense bands exhibit reduced proliferation, less nuclear YAP, and increased apoptotic rates indicating a low stress environment. These findings suggest that strong local cell-cell interactions between primary fibroblastic cells can disrupt the global collective cellular behavior leading to substantial heterogeneity of cell behaviors in constrained monolayers. This local emergent behavior within aggregated fibroblasts may play an important role in development and disease of connective tissues. STATEMENT OF SIGNIFICANCE: Mechanical stress patterns emerging from collective cell behavior play critical roles in morphogenesis, tissue repair, and cancer metastasis. Much has been learned of these collective behaviors by utilizing microcontact printing to constrain cell monolayers (aggregates) into specific shapes. Here we utilize these tools along with long-term video microscopy tracking of individual aggregates to determine how heterogeneous collective behaviors unique to primary fibroblastic cells emerge over time and diverge from computed stress fields. We find that dense multicellular bands form from local collective behavior and disrupt the global collective behavior resulting in heterogeneous patterns of migration, traction stresses, proliferation, and apoptosis. This local emergent behavior within aggregated fibroblasts may play an important role in development and disease of connective tissues.
Collapse
Affiliation(s)
- Mahvash Jebeli
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Samantha K Lopez
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Zachary E Goldblatt
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Dannel McCollum
- University of Massachusetts Medical School, Worcester MA, USA
| | | | - Qi Wen
- Physics Department, Worcester Polytechnic Institute, Worcester MA, USA
| | - Kristen Billiar
- Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester MA, USA.
| |
Collapse
|
11
|
Hiraki HL, Matera DL, Wang WY, Prabhu ES, Zhang Z, Midekssa F, Argento AE, Buschhaus JM, Humphries BA, Luker GD, Pena-Francesch A, Baker BM. Fiber density and matrix stiffness modulate distinct cell migration modes in a 3D stroma mimetic composite hydrogel. Acta Biomater 2023; 163:378-391. [PMID: 36179980 PMCID: PMC10043045 DOI: 10.1016/j.actbio.2022.09.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/26/2023]
Abstract
The peritumoral stroma is a complex 3D tissue that provides cells with myriad biophysical and biochemical cues. Histologic observations suggest that during metastatic spread of carcinomas, these cues influence transformed epithelial cells, prompting a diversity of migration modes spanning single cell and multicellular phenotypes. Purported consequences of these variations in tumor escape strategies include differential metastatic capability and therapy resistance. Therefore, understanding how cues from the peritumoral stromal microenvironment regulate migration mode has both prognostic and therapeutic value. Here, we utilize a synthetic stromal mimetic in which matrix fiber density and bulk hydrogel mechanics can be orthogonally tuned to investigate the contribution of these two key matrix attributes on MCF10A migration mode phenotypes, epithelial-mesenchymal transition (EMT), and invasive potential. We develop an automated computational image analysis framework to extract migratory phenotypes from fluorescent images and determine 3D migration metrics relevant to metastatic spread. Using this analysis, we find that matrix fiber density and bulk hydrogel mechanics distinctly contribute to a variety of MCF10A migration modes including amoeboid, single mesenchymal, clusters, and strands. We identify combinations of physical and soluble cues that induce a variety of migration modes originating from the same MCF10A spheroid and use these settings to examine a functional consequence of migration mode -resistance to apoptosis. We find that cells migrating as strands are more resistant to staurosporine-induced apoptosis than either disconnected clusters or individual invading cells. Improved models of the peritumoral stromal microenvironment and understanding of the relationships between matrix attributes and cell migration mode can aid ongoing efforts to identify effective cancer therapeutics that address cell plasticity-based therapy resistances. STATEMENT OF SIGNIFICANCE: Stromal extracellular matrix structure dictates both cell homeostasis and activation towards migratory phenotypes. However decoupling the effects of myriad biophysical cues has been difficult to achieve. Here, we encapsulate electrospun fiber segments within an amorphous hydrogel to create a fiber-reinforced hydrogel composite in which fiber density and hydrogel stiffness can be orthogonally tuned. Quantification of 3D cell migration reveal these two parameters uniquely contribute to a diversity of migration phenotypes spanning amoeboid, single mesenchymal, multicellular cluster, and collective strand. By tuning biophysical and biochemical cues to elicit heterogeneous migration phenotypes, we find that collective strands best resist apoptosis. This work establishes a composite approach to modulate fibrous topography and bulk hydrogel mechanics and identified biomaterial parameters to direct distinct 3D cell migration phenotypes.
Collapse
Affiliation(s)
- Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Daniel L Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Eashan S Prabhu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Zane Zhang
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 481095, United States
| | - Firaol Midekssa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Anna E Argento
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Johanna M Buschhaus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Brock A Humphries
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Abdon Pena-Francesch
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 481095, United States
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
12
|
Kim J, Kim JY, Bhattarai G, So HS, Kook SH, Lee JC. Periodontal Ligament-Mimetic Fibrous Scaffolds Regulate YAP-Associated Fibroblast Behaviors and Promote Regeneration of Periodontal Defect in Relation to the Scaffold Topography. ACS APPLIED MATERIALS & INTERFACES 2023; 15:599-616. [PMID: 36575925 PMCID: PMC9837821 DOI: 10.1021/acsami.2c18893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Although multiple regenerative strategies are being developed for periodontal reconstruction, guided periodontal ligament (PDL) regeneration is difficult because of its cellular and fibrous complexities. Here, we manufactured four different types of PDL-mimic fibrous scaffolds on a desired single mat. These scaffolds exhibited a structure of PDL matrix and human PDL fibroblasts (PDLFs) cultured on the scaffolds resembling morphological phenotypes present in native PDLF. The scaffold-seeded PDLF exerted proliferative, osteoblastic, and osteoclastogenic potentials depending on the fiber topographical cues. Fiber surface-regulated behaviors of PDLF were correlated with the expression patterns of yes-associated protein (YAP), CD105, periostin, osteopontin, and vinculin. Transfection with si-RNA confirmed that YAP acted as the master mechanosensing regulator. Of the as-spun scaffolds, aligned or grid-patterned microscale scaffold regulated the YAP-associated behavior of PDLF more effectively than nanomicroscale or random-oriented microscale scaffold. Implantation with hydrogel complex conjugated with microscale-patterned or grid-patterned scaffold, but not other types of scaffolds, recovered the defected PDL with native PDL-mimic cellularization and fiber structure in the reformed PDL. Our results demonstrate that PDL-biomimetic scaffolds regulate topography-related and YAP-mediated behaviors of PDLF in relation to their topographies. Overall, this study may support a clinical approach of the fiber-hydrogel complex in guided PDL regenerative engineering.
Collapse
Affiliation(s)
- Jeong
In Kim
- Cluster
for Craniofacial Development and Regeneration Research, Institute
of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Ju Yeon Kim
- Department
of Bionanosystem Engineering, Jeonbuk National
University, Jeonju 54896, South Korea
| | - Govinda Bhattarai
- Cluster
for Craniofacial Development and Regeneration Research, Institute
of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea
| | - Han-Sol So
- Department
of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, South Korea
| | - Sung-Ho Kook
- Department
of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jeong-Chae Lee
- Cluster
for Craniofacial Development and Regeneration Research, Institute
of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju 54896, South Korea
- Department
of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|
13
|
Huang B, Wang Y, Vyas C, Bartolo P. Crystal Growth of 3D Poly(ε-caprolactone) Based Bone Scaffolds and Its Effects on the Physical Properties and Cellular Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203183. [PMID: 36394087 PMCID: PMC9811450 DOI: 10.1002/advs.202203183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Extrusion additive manufacturing is widely used to fabricate polymer-based 3D bone scaffolds. However, the insight views of crystal growths, scaffold features and eventually cell-scaffold interactions are still unknown. In this work, melt and solvent extrusion additive manufacturing techniques are used to produce scaffolds considering highly analogous printing conditions. Results show that the scaffolds produced by these two techniques present distinct physiochemical properties, with melt-printed scaffolds showing stronger mechanical properties and solvent-printed scaffolds showing rougher surface, higher degradation rate, and faster stress relaxation. These differences are attributed to the two different crystal growth kinetics, temperature-induced crystallization (TIC) and strain-induced crystallization (SIC), forming large/integrated spherulite-like and a small/fragmented lamella-like crystal regions respectively. The stiffer substrate of melt-printed scaffolds contributes to higher ratio of nuclear Yes-associated protein (YAP) allocation, favoring cell proliferation and differentiation. Faster relaxation and degradation of solvent-printed scaffolds result in dynamic surface, contributing to an early-stage faster osteogenesis differentiation.
