1
|
Mai Y, Wu S, Zhang P, Chen N, Wu J, Wei F. The anti-oxidation related bioactive materials for intervertebral disc degeneration regeneration and repair. Bioact Mater 2025; 45:19-40. [PMID: 39588482 PMCID: PMC11585838 DOI: 10.1016/j.bioactmat.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/27/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent chronic spinal condition characterized by the deterioration of the intervertebral discs (IVD), leading to structural damage and associated pain. This degenerative process is closely linked to oxidative stress injury, which plays a pivotal role in its onset and progression. Oxidative stress in IVDD results from the excessive production of reactive oxygen species (ROS) and impaired ROS clearance mechanisms, disrupting the redox balance within the intervertebral disc. Consequently, oxidative stress contributes to the degradation of the extracellular matrix (ECM), promotes cell apoptosis, and exacerbates disc tissue damage. Current treatment options for IVDD face significant challenges in effectively alleviating the oxidative stress-induced damage and facilitating disc tissue repair. However, recent advancements in biomaterials have opened new avenues of hope for IVDD treatment by addressing oxidative stress. In this review, we first provide an overview of the pathophysiological process of IVDD and explore the mechanisms and pathways associated with oxidative stress injury. Then, we delve into the current research on antioxidant biomaterials employed in the treatment of IVDD, and outline the advantages and limitations of hydrogel, nanomaterials, polyphenol and inorganic materials. Finally, we propose the future research direction of antioxidant biomaterials in IVDD treatment. The main idea of this review is shown in Scheme 1.
Collapse
Affiliation(s)
- Yingjie Mai
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Siying Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science & Technology (Guangzhou), Nansha, Guangzhou, Guangdong Province, 511400, China
| | - Penghui Zhang
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Ningning Chen
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science & Technology (Guangzhou), Nansha, Guangzhou, Guangdong Province, 511400, China
- Division of Life Science, The Hong Kong University of Science & Technology, Hong Kong SAR, 999077, China
| | - Fuxin Wei
- Department of Orthopaedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| |
Collapse
|
2
|
Yu Y, Qiu L. Nanotherapy therapy for acute respiratory distress syndrome: a review. Front Med (Lausanne) 2024; 11:1492007. [PMID: 39712175 PMCID: PMC11658980 DOI: 10.3389/fmed.2024.1492007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a complex and life-threatening disease characterized by severe respiratory failure. The lethality of ARDS remains alarmingly high, especially with the persistent ravages of coronavirus disease 2019 (COVID-19) in recent years. ARDS is one of the major complications of neocoronavirus pneumonia and the leading cause of death in infected patients. The large-scale outbreak of COVID-19 has greatly increased the incidence and mortality of ARDS. Despite advancements in our understanding of the causes and mechanisms of ARDS, the current clinical practice is still limited to the use of supportive medications to alleviate its progression. However, there remains a pressing need for effective therapeutic drugs to combat this devastating disease. In this comprehensive review, we discuss the commonly used therapeutic drugs for ARDS, including steroids, vitamin C, targeted inhibitors, and heparin. While these medications have shown some promise in managing ARDS, there is still a significant gap in the availability of definitive treatments. Moreover, we highlight the potential of nanocarrier delivery systems, such as liposomes, lipid nanoparticles, polymer nanoparticles, and inorganic nanoparticles, as promising therapeutic approaches for ARDS in the future. These innovative delivery systems have demonstrated encouraging results in early clinical trials and offer the potential for more targeted and effective treatment options. Despite the promising early results, further clinical trials are necessary to fully assess the efficacy and safety of nanotherapies for ARDS. Additionally, more in-depth research should be conducted to focus on the continuous development of precision therapies targeting different stages of ARDS development or different triggers. This will provide more ideas and rationale for the treatment of ARDS and ultimately lead to better patient outcomes.
Collapse
Affiliation(s)
| | - Liping Qiu
- Haining People’s Hospital, Haining Branch, The First Affiliated Hospital, Zhejiang University, Haining, Zhejiang, China
| |
Collapse
|
3
|
Chang S, Lv J, Wang X, Su J, Bian C, Zheng Z, Yu H, Bao J, Xin Y, Jiang X. Pathogenic mechanisms and latest therapeutic approaches for radiation-induced lung injury: A narrative review. Crit Rev Oncol Hematol 2024; 202:104461. [PMID: 39103129 DOI: 10.1016/j.critrevonc.2024.104461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
The treatment of thoracic tumors with ionizing radiation can cause radiation-induced lung injury (RILI), which includes radiation pneumonitis and radiation-induced pulmonary fibrosis. Preventing RILI is crucial for controlling tumor growth and improving quality of life. However, the serious adverse effects of traditional RILI treatment methods remain a major obstacle, necessitating the development of novel treatment options that are both safe and effective. This review summarizes the molecular mechanisms of RILI and explores novel treatment options, including natural compounds, gene therapy, nanomaterials, and mesenchymal stem cells. These recent experimental approaches show potential as effective prevention and treatment options for RILI in clinical practice.
Collapse
Affiliation(s)
- Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jincai Lv
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xuanzhong Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Huiyuan Yu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Ying Xin
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Ma Y, Zhang Y, Osman H, Zhang D, Zhou T, Zhang Y, Wang Y. In Situ Photoactivated Antibacterial and Antioxidant Composite Materials to Promote Bone Repair. Macromol Biosci 2024; 24:e2400079. [PMID: 38692853 DOI: 10.1002/mabi.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Trauma and tumor removal usually cause bone defects; in addition, the related postoperative infection also shall be carefully considered clinically. In this study, polylactic acid (PLLA) composite fibers containing Cerium oxide (CeO2) are first prepared by electrospinning technology. Then, the PLLA/CeO2@PDA/Ag composite materials are successfully prepared by reducing silver ion (Ag+) to nano-silver (AgNPs) coating in situ and binding AgNPs to the materials surface by mussel structure liked polydopamine (PDA). In the materials, Ag+ can be slowly released in simulated body fluids. Based on the photothermal performance of AgNPs, the photothermal conversion efficiency of the materials is 21%, under NIR 808 nm illumination. The effective photothermal conversion can help materials fighting with E. coli and S. aureus in 3 h, with an antibacterial rate of 100%. Additionally, the sustained Ag+ release contributes to the antibacterial in long term. Meanwhile, the materials can mimic the bio-behavior of superoxide dismutase and catalase in decreasing the singlet oxygen level and removing the excess reactive oxygen species. Furthermore, the materials are beneficial for cell proliferation and osteogenic differentiation in vitro. In this study, a promising bone-regenerated material with high photothermal conversion efficiency and antibacterial and anti-oxidation properties, is successfully constructed.
