1
|
Li J, Zhang Z, Li J, Li W, Wang L, Pei Y, Huang J. The interference of baicalein with uric acid detected by the enzymatic method and its correction method. Sci Rep 2025; 15:12276. [PMID: 40210742 PMCID: PMC11986037 DOI: 10.1038/s41598-025-97566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025] Open
Abstract
In recent years, the frequency of clinical application and international recognition of Chinese herbal medicines have been increasing, but the effect of Chinese herbal medicines on common clinical biochemical tests is still unclear. This study aimed to investigate the effect of baicalein, a Chinese herbal medicine ingredient, on uric acid (UA), cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol and to alleviate the interference of baicalein on these assays by improving the reagent. The interferences of baicalein during the detection of these five analytes were investigated on the Hitachi 7600 system. We prepared UA assay kit according to commercial standards to facilitate the improvement of the formulation and evaluated its performance. Tempol, which could eliminate the interference of baicalein, was found based on the chemical properties of the drug, and the optimum concentration for adding it to our UA reagent was determined. We found that the interference was concentration-dependent for five analytes, with the largest negative interference on UA determination. Self-prepared UA assay kit had a safe analysis performance. Our kit and the commercial kit showed a higher interference of - 71.75% and - 89.98% at 200 µg/mL baicalein, respectively. The addition of 5 mmol/L Tempol to the UA reagent could strongly resist the interference of baicalein. In Conclusion, baicalein has a negative interference effect on analysis based on the Trinder reaction, especially UA assay. With the increase in baicalein concentrations, the negative bias increased, and our improved UA reagent could resist the interference of baicalein on UA detection.
Collapse
Affiliation(s)
- Jiuyan Li
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China
| | - Zichen Zhang
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China
| | - Jia Li
- Jilin Medical University, Jilin Street 5, Jilin, China
| | - Wei Li
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China
| | - Liqiang Wang
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China
| | - Yumei Pei
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China.
| | - Jing Huang
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China.
| |
Collapse
|
2
|
Zhytniakivska O, Chaturvedi T, Thomsen MH. Plant-Based Inhibitors of Protein Aggregation. Biomolecules 2025; 15:481. [PMID: 40305223 PMCID: PMC12025044 DOI: 10.3390/biom15040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
The assembly of amyloidogenic proteins and peptides into toxic oligomeric and fibrillar aggregates is closely connected to the onset and progression of more than 50 protein diseases, such as Alzheimer's disease, Parkinson's disease, prion disease, and type 2 diabetes, to name only a few. Considerable research efforts at identifying the therapeutic strategies against these maladies are currently focused on preventing and inhibiting pathogenic protein aggregation by various agents. Plant-based extracts and compounds have emerged as promising sources of potential inhibitors due to their dual role as nutraceuticals as part of healthy diets and as specific pharmaceuticals when administered at higher concentrations. In recent decades, several plant extracts and plant-extracted compounds have shown potential to modulate protein aggregation. An ever-growing body of research on plant-based amyloid inhibitors requires a detail analysis of existing data to identify potential knowledge gaps. This review summarizes the recent progress in amyloid inhibition using 17 flavonoids, 11 polyphenolic non-flavonoid compounds, 23 non-phenolic inhibitors, and 59 plant extracts, with the main emphasis on directly modulating the fibrillation of four amyloid proteins, namely amyloid-β peptide, microtubule-associated protein tau, α-synuclein, and human islet amyloid polypeptide.
Collapse
Affiliation(s)
- Olha Zhytniakivska
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
- Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv, Ukraine
| | - Tanmay Chaturvedi
- AAU Energy, Aalborg University, Niels Bohrs Vej 8, 6700 Esbjerg, Denmark
| | | |
Collapse
|
3
|
Dogra A. Baicalein: unveiling the multifaceted marvel of hepatoprotection and beyond. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-13. [PMID: 40126088 DOI: 10.1080/10286020.2025.2481273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Flavonoids are bioactive compounds derived from plants that play a crucial role in human health. Baicalein is a prominent phytoconstituent with multifaceted therapeutic potential against various diseases. This review explores recent advancements in understanding baicalein's hepatoprotective action against different toxicity models (acetaminophen, cisplatin, doxorubicin, CCL4, monocrotaline, & d-galactosamine). Furthermore, we report the key pharmacological activities of baicalein against neurotoxicity (6-OHDA, rotenone, d-galactose, stroke, alzheimer, & sclerosis), inflammation (arthritis, pulmonary fibrosis, & LPS-induced sepsis), cancer (breast, prostate, gall bladder, gastric, & pancreatic), & diabetes. Overall, baicalein has potential to influence diverse biological networks, making it a promising candidate for both dietary supplementation and therapeutic development.
Collapse
Affiliation(s)
- Ashish Dogra
- Department of Zoology, HNB Garhwal University, SRT Campus, Badshahithaul, Tehri Garhwal, Uttarakhand 249199, India
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
4
|
Palachai N, Buranrat B, Noisa P, Mairuae N. Oroxylum indicum (L.) Leaf Extract Attenuates β-Amyloid-Induced Neurotoxicity in SH-SY5Y Cells. Int J Mol Sci 2025; 26:2917. [PMID: 40243521 PMCID: PMC11988460 DOI: 10.3390/ijms26072917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid-beta (Aβ) plaques, which trigger oxidative stress and neuronal cell death. The present study investigated the neuroprotective effects of Oroxylum indicum (L.) leaf (OIL) extract against Aβ-induced oxidative stress and cellular damage in SH-SY5Y cells. The cells were treated with OIL extract with and without Aβ25-35, and their viability was investigated. Moreover, the mechanism of action of OIL was assessed by determining caspase-3 levels, reactive oxygen species (ROS) and malondialdehyde (MDA) levels, enzymatic activity of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), phosphorylation of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), extracellular signal-regulated kinase 1 and 2 (ERK1/2), and cAMP-responsive element-binding protein (CREB), and expression of B-cell lymphoma-2 (Bcl-2) proteins. The results indicated that OIL reduced Aβ-induced neurotoxicity in a concentration-dependent manner, improving cell viability, reducing ROS levels and MDA production, increasing antioxidant enzyme activity of CAT, SOD, and GSH-Px, and decreasing caspase-3 expression. In addition, OIL enhanced phosphorylation of Akt, ERK1/2, and CREB and upregulated Bcl-2 protein expression. High-performance liquid chromatography (HPLC) analysis identified oroxylin A, baicalein, and chrysin as the major phenolic constituents of the OIL extract. The findings suggest that the extract holds promise as a therapeutic intervention against Aβ-induced neurotoxicity, offering potential implications for the treatment of AD. Further studies are needed to investigate the activity of OIL in primary neurons or in vivo.
Collapse
Affiliation(s)
- Nut Palachai
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand; (N.P.); (B.B.)
| | - Benjaporn Buranrat
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand; (N.P.); (B.B.)
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Nootchanat Mairuae
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand; (N.P.); (B.B.)
| |
Collapse
|
5
|
Hu H, Lu F, Guan X, Jiang X, Wen C, Wang L. Baicalein Ameliorates Experimental Ulcerative Colitis Recurrency by Downregulating Neonatal Fc Receptor via the NF-κB Signaling Pathway. ACS OMEGA 2025; 10:10701-10712. [PMID: 40124052 PMCID: PMC11923634 DOI: 10.1021/acsomega.5c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disease (AID) that causes mild to moderate unpredictable symptoms, including diarrhea and abdominal pain. Against neonatal Fc receptor (FcRn) has been proven to be a unique AID treatment strategy by decreasing the effects of pathogenic autoantibody. Our previous study revealed that FcRn inhibition is beneficial in UC treatment through reducing colonic neutrophil extracellular trap (NET) formation via accelerating serum antineutrophil cytoplasm antibodies (ANCA) clearance. In this study, we initially confirmed the specific impact of downregulating FcRn in preventing UC relapse by injecting rAAV, which is carrying Fcgrt-shRNA, in mice. Next, we investigated the inhibition effects and regulation mechanisms of baicalein (BCL) on FcRn and assessed its capacity to withstand UC recurrence using NCM460 cells and dextran sodium sulfate-induced mice models by determining the expression of FcRn and its related transcription factors. We also measured colonic NET-associated protein (NAP) expression and serum concentrations of IgG, ANCA, TNF-α, IL-1β, and c-reactive protein (CRP). UC inflammation severity was determined by using the disease activity index (DAI) and histopathological score (HS). BCL treatment remarkably decreased the mRNA and protein contents of FcRn, p50, and p65 but did not impact STAT1 expression or the phosphorylation of IκB and STAT1. Long-term BCL administration inhibited colonic FcRn expression and reduced serum ANCA levels, colonic NAP expression, serum inflammation-related indexes (including TNF-α, IL-1β, and CRP), and DAI and HS scores in UC mice during inflammation relapse better than salazosulfapyridine. Our study indicates that BCL ameliorates UC recurrency by inhibiting FcRn expression via p50/p65 heterodimer-mediated NF-κB signaling.
Collapse
Affiliation(s)
- Haoyang Hu
- Department
of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of
Drug-Targeting and Drug Delivery System of the Education Ministry,
West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- National
Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease,
National Clinical Research Center for Infectious Diseases, Collaborative
Innovation Center for Diagnosis and Treatment of Infectious Diseases,
The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Fuliang Lu
- Department
of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of
Drug-Targeting and Drug Delivery System of the Education Ministry,
West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xudong Guan
- Department
of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of
Drug-Targeting and Drug Delivery System of the Education Ministry,
West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuehua Jiang
- Department
of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of
Drug-Targeting and Drug Delivery System of the Education Ministry,
West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chengming Wen
- Department
of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of
Drug-Targeting and Drug Delivery System of the Education Ministry,
West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- School
of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ling Wang
- Department
of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of
Drug-Targeting and Drug Delivery System of the Education Ministry,
West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Song P, Shen N, Wu Z, He S. Baicalein Inhibits Tumor Property of Hepatocellular Carcinoma Cells Through the Inactivation of the E2F Transcription Factor 1/Mediator Complex Subunit 7 Axis. Chem Biol Drug Des 2025; 105:e70063. [PMID: 39935236 DOI: 10.1111/cbdd.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy with poor prognosis. Baicalein, a natural compound, can regulate multiple cellular processes in various cancer types. In this study, we investigated the role of baicalein in regulating HCC and explored its potential mechanism. The expression of mediator complex subunit 7 (MED7) and E2F transcription factor 1 (E2F1) was analyzed by quantitative real-time polymerase chain reaction or Western blotting assay. Cell proliferation was assessed by cell colony formation assay and 5-ethynyl-2'-deoxyuridine assay. Cell migration was analyzed by transwell assay and wound-healing assay. Cell invasion was analyzed by transwell assay. Angiogenic ability of HCC cells was assessed by tube formation assay. Dual-luciferase reporter assay and chromatin immunoprecipitation assay were performed to validate the association between E2F1 and MED7. The xenograft mouse model assay was conducted to determine the effects of baicalein and E2F1 overexpression on tumor formation. Immunohistochemistry assay was used to determine positive expression rates of proteins. Upregulation of MED7 and E2F1 expression was observed in both HCC tissues and cells. Knockdown of MED7 suppressed HCC cell proliferation, migration, invasion, and tube formation. Transcriptional activation of MED7 by E2F1 was demonstrated in HCC cells. Overexpression of MED7 mitigated the effects induced by E2F1 depletion in HCC cells. Additionally, baicalein treatment effectively inhibited the tumor property of HCC cells by decreasing E2F1 expression in both in vitro and in vivo models. Baicalein inhibited the tumor property of HCC cells through the inactivation of the E2F1/MED7 axis, highlighting its potential clinical application in the treatment of HCC.