Collapse
Affiliation(s)
- Boyang Huang
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Yaxin Wang
- School of MechanicalAerospace and Civil EngineeringUniversity of ManchesterManchesterM13 9PLUK
| | - Cian Vyas
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- School of MechanicalAerospace and Civil EngineeringUniversity of ManchesterManchesterM13 9PLUK
| | - Paulo Bartolo
- Singapore Centre for 3D PrintingSchool of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingapore639798Singapore
- School of MechanicalAerospace and Civil EngineeringUniversity of ManchesterManchesterM13 9PLUK
| |
Collapse
|
14
|
Du M, Li Y, Zhang Q, Zhang J, Ouyang S, Chen Z. The impact of low intensity ultrasound on cells: Underlying mechanisms and current status. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:41-49. [PMID: 35764177 DOI: 10.1016/j.pbiomolbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role of LIUS in tumor treatment, stem cell therapy, and nervous system regulation. The review summarizes the bioeffects of LIUS at the cellular level and its related mechanisms, detailing the corresponding theoretical basis and latest research in the study of LIUS in the regulation of cells. In the future, the design of specific LIUS-mediated treatment strategies may benefit from promising investigations which is hoped to provide encouraging therapeutic data.
Collapse
Affiliation(s)
- Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Yue Li
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jiaming Zhang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuming Ouyang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| |
Collapse
|
15
|
Jain P, Rauer SB, Möller M, Singh S. Mimicking the Natural Basement Membrane for Advanced Tissue Engineering. Biomacromolecules 2022; 23:3081-3103. [PMID: 35839343 PMCID: PMC9364315 DOI: 10.1021/acs.biomac.2c00402] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Advancements in the field of tissue engineering have
led to the
elucidation of physical and chemical characteristics of physiological
basement membranes (BM) as specialized forms of the extracellular
matrix. Efforts to recapitulate the intricate structure and biological
composition of the BM have encountered various advancements due to
its impact on cell fate, function, and regulation. More attention
has been paid to synthesizing biocompatible and biofunctional fibrillar
scaffolds that closely mimic the natural BM. Specific modifications
in biomimetic BM have paved the way for the development of in vitro models like alveolar-capillary barrier, airway
models, skin, blood-brain barrier, kidney barrier, and metastatic
models, which can be used for personalized drug screening, understanding
physiological and pathological pathways, and tissue implants. In this
Review, we focus on the structure, composition, and functions of in vivo BM and the ongoing efforts to mimic it synthetically.
Light has been shed on the advantages and limitations of various forms
of biomimetic BM scaffolds including porous polymeric membranes, hydrogels,
and electrospun membranes This Review further elaborates and justifies
the significance of BM mimics in tissue engineering, in particular
in the development of in vitro organ model systems.
Collapse
Affiliation(s)
- Puja Jain
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | | | - Martin Möller
- DWI-Leibniz-Institute for Interactive Materials e.V, Aachen 52074, Germany
| | - Smriti Singh
- Max-Planck-Institute for Medical Research, Heidelberg 69028, Germany
| |
Collapse
|
16
|
Yi B, Zhou B, Song Z, Yu L, Wang W, Liu W. Step-wise CAG@PLys@PDA-Cu2+ modification on micropatterned nanofibers for programmed endothelial healing. Bioact Mater 2022; 25:657-676. [PMID: 37056258 PMCID: PMC10086768 DOI: 10.1016/j.bioactmat.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Native-like endothelium regeneration is a prerequisite for material-guided small-diameter vascular regeneration. In this study, a novel strategy is proposed to achieve phase-adjusted endothelial healing by step-wise modification of parallel-microgroove-patterned (i.e., micropatterned) nanofibers with polydopamine-copper ion (PDA-Cu2+) complexes, polylysine (PLys) molecules, and Cys-Ala-Gly (CAG) peptides (CAG@PLys@PDA-Cu2+). Using electrospun poly(l-lactide-co-caprolactone) random nanofibers as the demonstrating biomaterial, step-wise modification of CAG@PLys@PDA-Cu2+ significantly enhanced substrate wettability and protein adsorption, exhibited an excellent antithrombotic surface and outstanding phase-adjusted capacity of endothelium regeneration involving cell adhesion, endothelial monolayer formation, and the regenerated endothelium maturation. Upon in vivo implantation for segmental replacement of rabbit carotid arteries, CAG@PLys@PDA-Cu2+ modified grafts (2 mm inner diameter) with micropatterns on inner surface effectively accelerated native-like endothelium regeneration within 1 week, with less platelet aggregates and inflammatory response compared to those on non-modified grafts. Prolonged observations at 6- and 12-weeks post-implantation demonstrated a positive vascular remodeling with almost fully covered endothelium and mature smooth muscle layer in the modified vascular grafts, accompanied with well-organized extracellular matrix. By contrast, non-modified vascular grafts induced a disorganized tissue formation with a high risk of thrombogenesis. In summary, step-wise modification of CAG@PLys@PDA-Cu2+ on micropatterned nanofibers can significantly promote endothelial healing without inflicting thrombosis, thus confirming a novel strategy for developing functional vascular grafts or other blood-contacting materials/devices.
Collapse
|
17
|
Zhou H, Wang M, Zhang Y, Su Q, Xie Z, Chen X, Yan R, Li P, Li T, Qin X, Yang H, Wu C, You F, Li S, Liu Y. Functions and clinical significance of mechanical tumor microenvironment: cancer cell sensing, mechanobiology and metastasis. Cancer Commun (Lond) 2022; 42:374-400. [PMID: 35470988 PMCID: PMC9118059 DOI: 10.1002/cac2.12294] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Dynamic and heterogeneous interaction between tumor cells and the surrounding microenvironment fuels the occurrence, progression, invasion, and metastasis of solid tumors. In this process, the tumor microenvironment (TME) fractures cellular and matrix architecture normality through biochemical and mechanical means, abetting tumorigenesis and treatment resistance. Tumor cells sense and respond to the strength, direction, and duration of mechanical cues in the TME by various mechanotransduction pathways. However, far less understood is the comprehensive perspective of the functions and mechanisms of mechanotransduction. Due to the great therapeutic difficulties brought by the mechanical changes in the TME, emerging studies have focused on targeting the adverse mechanical factors in the TME to attenuate disease rather than conventionally targeting tumor cells themselves, which has been proven to be a potential therapeutic approach. In this review, we discussed the origins and roles of mechanical factors in the TME, cell sensing, mechano‐biological coupling and signal transduction, in vitro construction of the tumor mechanical microenvironment, applications and clinical significance in the TME.
Collapse
Affiliation(s)
- Hanying Zhou
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Meng Wang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yixi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Qingqing Su
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Zhengxin Xie
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xiangyan Chen
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Ran Yan
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China.,Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, P. R. China
| | - Ping Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Fengming You
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, P. R. China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China.,Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
18
|
Huang SQ, Chen Y, Zhu Q, Zhang YM, Lei ZY, Zhou X, Fan DL. In Vivo and In Vitro Fibroblasts' Behavior and Capsular Formation in Correlation with Smooth and Textured Silicone Surfaces. Aesthetic Plast Surg 2022; 46:1164-1177. [PMID: 35237878 DOI: 10.1007/s00266-022-02769-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND As the most principal complication following breast augmentation with silicone breast implants, capsular contracture is greatly influenced by surface texture. However, there have long been widespread debates on the function of smooth or textured surface implants in reducing capsular contracture. MATERIALS AND METHODS Three commercially available silicone breast implants with smooth and textured surfaces were subjected to surface characterization, and in vitro and in vivo assessments were then implemented to investigate the effect of these different surfaces on the biological behaviors of fibroblasts and capsular formation in rat models. RESULTS Surface characterization demonstrated that all three samples were hydrophobic with distinct roughness values. Comparing the interactions of fibroblasts or tissues with different surfaces, we observed that as surface roughness increased, the adhesion and cell spreading of fibroblasts, the level of echogenicity, the density of collagen and α-SMA-positive immunoreactivity decreased, while the proliferation of fibroblasts and capsule thickness increased. CONCLUSIONS Our findings elucidated that the effect of silicone implant surface texture on fibroblasts' behaviors and capsular formation was associated with variations in surface roughness, and the number of myofibroblasts may have a more significant influence on the process of contracture than capsule thickness in the early stage of capsular formation. These results highlight that targeting myofibroblasts may be wielded in the prevention and treatment strategies of capsular contracture clinically. LEVEL OF EVIDENCE V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Shu-Qing Huang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China
| | - Yao Chen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China
| | - Qiong Zhu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi-Ming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China
| | - Ze-Yuan Lei
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China
| | - Xin Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China.