Collapse
Affiliation(s)
- Yingao Ma
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi, 830054, P. R. China
| | - Yanxia Zhang
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi, 830054, P. R. China
| | - Henigul Osman
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi, 830054, P. R. China
| | - Dong Zhang
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi, 830054, P. R. China
| | - Tianyou Zhou
- College of Control Engineering, Xinjiang Institute of Engineering, 1350 Aidinghu Road, Urumqi, 830023, P. R. China
| | - Yunhai Zhang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Orthopedics, Wuxi Branch of Ruijin Hospital, 197 Zhixian Road, Wuxi, 214106, P. R. China
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi, 830054, P. R. China
- Sate Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Qixing District, 15 Yucai Road, Guilin, Guangxi, 541004, P. R. China
| |
Collapse
|
5
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
6
|
Shen M, You Y, Xu C, Chen Z. Epigallocatechin-3-Gallate attenuates lipopolysacharide-induced pneumonia via modification of inflammation, oxidative stress, apoptosis, and autophagy. BMC Complement Med Ther 2024; 24:147. [PMID: 38580929 PMCID: PMC10996149 DOI: 10.1186/s12906-024-04436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Pneumonia, the acute inflammation of lung tissue, is multi-factorial in etiology. Hence, continuous studies are conducted to determine the mechanisms involved in the progression of the disease and subsequently suggest effective treatment. The present study attempted to evaluate the effects of Epigallocatechin-3-Gallate (EGCG), an herbal antioxidant, on inflammation, oxidative stress, apoptosis, and autophagy in a rat pneumonia model. METHODS Forty male Wistar rats, 5 months old and 250-290 g were divided into four groups including control, EGCG, experimental pneumonia (i/p LPS injection, 1 mg/kg), and experimental pneumonia treated with EGCG (i/p, 15 mg/kg, 1 h before and 3 h after LPS instillation). Total cell number in the bronchoalveolar lavage fluid, inflammation (TNF-a, Il-6, IL-1β, and NO), oxidative stress (Nrf2, HO-1, SOD, CAT, GSH, GPX, MDA, and TAC), apoptosis (BCL-2, BAX, CASP-3 and CASP-9), and autophagy (mTOR, LC3, BECN1) were evaluated. RESULTS The findings demonstrated that EGCG suppresses the LPS-induced activation of inflammatory pathways by a significant reduction of inflammatory markers (p-value < 0.001). In addition, the upregulation of BCL-2 and downregulation of BAX and caspases revealed that EGCG suppressed LPS-induced apoptosis. Furthermore, ECGC suppressed oxidative injury while promoting autophagy in rats with pneumonia (p-value < 0.05). CONCLUSION The current study revealed that EGCG could suppress inflammation, oxidative stress, apoptosis, and promote autophagy in experimental pneumonia models of rats suggesting promising therapeutical properties of this compound to be used in pneumonia management.
Collapse
Affiliation(s)
- Meili Shen
- Pediatric Critical Care Medicine Department, Quanzhou Children's Hospital (Quanzhou Maternal and Child Health Hospital), Fengze District, Quanzhou City, Fujian Province, 362000, China.
| | - Yuting You
- Children's Respiratory Department, Quanzhou Children's Hospital (Quanzhou Maternal and Child Health Hospital), Fengze District, Quanzhou City, Fujian Province, 362000, China
| | - Chengna Xu
- Pediatric Critical Care Medicine Department, Quanzhou Children's Hospital (Quanzhou Maternal and Child Health Hospital), Fengze District, Quanzhou City, Fujian Province, 362000, China
| | - Zhixu Chen
- Pediatric Critical Care Medicine Department, Quanzhou Children's Hospital (Quanzhou Maternal and Child Health Hospital), Fengze District, Quanzhou City, Fujian Province, 362000, China
| |
Collapse
|
7
|
Dhar A, Gupta SL, Saini P, Sinha K, Khandelwal A, Tyagi R, Singh A, Sharma P, Jaiswal RK. Nanotechnology-based theranostic and prophylactic approaches against SARS-CoV-2. Immunol Res 2024; 72:14-33. [PMID: 37682455 DOI: 10.1007/s12026-023-09416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
SARS-CoV-2 (COVID-19) pandemic has been an unpredicted burden on global healthcare system by infecting over 700 million individuals, with approximately 6 million deaths worldwide. COVID-19 significantly impacted all sectors, but it very adversely affected the healthcare system. These effects were much more evident in the resource limited part of the world. Individuals with acute conditions were also severely impacted. Although classical COVID-19 diagnostics such as RT-PCR and rapid antibody testing have played a crucial role in reducing the spread of infection, these diagnostic techniques are associated with certain limitations. For instance, drawback of RT-PCR diagnostics is that due to degradation of viral RNA during shipping, it can give false negative results. Also, rapid antibody testing majorly depends on the phase of infection and cannot be performed on immune compromised individuals. These limitations in current diagnostic tools require the development of nanodiagnostic tools for early detection of COVID-19 infection. Therefore, the SARS-CoV-2 outbreak has necessitated the development of specific, responsive, accurate, rapid, low-cost, and simple-to-use diagnostic tools at point of care. In recent years, early detection has been a challenge for several health diseases that require prompt attention and treatment. Disease identification at an early stage, increased imaging of inner health issues, and ease of diagnostic processes have all been established using a new discipline of laboratory medicine called nanodiagnostics, even before symptoms have appeared. Nanodiagnostics refers to the application of nanoparticles (material with size equal to or less than 100 nm) for medical diagnostic purposes. The special property of nanomaterials compared to their macroscopic counterparts is a lesser signal loss and an enhanced electromagnetic field. Nanosize of the detection material also enhances its sensitivity and increases the signal to noise ratio. Microchips, nanorobots, biosensors, nanoidentification of single-celled structures, and microelectromechanical systems are some of the most modern nanodiagnostics technologies now in development. Here, we have highlighted the important roles of nanotechnology in healthcare sector, with a detailed focus on the management of the COVID-19 pandemic. We outline the different types of nanotechnology-based diagnostic devices for SARS-CoV-2 and the possible applications of nanomaterials in COVID-19 treatment. We also discuss the utility of nanomaterials in formulating preventive strategies against SARS-CoV-2 including their use in manufacture of protective equipment, formulation of vaccines, and strategies for directly hindering viral infection. We further discuss the factors hindering the large-scale accessibility of nanotechnology-based healthcare applications and suggestions for overcoming them.
Collapse
Affiliation(s)
- Atika Dhar
- National Institute of Immunology, New Delhi, India, 110067
| | | | - Pratima Saini
- National Institute of Immunology, New Delhi, India, 110067
| | - Kirti Sinha
- Department of Zoology, Patna Science College, Patna University, Patna, Bihar, India
| | | | - Rohit Tyagi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alka Singh
- Department of Chemistry, Feroze Gandhi College, Raebareli, U.P, India, 229001
| | - Priyanka Sharma
- Department of Zoology, Patna Science College, Patna University, Patna, Bihar, India.
| | - Rishi Kumar Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA.
| |
Collapse
|
8
|
Unnikrishnan G, Joy A, Megha M, Kolanthai E, Senthilkumar M. Exploration of inorganic nanoparticles for revolutionary drug delivery applications: a critical review. DISCOVER NANO 2023; 18:157. [PMID: 38112849 PMCID: PMC10730791 DOI: 10.1186/s11671-023-03943-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The nanosystems for delivering drugs which have evolved with time, are being designed for greater drug efficiency and lesser side-effects, and are also complemented by the advancement of numerous innovative materials. In comparison to the organic nanoparticles, the inorganic nanoparticles are stable, have a wide range of physicochemical, mechanical, magnetic, and optical characteristics, and also have the capability to get modified using some ligands to enrich their attraction towards the molecules at the target site, which makes them appealing for bio-imaging and drug delivery applications. One of the strong benefits of using the inorganic nanoparticles-drug conjugate is the possibility of delivering the drugs to the affected cells locally, thus reducing the side-effects like cytotoxicity, and facilitating a higher efficacy of the therapeutic drug. This review features the direct and indirect effects of such inorganic nanoparticles like gold, silver, graphene-based, hydroxyapatite, iron oxide, ZnO, and CeO2 nanoparticles in developing effective drug carrier systems. This article has remarked the peculiarities of these nanoparticle-based systems in pulmonary, ocular, wound healing, and antibacterial drug deliveries as well as in delivering drugs across Blood-Brain-Barrier (BBB) and acting as agents for cancer theranostics. Additionally, the article sheds light on the plausible modifications that can be carried out on the inorganic nanoparticles, from a researcher's perspective, which could open a new pathway.