Collapse
Affiliation(s)
- Pinghui Song
- Department of General Surgery, Shaanxi 215 Hospital of Nuclear Industry, Xianyang City, Shaanxi, China
| | - Naiying Shen
- Department of General Surgery, Shaanxi 215 Hospital of Nuclear Industry, Xianyang City, Shaanxi, China
| | - Zhongkun Wu
- Department of General Surgery, Shaanxi 215 Hospital of Nuclear Industry, Xianyang City, Shaanxi, China
| | - Sha He
- Department of Interventional, Shaanxi 215 Hospital of Nuclear Industry, Xianyang City, Shaanxi, China
| |
Collapse
|
7
|
Summat R, Waiwut P, Daodee S, Nualkaew N, Phemphunananchai K, Arsito PN, Chulikhit Y, Montakantirat O, Khamphukdee C, Boonyarat C. Phytomedicine Potential of Oroxylum indicum Root and Its Constituents: Targeting Alzheimer's Disease. PLANTS (BASEL, SWITZERLAND) 2025; 14:223. [PMID: 39861577 PMCID: PMC11769049 DOI: 10.3390/plants14020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition characterized by a gradual decline in cognitive function, for which few effective treatments exist. This study investigated the neuroprotective potential of Oroxylum indicum root extract and its key constituents (baicalein, chrysin, oroxylin A) against AD hallmarks. The extract and its constituents exhibited antioxidant activity in the DPPH assay. They inhibited β-amyloid aggregation as measured by the thioflavin T assay and acetylcholinesterase activity using the Ellman method. In cell culture models, O. indicum extract showed an ability to protect neurons from the toxic effects of H2O2. Western blot analysis revealed the extract and its major active component, baicalein, downregulated pro-apoptotic markers (cleaved caspase-3, and BAX) upon H2O2 exposure. Furthermore, they reduced the expression of amyloidogenic proteins (BACE1) and phosphorylated tau. These findings suggest that O. indicum root extract, particularly baicalein, possesses multifaceted neuroprotective properties, targeting various aspects of AD pathogenesis, including oxidative stress, cholinergic dysfunction, β-amyloid formation, aggregation, and apoptosis. O. indicum root thus warrants further investigation as a promising source of therapeutic agents for AD.
Collapse
Affiliation(s)
- Rattana Summat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand;
| | - Supawadee Daodee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Natsajee Nualkaew
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Khemjira Phemphunananchai
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Puguh Novi Arsito
- School of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Yogyakarta 55183, Indonesia;
| | - Yaowared Chulikhit
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Orawan Montakantirat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Charinya Khamphukdee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (R.S.); (S.D.); (N.N.); (K.P.); (Y.C.); (O.M.); (C.K.)
| |
Collapse
|
8
|
Famurewa AC, Prabhune NM, Prabhu S. Natural product mitigation of ferroptosis in platinum-based chemotherapy toxicity: targeting the underpinning oxidative signaling pathways. J Pharm Pharmacol 2025; 77:1-17. [PMID: 39485898 DOI: 10.1093/jpp/rgae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVES Platinum-based anticancer chemotherapy (PAC) represents a cornerstone in cancer treatment, retaining its status as the gold standard therapy. However, PAC's efficacy is countered by significant toxicities, such as nephrotoxicity, ototoxicity, and neurotoxicity. Recent studies have linked these toxicities to ferroptosis, characterized by iron accumulation, reactive oxygen species generation, and lipid peroxidation. This review explores the mechanisms underlying PAC-induced toxicities, focusing on the involvement of ferroptosis with three major PAC drugs-cisplatin, carboplatin, and oxaliplatin. Further, we provide a comprehensive analysis of the natural product mitigation of PAC-induced ferroptotic toxicity. KEY FINDINGS The mechanistic role of ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, while studies on carboplatin-induced ferroptotic toxicities are lacking. Natural compounds targeting molecular pathways of ferroptosis have been explored to mitigate PAC-induced ferroptotic toxicity. CONCLUSION While ferroptosis in cisplatin- and oxaliplatin-induced toxicities has been investigated, there remains a notable dearth of studies examining its involvement in carboplatin-induced toxicities. Hence, further exploration is warranted to define the role of ferroptosis in carboplatin-induced toxicities, and its further mitigation. Moreover, in-depth mechanistic evaluation is necessary to establish natural products evaluated against PAC-induced ferroptosis, as PAC adjuvants.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ikwo 482103, Ebonyi State, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Nupura Manish Prabhune
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sudharshan Prabhu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
9
|
Kang J, Mo S, Shu X, Cheng S. Effects of Baicalein Pretreatment on the NLRP3/GSDMD Pyroptosis Pathway and Neuronal Injury in Pilocarpine-Induced Status Epilepticus in the Mice. eNeuro 2025; 12:ENEURO.0319-24.2024. [PMID: 39662962 PMCID: PMC11728850 DOI: 10.1523/eneuro.0319-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024] Open
Abstract
Status epilepticus (SE) links to high mortality and morbidity. Considering the neuroprotective property of baicalein (BA), we investigated its effects on post-SE neuronal injury via the NLRP3/GSDMD pathway. Mice were subjected to SE modeling and BA interference, with seizure severity and learning and memory abilities evaluated. The histological changes, neurological injury and neuron-specific enolase (NSE)-positive cell number in hippocampal CA1 region, and cell death were assessed. Levels of the NOD-, LRR-, and pyrin domain-containing 3 (NLRP3)/gasdermin-D (GSDMD) pathway-related proteins, inflammatory factors, and Iba-1 + NLRP3+ and Iba-1 + GSDMD-N+ cells were determined. BA ameliorated post-SE cognitive dysfunction and neuronal injury in mice, as evidenced by shortened escape latency, increased number of crossing the target quadrant within 60 s and the time staying in the target quadrant, alleviated hippocampal damage, increased viable cell number, decreased neuronal injury, and increased NSE-positive cells. Mechanistically, BA repressed microglial pyroptosis, reduced inflammatory factor release, and attenuated neuronal injury by inhibiting the NLRP3/GSDMD pathway. The NLRP3 inhibitor exerted similar effects as BA on SE mice, while the NLRP3 activator partially reversed BA-improved post-SE neuronal injury in mice. Conjointly, BA reduced microglial pyroptosis in hippocampal CA1 area by inhibiting the NLRP3/GSDMD pyroptosis pathway, thereby ameliorating post-SE neuronal injury in mice.
Collapse
Affiliation(s)
- Junling Kang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang University of Chinese Medicine, Hangzhou 310005, China
| | - Shenshen Mo
- Department of Neurology, The Third Affiliated Hospital of Zhejiang University of Chinese Medicine, Hangzhou 310005, China
| | - Xiuqiong Shu
- Department of Neurology, The Third Affiliated Hospital of Zhejiang University of Chinese Medicine, Hangzhou 310005, China
| | - Shuang Cheng
- Department of Neurology, The Third Affiliated Hospital of Zhejiang University of Chinese Medicine, Hangzhou 310005, China
| |
Collapse
|
10
|
Liu Z, Zheng X, Li N, Wang Z. Baicalein suppresses inflammation and attenuates acute lung injury by inhibiting glycolysis via HIF‑1α signaling. Mol Med Rep 2025; 31:18. [PMID: 39513601 PMCID: PMC11564906 DOI: 10.3892/mmr.2024.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
Baicalein, a flavonoid monomer compound isolated from the dried root of the traditional Chinese herb Scutellaria baicalensis, has several pharmacological activities, such as anti‑inflammatory, anti‑angiogenic, antitumor, antimicrobial and antiviral properties. Acute lung injury (ALI) is characterized by injury of the alveolar epithelium and capillary endothelium, which results in decreased lung volume, decreased lung compliance, ventilation/perfusion mismatch, intrapulmonary edema, alveolar edema and even acute hypoxemic respiratory failure. The present study aimed to investigate the effects of baicalein on lung injury and inflammation. Bioinformatics analysis using network pharmacology predicted that the hypoxia inducible factor‑1α (HIF‑1α) and glycolysis signaling pathways were involved in the mechanism underlying the therapeutic effects of baicalein. Further in vitro and in vivo experiments, such as immunohistochemistry, immunofluorescence and PCR, verified that baicalein could inhibit HIF‑1α signaling, thus suppressing glycolysis, and improving inflammatory responses and ALI. Taken together, the results of the present study suggested that the anti‑inflammatory effects of baicalein on treating ALI were associated with its ability to suppress glycolysis via the HIF‑1α signaling pathway.
Collapse
Affiliation(s)
- Zhongyou Liu
- Department of Respiratory Diseases, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian, Henan 463000, P.R. China
| | - Xiaona Zheng
- Department of Respiratory Diseases, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian, Henan 463000, P.R. China
| | - Ning Li
- Department of Scientific Research, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Zongyao Wang
- Department of Respiratory Diseases, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
11
|
Luo L, Pan Y, Chen F, Zhang Z. Exploring the potential mechanism of Polygonatum sibiricum for Alzheimer's disease based on network pharmacology and molecular docking: An observational study. Medicine (Baltimore) 2024; 103:e40726. [PMID: 39969345 PMCID: PMC11688029 DOI: 10.1097/md.0000000000040726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/08/2024] [Indexed: 02/20/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, and there have been no systematic studies of Polygonatum against Alzheimer's disease. Therefore, our study will elucidate the mechanism of Polygonatum against AD based on network pharmacology and molecular docking. The active ingredients and corresponding targets of Polygonatum were identified using the traditional Chinese medicine systematic pharmacology database and analysis platform. Disease targets of AD were retrieved from the therapeutic target database, Online Mendelian Inheritance in Man, GeneCards, and Disgenet databases. Using the STRING database, we constructed protein interaction networks and performed gene ontology functional enrichment analysis as well as Kyoto encyclopedia of genes and genomes pathway enrichment analysis on common targets. We then drew drug-component-target-pathway-disease network maps using Cytoscape 3.10.1 software and validated the molecular docking using AutoDock4. A total of 10 active ingredients and 108 common targets were screened from Polygonatum, 29 genes (including AKT1 and STAT3) were identified as core genes. According to gene ontology analysis, the core targets were found to be mainly involved in signal transduction, positive regulation of gene expression, negative regulation of the apoptotic process, and so on. The Kyoto encyclopedia of genes and genomes analysis revealed that the signaling pathways comprised pathways in cancer, pathways of neurodegeneration - multiple diseases, and PI3K-Akt signaling pathway. The molecular docking results indicated that 10 of active ingredients from Polygonatum exhibited strong binding affinity with the 6 core targets that were screened before. The activity of Polygonatum against AD could be attributed to the regulation of multiple biological effects via multi-pathways (pathways in cancer, pathways of neurodegeneration - multiple diseases, and PI3K-Akt signaling pathway). The binding activities were estimated as good level by molecular docking. These discoveries disclosed the multi-component, multi-target, and multi-pathway characteristics of Polygonatum against AD, providing a new strategy for such medical problem.