| | - Dong-Li Fan
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
19
|
Seymour AJ, Westerfield AD, Cornelius VC, Skylar-Scott MA, Heilshorn SC. Bioprinted microvasculature: progressing from structure to function. Biofabrication 2022; 14:10.1088/1758-5090/ac4fb5. [PMID: 35086069 PMCID: PMC8988885 DOI: 10.1088/1758-5090/ac4fb5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Three-dimensional (3D) bioprinting seeks to unlock the rapid generation of complex tissue constructs, but long-standing challenges with efficientin vitromicrovascularization must be solved before this can become a reality. Microvasculature is particularly challenging to biofabricate due to the presence of a hollow lumen, a hierarchically branched network topology, and a complex signaling milieu. All of these characteristics are required for proper microvascular-and, thus, tissue-function. While several techniques have been developed to address distinct portions of this microvascularization challenge, no single approach is capable of simultaneously recreating all three microvascular characteristics. In this review, we present a three-part framework that proposes integration of existing techniques to generate mature microvascular constructs. First, extrusion-based 3D bioprinting creates a mesoscale foundation of hollow, endothelialized channels. Second, biochemical and biophysical cues induce endothelial sprouting to create a capillary-mimetic network. Third, the construct is conditioned to enhance network maturity. Across all three of these stages, we highlight the potential for extrusion-based bioprinting to become a central technique for engineering hierarchical microvasculature. We envision that the successful biofabrication of functionally engineered microvasculature will address a critical need in tissue engineering, and propel further advances in regenerative medicine andex vivohuman tissue modeling.
Collapse
Affiliation(s)
- Alexis J. Seymour
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Ashley D. Westerfield
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Vincent C. Cornelius
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Mark A. Skylar-Scott
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Sarah C. Heilshorn
- Department of Materials Science & Engineering, Stanford University, 476 Lomita Mall, McCullough Room 246, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Wei Q, Wang S, Han F, Wang H, Zhang W, Yu Q, Liu C, Ding L, Wang J, Yu L, Zhu C, Li B, Bl, Cz, Cz, Cz, Qw, Sw, Fh, Hw, Wz, Qy, Cl, Ld, Jw, Ly, Cz, Qw. Cellular modulation by the mechanical cues from biomaterials for tissue engineering. BIOMATERIALS TRANSLATIONAL 2021; 2:323-342. [PMID: 35837415 PMCID: PMC9255801 DOI: 10.12336/biomatertransl.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/13/2021] [Accepted: 07/10/2021] [Indexed: 01/17/2023]
Abstract
Mechanical cues from the extracellular matrix (ECM) microenvironment are known to be significant in modulating the fate of stem cells to guide developmental processes and maintain bodily homeostasis. Tissue engineering has provided a promising approach to the repair or regeneration of damaged tissues. Scaffolds are fundamental in cell-based regenerative therapies. Developing artificial ECM that mimics the mechanical properties of native ECM would greatly help to guide cell functions and thus promote tissue regeneration. In this review, we introduce various mechanical cues provided by the ECM including elasticity, viscoelasticity, topography, and external stimuli, and their effects on cell behaviours. Meanwhile, we discuss the underlying principles and strategies to develop natural or synthetic biomaterials with different mechanical properties for cellular modulation, and explore the mechanism by which the mechanical cues from biomaterials regulate cell function toward tissue regeneration. We also discuss the challenges in multimodal mechanical modulation of cell behaviours and the interplay between mechanical cues and other microenvironmental factors.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shenghao Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Changjiang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Luguang Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiayuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang K, Feng Q, Fang Z, Gu L, Bian L. Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chem Rev 2021; 121:11149-11193. [PMID: 34189903 DOI: 10.1021/acs.chemrev.1c00071] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to their unique chemical and physical properties, hydrogels are attracting increasing attention in both basic and translational biomedical studies. Although the classical hydrogels with static networks have been widely reported for decades, a growing number of recent studies have shown that structurally dynamic hydrogels can better mimic the dynamics and functions of natural extracellular matrix (ECM) in soft tissues. These synthetic materials with defined compositions can recapitulate key chemical and biophysical properties of living tissues, providing an important means to understanding the mechanisms by which cells sense and remodel their surrounding microenvironments. This review begins with the overall expectation and design principles of dynamic hydrogels. We then highlight recent progress in the fabrication strategies of dynamic hydrogels including both degradation-dependent and degradation-independent approaches, followed by their unique properties and use in biomedical applications such as regenerative medicine, drug delivery, and 3D culture. Finally, challenges and emerging trends in the development and application of dynamic hydrogels are discussed.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Feng
- Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiwei Fang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, People's Republic of China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, People's Republic of China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
22
|
Mohindra P, Desai TA. Micro- and nanoscale biophysical cues for cardiovascular disease therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 34:102365. [PMID: 33571682 PMCID: PMC8217090 DOI: 10.1016/j.nano.2021.102365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 11/19/2022]
Abstract
After cardiovascular injury, numerous pathological processes adversely impact the homeostatic function of cardiomyocyte, macrophage, fibroblast, endothelial cell, and vascular smooth muscle cell populations. Subsequent malfunctioning of these cells may further contribute to cardiovascular disease onset and progression. By modulating cellular responses after injury, it is possible to create local environments that promote wound healing and tissue repair mechanisms. The extracellular matrix continuously provides these mechanosensitive cell types with physical cues spanning the micro- and nanoscale to influence behaviors such as adhesion, morphology, and phenotype. It is therefore becoming increasingly compelling to harness these cell-substrate interactions to elicit more native cell behaviors that impede cardiovascular disease progression and enhance regenerative potential. This review discusses recent in vitro and preclinical work that have demonstrated the therapeutic implications of micro- and nanoscale biophysical cues on cell types adversely affected in cardiovascular diseases - cardiomyocytes, macrophages, fibroblasts, endothelial cells, and vascular smooth muscle cells.
Collapse
Affiliation(s)
- Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA.
| |
Collapse
|
23
|
Gorji A, Toh PJY, Ong HT, Toh YC, Toyama Y, Kanchanawong P. Enhancement of Endothelialization by Topographical Features Is Mediated by PTP1B-Dependent Endothelial Adherens Junctions Remodeling. ACS Biomater Sci Eng 2021; 7:2661-2675. [PMID: 33942605 DOI: 10.1021/acsbiomaterials.1c00251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endothelial Cells (ECs) form cohesive cellular lining of the vasculature and play essential roles in both developmental processes and pathological conditions. Collective migration and proliferation of endothelial cells (ECs) are key processes underlying endothelialization of vessels as well as vascular graft, but the complex interplay of mechanical and biochemical signals regulating these processes are still not fully elucidated. While surface topography and biochemical modifications have been used to enhance endothelialization in vitro, thus far such single-modality modifications have met with limited success. As combination therapy that utilizes multiple modalities has shown improvement in addressing various intractable and complex biomedical conditions, here, we explore a combined strategy that utilizes topographical features in conjunction with pharmacological perturbations. We characterized EC behaviors in response to micrometer-scale grating topography in concert with pharmacological perturbations of endothelial adherens junctions (EAJ) regulators. We found that the protein tyrosine phosphatase, PTP1B, serves as a potent regulator of EAJ stability, with PTP1B inhibition synergizing with grating topographies to modulate EAJ rearrangement, thereby augmenting global EC monolayer sheet orientation, proliferation, connectivity, and collective cell migration. Our data delineates the crosstalk between cell-ECM topography sensing and cell-cell junction integrity maintenance and suggests that the combined use of grating topography and PTP1B inhibitor could be a promising strategy for promoting collective EC migration and proliferation.