Collapse
Affiliation(s)
- Gayathri Unnikrishnan
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Anjumol Joy
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - M Megha
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Elayaraja Kolanthai
- Department of Materials Sciences and Engineering, Advanced Materials Processing and Analysis Centre, University of Central Florida, Orlando, FL, USA.
| | - M Senthilkumar
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India.
| |
Collapse
|
9
|
Corsi F, Deidda Tarquini G, Urbani M, Bejarano I, Traversa E, Ghibelli L. The Impressive Anti-Inflammatory Activity of Cerium Oxide Nanoparticles: More than Redox? NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2803. [PMID: 37887953 PMCID: PMC10609664 DOI: 10.3390/nano13202803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Cerium oxide nanoparticles (CNPs) are biocompatible nanozymes exerting multifunctional biomimetic activities, including superoxide dismutase (SOD), catalase, glutathione peroxidase, photolyase, and phosphatase. SOD- and catalase-mimesis depend on Ce3+/Ce4+ redox switch on nanoparticle surface, which allows scavenging the most noxious reactive oxygen species in a self-regenerating, energy-free manner. As oxidative stress plays pivotal roles in the pathogenesis of inflammatory disorders, CNPs have recently attracted attention as potential anti-inflammatory agents. A careful survey of the literature reveals that CNPs, alone or as constituents of implants and scaffolds, strongly contrast chronic inflammation (including neurodegenerative and autoimmune diseases, liver steatosis, gastrointestinal disorders), infections, and trauma, thereby ameliorating/restoring organ function. By general consensus, CNPs inhibit inflammation cues while boosting the pro-resolving anti-inflammatory signaling pathways. The mechanism of CNPs' anti-inflammatory effects has hardly been investigated, being rather deductively attributed to CNP-induced ROS scavenging. However, CNPs are multi-functional nanozymes that exert additional bioactivities independent from the Ce3+/Ce4+ redox switch, such as phosphatase activity, which could conceivably mediate some of the anti-inflammatory effects reported, suggesting that CNPs fight inflammation via pleiotropic actions. Since CNP anti-inflammatory activity is potentially a pharmacological breakthrough, it is important to precisely attribute the described effects to one or another of their nanozyme functions, thus achieving therapeutic credibility.
Collapse
Affiliation(s)
- Francesca Corsi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Greta Deidda Tarquini
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Marta Urbani
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Ignacio Bejarano
- Institute of Biomedicine of Seville (IBiS), University of Seville, HUVR, Junta de Andalucía, CSIC, 41013 Seville, Spain;
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville, 41004 Seville, Spain
| | - Enrico Traversa
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.D.T.); (M.U.); (E.T.)
| | - Lina Ghibelli
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
10
|
Çapkın Yurtsever M, Güldağ G. TiO 2, CeO 2, and TiO 2-CeO 2 nanoparticles incorporated 2.5D chitosan hydrogels: Gelation behavior and cytocompatibility. J Mech Behav Biomed Mater 2023; 146:106088. [PMID: 37619284 DOI: 10.1016/j.jmbbm.2023.106088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
In this study, gelation behavior and cytocompatibility of 2.5D chitosan hydrogels were investigated in the presence of TiO2, CeO2 and TiO2-CeO2 composite nanoparticles. Chemical co-precipitation method was used for nanoparticle synthesis and they were heat treated at 600 °C and 700 °C. Gelation of the chitosan solutions was carried out at 37 °C in the presence of glycerol phosphate and genipin as crosslinkers. The gelation time of chitosan was decreased by all of the nanoparticles whereas its elastic modulus was increased by nanoparticles addition. Chitosan solutions containing CeO2 or TiO2-CeO2 nanoparticles showed faster gel formation compared to chitosan solutions containing only TiO2 nanoparticles. CeO2@700 °C nanoparticles decreased the gelation time by 46% and increased elastic modulus by 14%. Average pore diameter of the hydrogel decreased from 127 ± 62 μm to 77 ± 33 μm, water uptake decreased 21% and thermal stability increased in the presence of CeO2@700 °C nanoparticles compared to chitosan hydrogel. Cell viability results indicated that chitosan hydrogels with or without nanoparticles created 2.5D environment supporting cellular proliferation approximately 1.5 times more than TCPS due to their high porous surfaces. Immunofluorescence images were also supported cell viability results. Therefore, CeO2 or TiO2-CeO2 composite nanoparticles incorporated 2.5D chitosan hydrogels may be alternative tissue engineering materials with their fast gelation, ease of use, low cost, light transparency, and cytocompatibility.
Collapse
Affiliation(s)
- Merve Çapkın Yurtsever
- Faculty of Engineering, Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye.
| | - Gözde Güldağ
- Faculty of Engineering, Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye
| |
Collapse
|
11
|
Uskoković V. Lessons from the history of inorganic nanoparticles for inhalable diagnostics and therapeutics. Adv Colloid Interface Sci 2023; 315:102903. [PMID: 37084546 DOI: 10.1016/j.cis.2023.102903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
The respiratory tract is one of the most accessible ones to exogenous nanoparticles, yet drug delivery by their means to it is made extraordinarily challenging because of the plexus of aerodynamic, hemodynamic and biomolecular factors at cellular and extracellular levels that synergistically define the safety and efficacy of this process. Here, the use of inorganic nanoparticles (INPs) for inhalable diagnostics and therapies of the lung is viewed through the prism of the history of studies on the interaction of INPs with the lower respiratory tract. The most conceptually and methodologically innovative and illuminative studies are referred to in the chronological order, as they were reported in the literature, and the trends in the progress of understanding this interaction of immense therapeutic and toxicological significance are being deduced from it. The most outstanding actual trends delineated include the diminishment of toxicity via surface functionalization, cell targeting, tagging and tracking via controlled binding and uptake, hybrid INP treatments, magnetic guidance, combined drug and gene delivery, use as adjuvants in inhalable vaccines, and other. Many of the understudied research directions, which have been accomplished by the nanostructured organic polymers in the pulmonary niche, are discussed. The progress in the use of INPs as inhalable diagnostics or therapeutics has been hampered by their well-recognized inflammatory potential and toxicity in the respiratory tract. However, the annual numbers of methodologically innovative studies have been on the rise throughout the past two decades, suggesting that this is a prolific direction of research, its comparatively poor commercial takings notwithstanding. Still, the lack of consensus on the effects of many INP compositions at low but therapeutically effective doses, the plethora of contradictory reports on ostensibly identical chemical compositions and NP properties, and the many cases of antagonism in combinatorial NP treatments imply that the rational design of inhalable medical devices based on INPs must rely on qualitative principles for the most part and embrace a partially stochastic approach as well. At the same time, the fact that the most studied INPs for pulmonary applications have been those with some of the thickest records of pulmonary toxicity, e.g., carbon, silver, gold, silica and iron oxide, is a silent call for the expansion of the search for new inorganic compositions for use in inhalable therapies to new territories.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, 7 Park Vista, Irvine, CA 92604, USA; Department of Mechanical Engineering, San Diego State University, 5500 Campanile Dr., San Diego, CA 92182, USA.
| |
Collapse
|
12
|
Chitosan Composites with Bacterial Cellulose Nanofibers Doped with Nanosized Cerium Oxide: Characterization and Cytocompatibility Evaluation. Int J Mol Sci 2023; 24:ijms24065415. [PMID: 36982493 PMCID: PMC10051111 DOI: 10.3390/ijms24065415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
In this work, new composite films were prepared by incorporating the disintegrated bacterial cellulose (BCd) nanofibers and cerium oxide nanoparticles into chitosan (CS) matrices. The influence of the amount of nanofillers on the structure and properties of the polymer composites and the specific features of the intermolecular interactions in the materials were determined. An increase in film stiffness was observed as a result of reinforcing the CS matrix with BCd nanofibers: the Young’s modulus increased from 4.55 to 6.3 GPa with the introduction of 5% BCd. A further increase in Young’s modulus of 6.7 GPa and a significant increase in film strength (22% increase in yield stress compared to the CS film) were observed when the BCd concentration was increased to 20%. The amount of nanosized ceria affected the structure of the composite, followed by a change in the hydrophilic properties and texture of the composite films. Increasing the amount of nanoceria to 8% significantly improved the biocompatibility of the films and their adhesion to the culture of mesenchymal stem cells. The obtained nanocomposite films combine a number of favorable properties (good mechanical strength in dry and swollen states, improved biocompatibility in relation to the culture of mesenchymal stem cells), which allows us to recommend them for use as a matrix material for the culture of mesenchymal stem cells and wound dressings.