Collapse
Affiliation(s)
- Liangliang Luo
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yao Pan
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| | - Fang Chen
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| | - Zhihong Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
13
|
Liu Y, Yu X, Shen H, Hong Y, Hu G, Niu W, Ge J, Xuan J, Qin JJ, Li Q. Mechanisms of traditional Chinese medicine in the treatment and prevention of gastric cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156003. [PMID: 39305742 DOI: 10.1016/j.phymed.2024.156003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Gastric cancer (GC) ranks as the fifth most prevalent malignancy worldwide. Conventional treatments, including radiotherapy and chemotherapy, often induce severe side effects and significant adverse reactions, and they may also result in drug resistance. Consequently, there is a critical need for the development of new therapeutic agents. Traditional Chinese Medicine (TCM) and natural products are being extensively researched due to their low toxicity, multi-targeted approaches, and diverse pathways. Scholars are increasingly focusing on identifying active anticancer components within TCM. PURPOSE This review aims to summarise research conducted over the past 14 years on the treatment of GC using TCM. The focus is on therapeutic targets, mechanisms, and efficacy of Chinese medicine and natural products, including monomer compounds, extracts or analogues, and active ingredients. METHODS Relevant articles on TCM and GC were retrieved from PubMed using appropriate keywords. The collected articles were screened and classified according to the types of TCM, with an emphasis on the molecular mechanisms underlying the treatment of GC. RESULTS The research on TCM indicates that TCM and natural products can effectively inhibit the metastasis, proliferation, and invasion of tumour cells. They can also induce apoptosis, autophagy and improve the chemosensitivity of drug-resistant cells. Additionally, injections derived from Chinese herbal medicine, when used as an adjunct to conventional chemotherapy, can significantly improve the prognosis of GC patients by reducing chemotherapy toxicity. CONCLUSION This review summarises the progress of TCM treatment of GC over the past 14 years, and discusses its therapeutic application of GC, which proves that TCM is a promising treatment strategy for GC in the future.
Collapse
Affiliation(s)
- Yanyang Liu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuefei Yu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China
| | - Huize Shen
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yangjian Hong
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaofeng Hu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenyuan Niu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiaming Ge
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Xuan
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiang-Jiang Qin
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Qinglin Li
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, No. 1, Banshan east road, Gongshu district, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
15
|
Okoye CO, Jiang H, Wu Y, Li X, Gao L, Wang Y, Jiang J. Bacterial biosynthesis of flavonoids: Overview, current biotechnology applications, challenges, and prospects. J Cell Physiol 2024; 239:e31006. [PMID: 37025076 DOI: 10.1002/jcp.31006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
Flavonoids are secondary metabolites present in plant organs and tissues. These natural metabolites are the most prevalent and display a wide range of beneficial physiological effects, making them usually intriguing in several scientific fields. Due to their safety for use and protective attributes, including antioxidant, anti-inflammatory, anticancer, and antimicrobial functions, flavonoids are broadly utilized in foods, pharmaceuticals, and nutraceuticals. However, conventional methods for producing flavonoids, such as plant extraction and chemical synthesis, entailed dangerous substances, and laborious procedures, with low product yield. Recent studies have documented the ability of microorganisms, such as fungi and bacteria, to synthesize adequate amounts of flavonoids. Bacterial biosynthesis of flavonoids from plant biomass is a viable and environmentally friendly technique for producing flavonoids on a larger scale and has recently received much attention. Still, only a few bacteria species, particularly Escherichia coli, have been extensively studied. The most recent developments in bacterial biosynthesis of flavonoids are reviewed and discussed in this article, including their various applications as natural food biocontrol agents. In addition, the challenges currently faced in bacterial flavonoid biosynthesis and possible solutions, including the application of modern biotechnology approaches for developing bacterial strains that could successfully produce flavonoids on an industrial scale, were elucidated.
Collapse
Affiliation(s)
- Charles O Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology & Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Huifang Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yanfang Wu
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xia Li
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Lu Gao
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yongli Wang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianxiong Jiang
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Wei X, Wang D, Xu Z, Liu J, Zhu Q, Chen Q, Tang H, Xu W. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium. Heliyon 2024; 10:e37541. [PMID: 39328574 PMCID: PMC11425140 DOI: 10.1016/j.heliyon.2024.e37541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Anhui Province, Suzhou, 234011, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, PR China
| |
Collapse
|
17
|
Zhu J, Liu Q, Chen Y, Zhang J, Xu Q, Wu Z. Synergistic effects of plasma-activated medium in combination with Baicalin against neuronal damage. Heliyon 2024; 10:e36079. [PMID: 39224291 PMCID: PMC11366879 DOI: 10.1016/j.heliyon.2024.e36079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Neurodegenerative disorders are chronic conditions that progressively damage and destroy parts of the nervous system, and are currently considered permanent and incurable. Alternative strategies capable of effectively healing neuronal damage have been actively pursued. Here, we report the neuroprotective effects of baicalin (BA) combined with plasma-activated medium (PAM) against glutamate-induced excitotoxicity in SH-SY5Y cells. Through in vitro assays, the cell viability, inflammation, apoptosis, and oxidative stress were evaluated. The co-application of BA and PAM significantly enhanced cell viability, reduced pro-inflammatory markers (TNF-α and NF-κB), decreased apoptotic proteins (Bax and Caspase-3) and boosted antioxidative defenses (increased SOD activity and lowered ROS levels). This study confirms the potential of combining BA with PAM as an effective therapeutic strategy for mitigating the effects of excitotoxicity. PAM is a promising adjunct and potential drug delivery method in neuroprotective therapy, providing a new avenue for developing treatments for diseases characterized by neuronal damage.
Collapse
Affiliation(s)
- Jiwen Zhu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qi Liu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yan Chen
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - JiaMing Zhang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qinghua Xu
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei, Anhui, 230061, China
| | - Zhengwei Wu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
18
|
Ma W, Liu T, Ogaji OD, Li J, Du K, Chang Y. Recent advances in Scutellariae radix: A comprehensive review on ethnobotanical uses, processing, phytochemistry, pharmacological effects, quality control and influence factors of biosynthesis. Heliyon 2024; 10:e36146. [PMID: 39262990 PMCID: PMC11388511 DOI: 10.1016/j.heliyon.2024.e36146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Background Scutellariae radix (SR) is the dried root of Scutellaria baicalensis Georgi. It has a long history of ethnic medicinal use, traditionally recognized for its efficacy in clearing heat, drying dampness, eliminating fire, removing toxins , stopping bleeding and tranquilizing fetus to prevent miscarriage. Clinically, it is used to treat cold, fever, migraine, hand-foot-and-mouth diseases, liver cancer and inflammatory diseases. Purpose The review aims to provide a comprehensive reference on the ethnobotanical uses, processing, phytochemistry, pharmacological effect, quality control and influence factors of biosynthesis for a deeper understanding of SR. Results and conclusion A total of 210 isolated components have been reported in the literature, including flavonoids and their glycosides, phenylpropanoids, phenylethanoid glycosides, phenolic acids, volatile components, polysaccharides and others. The extract of SR and its main flavonoids such as baicalin, baicalein, wogonin, wogonoside, and scutellarin showed antioxidant, anti-inflammatory, anti-tumor, antiviral, hepatoprotective, and neuroprotective effects. However, further studies are required to elucidate its mechanisms of action and clinical applications. The pharmacodynamic evaluation based on traditional efficacy should be conducted. Although various analytical methods have been established for the quality control of SR, there are gaps in the research regarding efficacy-related quality markers and the development of quality control standards for its processed products. The regulatory mechanisms of flavonoids biosynthesis remain to be explored while the influence of environmental and transcription factors on the biosynthesis have been studied. In conclusion, SR is a promising herbal medicine with significant potential for future development.
Collapse
Affiliation(s)
- Wentao Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tianyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
19
|
Liang H, Ma Z, Zhong W, Liu J, Sugimoto K, Chen H. Regulation of mitophagy and mitochondrial function: Natural compounds as potential therapeutic strategies for Parkinson's disease. Phytother Res 2024; 38:1838-1862. [PMID: 38356178 DOI: 10.1002/ptr.8156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Mitochondrial damage is associated with the development of Parkinson's disease (PD), indicating that mitochondrial-targeted treatments could hold promise as disease-modifying approaches for PD. Notably, natural compounds have demonstrated the ability to modulate mitochondrial-related processes. In this review article, we discussed the possible neuroprotective mechanisms of natural compounds against PD in modulating mitophagy and mitochondrial function. A comprehensive literature search on natural compounds related to the treatment of PD by regulating mitophagy and mitochondrial function was conducted from PubMed, Web of Science and Chinese National Knowledge Infrastructure databases from their inception until April 2023. We summarize recent advancements in mitophagy's molecular mechanisms, including upstream and downstream processes, and its relationship with PD-related genes or proteins. Importantly, we highlight how natural compounds can therapeutically regulate various mitochondrial processes through multiple targets and pathways to alleviate oxidative stress, neuroinflammation, Lewy's body aggregation and apoptosis, which are key contributors to PD pathogenesis. Unlike the single-target strategy of modern medicine, natural compounds provide neuroprotection against PD by modulating various mitochondrial-related processes, including ameliorating mitophagy by targeting the PINK1/parkin pathway, the NIX/BNIP3 pathway, and autophagosome formation (i.e., LC3 and p62). Given the prevalence of mitochondrial damage in various neurodegenerative diseases, exploring the exact mechanism of natural compounds on mitophagy and mitochondrial dysfunction could shed light on the development of highly effective disease-modifying or adjuvant therapies targeting PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Hao Liang
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Zhenwang Ma
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Wei Zhong
- Department of Rheumatology and Immunology, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Chen
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- Department of TCM Geriatric, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Sasikumar DSN, Thiruselvam P, Sundararajan V, Ravindran R, Gunasekaran S, Madathil D, Kaliamurthi S, Peslherbe GH, Selvaraj G, Sudhakaran SL. Insights into dietary phytochemicals targeting Parkinson's disease key genes and pathways: A network pharmacology approach. Comput Biol Med 2024; 172:108195. [PMID: 38460310 DOI: 10.1016/j.compbiomed.2024.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 03/11/2024]
Abstract
Parkinson's disease (PD) is a complex neurological disease associated with the degeneration of dopaminergic neurons. Oxidative stress is a key player in instigating apoptosis in dopaminergic neurons. To improve the survival of neurons many dietary phytochemicals have gathered significant attention recently. Thus, the present study implements a comprehensive network pharmacology approach to unravel the mechanisms of action of dietary phytochemicals that benefit disease management. A literature search was performed to identify ligands (i.e., comprising dietary phytochemicals and Food and Drug Administration pre-approved PD drugs) in the PubMed database. Targets associated with selected ligands were extracted from the search tool for interactions of chemicals (STITCH) database. Then, the construction of a gene-gene interaction (GGI) network, analysis of hub-gene, functional and pathway enrichment, associated transcription factors, miRNAs, ligand-target interaction network, docking were performed using various bioinformatics tools together with molecular dynamics (MD) simulations. The database search resulted in 69 ligands and 144 unique targets. GGI and subsequent topological measures indicate histone acetyltransferase p300 (EP300), mitogen-activated protein kinase 1 (MAPK1) or extracellular signal-regulated kinase (ERK)2, and CREB-binding protein (CREBBP) as hub genes. Neurodegeneration, MAPK signaling, apoptosis, and zinc binding are key pathways and gene ontology terms. hsa-miR-5692a and SCNA gene-associated transcription factors interact with all the 3 hub genes. Ligand-target interaction (LTI) network analysis suggest rasagiline and baicalein as candidate ligands targeting MAPK1. Rasagiline and baicalein form stable complexes with the Y205, K330, and V173 residues of MAPK1. Computational molecular insights suggest that baicalein and rasagiline are promising preclinical candidates for PD management.
