1
|
Deng L, Xie W, Lin M, Xiong D, Huang L, Zhang X, Qian R, Huang X, Tang S, Liu W. Taraxerone inhibits M1 polarization and alleviates sepsis-induced acute lung injury by activating SIRT1. Chin Med 2024; 19:159. [PMID: 39543653 PMCID: PMC11566926 DOI: 10.1186/s13020-024-01002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/08/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Acute lung injury (ALI) is the most lethal disease associated with sepsis, and there is a lack of effective drug treatment. As the major cells of sepsis-induced ALI, macrophages polarize toward the proinflammatory M1 phenotype and secrete multiple inflammatory cytokines to accelerate the disease process through nuclear factor kappa-B (NF-κB) and NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathways. Taraxerone, the main component of the Chinese medicinal Sedum, possesses numerous biological activities. However, uncertainty remains regarding the potential of taraxerone to protect against sepsis-induced ALI. This study aimed to investigate the effects and mechanisms of taraxerone against ALI. METHODS An animal model for ALI was established by cecal ligation and puncture and treated with taraxerone via intraperitoneal administration. The protective effect of taraxerone on the lungs was analyzed using H&E staining, dihydroethidium staining, ELISA kits, cell counting, myeloperoxidase kit, malondialdehyde kit, glutathione kit, superoxide dismutase kit and flow cytometry. Western blotting, RT-PCR, flow cytometry, co-immunoprecipitation, and immunofluorescence were used to investigate the regulatory of taraxerone on SIRT1. RESULTS Our study demonstrates for the first time that taraxerone can activate SIRT1 in macrophages, promoting SIRT1 activity. This activation inhibited the NF-κB signaling pathway primarily through the dephosphorylation and deacetylation of p65. Simultaneously, taraxerone disrupted the NLRP3 inflammasome signaling pathway, thereby alleviating M1 polarization of macrophages and mitigating sepsis-induced pulmonary inflammation and oxidative stress. In vivo, EX527 was used to validate the anti-inflammatory and anti-oxidative stress effects of taraxerone mediated by SIRT1. CONCLUSION SIRT1-mediated anti-inflammatory and anti-oxidative stress effects may be important targets for taraxerone in treating ALI.
Collapse
Affiliation(s)
- Lang Deng
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Weixi Xie
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Miao Lin
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Dayan Xiong
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Lei Huang
- Occupational Disease Department, Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, 410021, Hunan, China
| | - Xiaohua Zhang
- Occupational Disease Department, Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, 410021, Hunan, China
| | - Rui Qian
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoting Huang
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China.
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China.
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Alamoudi JA, El-Masry TA, El-Nagar MMF, El Zahaby EI, Elmorshedy KE, Gaballa MMS, Alshawwa SZ, Alsunbul M, Alharthi S, Ibrahim HA. Chitosan/hesperidin nanoparticles formulation: a promising approach against ethanol-induced gastric ulcers via Sirt1/FOXO1/PGC-1α/HO-1 pathway. Front Pharmacol 2024; 15:1433793. [PMID: 39314751 PMCID: PMC11417028 DOI: 10.3389/fphar.2024.1433793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Hesperidin (Hes) protects different organs from damage by acting as a potent antioxidant and anti-inflammatory. This study aims to evaluate the gastroprotective effects of free hesperidin and its chitosan nanoparticles (HNPs) against ethanol-induced gastric ulcers in rats, hypothesizing that HNPs will enhance bioavailability and therapeutic efficacy due to improved solubility and targeted delivery. HNPs were synthesized via ion gelation and characterized using TEM, SEM, and zeta potential analyses. Key assessments included gastric acidity, histological analysis, and markers of inflammation, oxidative stress, and apoptosis. HNPs significantly decreased gastric acidity, reduced inflammatory and apoptotic markers, and enhanced antioxidant enzyme activities compared to free hesperidin and esomeprazole. Furthermore, Sirt-1, PGC-1α, HO-1, and FOXO1 gene expression were also evaluated. HNPs raised Sirt-1, PGC-1α, HO-1, and downregulated FOXO1, and they suppressed the activities of NF-κB p65, COX-2, IL-1β, CD86, FOXO1 P53, and caspase-3 and increased Sirt-1 activity. HNPs treatment notably restored antioxidant enzyme activity, reduced oxidative stress and inflammatory markers, and improved histological outcomes more effectively than free hesperidin and esomeprazole. These results indicate that chitosan nanoparticles significantly enhance the gastroprotective effects of hesperidin against ethanol-induced gastric ulcers, potentially offering a more effective therapeutic strategy. Further research should explore the clinical applications of HNPs in human subjects.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Kadreya E. Elmorshedy
- Department of Anatomy, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Anatomy, King Khaled College of Medicine, Riyadh, Saudi Arabia
| | - Mohamed M. S. Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sitah Alharthi
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Hanaa A. Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Jiang Y, Guo N, Zhang Q, Xu X, Qiang M, Lv Y. MrgX2-targeted ligand screening from Artemisia capillaris Thunb. extract and receptor-ligand interaction analysis based on MrgX2-HALO-tag/CMC. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124252. [PMID: 39067315 DOI: 10.1016/j.jchromb.2024.124252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Artemisia capillaris Thunb. (A. capillaris) is a well-known traditional Chinese herbal medicine with a wide range of pharmacological effects, such as soothing the liver and gallbladder, heat clearance, and detoxifying. Hence, its extract is commonly added to various traditional Chinese medicine formulas. Traditional Chinese medicine injection (TCMI) is a mature pharmaceutical dosage form developed using TCM theory combined with modern science and technology. Notably, allergic reactions, especially pseudo‑allergic reactions (PARs), greatly limited the use of these injections. Therefore, screening pseudo‑allergic components in A. capillaris extract is clinically significant. In the present study, we proposed a two-dimensional screening and identification system based on mas-related G protein-coupled receptor X2-HALO-tag/cell membrane chromatography (MrgX2-HALO-tag/CMC) high performance liquid chromatography mass spectrometry (HPLC-MS); seven potential active components were screened from 75 % ethanol extract of A. capillaris: NCA, CA, CCA, 1,3-diCQA, ICA-B, ICA-A, and ICA-C. The receptor-ligand interactions between these seven compounds and MrgX2 protein were analyzed using frontal analysis and molecular docking technology. Furthermore, a mast cell degranulation-related assay was used to assess the pseudo‑allergic activity of these compounds. The screened compounds can serve as ligands of MrgX2, and this study provides a research basis for pseudo‑allergic reactions caused by TCMIs containing A. capillaris.