Collapse
|
13
|
Xiong L, Bao H, Li S, Gu D, Li Y, Yin Q, Li W, Miao L, Liu C. Cerium oxide nanoparticles protect against chondrocytes and cartilage explants from oxidative stress via Nrf2/HO-1 pathway in temporomandibular joint osteoarthritis. Front Bioeng Biotechnol 2023; 11:1076240. [PMID: 36815898 PMCID: PMC9937079 DOI: 10.3389/fbioe.2023.1076240] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress is closely linked to the etiology of temporomandibular joint osteoarthritis. (TMJ-OA) and is an important therapeutic target. Cerium oxide nanoparticles (CNPs) have been broadly studied owing to their powerful antioxidant properties and potential preventive and therapeutic effects against chronic diseases. The current study was designed to explore the protective effects of CNPs on the progression of TMJ-OA and their potential mechanisms. We detected the ability of CNPs to eliminate reactive oxygen species (ROS) in chondrocytes. Moreover, their protective effects on chondrocytes were detected in the level of gene and protein. Furthermore, TUNEL assay, histology and safranin O-fast green staining were used to detect the beneficial effects of CNPs on cartilage explants. The mechanism of CNPs, protecting condylar cartilage by reducing inflammation, was further explored by knocking down the Nuclear factor-erythroid 2-related factor (Nrf2) gene. CNPs could reduce the ROS levels in chondrocytes and cartilage explants and reverse the IL-1β-induced imbalance of cartilage matrix metabolism and apoptosis. The protective effects of CNPs on cartilage were lost after key antioxidant factors including Nrf2 and heme-oxygenase 1(HO-1) were significantly reduced. In conclusion, this study demonstrated for the first time that activating the Nrf2/HO-1 signaling pathway by CNPs might have therapeutic potential for TMJ-OA.
Collapse
Affiliation(s)
- Liping Xiong
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Han Bao
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Size Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Deao Gu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuyang Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qianwen Yin
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen Li
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China,*Correspondence: Leiying Miao, ; Chao Liu,
| | - Chao Liu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China,*Correspondence: Leiying Miao, ; Chao Liu,
| |
Collapse
|
14
|
Cong Y, Baimanov D, Zhou Y, Chen C, Wang L. Penetration and translocation of functional inorganic nanomaterials into biological barriers. Adv Drug Deliv Rev 2022; 191:114615. [PMID: 36356929 DOI: 10.1016/j.addr.2022.114615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
With excellent physicochemical properties, inorganic nanomaterials (INMs) have exhibited a series of attractive applications in biomedical fields. Biological barriers prevent successful delivery of nanomedicine in living systems that limits the development of nanomedicine especially for sufficient delivery of drugs and effective therapy. Numerous researches have focused on overcoming these biological barriers and homogeneity of organisms to enhance therapeutic efficacy, however, most of these strategies fail to resolve these challenges. In this review, we present the latest progress about how INMs interact with biological barriers and penetrate these barriers. We also summarize that both native structure and components of biological barriers and physicochemical properties of INMs contributed to the penetration capacity. Knowledge about the relationship between INMs structure and penetration capacity will guide the design and application of functional and efficient nanomedicine in the future.
Collapse
Affiliation(s)
- Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China & Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China & Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China
| | - Yunlong Zhou
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China & Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; GBA Research Innovation Institute for Nanotechnology, Guangzhou 510700, Guangdong, PR China; Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China & Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
15
|
Meng L, Liao X, Wang Y, Chen L, Gao W, Wang M, Dai H, Yan N, Gao Y, Wu X, Wang K, Liu Q. Pharmacologic therapies of ARDS: From natural herb to nanomedicine. Front Pharmacol 2022; 13:930593. [PMID: 36386221 PMCID: PMC9651133 DOI: 10.3389/fphar.2022.930593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.
Collapse
Affiliation(s)
- Linlin Meng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Ximing Liao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Yuanyuan Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Liangzhi Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Muyun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Huiling Dai
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
| | - Na Yan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kun Wang
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| | - Qinghua Liu
- Department of Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, China
- *Correspondence: Kun Wang, ; Qinghua Liu,
| |
Collapse
|
16
|
Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Liu D, Long M, Gao L, Chen Y, Li F, Shi Y, Gu N. Nanomedicines Targeting Respiratory Injuries for Pulmonary Disease Management. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202112258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/02/2025]
Abstract
AbstractThe respiratory system holds crucial importance in the biology of vertebrate animals. Injuries of the respiratory system caused by viral infections (e.g., by COVID‐19, MERS, and SARS) can lead to severe or lethal conditions. So far there are no effective treatments for respiratory injuries. This represents a highly unmet clinical need, e.g., during the current COVID‐19 pandemic. Nanomedicines have high potential in the treatment of respiratory injuries. In this review, the pathology and clinical treatments of major respiratory injuries, acute lung injury, and acute respiratory distress syndrome are briefly summarized. The review primarily focuses on nanomedicines based on liposomes, solid lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, which are tested in preclinical models for the treatment of respiratory injuries. These nanomedicines are utilized to deliver a variety of therapeutic agents, including corticosteroids, statins, and nucleic acids. Furthermore, nanomedicines are also investigated for other respiratory diseases including chronic obstructive pulmonary disease and asthma. The promising preclinical results of various nanoformulations from these studies suggest the potential of nanomedicines for future clinical management of respiratory viral infections and diseases.