Collapse
Affiliation(s)
- Devi Soorya Narayana Sasikumar
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Premkumar Thiruselvam
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Radhika Ravindran
- Department of Biotechnology, Indian Institute of Technology (Madras), Chennai, TN, 600036, India
| | - Shoba Gunasekaran
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, TN, 600106, India
| | - Deepa Madathil
- Jindal Institute of Behavioral Sciences, O.P Jindal Global University, Sonipat, Haryana, 131001, India
| | - Satyavani Kaliamurthi
- Centre for Research in Molecular Modeling (CERMM), Department of Chemistry and Biochemistry, Concordia University, Loyola Campus, Montreal, QC, H4B 1R6, Canada
| | - Gilles H Peslherbe
- Centre for Research in Molecular Modeling (CERMM), Department of Chemistry and Biochemistry, Concordia University, Loyola Campus, Montreal, QC, H4B 1R6, Canada
| | - Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling (CERMM), Department of Chemistry and Biochemistry, Concordia University, Loyola Campus, Montreal, QC, H4B 1R6, Canada; Bioinformatics Unit, Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) University, Chennai, TN, 600077, India.
| | - Sajitha Lulu Sudhakaran
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India.
| |
Collapse
|
21
|
Bae SJ, Lee WY, Bak SB, Lee SJ, Hwang SJ, Kim GW, Koo BS, Park SD, Yoo HH, Kim CO, Kang HW, Oh TW, Kim YW. Antioxidant Efficacy of Hwangryunhaedok-tang through Nrf2 and AMPK Signaling Pathway against Neurological Disorders In Vivo and In Vitro. Int J Mol Sci 2024; 25:2313. [PMID: 38396988 PMCID: PMC10889506 DOI: 10.3390/ijms25042313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a representative cause of dementia and is caused by neuronal loss, leading to the accumulation of aberrant neuritic plaques and the formation of neurofibrillary tangles. Oxidative stress is involved in the impaired clearance of amyloid beta (Aβ), and Aβ-induced oxidative stress causes AD by inducing the formation of neurofibrillary tangles. Hwangryunhaedok-tang (HHT, Kracie K-09®), a traditional herbal medicine prescription, has shown therapeutic effects on various diseases. However, the studies of HHT as a potential treatment for AD are insufficient. Therefore, our study identified the neurological effects and mechanisms of HHT and its key bioactive compounds against Alzheimer's disease in vivo and in vitro. In a 5xFAD mouse model, our study confirmed that HHT attenuated cognitive impairments in the Morris water maze (MWM) test and passive avoidance (PA) test. In addition, the prevention of neuron impairment, reduction in the protein levels of Aβ, and inhibition of cell apoptosis were confirmed with brain tissue staining. In HT-22 cells, HHT attenuates tBHP-induced cytotoxicity, ROS generation, and mitochondrial dysfunction. It was verified that HHT exerts a neuroprotective effect by activating signaling pathways interacting with Nrf2, such as MAPK/ERK, PI3K/Akt, and LKB1/AMPK. Among the components, baicalein, a bioavailable compound of HHT, exhibited neuroprotective properties and activated the Akt, AMPK, and Nrf2/HO-1 pathways. Our findings indicate a mechanism for HHT and its major bioavailable compounds to treat and prevent AD and suggest its potential.
Collapse
Affiliation(s)
- Su-Jin Bae
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Won-Yung Lee
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Seon Been Bak
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Seung Jin Lee
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Su-Jin Hwang
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
| | - Geun-Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Byung-Soo Koo
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Sun-Dong Park
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| | - Hye-Hyun Yoo
- College of Pharmacy, Hanyang University, Ansan 1558, Republic of Korea;
| | - Choon-Ok Kim
- Department of Clinical Pharmacology and Clinical Trials Center, Severance Hospital, Yonsei University Health System, Seoul 03722, Republic of Korea;
| | - Hyung Won Kang
- College of Korean Medicine, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Tae-Woo Oh
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Republic of Korea
- Department of Korean Convergence Medical Science, University of Science & Technology (UST), Daejeon 34054, Republic of Korea
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (S.-J.B.); (W.-Y.L.); (S.B.B.); (S.J.L.); (G.-W.K.); (B.-S.K.); (S.-D.P.)
| |
Collapse
|
22
|
Tang J, Yan B, Tang Y, Zhou X, Ji Z, Xu F. Baicalein ameliorates oxidative stress and brain injury after intracerebral hemorrhage by activating the Nrf2/ARE pathway via miR-106a-5p/PHLPP2 axis. Int J Neurosci 2023; 133:1380-1393. [PMID: 35612366 DOI: 10.1080/00207454.2022.2080676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating stroke subtype. Baicalein (BAI) has been reported to be effective in ischemic stroke. The aim of the present study was to investigate the mechanism of BAI on brain injury after ICH. Firstly, ICH mouse models were established by injecting collagenase into the right of basal ganglia, followed by detection of neurobehavioral scores, brain edema, oxidative stress (OS) level, neuronal apoptosis and pathological changes. Average neurologic scores, brain water content, and blood-brain barrier permeability and MDA level in ICH mice were reduced after BAI treatment, while serum SOD and GSH-Px levels were increased and neuronal apoptosis and pathological injury of the brain tissues were mitigated. miR-106a-5p downregulation averted the effect of BAI on ICH mice. miR-106a-5p targeted PHLPP2 and PHLPP2 overexpression reversed the effect of BAI on ICH mice. BAI activated the Nrf2/ARE pathway by inhibiting PHLPP2 expression. In conclusion, BAI inhibited OS and protected against brain injury after ICH by activating the Nrf2/ARE pathway through the miR-106a-5p/PHLPP2 axis.
Collapse
Affiliation(s)
- Jilei Tang
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Bingchao Yan
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Yangyang Tang
- Department of Nursing Basic Medicine Teaching and Research Section, Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou, Jiangsu, China
| | - Xin Zhou
- Xuzhou College of Industrial Technolog, Xuzhou, Jiangsu, China
| | - Ziteng Ji
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Feng Xu
- Department of Neurosurgery, The First People'Hospital of Xuzhou, Xuzhou, Jiangsu, China
| |
Collapse
|
23
|
Phukan BC, Roy R, Gahatraj I, Bhattacharya P, Borah A. Therapeutic considerations of bioactive compounds in Alzheimer's disease and Parkinson's disease: Dissecting the molecular pathways. Phytother Res 2023; 37:5657-5699. [PMID: 37823581 DOI: 10.1002/ptr.8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Leading neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the impairment of memory and motor functions, respectively. Despite several breakthroughs, there exists a lack of disease-modifying treatment strategies for these diseases, as the available drugs provide symptomatic relief and bring along side effects. Bioactive compounds are reported to bear neuroprotective properties with minimal toxicity, however, a detailed elucidation of their modes of neuroprotection is lacking. The review elucidates the neuroprotective mechanism(s) of some of the major phyto-compounds in pre-clinical and clinical studies of AD and PD to understand their potential in combating these diseases. Curcumin, eugenol, resveratrol, baicalein, sesamol and so on have proved efficient in countering the pathological hallmarks of AD and PD. Curcumin, resveratrol, caffeine and so on have reached the clinical phases of these diseases, while aromadendrin, delphinidin, cyanidin and xanthohumol are yet to be extensively explored in pre-clinical phases. The review highlights the need for extensive investigation of these compounds in the clinical stages of these diseases so as to utilize their disease-modifying abilities in the real field of treatment. Moreover, poor pharmacokinetic properties of natural compounds are constraints to their therapeutic yields and this review suggests a plausible contribution of nanotechnology in overcoming these limitations.
Collapse
Affiliation(s)
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
24
|
Gong Q, Wang Y, Wang X, Pan H, Yan C. Baicalein promotes the microglia M2 polarization and suppresses apoptosis by targeting HMOX1/PDE4D to alleviate Alzheimer's disease. Immunobiology 2023; 228:152761. [PMID: 38006681 DOI: 10.1016/j.imbio.2023.152761] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that has quickly becoming one of the most expensive, lethal, and burdening diseases of this century. In the past twenty years, hundreds of drugs have been tested while only several have been authorized by FDA for AD treatment, hence, searching for candidate agent with therapeutic potential for AD is imminent. Controlling polarization direction of microglia is crucial in AD therapy. Recent research suggests that baicalein has potential to reduce neuroinflammation and prevent neurodegenerative diseases by affecting microglia, while the specific molecular mechanism of baicalein in regulating microglia in the treatment of AD is still unclear. In this study, we investigated how baicalein affected microglial polarization in AD and potential biological mechanisms. In cell experiments, it was verified that baicalein significantly shifted the BV-2 microglia phenotype from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype, inhibited the microglial apoptosis and pro-inflammatory factors, promoted the microglial Aβ uptake and anti-inflammatory factors after LPS stimulated. In APP/PS1 mice, it was found that baicalein decreased the Aβ plaque deposition in brain, attenuated NLRP3 inflammasome activation and neuronal apoptosis in APP/PS1 mice. Furthermore, bioinformatics analysis and experiment validated that HMOX1 is a target of baicalein, and we elucidated that baicalein modulated the microglial polarization to inhibit neuroinflammation and neural injury through targeting on the HMOX1/PDE4D axis in AD. In conclusion, our findings indicate the therapeutic effect of baicalein for AD, and baicalein might serve a potential agent for AD treatment.
Collapse
Affiliation(s)
- Qingmei Gong
- Department of Neurology, the Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang Province 310000, China
| | - Yanbo Wang
- Department of Neurology, the Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang Province 310000, China
| | - Xiaowei Wang
- Department of Respiratory, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang Province 310000, China
| | - Haiyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang Province 310000, China
| | - Ci Yan
- Departments of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310000, China.
| |
Collapse
|
25
|
Liu J, Li T, Zhong G, Pan Y, Gao M, Su S, Liang Y, Ma C, Liu Y, Wang Q, Shi Q. Exploring the therapeutic potential of natural compounds for Alzheimer's disease: Mechanisms of action and pharmacological properties. Biomed Pharmacother 2023; 166:115406. [PMID: 37659206 DOI: 10.1016/j.biopha.2023.115406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Alzheimer's Disease (AD) is a global public health priority characterized by high mortality rates in adults and an increasing prevalence in aging populations worldwide. Despite significant advancements in comprehending the pathogenesis of AD since its initial report in 1907, there remains a lack of effective curative or preventive measures for the disease. In recent years, natural compounds sourced from diverse origins have garnered considerable attention as potential therapeutic agents for AD, owing to their anti-inflammatory, antioxidant, and neuroprotective properties. This review aims to consolidate the therapeutic effects of natural compounds on AD, specifically targeting the reduction of β-amyloid (Aβ) overproduction, anti-apoptosis, autophagy, neuroinflammation, oxidative stress, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Notably, the identified compounds exhibiting these effects predominantly originate from plants. This review provides valuable insights into the potential of natural compounds as a reservoir of novel therapeutic agents for AD, thereby stimulating further research and contributing to the development of efficacious treatments for this devastating disease.