Collapse
Affiliation(s)
- Azita Gorji
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Institut Curie, Laboratoire Physico Chimie Curie, Institut Pierre-Gilles de Gennes, CNRS UMR168, Paris 75005, France
| | - Pearlyn Jia Ying Toh
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore
| | - Hui Ting Ong
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 117583 Republic of Singapore.,Institute for Health Innovation and Technology, National University of Singapore, 117599 Republic of Singapore.,The N.1 Institute for Health, National University of Singapore, 117456, Republic of Singapore.,NUS Tissue Engineering Programme, National University of Singapore, 117456, Republic of Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 117558, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, 117411 Republic of Singapore.,Department of Biomedical Engineering, National University of Singapore, 117583 Republic of Singapore
| |
Collapse
|
24
|
Sun MG, Luo Y, Teng T, Guaiquil V, Zhou Q, McGinn L, Nazzal O, Walsh M, Lee J, Rosenblatt MI. Silk Film Stiffness Modulates Corneal Epithelial Cell Mechanosignaling. MACROMOL CHEM PHYS 2021; 222:2170013. [PMID: 34149247 PMCID: PMC8208642 DOI: 10.1002/macp.202170013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Silk fibroin films are excellent candidate biomaterials for corneal tissue engineering due to their optical transparency, biocompatibility, and mechanical strength. Their tunable chemical and mechanical properties open the possibility of engineering cellular microenvironments that can both mimic native corneal tissue and provide stimuli to actively promote wound regeneration. While silk film mechanical properties, such as surface topography, have demonstrated the ability to control corneal epithelial cell wound regenerating behavior, few studies have explored the stiffness tunability of these films and its cellular effects. Cells are known actively sense the stiffness of their surroundings and processes such as cell adhesion, migration, proliferation, and expression of stem markers can be strongly influenced by matrix stiffness. This study develops technical solutions that allow for both the fabrication of films with stiffnesses similar to corneal tissue and also for their characterization in an aqueous, native-like environment at a scale relevant to cellular forces. Physiological evidence demonstrates that corneal epithelial cells are mechanosensitive to films of different stiffnesses and show that cell spreading, cytoskeletal tension, and molecular mechanotransducer localization are associated with film stiffness. These results indicate that silk film stiffness can be used to regulate cell behavior for the purposes of ocular surface repair.
Collapse
Affiliation(s)
- M G Sun
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607
| | - Y Luo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - T Teng
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607
| | - V Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - Q Zhou
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - L McGinn
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - O Nazzal
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, Chicago, IL 60612
| | - M Walsh
- Department of Material Sciences and Engineering, University of Wisconsin - Eau Claire, 101 Roosevelt Ave., Eau Claire, WI 54701
| | - J Lee
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607
| | - M I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| |
Collapse
|
25
|
Sun MG, Luo Y, Teng T, Guaiquil V, Zhou Q, McGinn L, Nazzal O, Walsh M, Lee J, Rosenblatt MI. Silk Film Stiffness Modulates Corneal Epithelial Cell Mechanosignaling. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael G. Sun
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
- Department of Bioengineering University of Illinois at Chicago 851 S. Morgan St. Chicago IL 60607 USA
| | - Yuncin Luo
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Tao Teng
- Department of Bioengineering University of Illinois at Chicago 851 S. Morgan St. Chicago IL 60607 USA
| | - Victor Guaiquil
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Lander McGinn
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Osayd Nazzal
- Department of Pathology University of Illinois at Chicago 840 S. Wood St., Suite 130 CSN Chicago IL 60612 USA
| | - Michael Walsh
- Department of Material Sciences and Engineering University of Wisconsin – Eau Claire 101 Roosevelt Ave Eau Claire WI 54701 USA
| | - James Lee
- Department of Bioengineering University of Illinois at Chicago 851 S. Morgan St. Chicago IL 60607 USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| |
Collapse
|
26
|
Tang H, Yi B, Wang X, Shen Y, Zhang Y. Understanding the cellular responses based on low-density electrospun fiber networks. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111470. [PMID: 33321594 DOI: 10.1016/j.msec.2020.111470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 01/12/2023]
Abstract
Fibers produced from electrospinning are well-known to be extremely fine with diameters ranging from tens of nanometers to a few microns. Such ultrafine fibers not only allow for engineering scaffolds resembling the ultrastructure of the native extracellular matrix, but also offer possibility to explore the remodeling behavior of cells in vitro, due to their mechanically 'adequate' softness endowed by their ultrafine fineness. However, the remodeling effect of cells on the biomimicking fibrous substrates remains to be understood, because the crisscrossing and entangling among nanofibers in those tightly packed fibrous mats ultimately lead to merely a topological phenomenon, similar to that of the nanofiber-like topography embossed on the surface of a solid matter. In this study, the effect of nanofiber density on cellular response behavior was investigated by reducing the density of electrospun fiber networks. Using polycaprolactone (PCL) as a model polymer, randomly oriented fiber networks with various densities, namely, 37.7 ± 16.3 μg/cm2 (D1), 103.8 ± 16.3 μg/cm2 (D2), 198.2 ± 40.0 μg/cm2 (D3), and 471.8 ± 32.7 μg/cm2 (D4), were prepared by electrospinning for varied collection durations (10 s, 50 s, 100 s, and 10 min, respectively). By examining the responsive behavior of the human induced pluripotent stem cell-derived mesenchymal stem cells (hiPS-MSCs) cultured on these nanofibrous networks, we showed that the fiber network with a moderate density (D2) is beneficial to the cell attachment, spreading, actin polymerization, contractility and migration. There also showed an increased tendency in nuclear localization of the Yes-associated protein (YAP) and subsequent activation of YAP responsive gene transcription, and cell proliferation and collagen synthesis were also enhanced on the D2. However, further increasing the fiber density (D3, D4) gave rise to weakened induction effect of fibers on the cellular responses. These results enrich our understanding on the effect of fiber density on cell behavior, and disclose the dependence of cellular responses on fiber density. This study paves the way to precisely design biomimetic fibrous scaffolds for achieving enhanced cell-scaffold interactions and tissue regeneration.
Collapse
Affiliation(s)
- Han Tang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Bingcheng Yi
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianliu Wang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Yanbing Shen
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China; Key Lab of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China.
| |
Collapse
|
27
|
Vasilevich AS, Vermeulen S, Kamphuis M, Roumans N, Eroumé S, Hebels DGAJ, van de Peppel J, Reihs R, Beijer NRM, Carlier A, Carpenter AE, Singh S, de Boer J. On the correlation between material-induced cell shape and phenotypical response of human mesenchymal stem cells. Sci Rep 2020; 10:18988. [PMID: 33149200 PMCID: PMC7642380 DOI: 10.1038/s41598-020-76019-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Learning rules by which cell shape impacts cell function would enable control of cell physiology and fate in medical applications, particularly, on the interface of cells and material of the implants. We defined the phenotypic response of human bone marrow-derived mesenchymal stem cells (hMSCs) to 2176 randomly generated surface topographies by probing basic functions such as migration, proliferation, protein synthesis, apoptosis, and differentiation using quantitative image analysis. Clustering the surfaces into 28 archetypical cell shapes, we found a very strict correlation between cell shape and physiological response and selected seven cell shapes to describe the molecular mechanism leading to phenotypic diversity. Transcriptomics analysis revealed a tight link between cell shape, molecular signatures, and phenotype. For instance, proliferation is strongly reduced in cells with limited spreading, resulting in down-regulation of genes involved in the G2/M cycle and subsequent quiescence, whereas cells with large filopodia are related to activation of early response genes and inhibition of the osteogenic process. In this paper we were aiming to identify a universal set of genes that regulate the material-induced phenotypical response of human mesenchymal stem cells. This will allow designing implants that can actively regulate cellular, molecular signalling through cell shape. Here we are proposing an approach to tackle this question.