Collapse
Affiliation(s)
- Dong Liu
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Mengmeng Long
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biomedical Sciences and Medical Engineering Southeast University Nanjing 210009 P. R. China
| | - Leilei Gao
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Yanjun Chen
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Fang Li
- School of Biological and Pharmaceutical Engineering West Anhui University Lu'An 237012 P. R. China
| | - Yang Shi
- Institute for Experimental Molecular Imaging Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering Faculty of Medicine RWTH Aachen University 52074 Aachen Germany
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biomedical Sciences and Medical Engineering Southeast University Nanjing 210009 P. R. China
| |
Collapse
|
18
|
Muhammad W, Zhai Z, Wang S, Gao C. Inflammation-modulating nanoparticles for pneumonia therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1763. [PMID: 34713969 DOI: 10.1002/wnan.1763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Pneumonia is a common but serious infectious disease, and is the sixth leading cause for death. The foreign pathogens such as viruses, fungi, and bacteria establish an inflammation response after interaction with lung, leading to the filling of bronchioles and alveoli with fluids. Although the pharmacotherapies have shown their great effectiveness to combat pathogens, advanced methods are under developing to treat complicated cases such as virus-infection and lung inflammation or acute lung injury (ALI). The inflammation modulation nanoparticles (NPs) can effectively suppress immune cells and inhibit inflammatory molecules in the lung site, and thereby alleviate pneumonia and ALI. In this review, the pathological inflammatory microenvironments in pneumonia, which are instructive for the design of biomaterials therapy, are summarized. The focus is then paid to the inflammation-modulating NPs that modulate the inflammatory cells, cytokines and chemokines, and microenvironments of pneumonia for better therapeutic effects. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Saifi MA, Seal S, Godugu C. Nanoceria, the versatile nanoparticles: Promising biomedical applications. J Control Release 2021; 338:164-189. [PMID: 34425166 DOI: 10.1016/j.jconrel.2021.08.033] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Nanotechnology has been a boon for the biomedical field due to the freedom it provides for tailoring of pharmacokinetic properties of different drug molecules. Nanomedicine is the medical application of nanotechnology for the diagnosis, treatment and/or management of the diseases. Cerium oxide nanoparticles (CNPs) are metal oxide-based nanoparticles (NPs) which possess outstanding reactive oxygen species (ROS) scavenging activities primarily due to the availability of "oxidation switch" on their surface. These NP have been found to protect from a number of disorders with a background of oxidative stress such as cancer, diabetes etc. In fact, the CNPs have been found to possess the environment-dependent ROS modulating properties. In addition, the inherent catalase, SOD, oxidase, peroxidase and phosphatase mimetic properties of CNPs provide them superiority over a number of NPs. Further, chemical reactivity of CNPs seems to be a function of their surface chemistry which can be precisely tuned by defect engineering. However, the contradictory reports make it necessary to critically evaluate the potential of CNPs, in the light of available literature. The review is aimed at probing the feasibility of CNPs to push towards the clinical studies. Further, we have also covered and censoriously discussed the suspected negative impacts of CNPs before making our way to a consensus. This review aims to be a comprehensive, authoritative, critical, and accessible review of general interest to the scientific community.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sudipta Seal
- University of Central Florida, 12760 Pegasus Drive ENG I, Suite 207, Orlando, FL 32816, USA
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
20
|
Xiao MF, Zeng C, Li SH, Yuan FL. Applications of nanomaterials in COVID-19 pandemic. RARE METALS 2021; 41:1-13. [PMID: 34539132 PMCID: PMC8442651 DOI: 10.1007/s12598-021-01789-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/14/2021] [Accepted: 03/29/2021] [Indexed: 05/10/2023]
Abstract
The novel coronavirus 2019 (COVID-19) pandemic represents one of the biggest global health threats in the last two decades, so researchers around the world are searching for solutions and treatments for COVID-19. At the time of writing, there are no specific drugs that have demonstrated suitable effectiveness in treating COVID-19. The current challenge involves designing tools for the prevention, rapid and accurate diagnosis, drug delivery, and effective treatment of this novel coronavirus. In this short review, we discuss how nanotechnology offers new ways to combat COVID-19, and how nanomaterials can be applied to control the COVID-19 outbreak. We also summarize relevant studies regarding the use of nanomaterials for preventing viral spread, preparing vaccines, and diagnosing coronavirus, as well as studies that show how nanoparticles can be used as drug delivery systems for the treatment of viral infections. Research on nanotechnology-based diagnosis, drug delivery, and antiviral therapy is currently in the early stages. However, the unique chemical properties of some nanomaterials highlight the broad prospect of nanomaterials in the future, and we propose that they will play an important role in the fight against COVID-19. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Mei-Fang Xiao
- Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Shao-Hui Li
- Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008 China
| | - Fu-Lai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008 China
| |
Collapse
|
21
|
Mousavi A, Gharzi A, Gholami M, Beyranvand F, Takesh M. The therapeutic effect of cerium oxide nanoparticle on ischaemia/reperfusion injury in rat testis. Andrologia 2021; 53:e14231. [PMID: 34455607 DOI: 10.1111/and.14231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022] Open
Abstract
Testicular torsion is a dangerous urogenital disorder which is caused by twisting of spermatic cord, and unless immediate treatments happen at a proper time, oxidative stress, occurred during ischaemia reperfusion, finally leads to irreversible disintegration of testicular tissue. One of the first preventive lines is to administrate antioxidant factors. In the present study, we investigate the therapeutic effect of cerium oxide nanoparticle on the injury. We divided 45 rats into nine groups, subjected eight groups to testicular torsion-detorsion, injected different doses of cerium oxide nanoparticle into the peritoneum of six groups and analysed all the groups regarding spermatogenetic indices including sperm count, sperm viability and Johnson mean. Our results showed that cerium oxide nanoparticle can alleviate oxidative stress in testis, and this alleviation promotes the reproductive indices as the concentration of cerium oxide nanoparticles increases. The catalase-mimetic and superoxide dismutase-mimetic activities of cerium oxide nanoparticle are the most probable theories to explain the antioxidant effect of the nanoparticle.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Ahmad Gharzi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Mohammadreza Gholami
- Department of Anatomical Sciences, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Beyranvand
- Department of Surgery, Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohsen Takesh
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
22
|
Asgharzadeh F, Hashemzadeh A, Rahmani F, Yaghoubi A, Nazari SE, Avan A, Mehr SMH, Soleimanpour S, Khazaei M. Cerium oxide nanoparticles acts as a novel therapeutic agent for ulcerative colitis through anti-oxidative mechanism. Life Sci 2021; 278:119500. [PMID: 33862111 DOI: 10.1016/j.lfs.2021.119500] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cerium (IV) oxide (CeO2) exhibit anti-inflammatory activity via scavenge free radicals and decreasing the oxygen species (ROS) production. Here we aimed to exhibit the therapeutic effect of this nanoparticle in experimental colitis models. METHODS Cerium oxide nanoparticles (CeONPs) were synthesized via using UiO-66 as a precursor. We used dextran sodium sulfate (DSS) to induce colitis in experimental models to investigate the anti-inflammatory effect of CeONPs. Colitis models are divided into four groups to receive the treatment, including control, colitis, cerium oxide, and sulfasalazine. We evaluated the therapeutic effects of CeONPs for the increased colitis clinical symptoms and attenuated the histological damage to colon tissue in colitis. RESULT This nanoparticle was significantly able to reduce the clinical symptoms of colitis. Moreover, CeONPs can enhance the disease activity index such as body lose weight, diarrhea, rectal bleeding, colon length, and spleen weight. Moreover, CeONPs showed a significant reduction in the histological characteristics of the colitis models. CONCLUSION These results suggest that CeONPs can be considered as promising therapeutic agents in treating the ulcerative colitis.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Rahmani
- Department of Biochemistry, Faculty of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian Mehr
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Huang J, Guo J, Zou X, Zhu J, Wu S, Zhang T. Bioinspired Heteromultivalent Chitosan- α-Fe₂O₃/Gadofullerene Hybrid Composite for Enhanced Antibiotic-Resistant Bacterial Pneumonia. J Biomed Nanotechnol 2021; 17:1217-1228. [PMID: 34167634 DOI: 10.1166/jbn.2021.3093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein, we have designed and developed a heteromultivalent chitosan base α-Fe₂O₃/Gadofullerene (GdF) hybrid composite through a simple chemical precipitation method. Unlike other methods, the addition of external stabilizing agents to generate GdF nanoparticles (NPs) was not necessary herein. The prepared chitosan-α-Fe₂O₃/GdF hybrid nanocomposites were characterized using UV, FT-IR, XRD and morphological microscopic analyses. The results showed that α-Fe₂O₃ and GdF hybrid nanocomposites were successfully grown on the surface of chitosan. The FT-IR vibration peaks showed the formation of Fe₂O₃ NPs, and the vibration peak for Fe-O was 568 cm-1. The broad absorption peak observed in the range of 250-350 nm and a sharp absorption peak at 219 nm represents the UV absorption of the synthesized hybrid composites. XRD pattern showed sharp peaks of crystallinity and purity of α-Fe₂O₃ nanoparticles. Finally, the synthesized chitosan-α-Fe₂O₃/GdF hybrid composites were screened for their antibacterial resistance against the Escherichia coli, Pseudomonas aeruginosa, Bacilus subtilis, and Staphylococcus aereus. In addition, in vitro biocompatibility results exhibited that developed hybrid samples have provided high cell compatibility with fibroblast (L929) cell line. The in vivo bio inspired nanotherapeutics have the potential action to effective inhibition ability on antibiotic-resistant P. aeruginosa, which has been main factor of inducing pneumonia. In conclusion, we expect biomimicking systems combined with the effective antibacterial agent could be the suitable next generation therapeutic potential factors for prevention and treatment of antibiotic-resistant pneumonia.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| | - Jiquan Guo
- Department of Pulmonary and Critical Care Medicine, Guangdon Provincial Peoples Hospital/Guangdon Academy of Medical Sciences/Guangdon Provincial Geriatrics Institute, Guangzhou 510000, PR China
| | - Xiaoling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| | - Jiaxin Zhu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| | - Shaozhu Wu
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| | - Tiantuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, and Institute of Respiratory Diseases, Guangzhou 510000, PR China
| |
Collapse
|
24
|
Zhang R, Wu S, Ding Q, Fan Q, Dai Y, Guo S, Ye Y, Li C, Zhou M. Recent advances in cell membrane-camouflaged nanoparticles for inflammation therapy. Drug Deliv 2021; 28:1109-1119. [PMID: 34121563 PMCID: PMC8205088 DOI: 10.1080/10717544.2021.1934188] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During inflammation, inflammatory cells are rapidly recruited to sites of infection or injury, where they cross physiological barriers around the infected site and further infiltrate into the tissues. Other cells, such as erythrocytes, endothelial cells and stem cells, also play prominent roles in host defense and tissue repair. In recent years, nanotechnology has been exploited to deliver drugs to sites of inflammation. For example, nanoparticles camouflaged with a cell membrane are a novel drug-delivery platform that can interact with the immune system and that show great potential for treating inflammation. Encapsulating drugs inside plasma membranes derived from various cells involved in inflammatory processes can be effective against inflammation. This review describes the preparation, characterization, and properties of various types of cell membrane-camouflaged biomimetic nanoparticles. It also summarizes preclinical research into their efficacy against inflammation.