Collapse
Affiliation(s)
- Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanyue Liu
- Department of Neurology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qing Shi
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen 529099, China.
| |
Collapse
|
26
|
Mitra S, Tareq AM, Das R, Emran TB, Nainu F, Chakraborty AJ, Ahmad I, Tallei TE, Idris AM, Simal-Gandara J. Polyphenols: A first evidence in the synergism and bioactivities. FOOD REVIEWS INTERNATIONAL 2023; 39:4419-4441. [DOI: 10.1080/87559129.2022.2026376] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, Bgc Trust University Bangladesh, Chittagong, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Tamalanrea, Makassar, Indonesia
| | | | - Islamudin Ahmad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Mulawarman, Samarinda, Indonesia
| | - Trina E. Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (Rcams), King Khalid University, Abha, Saudi Arabia
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, E32004, Spain
| |
Collapse
|
27
|
Dmitrieva A, Kozlova O, Atuchin V, Milentieva I, Vesnina A, Ivanova S, Asyakina L, Prosekov A. Study of the Effect of Baicalin from Scutellaria baicalensis on the Gastrointestinal Tract Normoflora and Helicobacter pylori. Int J Mol Sci 2023; 24:11906. [PMID: 37569279 PMCID: PMC10419321 DOI: 10.3390/ijms241511906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
The antimicrobial properties of baicalin against H. pylori and several probiotic cultures were evaluated. Baicalin was isolated from a dry plant extract obtained by extraction with water at 70 °C. For isolation, extraction was carried out with n-butanol and purification on a chromatographic column. The antimicrobial potential was assessed by evaluating changes in the optical density of the bacterial suspension during cultivation; additionally, the disk diffusion method was used. During the study, the baicalin concentrations (0.25, 0.5, and 1 mg/mL) and the pH of the medium in the range of 1.5-8.0 were tested. The test objects were: suspensions of H. pylori, Lactobacillus casei, L. brevis, Bifidobacterium longum, and B. teenis. It was found that the greater the concentration of the substance in the solution, the greater the delay in the growth of the strain zone. Thus, the highest antimicrobial activity against H. pylori was observed at pH 1.5-2.0 and a baicalin concentration of 1.00 mg/mL. In relation to probiotic strains, a stimulating effect of baicalin (1.00 mg/mL) on the growth of L. casei biomass at pH 1.5-2.0 was observed. The results open up the prospects for the use of baicalin and probiotics for the treatment of diseases caused by H. pylori.
Collapse
Affiliation(s)
- Anastasia Dmitrieva
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
| | - Oksana Kozlova
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia
| | - Irina Milentieva
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
| | - Anna Vesnina
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
| | - Svetlana Ivanova
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
- Department of General Mathematics and Informatics, Kemerovo State University, 650043 Kemerovo, Russia
| | - Lyudmila Asyakina
- Laboratory of Natural Nutraceuticals Biotesting, Kemerovo State University, 650043 Kemerovo, Russia; (A.D.); (I.M.); (A.V.); (S.I.); (L.A.)
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| |
Collapse
|
28
|
Chuang TC, Fang GS, Hsu SC, Lee YJ, Shao WS, Wang V, Lee SL, Kao MC, Ou CC. Baicalein suppresses HER2-mediated malignant transformation of HER2-overexpressing ovarian cancer cells by downregulating HER2 gene expression. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 36988316 DOI: 10.1002/tox.23790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
The upregulation of the HER2 oncogene is associated with a variety of human cancers and is associated with poor prognosis. Baicalein is reported to have anti-tumor activity, but the molecular mechanism of this effect in HER2-positive cancer cells has not been studied. In this study, our data showed that baicalein can inhibit the proliferation and transformation potential of ovarian cancer cells overexpressing HER2. Baicalein treatment caused a dose-dependent inhibition of HER2 gene expression at the transcriptional level. Baicalein acted on ovarian cancer cells overexpressing HER2 to downregulate the PI3K/Akt signaling pathway downstream of HER2 and inhibit the expression or activity of downstream targets, such as VEGF and cyclin D1 and MMP2. Oral administration of baicalein supplemented with a pharmaceutical excipient significantly inhibited the growth of HER2-overexpressing ovarian SKOV-3 cancer xenografts in mice. These results suggest that downregulation of HER2 gene expression by baicalein at the transcriptional level contributes to inhibit the in vitro and in vivo proliferation and HER2-mediated malignant transformation of HER2-overexpressing ovarian cancer cells.
Collapse
Affiliation(s)
- Tzu-Chao Chuang
- Department of Chemistry, Tamkang University, New Taipei, Taiwan, R.O.C
| | - Guan-Shiun Fang
- Department of Chemistry, Tamkang University, New Taipei, Taiwan, R.O.C
| | - Shih-Chung Hsu
- Department of Early Childhood Care and Education, University of Kang Ning, Taipei, Taiwan, R.O.C
| | - Yi-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Wei-Syun Shao
- Department of Chemistry, Tamkang University, New Taipei, Taiwan, R.O.C
| | - Vinchi Wang
- Department of Neurology, Cardinal Tien Hospital, New Taipei, Taiwan, R.O.C
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan, R.O.C
| | - Shou-Lun Lee
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Ming-Ching Kao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C
| | - Chien-Chih Ou
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan, R.O.C
| |
Collapse
|
29
|
Sun S, Yu A, Cheng R, Wang L, He T, Xu X, Song R, Shan D, Lv F, Zhong X, Deng Q, Li X, He Y, Zheng Y, Ren X, Xia Q, She G. Similarities and differences between Ziqin and Kuqin in anti-inflammatory, analgesic, and antioxidant activities and their core chemical composition based on the zebrafish model and spectrum-effect relationship. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116049. [PMID: 36529251 DOI: 10.1016/j.jep.2022.116049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/16/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis (SB) is a traditional Chinese medicine (TCM). In the clinical application of TCM, SB has been divided into two specifications (Ziqin and Kuqin) for a long time. At present, the Chinese Pharmacopoeia Commission no longer distinguishes between the two. However, the two specifications of medicinal materials and pieces are still in circulation in the market. AIM OF THE STUDY This work aimed at investigating the similarities and differences between Ziqin and Kuqin in anti-inflammatory, analgesic, and antioxidant activities and their material basis. It will provide a new angle for relevant regulations to formulate the specifications and standards of SB. MATERIALS AND METHODS Here we investigated the similarities and differences between Ziqin and Kuqin in anti-inflammatory, analgesic, and antioxidant activities related to four zebrafish models and three chemical tests. The chemical fingerprints of SB (Ziqin and Kuqin) were profiled by HPLC. Meanwhile, UHPLC-Q-TOF/MS was used to identify the chemical constituents of Ziqin and Kuqin. The main effect-related compounds of SB, Ziqin, and Kuqin were screened out by spectrum-effect relationship. Finally, six monomeric compounds were validated experimentally using the zebrafish inflammation model induced by CuSO4. RESULTS Both Ziqin and Kuqin had significant anti-inflammatory, analgesic, and antioxidant activities. Kuqin had better anti-inflammatory and analgesic activities, while Ziqin had better antioxidant activity. HPLC fingerprint and UHPLC-Q-TOF/MS evaluation showed that the chemical composition types and main components of Ziqin and Kuqin were basically the same, while the contents and proportions of chemical components in Ziqin and Kuqin were different. By spectrum-effect relationship, compounds X1, X2 (luteoloside), X3, X4 (baicalin), X6 (wogonoside), X7 (baicalein), X8 (wogonin), and X9 (oroxylin A) were the same active chemical constituents of Ziqin and Kuqin. The core components of anti-inflammatory and analgesia activities in Kuqin were compounds X1, X2, X3, X5, X6, X7, X8, and X9. The antioxidant core active components of Ziqin were compounds X2, X3, X4, X6, X7, and X9. Among them, luteoloside, baicalin, wogonoside, baicalein, wogonin, and oroxylin A were validated successfully with good anti-inflammatory effects. CONCLUSIONS This study revealed that Ziqin and kuqin have high similarity in chemical composition, but their proportions and active core components are different. This may be one of the main reasons why they have the same activity but different activity trends. These findings will help to improve the understanding of the different clinical applications of Ziqin and Kuqin, and provide a reference for the formulation of quality standards and their further research.
Collapse
Affiliation(s)
- Siqi Sun
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, 250000, PR China.
| | - Axiang Yu
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 102488, PR China.
| | - Le Wang
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Ting He
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Xiao Xu
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Ruolan Song
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Dongjie Shan
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Fang Lv
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Xiangjian Zhong
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Qingyue Deng
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Xianxian Li
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Yingyu He
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Yuan Zheng
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Xueyang Ren
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, 250000, PR China.
| | - Gaimei She
- School of ChineseMateria Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| |
Collapse
|
30
|
Boonyasuppayakorn S, Saelee T, Huynh TNT, Hairani R, Hengphasatporn K, Loeanurit N, Cao V, Vibulakhaophan V, Siripitakpong P, Kaur P, Chu JJH, Tunghirun C, Choksupmanee O, Chimnaronk S, Shigeta Y, Rungrotmongkol T, Chavasiri W. The 8-bromobaicalein inhibited the replication of dengue, and Zika viruses and targeted the dengue polymerase. Sci Rep 2023; 13:4891. [PMID: 36966240 PMCID: PMC10039358 DOI: 10.1038/s41598-023-32049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
Dengue and Zika viruses are mosquito-borne flaviviruses burdening millions every year with hemorrhagic fever and neurological symptoms. Baicalein was previously reported as a potential anti-flaviviral candidate and halogenation of flavones and flavanones potentiated their antiviral efficacies. Here, we reported that a chemically modified 8-bromobaicalein effectively inhibited all dengue serotypes and Zika viruses at 0.66-0.88 micromolar in cell-based system. The compound bound to dengue serotype 2 conserved pocket and inhibited the dengue RdRp activity with 6.93 fold more than the original baicalein. Moreover, the compound was mildly toxic against infant and adult C57BL/6 mice despite administering continuously for 7 days. Therefore, the 8-bromobaicalein should be investigated further in pharmacokinetics and efficacy in an animal model.