Collapse
Affiliation(s)
- Aliaksei S Vasilevich
- BIS-Biointerface Science in Regenerative Medicine, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Steven Vermeulen
- BIS-Biointerface Science in Regenerative Medicine, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Marloes Kamphuis
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Nadia Roumans
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Said Eroumé
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Dennie G A J Hebels
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rika Reihs
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Nick R M Beijer
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jan de Boer
- BIS-Biointerface Science in Regenerative Medicine, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
28
|
Leclech C, Natale CF, Barakat AI. The basement membrane as a structured surface - role in vascular health and disease. J Cell Sci 2020; 133:133/18/jcs239889. [PMID: 32938688 DOI: 10.1242/jcs.239889] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The basement membrane (BM) is a thin specialized extracellular matrix that functions as a cellular anchorage site, a physical barrier and a signaling hub. While the literature on the biochemical composition and biological activity of the BM is extensive, the central importance of the physical properties of the BM, most notably its mechanical stiffness and topographical features, in regulating cellular function has only recently been recognized. In this Review, we focus on the biophysical attributes of the BM and their influence on cellular behavior. After a brief overview of the biochemical composition, assembly and function of the BM, we describe the mechanical properties and topographical structure of various BMs. We then focus specifically on the vascular BM as a nano- and micro-scale structured surface and review how its architecture can modulate endothelial cell structure and function. Finally, we discuss the pathological ramifications of the biophysical properties of the vascular BM and highlight the potential of mimicking BM topography to improve the design of implantable endovascular devices and advance the burgeoning field of vascular tissue engineering.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| | - Carlo F Natale
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France.,Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Abdul I Barakat
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
29
|
Ong W, Marinval N, Lin J, Nai MH, Chong YS, Pinese C, Sajikumar S, Lim CT, Ffrench-Constant C, Bechler ME, Chew SY. Biomimicking Fiber Platform with Tunable Stiffness to Study Mechanotransduction Reveals Stiffness Enhances Oligodendrocyte Differentiation but Impedes Myelination through YAP-Dependent Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003656. [PMID: 32790058 DOI: 10.1002/smll.202003656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Indexed: 06/11/2023]
Abstract
A key hallmark of many diseases, especially those in the central nervous system (CNS), is the change in tissue stiffness due to inflammation and scarring. However, how such changes in microenvironment affect the regenerative process remains poorly understood. Here, a biomimicking fiber platform that provides independent variation of fiber structural and intrinsic stiffness is reported. To demonstrate the functionality of these constructs as a mechanotransduction study platform, these substrates are utilized as artificial axons and the effects of axon structural versus intrinsic stiffness on CNS myelination are independently analyzed. While studies have shown that substrate stiffness affects oligodendrocyte differentiation, the effects of mechanical stiffness on the final functional state of oligodendrocyte (i.e., myelination) has not been shown prior to this. Here, it is demonstrated that a stiff mechanical microenvironment impedes oligodendrocyte myelination, independently and distinctively from oligodendrocyte differentiation. Yes-associated protein is identified to be involved in influencing oligodendrocyte myelination through mechanotransduction. The opposing effects on oligodendrocyte differentiation and myelination provide important implications for current work screening for promyelinating drugs, since these efforts have focused mainly on promoting oligodendrocyte differentiation. Thus, the platform may have considerable utility as part of a drug discovery program in identifying molecules that promote both differentiation and myelination.
Collapse
Affiliation(s)
- William Ong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- NTU Institute for Health Technologies (Health Tech NTU), Interdisciplinary Disciplinary School, Nanyang Technological University, Singapore, 637533, Singapore
| | - Nicolas Marinval
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Junquan Lin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yee-Song Chong
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Coline Pinese
- Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, ENSCM, Montpellier, F-34093, France
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore, 117593, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Charles Ffrench-Constant
- MRC-Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Marie E Bechler
- MRC-Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| |
Collapse
|
30
|
Wang Z, Cui W. Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhen Wang
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
31
|
Yang L, Ge L, van Rijn P. Synergistic Effect of Cell-Derived Extracellular Matrices and Topography on Osteogenesis of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25591-25603. [PMID: 32423202 PMCID: PMC7291345 DOI: 10.1021/acsami.0c05012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/19/2020] [Indexed: 05/03/2023]
Abstract
Cell-derived matrices (CDMs) are an interesting alternative to conventional sources of extracellular matrices (ECMs) as CDMs mimic the natural ECM composition better and are therefore attractive as a scaffolding material for regulating the functions of stem cells. Previous research on stem cell differentiation has demonstrated that both surface topography and CDMs have a significant influence. However, not much focus has been devoted to elucidating possible synergistic effects of CDMs and topography on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). In this study, polydimethylsiloxane (PDMS)-based anisotropic topographies (wrinkles) with various topography dimensions were prepared and subsequently combined with native ECMs produced by human fibroblasts that remained on the surface topography after decellularization. The synergistic effect of CDMs combined with topography on osteogenic differentiation of hBM-MSCs was investigated. The results showed that substrates with specific topography dimensions, coated with aligned CDMs, dramatically enhanced the capacity of osteogenesis as investigated using immunofluorescence staining for identifying osteopontin (OPN) and mineralization. Furthermore, the hBM-MSCs on the substrates decorated with CDMs exhibited a higher percentage of (Yes-associated protein) YAP inside the nucleus, stronger cell contractility, and greater formation of focal adhesions, illustrating that enhanced osteogenesis is partly mediated by cellular tension and mechanotransduction following the YAP pathway. Taken together, our findings highlight the importance of ECMs mediating the osteogenic differentiation of stem cells, and the combination of CDMs and topography will be a powerful approach for material-driven osteogenesis.
Collapse
Affiliation(s)
- Liangliang Yang
- Department
of Biomedical Engineering-FB40, University
of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J.
Kolff Institute for Biomedical Engineering and Materials Science-FB41,
Groningen, University of Groningen, University
Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lu Ge
- Department
of Biomedical Engineering-FB40, University
of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J.
Kolff Institute for Biomedical Engineering and Materials Science-FB41,
Groningen, University of Groningen, University
Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Patrick van Rijn
- Department
of Biomedical Engineering-FB40, University
of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J.
Kolff Institute for Biomedical Engineering and Materials Science-FB41,
Groningen, University of Groningen, University
Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
32
|
Yi B, Shen Y, Tang H, Wang X, Zhang Y. Stiffness of the aligned fibers affects structural and functional integrity of the oriented endothelial cells. Acta Biomater 2020; 108:237-249. [PMID: 32205213 DOI: 10.1016/j.actbio.2020.03.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/24/2023]
Abstract
Promoting healthy endothelialization of the tissue-engineered vascular grafts is of great importance in preventing the occurrence of undesired post-implantation complications including neointimal hyperplasia, late thrombosis, and neoatherosclerosis. Previous researches have demonstrated the crucial role of scaffold topography or stiffness in modulating the behavior of the monolayer endothelial cells (ECs). However, effects of the stiffness of scaffolds with anisotropic topography on ECs within vivo like oriented morphology has received little attention. In this study, aligned fibrous substrates (AFSs) with tunable stiffness (14.68-2141.72 MPa), similar to the range of stiffness of the healthy and diseased subendothelial matrix, were used to investigate the effects of fiber stiffness on ECs' attachment, orientation, proliferation, function, remodeling and dysfunction. The results demonstrate that stiffness of the AFSs, capable of providing topographical cues, is a crucial endothelium-protective microenvironmental factor by maintaining stable and quiescent endothelium with in vivo like orientation and strong cell-cell junctions. Stiffer AFSs exacerbated the disruption of endothelium integrity, the occurrence of endothelial-to-mesenchymal transition (EndMT), and the inflammation-induced activation in the endothelial monolayer. This study provides new insights into the understanding on how the stiffness of biomimicking anisotropic substrate regulates the structural and functional integrity of the in vivo like endothelial monolayer, and offers essential designing parameters in engineering biomimicking small-diameter vascular grafts for the regeneration of viable blood vessels. STATEMENT OF SIGNIFICANCE: In vascular tissue engineering, promoting endothelialization on scaffold surface has been considered as a paramount strategy to reduce post-implantation complications. Electrospun aligned fibers have been known to provide contact guidance effect in directing endothelial cells' oriented growth, however, whether the formed EC monolayer in 'correct' orientation shape is of 'correct' function hasn't been explored yet. Given the recognized important role of substrate stiffness in endothelial function, AFSs across physiologically relevant range of moduli (14.68-2141.72 MPa) while maintaining consistent surface chemistry and topographical features were employed to investigate the fiber stiffness effects on ECs function in anisotropic morphology. This study will provide more insightful perspectives in the physiologically remodeling progression of vascular endothelium and design of vascular scaffolds.