Collapse
Affiliation(s)
- Rongtao Zhang
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqiong Wu
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qian Ding
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingze Fan
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Dai
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shiwei Guo
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Ye
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Meiling Zhou
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
25
|
Bian S, Cai H, Cui Y, Liu W, Xiao C. Nanomedicine-Based Therapeutics to Combat Acute Lung Injury. Int J Nanomedicine 2021; 16:2247-2269. [PMID: 33776431 PMCID: PMC7987274 DOI: 10.2147/ijn.s300594] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury (ALI) or its aggravated stage acute respiratory distress syndrome (ARDS) may lead to a life-threatening form of respiratory failure, resulting in high mortality of up to 30-40% in most studies. Although there have been decades of research since ALI was first described in 1967, the clinical therapeutic alternatives for ALI are still in a state of limited availability. Supportive treatment and mechanical ventilation still have priority. Despite some preclinical studies demonstrating the benefit of pharmacological interventions, none of these has been proved completely effective to date. Recent advances in nanotechnology may shed new light on the pharmacotherapy of ALI. Nanomedicine possesses targeting and synergistic therapeutic capability, thus boosting pharmaceutical efficacy and mitigating the side effects. Currently, a variety of nanomedicine with diverse frameworks and functional groups have been elaborately developed, in accordance with their lung targeting ability and the pathophysiology of ALI. The in-depth review of the current literature reveals that liposomes, polymers, inorganic materials, cell membranes, platelets, and other nanomedicine approaches have conferred attractive therapeutic benefits for ALI treatment. In this review, we explore the recent progress in the study of the nanomedicine-based therapy of ALI, presenting various nanomedical approaches, drug choices, therapeutic strategies, and outcomes, thereby providing insight into the trends.
Collapse
Affiliation(s)
- Shuai Bian
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Hongfei Cai
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Youbin Cui
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Wanguo Liu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
| |
Collapse
|
26
|
Tang Z, Zhang X, Shu Y, Guo M, Zhang H, Tao W. Insights from nanotechnology in COVID-19 treatment. NANO TODAY 2021; 36:101019. [PMID: 33178330 PMCID: PMC7640897 DOI: 10.1016/j.nantod.2020.101019] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
In just a few months, SARS-CoV-2 and the disease it causes, COVID-19, created a worldwide pandemic. Virologists, biologists, pharmacists, materials scientists, and clinicians are collaborating to develop efficient treatment strategies. Overall, in addition to the use of clinical equipment to assist patient rehabilitation, antiviral drugs and vaccines are the areas of greatest focus. Given the physical size of SARS-CoV-2 and the vaccine delivery platforms currently in clinical trials, the relevance of nanotechnology is clear, and previous antiviral research using nanomaterials also supports this connection. Herein we briefly summarize current representative strategies regarding nanomaterials in antiviral research. We focus specifically on SARS-CoV-2 and the detailed role that nanotechnology can play in addressing this pandemic, including i) using FDA-approved nanomaterials for drug/vaccine delivery, including further exploration of the inhalation pathway; ii) introducing promising nanomaterials currently in clinical trials for drug/vaccine delivery; iii) designing novel biocompatible nanomaterials to combat the virus via interfering in its life cycle; and iv) promoting the utilization of nanomaterials in pneumonia treatment.
Collapse
Affiliation(s)
- Zhongmin Tang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Xingcai Zhang
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, United States
| | - Yiqing Shu
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ming Guo
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
27
|
Abstract
Radiation-induced lung injury (RILI) is a common complication in cancer patients receiving local thoracic radiation and bone marrow transplantation conditioning. It is divided into early-stage radiation pneumonitis and advanced radiation fibrosis of the lung. This severely hampers the quality of life and survival of cancer patients. Meanwhile, RILI is a major factor limiting radiation doses in clinical practice, which affects the local control of cancer. Unfortunately, the mechanism of RILI is still not well defined, and there are no treatment options available for these patients. In this review we summarize the methods and agents used for the treatment and prevention of RILI, with the aim of increasing understanding of RILI.
Collapse
|
28
|
Qian Q, Zhang Y, Chen Y, Ye C, Feng Q, Tu J, Lu Z, Xu Y, Ran N, Xing G, Yu Z. Assessment of pulmonary toxicity of potential antioxidant drug PEGylated nanoceria after intratracheal instillation in rats. J Appl Toxicol 2020; 41:941-952. [PMID: 33094530 DOI: 10.1002/jat.4079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Cerium oxide (CeO2 ) nanoparticles have unique redox properties and exert excellent antioxidant effects in the biological environment. In recent years, many researchers have focused on the CeO2 nanoparticles as an effective antioxidant drug in the prevention and treatment of various diseases. However, the toxicity of CeO2 nanoparticles in vivo remains controversial and still needs intensive research. Therefore, the objective of this study is to investigate the pulmonary and systemic toxicity in rats after 14 days of exposure to the PEGylated CeO2 nanoparticles (abbreviated as CNPs; exposure dose of 2, 10, or 20 mg/kg) through a single intratracheal instillation (IT). We assessed the indicators of lung injury and the pathological damage degree of lung tissue. The bronchoalveolar lavage fluid (BALF) analysis and lung histopathology revealed the occurrence of slight pulmonary inflammation in the 20-mg/kg experimental group rats. However, the inflammation factors in the lung tissue of every group rats did not significantly increase, and the levels of superoxide dismutase (SOD) and glutathione (GSH) in lung tissue homogenate rose considerably in the experimental groups. Collectively, these results indicated that pulmonary exposure by the high dose of CNPs could induce mild pulmonary inflammation but did not cause severe systemic toxicity. Moreover, we speculate that the mechanism of pulmonary toxicity of CNPs in rats was due to the autophagic death of healthy lung epithelial cells mediated by endoplasmic reticulum stress. Our results implicate that CNPs can be safely used as an antioxidant drug for the oxidative stress pulmonary diseases.