Collapse
Affiliation(s)
- Siwaporn Boonyasuppayakorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Thanaphon Saelee
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thao Nguyen Thanh Huynh
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rita Hairani
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Naphat Loeanurit
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Graduate School, Interdisciplinary Program in Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Van Cao
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Graduate School, Interdisciplinary Program in Microbiology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vipanee Vibulakhaophan
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panattida Siripitakpong
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Parveen Kaur
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Medicine BSL3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, Singapore
| | - Chairat Tunghirun
- The Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Opas Choksupmanee
- The Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Sarin Chimnaronk
- The Laboratory of RNA Biology, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhon Pathom, 73170, Thailand
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
31
|
Milentyeva I, Fedorova A, Larichev T, Altshuler O. Biologically active compounds in Scutellaria baicalensis L. callus extract: Phytochemical analysis and isolation. FOODS AND RAW MATERIALS 2023. [DOI: 10.21603/2308-4057-2023-1-564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Plant cells and tissue cultures are sources of secondary plant metabolites. Substances produced by callus cultures can expand the raw material base in pharmacy and food production. However, isolating biologically active substances from medicinal plants is a labor- and time-consuming process. As a result, new and efficient technological processes adapted for extraction from callus cultures are in high demand, and new algorithms of isolation and purification of biologically active substances remain a relevant task.
This research featured callus cultures of Scutellaria baicalensis. The procedures for phytochemical analysis and isolation of biologically active substances involved such physicochemical research methods as high-performance chromatography (HPLC), thin-layer chromatography (TLC), UV spectrometry, and IR spectrometry.
The high performance liquid chromatography confirmed the presence of flavonoids represented by baicalein (5,6,7-trioxyflavone), baicalin (baicalein 7-O-glucuronide), scutellarein (5,6,7,4-tetraoxyflavone), scutellarin (7-O-glucuronide scutellarein), vagonin, and oroxylin. The spectral analyses also detected skutebaicalin. The highest total content of diterpene belonged to the samples extracted with 70% ethanol at 70°C. The content of diterpene was 0.09 mg/cm3 in terms of betulin. The biologically active substances were isolated from the callus extracts of S. baicalensis with a recovery rate of ≥ 80%. The purification scheme made it possible to obtain highly-pure individual biologically active compounds: trans-cinnamic acid, baicalin, and oroxylin A had a purity of ≥ 95%; baicalein had a purity of ≥ 97%; scutellarin and luteolin reached ≥ 96%.
The new technological extraction method made it possible to obtain extracts from S. baicalensis callus cultures, which were tested for the component composition. The developed isolation algorithm and purification scheme yielded biologically active substances with a purification degree of ≥ 95%.
Collapse
|
32
|
Baicalein exerts anxiolytic and antinociceptive effects in a mouse model of posttraumatic stress disorder: Involvement of the serotonergic system and spinal delta-opioid receptors. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110689. [PMID: 36462602 DOI: 10.1016/j.pnpbp.2022.110689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a serious mental disease featured by a stress dysfunction that occurs after an individual has faced intense mental stress, often accompanied by anxiety and chronic pain. Currently, the mainstream drug for PTSD is serotonin reuptake inhibitors (SSRIs), however, their pain management for patients is limited. Baicalein, a Chinese traditional herbal medicine, has shown promising results in treating anxiety, depression, and pain. In this study, we found that baicalein may alleviate single prolonged stress (SPS)-induced PTSD-like behaviors in mice without altering baseline nociceptive sensitivity or activity. Meanwhile, baicalein increased the noradrenaline (NE) and serotonin (5-HT) content and decreased the ratio of 5-hydroxyindoleacetic acid (5-HIAA)/5-HT by inhibiting the activity of monoamine oxidase A (MAO-A) in SPS-induce mice. The anxiolytic and antinociceptive effects induced by baicalein were totally abolished by 5-HT depleting agents. Moreover, the anxiolytic effects of baicalein could be abolished by the 5-HT1A receptor antagonist WAY-100635, and the analgesic effects could be abolished by delta-opioid receptor antagonists in the spinal. Taken together, our study provides compelling evidence that baicalein reversed anxiety-like behaviors and neuropathic pain in PTSD through serotonergic system and spinal delta-opioid receptors.
Collapse
|
33
|
Ye Z, Zhang F, Wang P, Ran Y, Liu C, Lu J, Zhang M, Yao L. BAICALEIN RELIEVES BRAIN INJURY VIA INHIBITING FERROPTOSIS AND ENDOPLASMIC RETICULUM STRESS IN A RAT MODEL OF CARDIAC ARREST. Shock 2023; 59:434-441. [PMID: 36427096 DOI: 10.1097/shk.0000000000002058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Background: Cardiac arrest (CA) is one of the leading causes of death worldwide. Endoplasmic reticulum (ER) stress and ferroptosis are proven pathological mechanisms implicated in neuronal damage. Baicalein, a ferroptosis Inhibitor, improved outcomes after traumatic brain injury. We aimed to explore the effects of baicalein on brain injury via ferroptosis and ER stress in a rat model of CA.Methods: Cardiac arrest models were established in Sprague-Dawley (SD) rats. The sham group (n = 6) was untreated with inducing ventricular fibrillation to cardiac arrest and cardiopulmonary resuscitation (CPR). Survival rats were randomly divided into five groups (n = 6). Ferroptosis inhibitor and ER stress agonist were administered separately and together in three groups. There was no drug intervention in the remaining group. The neurological deficit scores were recorded. Characteristics of ferroptosis were observed. And the associated protein of ferroptosis and ER stress were determined by Western blot. Cerebral ROS production was measured by using 2',7'-dichlorofluorescein diacetate as the oxidative fluorescent probe. Results: Baicalein treatment improved neurological outcomes and decreased neurocyte injuries compared with CPR group. The changes of ferroptosis, more specifically, iron content, glutathione peroxidase 4 (GPX4), reactive oxygen species (ROS), arachidonate 15-lipoxygenase (ALOX15) and mitochondrial characteristics, were observed in brain tissue after ROSC. ALOX15 was lower in baicalein group than in CPR group. The morphology and structure of mitochondria in baicalein group were better than in CPR group. The ER stress markers, glucose-regulated protein 78, activating Transcription Factor 4 and C/EBP homologous protein was lower in baicalein group compared with CPR group. ROS in tunicamycin group was higher than in CPR group. And ROS in baicalein +tunicamycin group was lower than in tunicamycin group. Conclusion: Ferroptosis and ER stress are both involved in brain injury after ROSC. Baicalein alleviates brain injury via suppressing the ferroptosis and ER stress, and reduces ROS partly through inhibiting ER stress. Baicalein is a potential drug to relieve brain injury after ROSC.
Collapse
Affiliation(s)
| | - Fan Zhang
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | | | - Yingqi Ran
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Cong Liu
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jinming Lu
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Mingtao Zhang
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lan Yao
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
34
|
Holanda FH, Ribeiro AN, Sánchez-Ortiz BL, de Souza GC, Borges SF, Ferreira AM, Florentino AC, Yoshioka SA, Moraes LS, Carvalho JCT, Ferreira IM. Anti-inflammatory potential of baicalein combined with silk fibroin protein in a zebrafish model (Danio rerio). Biotechnol Lett 2023; 45:235-253. [PMID: 36550336 PMCID: PMC9778464 DOI: 10.1007/s10529-022-03334-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/19/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Baicalein (BA) is a flavonoid with wide-ranging pharmacological activity. However, its biological evaluation is hampered by its low solubility in aqueous medium, making forms of incorporation that improve its solubility necessary. In the present study, BA was combined with a solution of silk fibroin protein (SF), a biomaterial used too as a drug carrier, to evaluate the anti-inflammatory potential of this combination, in vivo, in an experimental model, zebrafish (Danio rerio). Baicalein-silk fibroin (BASF) improved the DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging rate (95%) in comparison with BA in solution. The acute toxicity study and histopathological analysis in zebrafish showed that BASF has low cytotoxic potential, except for the maxim dose of 2000 mg/kg. The use of BA in combination with SF enhanced the anti-inflammatory effect of flavonoids by inducing inflammatory peritoneal edema through carrageenan and achieved 77.6% inhibition of abdominal edema at a dose of 75 mg/kg. The results showed that the BASF, significantly increases the bioavailability and therapeutic effect of flavonoids and several results observed in this study may help in the development of new drugs.
Collapse
Affiliation(s)
- Fabrício H Holanda
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Arlefe N Ribeiro
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Brenda L Sánchez-Ortiz
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Gisele C de Souza
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Swanny F Borges
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Adriana M Ferreira
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Alexandro C Florentino
- Laboratório de Ictio e Genotoxidade, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Sérgio A Yoshioka
- Biochemistry and Biomaterials Laboratory, Institute of Chemistry of São Carlos, University of São Paulo, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Lienne S Moraes
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - José Carlos T Carvalho
- Drug Research Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil
| | - Irlon M Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Campus Universitário Marco Zero do Equador, Macapá, AP, Brazil.
| |
Collapse
|
35
|
Mori M, Quaglio D, Calcaterra A, Ghirga F, Sorrentino L, Cammarone S, Fracella M, D’Auria A, Frasca F, Criscuolo E, Clementi N, Mancini N, Botta B, Antonelli G, Pierangeli A, Scagnolari C. Natural Flavonoid Derivatives Have Pan-Coronavirus Antiviral Activity. Microorganisms 2023; 11:microorganisms11020314. [PMID: 36838279 PMCID: PMC9960971 DOI: 10.3390/microorganisms11020314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The SARS-CoV-2 protease (3CLpro) is one of the key targets for the development of efficacious drugs for COVID-19 treatment due to its essential role in the life cycle of the virus and exhibits high conservation among coronaviruses. Recent studies have shown that flavonoids, which are small natural molecules, have antiviral activity against coronaviruses (CoVs), including SARS-CoV-2. In this study, we identified the docking sites and binding affinity of several natural compounds, similar to flavonoids, and investigated their inhibitory activity towards 3CLpro enzymatic activity. The selected compounds were then tested in vitro for their cytotoxicity, for antiviral activity against SARS-CoV-2, and the replication of other coronaviruses in different cell lines. Our results showed that Baicalein (100 μg/mL) exerted strong 3CLpro activity inhibition (>90%), whereas Hispidulin and Morin displayed partial inhibition. Moreover, Baicalein, up to 25 μg/mL, hindered >50% of SARS-CoV-2 replication in Vero E6 cultures. Lastly, Baicalein displayed antiviral activity against alphacoronavirus (Feline-CoV) and betacoronavirus (Bovine-CoV and HCoV-OC43) in the cell lines. Our study confirmed the antiviral activity of Baicalein against SARS-CoV-2 and demonstrated clear evidence of its pan-coronaviral activity.