Collapse
|
33
|
Chu G, Zhang W, Zhou P, Yuan Z, Zhu C, Wang H, Li J, Zhou F, Yang Q, Yang H, Li B. Substrate Topography Regulates Differentiation of Annulus Fibrosus-Derived Stem Cells via CAV1-YAP-Mediated Mechanotransduction. ACS Biomater Sci Eng 2020; 7:862-871. [PMID: 33715372 DOI: 10.1021/acsbiomaterials.9b01823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regeneration of annulus fibrosus (AF) through tissue engineering techniques shows promise as a treatment for patients with degenerative disc disease (DDD). Yet, it remains challenging because of the intrinsic heterogeneity of AF tissue and shortage of in-depth knowledge of its structure-function correlation. In the current study, we fabricated fibrous poly(ether carbonate urethane)urea (PECUU) scaffolds with various fiber sizes to mimic the microstructural feature of native AF and aimed to regulate the differentiation of AF-derived stem cells (AFSCs) by controlling the topographical cues of the scaffold. We found that the morphology of AFSCs varied significantly on scaffolds with various fiber sizes. Meanwhile, the expression of the phenotypic marker genes of outer AF was up-regulated on scaffolds with large fibers. Meanwhile, enhanced expression of the phenotypic marker genes of inner AF was seen on scaffolds with small fibers. Such topography-dependent gene expression in AFSCs approximated the biochemical profile of AF tissue in various zones. Moreover, cell spreading and nucleus translocation of Yes-associated protein (YAP) were facilitated with increased fiber size. Formation and maturation of focal adhesions of AFSCs were also promoted. We also found that Caveolin-1 (CAV1) positively modulated the mechano-responses of YAP in response to substrate topography. In conclusion, depending on the activation of the CAV1-YAP mechanotransduction axis, tuning the fiber size of scaffolds can effectively induce changes in cell shape, adhesions, and extracellular matrix expression. This work may therefore provide new insights in the design of novel materials toward AF tissue regeneration.
Collapse
Affiliation(s)
- Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Pinghui Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui 233004, China.,Anhui Province Key Laboratory of Tissue Transplantation, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Feng Zhou
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin 300211, China.,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310000, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Medical College, Soochow University, Suzhou, Jiangsu 215007, China.,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310000, China
| |
Collapse
|
34
|
Bai M, Cai L, Li X, Ye L, Xie J. Stiffness and topography of biomaterials dictate cell-matrix interaction in musculoskeletal cells at the bio-interface: A concise progress review. J Biomed Mater Res B Appl Biomater 2020; 108:2426-2440. [PMID: 32027091 DOI: 10.1002/jbm.b.34575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 02/05/2023]
Abstract
Mutually interacted musculoskeletal tissues work together within the physiological environment full of varieties of external stimulus. Consistent with the locomotive function of the tissues, musculoskeletal cells are remarkably mechanosensitive to the physical cues. Signals like extracellular matrix (ECM) stiffness, topography, and geometry can be sensed and transduced into intracellular signaling cascades to trigger a series of cell responses, including cell adhesion, cell phenotype maintenance, cytoskeletal reconstruction, and stem cell differentiation (Du et al., 2011; Murphy et al., 2014; Lv et al., 2015; Kim et al., 2016; Kumar et al., 2017). With the development of tissue engineering and regenerative medicine, the potent effects of ECM physical properties on cell behaviors at the cell-matrix interface are drawing much attention. To mimic the interaction between cell and its ECM physical properties, developing advanced biomaterials with desired characteristics which could achieve the biointerface between cells and the surrounded matrix close to the physiological conditions becomes a great hotspot. In this review, based on the current publications in the field of biointerfaces, we systematically summarized the significant roles of stiffness and topography on musculoskeletal cell behaviors. We hope to shed light on the importance of physical cues in musculoskeletal tissue engineering and provide up to date strategies towards the natural or artificial replication of physiological microenvironment.
Collapse
Affiliation(s)
- Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Zhu M, Ye H, Fang J, Zhong C, Yao J, Park J, Lu X, Ren F. Engineering High-Resolution Micropatterns Directly onto Titanium with Optimized Contact Guidance to Promote Osteogenic Differentiation and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43888-43901. [PMID: 31680521 DOI: 10.1021/acsami.9b16050] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Topographical cues play an important role in directing cell behavior, and thus, extensive research efforts have been devoted to fabrication of surface patterns and exploring the contact guidance effect. However, engineering high-resolution micropatterns directly onto metallic implants remains a grand challenge. Moreover, there still lacks evidence that allows translation of in vitro screening to in vivo tissue response. Herein, we demonstrate a fast, cost-effective, and feasible approach to the precise fabrication of shape- and size-controlled micropatterns on titanium substrates using a combination of photolithography and inductively coupled plasma-based dry etching. A titanium TopoChip containing 34 microgrooved patterns with varying geometry parameters and a flat surface as the control was designed for a high-throughput in vitro study of the contact guidance of osteoblasts. The correlation between the surface pattern dimensions, cell morphological characteristics, proliferation, and osteogenic marker expression was systematically investigated in vitro. Furthermore, the surface with the highest osteogenic potential in vitro along with representative controls was evaluated in rat cranial defect models. The results show that microgrooved pattern parameters have almost no effect on osteoblast proliferation but significantly regulate the cell morphology, orientation, focal adhesion (FA) formation, and osteogenic differentiation in vitro. In particular, a specific groove pattern with a ridge width of 3 μm, groove width of 7 μm, and depth of 2 μm can most effectively align the cells through regulating the distribution of FAs, resulting in an anisotropic actin cytoskeleton, and thereby promoting osteogenic differentiation. In vivo, microcomputed tomography and histological analyses show that the optimized pattern can apparently stimulate new bone formation. This study not only offers a microfabrication method that can be extended to fabricate various shape- and size-controlled micropatterns on titanium alloys but also provides insight into the surface structure design of orthopedic and dental implants for enhanced bone regeneration.
Collapse
Affiliation(s)
| | | | | | - Chuanxin Zhong
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine , Hong Kong Baptist University , Kowloon Tong , Hong Kong 999077 , China
| | | | | | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu , Sichuan 610031, China
| | | |
Collapse
|
36
|
Chu G, Yuan Z, Zhu C, Zhou P, Wang H, Zhang W, Cai Y, Zhu X, Yang H, Li B. Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-associated protein. Acta Biomater 2019; 92:254-264. [PMID: 31078765 DOI: 10.1016/j.actbio.2019.05.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023]
Abstract
Annulus fibrosus (AF) tissue engineering has attracted increasing attention as a promising therapy for degenerative disc disease (DDD). However, regeneration of AF still faces many challenges due to the tremendous complexity of this tissue and lack of in-depth understanding of the structure-function relationship at cellular level within AF is highly required. In light of the fact that AF is composed of various types of cells and has gradient mechanical, topographical and biochemical features along the radial direction. In this study, we aimed to achieve directed differentiation of AF-derived stem cells (AFSCs) by mimicking the mechanical and topographical features of native AF tissue. AFSCs were cultured on four types of electrospun poly(ether carbonate urethane)urea (PECUU) scaffolds with various stiffness and fiber size (soft, small size; stiff, small size; soft, large size and stiff, large size). The results show that with constant fiber size, the expression level of the outer AF (oAF) phenotypic marker genes in AFSCs increased with the scaffold stiffness, while that of inner AF (iAF) phenotypic marker genes showed an opposite trend. When scaffold stiffness was fixed, the expression of oAF phenotypic marker genes in AFSCs increased with fiber size. While the expression of iAF phenotypic marker genes decreased. Such substrate stiffness- and topography-dependent changes of AFSCs was in accordance with the genetic and biochemical distribution of AF tissue from the inner to outer regions. Further, we found that the Yes-associated protein (YAP) was translocated to the nucleus in AFSCs cultured with increasing stiffness and fiber size of scaffolds, yet it remained mostly phosphorylated and cytosolic in cells on soft scaffolds with small fiber size. Inhibition of YAP down-regulated the expression of tendon/ligament-related genes, whereas expression of the cartilage-related genes was upregulated. The results illustrate that matrix stiffness is a potent regulator of AFSC differentiation. Moreover, we reveal that fiber size of scaffolds induced changes in cell adhesions and determined cell shape, spreading area, and extracellular matrix expression. In all, both mechanical property and topography features of scaffolds regulate AFSC differentiation, possibly through a YAP-dependent mechanotransduction mechanism. STATEMENT OF SIGNIFICANCE: Physical cues such as mechanical properties, topographical and geometrical features were shown to profoundly impact the growth and differentiation of cultured stem cells. Previously, we have found that the differentiation of annulus fibrosus-derived stem cells (AFSCs) could be regulated by the stiffness of scaffold. In this study, we fabricated four types of poly(ether carbonate urethane)urea (PECUU) scaffolds with controlled stiffness and fiber size to explore the potential of induced differentiation of AFSCs. We found that AFSCs are able to present different gene expression patterns simply as a result of the stiffness and fiber size of scaffold material. This work has, for the first time, demonstrated that larger-sized and higher-stiffness substrates increase the amount of vinculin assembly and activate YAP signaling in pre-differentiated AFSCs. The present study affords an in-depth comprehension of materiobiology, and be helpful for explain the mechanism of YAP mechanosensing in AF in response to biophysical effects of materials.