Collapse
Affiliation(s)
- Qinqing Qian
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yun Zhang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yuan Chen
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Chenqiao Ye
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Qiang Feng
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Jinqing Tu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Zhenbo Lu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yilan Xu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Na Ran
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Guiying Xing
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| | - Zhangsen Yu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
29
|
Huang Y, Wu Q, Zhao L, Xiong C, Xu Y, Dong X, Wen Y, Cao J. UHPLC-MS-Based Metabolomics Analysis Reveals the Process of Schistosomiasis in Mice. Front Microbiol 2020; 11:1517. [PMID: 32760365 PMCID: PMC7371968 DOI: 10.3389/fmicb.2020.01517] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolomics, as an emerging technology, has been demonstrated to be a very powerful tool in the study of the host metabolic responses to infections by parasites. Schistosomiasis is a parasitic infection caused by schistosoma worm via the direct contact with the water containing cercaria, among which Schistosoma japonicum (S. japonicum) is endemic in Asia. In order to characterize the schistosome-induced changes in the host metabolism and further to develop the strategy for early diagnosis of schistosomiasis, we performed comprehensive LC-MS-based metabolomics analysis of serum from mice infected by S. japonicum for 5 weeks. With the developed diagnosis strategy based on our metabolomics data, we were able to successfully detect schistosomiasis at the first week post-infection, which was 3 weeks earlier than "gold standard" methods and 2 weeks earlier than the methods based on 1H NMR spectroscopy. Our metabolomics study revealed that S. japonicum infection induced the metabolic changes involved in a variety of metabolic pathways including amino acid metabolism, DNA and RNA biosynthesis, phospholipid metabolism, depression of energy metabolism, glucose uptake and metabolism, and disruption of gut microbiota metabolism. In addition, we identified seventeen specific metabolites whose down-regulated profiles were closely correlated with the time-course of schistosomiasis progression and can also be used as an indicator for the worm-burdens. Interestingly, the decrease of these seventeen metabolites was particularly remarkable at the first week post-infection. Thus, our findings on mechanisms of host-parasite interaction during the disease process pave the way for the development of an early diagnosis tool and provide more insightful understandings of the potential metabolic process associated with schistosomiasis in mice. Furthermore, the diagnosis strategy developed in this work is cost-effective and is superior to other currently used diagnosis methods.
Collapse
Affiliation(s)
- Yuzheng Huang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| | - Qiong Wu
- Department of Pharmacy, General Hospital of Southern Theater Command, Guangzhou, China
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Chunrong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| | - Yongliang Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
- Institute of Translation Medicine, Shanghai University, Shanghai, China
| | - Yan Wen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Public Health Research Center, Jiangnan University, Wuxi, China
| |
Collapse
|
30
|
Hosseini M, Mozafari M. Cerium Oxide Nanoparticles: Recent Advances in Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:3072. [PMID: 32660042 PMCID: PMC7411590 DOI: 10.3390/ma13143072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
Submicron biomaterials have recently been found with a wide range of applications for biomedical purposes, mostly due to a considerable decrement in size and an increment in surface area. There have been several attempts to use innovative nanoscale biomaterials for tissue repair and tissue regeneration. One of the most significant metal oxide nanoparticles (NPs), with numerous potential uses in future medicine, is engineered cerium oxide (CeO2) nanoparticles (CeONPs), also known as nanoceria. Although many advancements have been reported so far, nanotoxicological studies suggest that the nanomaterial's characteristics lie behind its potential toxicity. Particularly, physicochemical properties can explain the positive and negative interactions between CeONPs and biosystems at molecular levels. This review represents recent advances of CeONPs in biomedical engineering, with a special focus on tissue engineering and regenerative medicine. In addition, a summary report of the toxicity evidence on CeONPs with a view toward their biomedical applications and physicochemical properties is presented. Considering the critical role of nanoengineering in the manipulation and optimization of CeONPs, it is expected that this class of nanoengineered biomaterials plays a promising role in the future of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran;
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
| |
Collapse
|
31
|
Wang S, Lv J, Meng S, Tang J, Nie L. Recent Advances in Nanotheranostics for Treat-to-Target of Rheumatoid Arthritis. Adv Healthc Mater 2020; 9:e1901541. [PMID: 32031759 DOI: 10.1002/adhm.201901541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Indexed: 12/16/2022]
Abstract
Early diagnosis, standardized treatment, and regular monitoring are the clinical treatment principle of rheumatoid arthritis (RA). The overarching principles and recommendations of treat-to-target (T2T) in RA advocate remission as the optimum aim, especially for patients with very early disease who are initiating therapy with anti-RA medications. However, traditional anti-RA drugs cannot selectively target the inflammatory areas and may cause serious side effects due to its short biological half-life and poor bioavailability. These limitations have significantly driven the research and application of nanomaterial-based drugs in theranostics of RA. Nanomedicines have appropriate sizes and easily modified surfaces which can enhance their biological compatibility and prolong circulation time of drug-loading systems in vivo. Traditional T2T regimens cannot evaluate the efficacy of drugs in real time, while clinical drug nanosizing can realize the integration of diagnosis and treatment of RA. This review bridges clinically proposed T2T concepts and nanomedicine in an integrated system for RA early-stage diagnosis and treatment. The most advanced progress in various nanodrug delivery systems for theranostics of RA is summarized, establishing a clear path and a new perspective for further optimization of T2T. Finally, the key facing challenges are discussed and prospects are addressed.
Collapse
Affiliation(s)
- Shasha Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of Technology Zhuzhou 412007 P. R. China
| | - Jing Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of Technology Zhuzhou 412007 P. R. China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| |
Collapse
|
32
|
Ghadiri M, Yung AE, Haghi M. Role of Oxidative Stress in Complexity of Respiratory Diseases. ROLE OF OXIDATIVE STRESS IN PATHOPHYSIOLOGY OF DISEASES 2020:67-92. [DOI: 10.1007/978-981-15-1568-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Dukhinova MS, Prilepskii AY, Shtil AA, Vinogradov VV. Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1631. [PMID: 31744137 PMCID: PMC6915518 DOI: 10.3390/nano9111631] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
Macrophages are components of the innate immune system that control a plethora of biological processes. Macrophages can be activated towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the cue; however, polarization may be altered in bacterial and viral infections, cancer, or autoimmune diseases. Metal (zinc, iron, titanium, copper, etc.) oxide nanoparticles are widely used in therapeutic applications as drugs, nanocarriers, and diagnostic tools. Macrophages can recognize and engulf nanoparticles, while the influence of macrophage-nanoparticle interaction on cell polarization remains unclear. In this review, we summarize the molecular mechanisms that drive macrophage activation phenotypes and functions upon interaction with nanoparticles in an inflammatory microenvironment. The manifold effects of metal oxide nanoparticles on macrophages depend on the type of metal and the route of synthesis. While largely considered as drug transporters, metal oxide nanoparticles nevertheless have an immunotherapeutic potential, as they can evoke pro- or anti-inflammatory effects on macrophages and become essential for macrophage profiling in cancer, wound healing, infections, and autoimmunity.