Collapse
Affiliation(s)
- Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Ghirga
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Cammarone
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra D’Auria
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Elena Criscuolo
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Bruno Botta
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, 00185 Rome, Italy
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
36
|
Chuang TC, Shao WS, Hsu SC, Lee SL, Kao MC, Wang V. Baicalein Induces G 2/M Cell Cycle Arrest Associated with ROS Generation and CHK2 Activation in Highly Invasive Human Ovarian Cancer Cells. Molecules 2023; 28:molecules28031039. [PMID: 36770705 PMCID: PMC9919047 DOI: 10.3390/molecules28031039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Ovarian cancer is a lethal gynecological cancer because drug resistance often results in treatment failure. The CHK2, a tumor suppressor, is considered to be an important molecular target in ovarian cancer due to its role in DNA repair. Dysfunctional CHK2 impairs DNA damage-induced checkpoints, reduces apoptosis, and confers resistance to chemotherapeutic drugs and radiation therapy in ovarian cancer cells. This provides a basis for finding new effective agents targeting CHK2 upregulation or activation to treat or prevent the progression of advanced ovarian cancer. Here, the results show that baicalein (5,6,7-trihydroxyflavone) treatment inhibits the growth of highly invasive ovarian cancer cells, and that baicalein-induced growth inhibition is mediated by the cell cycle arrest in the G2/M phase. Baicalein-induced G2/M phase arrest is associated with an increased reactive oxygen species (ROS) production, DNA damage, and CHK2 upregulation and activation. Thus, baicalein modulates the expression of DNA damage response proteins and G2/M phase regulatory molecules. Blockade of CHK2 activation by CHK2 inhibitors protects cells from baicalein-mediated G2/M cell cycle arrest. All the results suggest that baicalein has another novel growth inhibitory effect on highly invasive ovarian cancer cells, which is partly related to G2/M cell cycle arrest through the ROS-mediated DNA breakage damage and CHK2 activation. Collectively, our findings provide a molecular basis for the potential of baicalein as an adjuvant therapeutic agent in the treatment of metastatic ovarian cancer.
Collapse
Affiliation(s)
- Tzu-Chao Chuang
- Department of Chemistry, Tamkang University, New Taipei 251301, Taiwan
- Correspondence:
| | - Wei-Syun Shao
- Department of Chemistry, Tamkang University, New Taipei 251301, Taiwan
| | - Shih-Chung Hsu
- Department of Early Childhood Care and Education, University of Kang Ning, Taipei 114311, Taiwan
| | - Shou-Lun Lee
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Ming-Ching Kao
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Vinchi Wang
- Department of Neurology, Cardinal Tien Hospital, New Taipei 231009, Taiwan
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei 242062, Taiwan
| |
Collapse
|
37
|
Rao MRP, Ghadge I, Kulkarni S, R. Madgulkar A. Importance of Plant Secondary Metabolites in Modern Therapy. REFERENCE SERIES IN PHYTOCHEMISTRY 2023:1-31. [DOI: 10.1007/978-3-031-30037-0_5-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2025]
|
38
|
Li X, Deng Q, Kuang Y, Mao H, Yao M, Lin C, Luo X, Xu P. Identifying NFKB1, STAT3, and CDKN1A as Baicalein's Potential Hub Targets in Parkinson's Disease-related α-synuclein-mediated Pathways by Integrated Bioinformatics Strategies. Curr Pharm Des 2023; 29:2426-2437. [PMID: 37859325 DOI: 10.2174/0113816128259065231011114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The overexpression, accumulation, and cell-to-cell transmission of α-synuclein leads to the deterioration of Parkinson's disease (PD). Previous studies suggest that Baicalein (BAI) can bind to α-synuclein and inhibit α-synuclein aggregation and secretion. However, it is still unclear whether BAI can intervene with the pathogenic molecules in α-synuclein-mediated PD pathways beyond directly targeting α-synuclein per se. METHODS This study aimed to systematically investigate BAI's potential targets in PD-related A53T mutant α-synuclein-mediated pathways by integrating data mining, network pharmacological analysis, and molecular docking simulation techniques. RESULTS The results suggest that BAI may target genes that are dysregulated in synaptic transmission, vesicle trafficking, gene transcription, protein binding, extracellular matrix formation, and kinase activity in α-synucleinmediated pathways. NFKB1, STAT3, and CDKN1A are BAI's potential hub targets in these pathways. CONCLUSION Our findings highlight BAI's potentiality to modulate α-synuclein-mediated pathways beyond directly targeting α-synuclein per se.
Collapse
Affiliation(s)
- Xingjian Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiyin Deng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoyun Kuang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengxu Mao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meiling Yao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changsong Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaodong Luo
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Zhao H, Wang Y, Xu C, Li G, Song Y, Qiu J, Cui L, Song X, Yang Y, Sun Y. Potential molecular mechanisms of Erlongjiaonang action in idiopathic sudden hearing loss: A network pharmacology and molecular docking analyses. Front Neurol 2023; 14:1121738. [PMID: 37064204 PMCID: PMC10098218 DOI: 10.3389/fneur.2023.1121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/01/2023] [Indexed: 04/18/2023] Open
Abstract
Background Idiopathic sudden hearing loss (ISHL) is characterized by sudden unexplainable and unilateral hearing loss as a clinically emergent symptom. The use of the herb Erlongjiaonang (ELJN) in traditional Chinese medicine is known to effectively control and cure ISHL. This study explored the underlying molecular mechanisms using network pharmacology and molecular docking analyses. Method The Traditional Chinese Medicine System Pharmacological database and the Swiss Target Prediction database were searched for the identification of ELJN constituents and potential gene targets, respectively, while ISHL-related gene abnormality was assessed using the Online Mendelian Inheritance in Man and Gene Card databases. The interaction of ELJN gene targets with ISHL genes was obtained after these databases were cross-screened, and a drug component-intersecting target network was constructed, and the gene ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes, and protein-protein interaction networks were analyzed. Cytoscape software tools were used to map the active components-crossover target-signaling pathway network and screened targets were then validated by establishing molecular docking with the corresponding components. Result Erlongjiaonang contains 85 components and 250 corresponding gene targets, while ISHL has 714 disease-related targets, resulting in 66 cross-targets. The bioinformatical analyses revealed these 66 cross-targets, including isorhamnetin and formononetin on NOS3 expression, baicalein on AKT1 activity, and kaempferol and quercetin on NOS3 and AKT1 activity, as potential ELJN-induced anti-ISHL targets. Conclusion This study uncovered potential ELJN gene targets and molecular signaling pathways in the control of ISHL, providing a molecular basis for further investigation of the anti-ISHL activity of ELJN.
Collapse
Affiliation(s)
- He Zhao
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Yan Wang
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Cong Xu
- The Second Medical College, Binzhou Medical University, Yantai, Shandong, China
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Guangjin Li
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yuwan Song
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Jingjing Qiu
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Limei Cui
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- *Correspondence: Xicheng Song,
| | - Yujuan Yang
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Yujuan Yang,
| | - Yan Sun
- Department of Otolaryngology and Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Yan Sun,
| |
Collapse
|
40
|
Yu G, Cheng Y, Duan Z. Detection of Cobalamin and In Vitro Cell Imaging Based on Nitrogen-Doped Yellow Fluorescent Carbon Dots with Nano Architectonics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:9057. [PMID: 36556863 PMCID: PMC9785990 DOI: 10.3390/ma15249057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
As novel fluorescent nanomaterials, carbon dots have attracted increasing research attention because of their simple synthesis, robust fluorescence, low toxicity, and easy functionalisation. Previous research was focused on preparing carbon dots from biomass and chemical materials; however, most of these carbon dots exhibited blue fluorescence. Moreover, the fluorescence quantum yield was generally low, significantly limiting their application in biological imaging. To broaden the application scope of carbon dots, this study prepared long-wavelength emitting nano-carbon dots that exhibited increased quantum yield. Novel N-doped yellow fluorescent nano-carbon dots (Y-CDs) were synthesised via a hydrothermal method using L-tartaric acid and urea as the precursors. The Y-CDs had a high quantum yield (15.9%) and demonstrated photostability at various pHs, temperatures, and ionic strengths. The Y-CDs could detect cobalamin effectively and selectively, showing a linear relationship between fluorescence intensity and cobalamin concentration. The related coefficient was 0.997, and the detection limit was 2.101 μmol/L. In addition, the Y-CDs were successfully used as an imaging probe for MDA-MB-231 cells. Therefore, the Y-CDs developed in this study can be used for cobalamin detection and cell imaging.
Collapse
|
41
|
Yang L, Nao J. Ferroptosis: a potential therapeutic target for Alzheimer's disease. Rev Neurosci 2022:revneuro-2022-0121. [PMID: 36514247 DOI: 10.1515/revneuro-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022]
Abstract
The most prevalent dementia-causing neurodegenerative condition is Alzheimer's disease (AD). The aberrant buildup of amyloid β and tau hyperphosphorylation are the two most well-known theories about the mechanisms underlying AD development. However, a significant number of pharmacological clinical studies conducted around the world based on the two aforementioned theories have not shown promising outcomes, and AD is still not effectively treated. Ferroptosis, a non-apoptotic programmed cell death defined by the buildup of deadly amounts of iron-dependent lipid peroxides, has received more attention in recent years. A wealth of data is emerging to support the role of iron in the pathophysiology of AD. Cell line and animal studies applying ferroptosis modulators to the treatment of AD have shown encouraging results. Based on these studies, we describe in this review the underlying mechanisms of ferroptosis; the role that ferroptosis plays in AD pathology; and summarise some of the research advances in the treatment of AD with ferroptosis modulators. We hope to contribute to the clinical management of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
42
|
Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids- a comprehensive update. J Nutr Biochem 2022; 110:109147. [PMID: 36049673 DOI: 10.1016/j.jnutbio.2022.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Gout is an inflammatory disease caused by metabolic disorder or genetic inheritance. People throughout the world are strongly dependent on ethnomedicine for the treatment of gout and some receive satisfactory curative treatment. The natural remedies as well as established drugs derived from natural sources or synthetically made exert their action by mechanisms that are closely associated with anticancer treatment mechanisms regarding inhibition of xanthine oxidase, feedback inhibition of de novo purine synthesis, depolymerization and disappearance of microtubule, inhibition of NF-ĸB activation, induction of TRAIL, promotion of apoptosis, and caspase activation and proteasome inhibition. Some anti-gout and anticancer novel compounds interact with same receptors for their action, e.g., colchicine and colchicine analogues. Dietary flavonoids, i.e., chrysin, kaempferol, quercetin, fisetin, pelargonidin, apigenin, luteolin, myricetin, isorhamnetin, phloretinetc etc. have comparable IC50 values with established anti-gout drug and effective against both cancer and gout. Moreover, a noticeable number of newer anticancer compounds have already been isolated from plants that have been using by local traditional healers and herbal practitioners to treat gout. Therefore, the anti-gout plants might have greater potentiality to become selective candidates for screening of newer anticancer leads.
Collapse
|
43
|
Ma X, Wang S, Li C, Jia X, Wang T, Leng Z, Lu R, Kong X, Zhang J, Li L. Baicalein inhibits the polarization of microglia/macrophages to the M1 phenotype by targeting STAT1 in EAE mice. Int Immunopharmacol 2022; 113:109373. [DOI: 10.1016/j.intimp.2022.109373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
44
|
He X, Xu K, Liu Y, Wang D, Tang Q, Hui W, Chen H, Shang Y. Radical-Induced Cascade Annulation/Hydrocarbonylation for Construction of 2-Aryl-4 H-chromen-4-ones. Molecules 2022; 27:7412. [PMID: 36364239 PMCID: PMC9654733 DOI: 10.3390/molecules27217412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
A robust metal- and solvent-free cascade radical-induced C-N cleavage/intramolecular 6-endo-dig annulation/hydrocarbonylation for the synthesis of the valuable 2-aryl-4H-chromen-4-ones is described. This practical synthesis strategy utilizes propargylamines and air as the oxygen source and green carbonylation reagent, in which propargylamines are activated by the inexpensive and available dimethyl 2,2'-azobis(2-methylpropionate) (AIBME) and (PhSe)2 as the radical initiators. This simple and green protocol features wide substrate adaptability, good functional group tolerance, and amenability to scaling up and derivatizations.