Collapse
Affiliation(s)
- Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Pinghui Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Cai
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuesong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China.
| |
Collapse
|
37
|
Spaans S, Fransen PPKH, Schotman MJG, van der Wulp R, Lafleur RP, Kluijtmans SGJM, Dankers PYW. Supramolecular Modification of a Sequence-Controlled Collagen-Mimicking Polymer. Biomacromolecules 2019; 20:2360-2371. [PMID: 31050892 PMCID: PMC6560502 DOI: 10.1021/acs.biomac.9b00353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/29/2019] [Indexed: 11/29/2022]
Abstract
Structurally and functionally well-defined recombinant proteins are an interesting class of sequence-controlled macromolecules to which different crosslinking chemistries can be applied to tune their biological properties. Herein, we take advantage of a 571-residue recombinant peptide based on human collagen type I (RCPhC1), which we functionalized with supramolecular 4-fold hydrogen bonding ureido-pyrimidinone (UPy) moieties. By grafting supramolecular UPy moieties onto the backbone of RCPhC1 (UPy-RCPhC1), increased control over the polymer structure, assembly, gelation, and mechanical properties was achieved. In addition, by increasing the degree of UPy functionalization on RCPhC1, cardiomyocyte progenitor cells were cultured on "soft" (∼26 kPa) versus "stiff" (∼68-190 kPa) UPy-RCPhC1 hydrogels. Interestingly, increased stress fiber formation, focal adhesions, and proliferation were observed on stiffer compared to softer substrates, owing to the formation of stronger cell-material interactions. In conclusion, a bioinspired hydrogel material was designed by a combination of two well-known natural components, i.e., a protein as sequence-controlled polymer and UPy units inspired on nucleobases.
Collapse
Affiliation(s)
- Sergio Spaans
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter-Paul K. H. Fransen
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maaike J. G. Schotman
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ruben van der Wulp
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - René P.
M. Lafleur
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | - Patricia Y. W. Dankers
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
38
|
Omidinia-Anarkoli A, Rimal R, Chandorkar Y, Gehlen DB, Rose JC, Rahimi K, Haraszti T, De Laporte L. Solvent-Induced Nanotopographies of Single Microfibers Regulate Cell Mechanotransduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7671-7685. [PMID: 30694648 DOI: 10.1021/acsami.8b17955] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The extracellular matrix (ECM) is a dynamic three-dimensional (3D) fibrous network, surrounding all cells in vivo. Fiber manufacturing techniques are employed to mimic the ECM but still lack the knowledge and methodology to produce single fibers approximating cell size with different surface topographies to study cell-material interactions. Using solvent-assisted spinning (SAS), the potential to continuously produce single microscale fibers with unlimited length, precise diameter, and specific surface topographies was demonstrated. By applying solvents with different solubilities and volatilities, fibers with smooth, grooved, and porous surface morphologies are produced. Due to their hierarchical structures, the porous fibers are the most hydrophobic, followed by the grooved and the smooth fibers. The fiber diameter is increased by increasing the polymer concentration or decreasing the collector rotational speed. Moreover, SAS offers the advantage to control the interfiber distance and angle to fabricate multilayered 3D constructs. This report shows for the first time that the micro- and nanoscale topographies of single fibers mechanically regulate cell behavior. Fibroblasts, grown on fibers with grooved topographical features, stretch and elongate more compared to smooth and porous fibers, whereas both porous and grooved fibers induce nuclear translocation of yes-associated protein. The presented technique, therefore, provides a unique platform to study the interaction between cells and single ECM-like fibers in a precise and reproducible manner, which is of great importance for new material developments in the field of tissue engineering.
Collapse
Affiliation(s)
| | - Rahul Rimal
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
| | - Yashoda Chandorkar
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
| | - David B Gehlen
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
| | - Jonas C Rose
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
| | - Khosrow Rahimi
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
| | - Tamás Haraszti
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
| | - Laura De Laporte
- DWI-Leibniz Institute for Interactive Materials , Aachen 52074 , Germany
- ITMC-Institute of Technical and Macromolecular Chemistry , RWTH Aachen University , Aachen 52074 , Germany
| |
Collapse
|
39
|
Hadi A, Rastgoo A, Haghighipour N, Bolhassani A, Asgari F, Soleymani S. Enhanced gene delivery in tumor cells using chemical carriers and mechanical loadings. PLoS One 2018; 13:e0209199. [PMID: 30592721 PMCID: PMC6310266 DOI: 10.1371/journal.pone.0209199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/01/2018] [Indexed: 11/18/2022] Open
Abstract
Intracellular delivery of DNA is considered a challenge in biological research and treatment of diseases. The previously reported transfection rate by commercially available transfection reagents in cancer cell lines, such as the mouse lung tumor cell line (TC-1), is very low. The purpose of this study is to introduce and optimize an efficient gene transfection method by mechanical approaches. The combinatory transfection effect of mechanical treatments and conventional chemical carriers is also investigated on a formerly reported hard-to-transfect cell line (TC-1). To study the effect of mechanical loadings on transfection rate, TC-1 tumor cells are subjected to uniaxial cyclic stretch, equiaxial cyclic stretch, and shear stress. The TurboFect transfection reagent is exerted for chemical transfection purposes. The pEGFP-N1 vector encoding the green fluorescent protein (GFP) expression is utilized to determine gene delivery into the cells. The results show a significant DNA delivery rate (by ~30%) in mechanically transfected cells compared to the samples that were transfected with chemical carriers. Moreover, the simultaneous treatment of TC-1 tumor cells with chemical carriers and mechanical loadings significantly increases the gene transfection rate up to ~ 63% after 24 h post-transfection. Our results suggest that the simultaneous use of mechanical loading and chemical reagent can be a promising approach in delivering cargoes into cells with low transfection potentials and lead to efficient cancer treatments.