Collapse
Affiliation(s)
- Marina S. Dukhinova
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
| | | | - Alexander A. Shtil
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
- Blokhin National Medical Center of Oncology, Moscow 115478, Russia
| | | |
Collapse
|
34
|
Zhang H, Liu Y, Li H, Li J, Luo Y, Yan X. Novel insights into the role of LRRC8A in ameliorating alveolar fluid clearance in LPS induced acute lung injury. Eur J Pharmacol 2019; 861:172613. [PMID: 31421089 DOI: 10.1016/j.ejphar.2019.172613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023]
Abstract
Leucine-rich repeat-containing 8A (LRRC8A) protein was recently identified as an essential component of volume-regulated anion channel which plays a central role in maintaining cell volume. The aim of this study was to elucidate the role of LRRC8A in alveolar fluid clearance (AFC) and the effect of inflammatory cytokines on LRRC8A and the underlying mechanism. Lipopolysaccharide (LPS) was used to generate a rat acute lung injury model. The results showed that the concentrations of IL-1β, TNF-α and IL-6 in bronchoalveolar lavage fluid increased significantly, but the expression of LRRC8A in the lung tissue decreased dramatically in the acute lung injury group followed by a decline in the AFC rate. Additionally, LRRC8A knockdown reduced AFC in normal rats. However, specific overexpression of LRRC8A in the lung could increase AFC. Furthermore, we observed the effects of LPS, IL-1β, TNF-α and IL-6 on the LRRC8A current in alveolar type II (ATII) cells, and IL-1β showed the greatest inhibition among them, which was involved in phospho-p38 activation. Overall, LRRC8A plays an essential role in the progression of AFC in LPS-induced acute lung injury, and chronic treatment with IL-1β or TNF-α could inhibit the function of LRRC8A in ATII cells by targeting phospho-p38. All of the findings suggested that LRRC8A could be a new partner in AFC and a potential target for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Huiran Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yani Liu
- Department of pharmacology, School of pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Honglin Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingwen Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuan Luo
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
35
|
Khorrami MB, Sadeghnia HR, Pasdar A, Ghayour-Mobarhan M, Riahi-Zanjani B, Hashemzadeh A, Zare M, Darroudi M. Antioxidant and toxicity studies of biosynthesized cerium oxide nanoparticles in rats. Int J Nanomedicine 2019; 14:2915-2926. [PMID: 31114200 PMCID: PMC6487897 DOI: 10.2147/ijn.s194192] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the acute toxic potential of cerium oxide nanoparticles (CNPs) synthesized by pullulan in adult male Wistar rats. PATIENTS AND METHODS Thirty male Wistar rats randomly were divided into five experimental groups of six animals each. The animals were received 50, 100, 200, and 400 mg/kg CNPs for 14 consecutive days. At the end of the experiment, the rats were euthanized and histopathological evaluation of the liver and renal tissues, as well ass, the markers of serum oxidative stress including thiobarbituric acid reactive substances, total sulfhydryl content, and antioxidant capacity (using ferric reducing/antioxidant power assay) were assessed. Hematological parameters and the activity of liver function enzymes were also measured. RESULTS The results of this study showed that CNPs caused no significant changes in the activity of liver enzymes, hepatic and renal histopathology and hematological parameters, while significantly improved serum redox status. CONCLUSION Acute administration of pullulan-mediated CNPs is safe and possess antioxidant activity.
Collapse
Affiliation(s)
- Mohammad Bagher Khorrami
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Social Security Organization, 17th Shahrivar Hospital, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Applied Medicine, Medical School, University of Aberdeen, Aberdeen, UK
| | - Majid Ghayour-Mobarhan
- Biochemistry of Nutrition Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- NanoBioEletrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Mohammad Zare
- Social Security Organization, 17th Shahrivar Hospital, Mashhad, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,
| |
Collapse
|
36
|
Del Turco S, Ciofani G, Cappello V, Parlanti P, Gemmi M, Caselli C, Ragusa R, Papa A, Battaglia D, Sabatino L, Basta G, Mattoli V. Effects of cerium oxide nanoparticles on hemostasis: Coagulation, platelets, and vascular endothelial cells. J Biomed Mater Res A 2019; 107:1551-1562. [DOI: 10.1002/jbm.a.36669] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Serena Del Turco
- Institute of Clinical PhysiologyCNR San Cataldo Research Area Pisa, Via Giuseppe Moruzzi 1, 56124 Italy
| | - Gianni Ciofani
- Smart Bio‐InterfacesFondazione Istituto Italiano di Tecnologia Pontedera (Pisa), Viale Rinaldo Piaggio 34, 56025 Italy
- Department of Mechanical and Aerospace EngineeringPolitecnico di Torino Torino, Corso Duca degli Abruzzi 24, 10129 Italy
| | - Valentina Cappello
- Center for Nanotechnology Innovation@NESTFondazione Istituto Italiano di Tecnologia Pisa, Piazza San Silvestro 12, 56127 Italy
| | - Paola Parlanti
- Center for Nanotechnology Innovation@NESTFondazione Istituto Italiano di Tecnologia Pisa, Piazza San Silvestro 12, 56127 Italy
| | - Mauro Gemmi
- Center for Nanotechnology Innovation@NESTFondazione Istituto Italiano di Tecnologia Pisa, Piazza San Silvestro 12, 56127 Italy
| | - Chiara Caselli
- Institute of Clinical PhysiologyCNR San Cataldo Research Area Pisa, Via Giuseppe Moruzzi 1, 56124 Italy
| | - Rosetta Ragusa
- Scuola Superiore Sant'Anna Pisa, Piazza Martiri della Libertà 33, 56127 Italy
| | - Angela Papa
- Department of Laboratory MedicineCNR Fondazione Toscana Gabriele Monasterio Pisa, Via Giuseppe Moruzzi 1, 56124 Italy
| | - Debora Battaglia
- Department of Laboratory MedicineCNR Fondazione Toscana Gabriele Monasterio Pisa, Via Giuseppe Moruzzi 1, 56124 Italy
| | - Laura Sabatino
- Institute of Clinical PhysiologyCNR San Cataldo Research Area Pisa, Via Giuseppe Moruzzi 1, 56124 Italy
| | - Giuseppina Basta
- Institute of Clinical PhysiologyCNR San Cataldo Research Area Pisa, Via Giuseppe Moruzzi 1, 56124 Italy
| | - Virgilio Mattoli
- Center of MicroBioRobotics @SSSAFondazione Istituto Italiano di Tecnologia Pontedera (Pisa), Viale Rinaldo Piaggio 34, 56025 Italy
| |
Collapse
|
37
|
Fuccelli R, Fabiani R, Rosignoli P. Hydroxytyrosol Exerts Anti-Inflammatory and Anti-Oxidant Activities in a Mouse Model of Systemic Inflammation. Molecules 2018; 23:molecules23123212. [PMID: 30563131 PMCID: PMC6321432 DOI: 10.3390/molecules23123212] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
Hydroxytyrosol (3,4-dihydroxyphenil-ethanol, HT), the major phenol derived from olive oil consumption, has shown different anti-inflammatory and anti-oxidant activities in vitro which may explain the chronic-degenerative diseases preventive properties of olive oil. The aim of this study was to examine the ability of HT reduce inflammatory markers, Cyclooxygenase-2 (COX2) and Tumour Necrosis Factor alfa (TNF-α and oxidative stress in vivo on a mouse model of systemic inflammation. Balb/c mice were pre-treated with HT (40 and 80 mg/Kg b.w.) and then stimulated by intraperitoneal injection of lipopolysaccharide (LPS). Blood was collected to measure COX2 gene expression by qPCR and TNF-α level by ELISA kit in plasma. In addition, the total anti-oxidant power of plasma and the DNA damage were measured by FRAP test and COMET assay, respectively. LPS increased the COX2 expression, the TNF-α production and the DNA damage. HT administration prevented all LPS-induced effects and improved the anti-oxidant power of plasma. HT demonstrated in vivo anti-inflammatory and anti-oxidant abilities. The results may explain the health effects of olive oil in Mediterranean diet. HT represents an interesting molecule for the development of new nutraceuticals and functional food useful in chronic diseases prevention.
Collapse
Affiliation(s)
- Raffaela Fuccelli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, del Giochetto Street, 06123 Perugia, Italy.
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, del Giochetto Street, 06123 Perugia, Italy.
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, del Giochetto Street, 06123 Perugia, Italy.
| |
Collapse
|