Collapse
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Froldi G, Djeujo FM, Bulf N, Caparelli E, Ragazzi E. Comparative Evaluation of the Antiglycation and Anti-α-Glucosidase Activities of Baicalein, Baicalin (Baicalein 7- O-Glucuronide) and the Antidiabetic Drug Metformin. Pharmaceutics 2022; 14:pharmaceutics14102141. [PMID: 36297576 PMCID: PMC9612222 DOI: 10.3390/pharmaceutics14102141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
The discovery of new oral antidiabetic drugs remains a priority in medicine. This research aimed to evaluate the activity of the flavonoid baicalein and its natural glucuronide baicalin, compared to the antidiabetic drug metformin, as potential antiglycation, anti–radical, and anti-α–glucosidase agents, in order to assess their potential role in counteracting hyperglycemia-induced tissue damage. The study considered: (i) the BSA assay, to detect the formation of advanced glycation end products (AGEs), (ii) the GK peptide–ribose assay, which evaluates the cross–linking between the peptide and ribose, and (iii) the carbonyl content assay to detect the total carbonyl content, as a biomarker of tissue damage. In addition, to obtain a reliable picture of the antiglycation capacity of the investigated compounds, DPPH scavenging and oxygen radical absorbance capacity (ORAC) assays were performed. Furthermore, the anti–α–glucosidase activity of baicalein and baicalin was detected. Furthermore, to estimate cell permeability, preliminarily, the cytotoxicity of baicalein and baicalin was evaluated in HT–29 human colon adenocarcinoma cells using the MTT assay. Successively, the ability of the compounds to pass through the cytoplasmic membranes of HT–29 cells was detected as a permeability screen to predict in vivo absorption, showing that baicalein passes into cells even if it is quickly modified in various metabolites, being its main derivative baicalin. Otherwise, baicalin per se did not pass through cell membranes. Data show that baicalein is the most active compound in reducing glycation, α-glucosidase activity, and free radicals, while baicalin exhibited similar activities, but did not inhibit the enzyme α–glucosidase.
Collapse
|
46
|
Traditional Chinese Medicine Regulates Th17/Treg Balance in Treating Inflammatory Bowel Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6275136. [PMID: 36159571 PMCID: PMC9499767 DOI: 10.1155/2022/6275136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/20/2022] [Indexed: 01/30/2023]
Abstract
Inflammatory bowel disease (IBD), also known as chronic nonspecific inflammatory disease of the colon and rectum, is primarily characterized by mucopurulent bloody stools, diarrhea, abdominal pain, and tenesmus. Its cause is uncertain. IBD patients frequently experience a high rate of recurrence, a protracted treatment course, and a high risk of carcinogenesis. Additionally, the difficulty of treatment is significantly increased by these illness characteristics. Currently, the normal treatment for this illness can lessen symptoms to some amount and even meet clinical treatment requirements, but due to serious side effects, unfavorable reactions, and high costs, we need to develop better complementary and alternative medicines. A number of studies have found that the imbalance of T helper cell 17 (Th17)/regulatory T cells (Treg) contributes significantly to the occurrence and progression of IBD and that Th17/Treg balance restoration is frequently useful in the management of IBD. As a result, regulating the Th17/Treg balance has also emerged as a novel approach to treating IBD. Traditional Chinese medicine (TCM) has gained popularity in recent years due to its advantages of low side effects, a variety of targets, and multiple regulatory mechanisms. A number of studies have shown that TCM can successfully intervene in the Th17/Treg imbalance and restore it, and research on the prevention and treatment of IBD by TCM by restoring Th17/Treg has also shown promising results. The characteristics of the Th17/Treg balance and its role in the pathogenesis of IBD, as well as the role of TCM in regulating the Th17/Treg imbalance, are analyzed. The research results are expected to provide a theoretical basis for the clinical treatment and pathology mechanism research of IBD.
Collapse
|
47
|
Protective Effect of Natural Medicinal Plants on Cardiomyocyte Injury in Heart Failure: Targeting the Dysregulation of Mitochondrial Homeostasis and Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3617086. [PMID: 36132224 PMCID: PMC9484955 DOI: 10.1155/2022/3617086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Heart failure occurs because of various cardiovascular pathologies, such as coronary artery disease or cardiorenal syndrome, eventually reaching end-stage disease. Various factors contribute to cardiac structural or functional changes that result in systolic or diastolic dysfunction. Several studies have confirmed that the key factor in heart failure progression is myocardial cell death, and mitophagy is the major mechanism regulating myocardial cell death in heart failure. The clinical mechanisms of heart failure are well understood in practice. However, the essential role of mitophagic regulation in heart failure has only recently received widespread attention. Receptor-mediated mitophagy is involved in various mitochondrial processes like oxidative stress injury, energy metabolism disorders, and calcium homeostasis, which are also the main causes of heart failure. Understanding of the diverse regulatory mechanisms in mitophagy and the complexity of its pathophysiology in heart failure remains incomplete. Related studies have found that various natural medicinal plants and active ingredients, such as flavonoids and saponins, can regulate mitophagy to a certain extent, improve myocardial function, and protect myocardial cells. This review comprehensively covers the relevant mechanisms of different types of mitophagy in regulating heart failure pathology and controlling mitochondrial adaptability to stress injury. Further, it explores the relationship between mitophagy and cardiac ejection dysfunction. Natural medicinal plant-targeted regulation strategies and scientific evidence on mitophagy were provided to elucidate current and potential strategies to apply mitophagy-targeted therapy for heart failure.
Collapse
|
48
|
Fontana A, Cursaro I, Carullo G, Gemma S, Butini S, Campiani G. A Therapeutic Perspective of HDAC8 in Different Diseases: An Overview of Selective Inhibitors. Int J Mol Sci 2022; 23:ijms231710014. [PMID: 36077415 PMCID: PMC9456347 DOI: 10.3390/ijms231710014] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylases (HDACs) are epigenetic enzymes which participate in transcriptional repression and chromatin condensation mechanisms by removing the acetyl moiety from acetylated ε-amino group of histone lysines and other non-histone proteins. In recent years, HDAC8, a class I HDAC, has emerged as a promising target for different disorders, including X-linked intellectual disability, fibrotic diseases, cancer, and various neuropathological conditions. Selective HDAC8 targeting is required to limit side effects deriving from the treatment with pan-HDAC inhibitors (HDACis); thus, many endeavours have focused on the development of selective HDAC8is. In addition, polypharmacological approaches have been explored to achieve a synergistic action on multi-factorial diseases or to enhance the drug efficacy. In this frame, proteolysis-targeting chimeras (PROTACs) might be regarded as a dual-targeting approach for attaining HDAC8 proteasomal degradation. This review highlights the most relevant and recent advances relative to HDAC8 validation in various diseases, providing a snapshot of the current selective HDAC8is, with a focus on polyfunctional modulators.
Collapse
Affiliation(s)
- Anna Fontana
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Ilaria Cursaro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriele Carullo
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- Correspondence: ; Tel.: +39-057-723-4161
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
49
|
Liu S, Gao X, Wang Y, Wang J, Qi X, Dong K, Shi D, Wu X, Guo C. Baicalein-loaded silk fibroin peptide nanofibers protect against cisplatin-induced acute kidney injury: fabrication, characterization and mechanism. Int J Pharm 2022; 626:122161. [PMID: 36058409 DOI: 10.1016/j.ijpharm.2022.122161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Silk fibroin (SF) is a natural polymeric biomaterial widely used in the preparation of drug delivery systems. Herein, silk fibroin peptide (SFP) was self-assembled into nanofibers, encapsulated a poorly water-soluble drug baicalein (SFP/BA NFs), and then used to protect against cisplatin-induced acute kidney injury (AKI). Specifically, the SFP/BA NFs significantly enhanced the aqueous dispersity, storage stability, and in vitro antioxidant activity of BA. SFP/BA NFs increased the drug uptake and localization to mitochondria. In vitro results demonstrated that SFP/BA NFs can relieve the cisplatin-induced HK-2 cell damage, and inhibit the cisplatin-induced accumulation of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) disruption. Mechanism studies demonstrated that SFP/BA NFs may exert nephroprotective effects by inhibiting both the cisplatin-induced DNA damage and the cGAS/STING pathway activation. In vivo results showed that cisplatin treatment resulted in decreased body weight, increased serum creatinine (SCr), and increased blood urea nitrogen (BUN) levels, while SFP/BA NFs reversed the above symptoms. Furthermore, SFP/BA NFs reversed the cisplatin-induced abnormal changes of antioxidant enzymes (e.g., SOD and GSH), and inhibited the cisplatin-induced DNA damage as well as the activation of cGAS/TING. Above all, our results revealed the potential of SFP/BA NFs to protect against cisplatin-induced AKI.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yaqi Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Xueju Qi
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kehong Dong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, Shandong, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, Shandong, China.
| |
Collapse
|
50
|
Effects of Origanum vulgare and Scutellaria baicalensis on the Physiological Activity and Biochemical Parameters of the Blood in Rats on a High-Fat Diet. Sci Pharm 2022. [DOI: 10.3390/scipharm90030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pharmacological effects of medicinal plants play a primary role in the mild correction of body weight in humans and animals, reducing the accumulation of fat in their bodies during a state of obesity. Origanum vulgare L. and Scutellaria baicalensis Georgi are widely used as food additives and medicinal plants, but their comprehensive physiological evaluation in model animals in a state of obesity has not been carried out. In a 30-day laboratory experiment on male rats which had developed obesity through a hypercaloric diet, the effects of adding the dry crushed grass O. vulgare or dry crushed roots of S. baicalensis to their feed was evaluated. During the experiment, the rats fed with O. vulgare increased in body weight to only 105.5% of their initial weight, while the body weight of the control group increased to 111.5%, and that of animals fed on S. baicalensis increased to 124.0% of their initial body weight. The average daily increase in the rats’ body weight when O. vulgare was added to their diet decreased to 205 mg/day, and when S. baicalensis was added, on the contrary, it increased to 1417 mg/day, compared to 700 mg/day among the control group. Under the influence of O. vulgare, the lipid metabolism of the rats normalized: the atherogenic index decreased to 33.7%, compared with the values of the control group, due to an increase in the concentration of high-density lipoproteins from cholesterol. The concentration of triglycerides decreased, and the concentration of glucose decreased. The roots of S. baicalensis being added into the diet of rats increased the activity of alkaline phosphatase and decreased the concentration of urea. The atherogenic index also decreased (by up to 35.5% in the control group) and the concentration of high-density lipoprotein cholesterol increased, while the concentrations of triglycerides and glucose decreased. The physical activity of the rats showed a slight tendency to decrease when both O. vulgare and S. baicalensis were added to their diet. Both plant species contributed to a decrease in the emotional status of animals, which was most pronounced when the O. vulgare grass was added to the feed. The results of the study demonstrate the potential of the use of O. vulgare and S. baicalensis as herbal supplementations for the correction of hyperlipidemia and type-2 diabetes mellitus in overweight patients.
Collapse
|