Collapse
Affiliation(s)
- Amin Hadi
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | - Abbas Rastgoo
- School of Mechanical Engineering, University of Tehran, Tehran, Iran
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Asgari
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Sepehr Soleymani
- Department of Hepatitis and AIDs, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
Garoffolo G, Madonna R, de Caterina R, Pesce M. Cell based mechanosensing in vascular patho-biology: More than a simple go-with the flow. Vascul Pharmacol 2018; 111:7-14. [DOI: 10.1016/j.vph.2018.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/10/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022]
|
41
|
Xue J, Wu T, Xia Y. Perspective: Aligned arrays of electrospun nanofibers for directing cell migration. APL MATERIALS 2018; 6:120902. [PMID: 33335802 PMCID: PMC7743993 DOI: 10.1063/1.5058083] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell migration plays an important role in a wide variety of biological processes, including embryogenesis, wound healing, inflammation, cancer metastasis, and tissue repair. Electrospun nanofibers have been extensively explored as scaffolds to manipulate cell migration owing to their unique characteristics in mimicking the hierarchical architecture of extracellular matrix. In particular, aligned arrays of electrospun nanofibers are capable of guiding and promoting the directional migration of cells. The physical parameters and properties of the aligned nanofibers, including their size, modulus, and surface chemistry, can all affect the migratory behaviors of cells, while the controlled release of growth factors and drugs from the nanofibers can also be utilized to influence cell migration. By manipulating cell migration, electrospun nanofibers have been applied to promote tissue repair and help eradicate tumors in vivo. In this perspective, we highlight recent developments in collecting electrospun nanofibers as aligned arrays and then illustrate how the aligned nanofibers can be utilized to manipulate cell migration.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
42
|
Alksne M, Simoliunas E, Kalvaityte M, Skliutas E, Rinkunaite I, Gendviliene I, Baltriukiene D, Rutkunas V, Bukelskiene V. The effect of larger than cell diameter polylactic acid surface patterns on osteogenic differentiation of rat dental pulp stem cells. J Biomed Mater Res A 2018; 107:174-186. [DOI: 10.1002/jbm.a.36547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Milda Alksne
- Institute of Biochemistry, Life Sciences Center, Vilnius University; Sauletekio Avenue 7, LT-10223, Vilnius Lithuania
| | - Egidijus Simoliunas
- Institute of Biochemistry, Life Sciences Center, Vilnius University; Sauletekio Avenue 7, LT-10223, Vilnius Lithuania
| | - Migle Kalvaityte
- Institute of Biochemistry, Life Sciences Center, Vilnius University; Sauletekio Avenue 7, LT-10223, Vilnius Lithuania
| | - Edvinas Skliutas
- Laser Research Center, Faculty of Physics; Vilnius University; Sauletekio Avenue 10, LT-10223, Vilnius Lithuania
| | - Ieva Rinkunaite
- Institute of Biochemistry, Life Sciences Center, Vilnius University; Sauletekio Avenue 7, LT-10223, Vilnius Lithuania
| | - Ieva Gendviliene
- Institute of Odontology, Faculty of Medicine; Vilnius University; Zalgirio Street 115, LT-08217, Vilnius Lithuania
| | - Daiva Baltriukiene
- Institute of Biochemistry, Life Sciences Center, Vilnius University; Sauletekio Avenue 7, LT-10223, Vilnius Lithuania
| | - Vygandas Rutkunas
- Institute of Odontology, Faculty of Medicine; Vilnius University; Zalgirio Street 115, LT-08217, Vilnius Lithuania
| | - Virginija Bukelskiene
- Institute of Biochemistry, Life Sciences Center, Vilnius University; Sauletekio Avenue 7, LT-10223, Vilnius Lithuania
| |
Collapse
|
43
|
Hadi A, Rastgoo A, Haghighipour N, Bolhassani A. Numerical modelling of a spheroid living cell membrane under hydrostatic pressure. JOURNAL OF STATISTICAL MECHANICS: THEORY AND EXPERIMENT 2018; 2018:083501. [DOI: 10.1088/1742-5468/aad369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
44
|
Astone M, Lai JKH, Dupont S, Stainier DYR, Argenton F, Vettori A. Zebrafish mutants and TEAD reporters reveal essential functions for Yap and Taz in posterior cardinal vein development. Sci Rep 2018; 8:10189. [PMID: 29976931 PMCID: PMC6033906 DOI: 10.1038/s41598-018-27657-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/05/2018] [Indexed: 01/07/2023] Open
Abstract
As effectors of the Hippo signaling cascade, YAP1 and TAZ are transcriptional regulators playing important roles in development, tissue homeostasis and cancer. A number of different cues, including mechanotransduction of extracellular stimuli, adhesion molecules, oncogenic signaling and metabolism modulate YAP1/TAZ nucleo-cytoplasmic shuttling. In the nucleus, YAP1/TAZ tether with the DNA binding proteins TEADs, to activate the expression of target genes that regulate proliferation, migration, cell plasticity, and cell fate. Based on responsive elements present in the human and zebrafish promoters of the YAP1/TAZ target gene CTGF, we established zebrafish fluorescent transgenic reporter lines of Yap1/Taz activity. These reporter lines provide an in vivo view of Yap1/Taz activity during development and adulthood at the whole organism level. Transgene expression was detected in many larval tissues including the otic vesicles, heart, pharyngeal arches, muscles and brain and is prominent in endothelial cells. Analysis of vascular development in yap1/taz zebrafish mutants revealed specific defects in posterior cardinal vein (PCV) formation, with altered expression of arterial/venous markers. The overactivation of Yap1/Taz in endothelial cells was sufficient to promote an aberrant vessel sprouting phenotype. Our findings confirm and extend the emerging role of Yap1/Taz in vascular development including angiogenesis.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Connective Tissue Growth Factor/genetics
- Embryo, Nonmammalian
- Endothelial Cells/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Gene Expression Regulation, Developmental
- Genes, Reporter/genetics
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Luciferases/chemistry
- Luciferases/genetics
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mutation
- Neovascularization, Physiologic/genetics
- Promoter Regions, Genetic/genetics
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcriptional Coactivator with PDZ-Binding Motif Proteins
- Transgenes/genetics
- Veins/cytology
- Veins/growth & development
- YAP-Signaling Proteins
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Matteo Astone
- University of Padova, Department of Biology, Padova, Italy
| | | | - Sirio Dupont
- University of Padova, Department of Molecular Medicine, Padova, Italy
| | | | | | - Andrea Vettori
- University of Padova, Department of Biology, Padova, Italy.
| |
Collapse
|
45
|
Chen S, Li R, Li X, Xie J. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev 2018; 132:188-213. [PMID: 29729295 DOI: 10.1016/j.addr.2018.05.001] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
Electrospinning provides an enabling nanotechnology platform for generating a rich variety of novel structured materials in many biomedical applications including drug delivery, biosensing, tissue engineering, and regenerative medicine. In this review article, we begin with a thorough discussion on the method of producing 1D, 2D, and 3D electrospun nanofiber materials. In particular, we emphasize on how the 3D printing technology can contribute to the improvement of traditional electrospinning technology for the fabrication of 3D electrospun nanofiber materials as drug delivery devices/implants, scaffolds or living tissue constructs. We then highlight several notable examples of electrospun nanofiber materials in specific biomedical applications including cancer therapy, guiding cellular responses, engineering in vitro 3D tissue models, and tissue regeneration. Finally, we finish with conclusions and future perspectives of electrospun nanofiber materials for drug delivery and regenerative medicine.
Collapse
|
46
|
Wan S, Fu X, Ji Y, Li M, Shi X, Wang Y. FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials 2018; 171:107-117. [DOI: 10.1016/j.biomaterials.2018.04.035] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/15/2018] [Indexed: 01/14/2023]
|
47
|
Abstract
Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell-cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.
Collapse
Affiliation(s)
- Christopher M Madl
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
48
|
Tang JD, Lampe KJ. From de novo peptides to native proteins: advancements in biomaterial scaffolds for acute ischemic stroke repair. Biomed Mater 2018; 13:034103. [DOI: 10.1088/1748-605x/aaa4c3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Abstract
In their native environment, cells are immersed in a complex milieu of biochemical and biophysical cues. These cues may include growth factors, the extracellular matrix, cell-cell contacts, stiffness, and topography, and they are responsible for regulating cellular behaviors such as adhesion, proliferation, migration, apoptosis, and differentiation. The decision-making process used to convert these extracellular inputs into actions is highly complex and sensitive to changes both in the type of individual cue (e.g., growth factor dose/level, timing) and in how these individual cues are combined (e.g., homotypic/heterotypic combinations). In this review, we highlight recent advances in the development of engineering-based approaches to study the cellular decision-making process. Specifically, we discuss the use of biomaterial platforms that enable controlled and tailored delivery of individual and combined cues, as well as the application of computational modeling to analyses of the complex cellular decision-making networks.
Collapse
Affiliation(s)
- Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , .,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin 53705, USA.,Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| | - Laura E Strong
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; ,
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , .,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| |
Collapse
|
50
|
Fine N, Dimitriou ID, Rottapel R. Go with the flow: GEF-H1 mediated shear stress mechanotransduction in neutrophils. Small GTPases 2017; 11:23-31. [PMID: 29188751 DOI: 10.1080/21541248.2017.1332505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neutrophils in circulation experience significant shear forces due to blood flow when they tether to the vascular endothelium. Biochemical and biophysical responses of neutrophils to the physical force of flowing blood modulate their behavior and promote tissue recruitment under pro-inflammatory conditions. Neutrophil mechanotransduction responses occur through mechanisms that are not yet fully understood. In our recent work, we showed that GEF-H1, a RhoA specific guanine nucleotide exchange factor (GEF), is required to maintain neutrophil motility and migration in response to shear stress. GEF-H1 re-localizes to flottilin-rich uropods in neutrophils in response to fluid shear stress and promotes spreading and crawling on activated endothelial cells. GEF-H1 drives cellular contractility through myosin light chain (MLC) phosphorylation downstream of the Rho-ROCK signaling axis. We propose that GEF-H1-dependent cell spreading and crawling in shear stress-dependent neutrophil recruitment from the vasculature are due to the specific localization of Rho-induced contractility in the uropod.
Collapse
Affiliation(s)
- Noah Fine
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario, Canada
| | - Ioannis D Dimitriou
- Princess Margaret Cancer Center, Toronto Medical Discovery Tower, Toronto, Ontario, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Center, Toronto Medical Discovery Tower, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|