Collapse
Affiliation(s)
- Yuhan Jiang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China
| | - Na Guo
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China
| | - Quan Zhang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China
| | - Xiaochan Xu
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
| | - Mengyang Qiang
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science & Technology Innovation Harbour, Xi'an 710115, China.
| |
Collapse
|
4
|
Arabacı Tamer S, Mermer KS, Erdoğan Ö, Çevik Ö, Ercan F, Bağcı C, Yeğen BÇ. Neuropeptide W facilitates chronic gastric ulcer healing by the regulation of cyclooxygenase and NF-κB signaling pathways. Inflammopharmacology 2024; 32:1519-1529. [PMID: 38227096 PMCID: PMC11006733 DOI: 10.1007/s10787-023-01403-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 01/17/2024]
Abstract
AIMS Putative beneficial effects of neuropeptide W (NPW) in the early phase of gastric ulcer healing process and the involvement of cyclooxygenase (COX) enzymes were investigated in an acetic acid-induced gastric ulcer model. MAIN METHODS In anesthetized male Sprague-Dawley rats, acetic acid was applied surgically on the serosa and then a COX-inhibitor (COX-2-selective NS-398, COX-1-selective ketorolac, or non-selective indomethacin; 2 mg/kg/day, 3 mg/kg/day or 5 mg/kg/day; respectively) or saline was injected intraperitoneally. One h after ulcer induction, omeprazole (20 mg/kg/day), NPW (0.1 μg/kg/day) or saline was intraperitoneally administered. Injections of NPW, COX-inhibitors, omeprazole or saline were continued for the following 2 days until rats were decapitated at the end of the third day. KEY FINDINGS NPW treatment depressed gastric prostaglandin (PG) I2 level, but not PGE2 level. Similar to omeprazole, NPW treatment significantly reduced gastric and serum tumor necrosis factor-alpha and interleukin-1 beta levels and depressed the upregulation of nuclear factor kappa B (NF-κB) and COX-2 expressions due to ulcer. In parallel with the histopathological findings, treatment with NPW suppressed ulcer-induced increases in myeloperoxidase activity and malondialdehyde level and replenished glutathione level. However, the inhibitory effect of NPW on myeloperoxidase activity and NPW-induced increase in glutathione were not observed in the presence of COX-1 inhibitor ketorolac or the non-selective COX-inhibitor indomethacin. SIGNIFICANCE In conclusion, NPW facilitated the healing of gastric injury in rats via the inhibition of pro-inflammatory cytokine production, oxidative stress and neutrophil infiltration as well as the downregulation of COX-2 protein and NF-κB gene expressions.
Collapse
Affiliation(s)
- Sevil Arabacı Tamer
- Department of Physiology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Kadriye Sezen Mermer
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Ömer Erdoğan
- Faculty of Medicine, Department of Biochemistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Özge Çevik
- Faculty of Medicine, Department of Biochemistry, Aydın Adnan Menderes University, Aydın, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Cahit Bağcı
- Department of Physiology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
5
|
Taheri Mirghaed M, Ghasemian SO, Mousavi Nasab SF, Rahimi K. Effects of fish oil on ethanol-induced gastric ulcer in rats: inflammatory responses and oxidative stress. Ann Med Surg (Lond) 2024; 86:819-825. [PMID: 38333309 PMCID: PMC10849447 DOI: 10.1097/ms9.0000000000001550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/18/2023] [Indexed: 02/10/2024] Open
Abstract
Background The prevalence of peptic ulcers is increasing due to lifestyle changes and harmful diets. Objective The aim of this study was to investigate the effect of fish oil (FO) on gastric ulcers induced by ethanol in rats. Methods The pharmacological efficacy of FO with doses of 5 and 10 mg/kg investigated using the gastric ulcer index, the acidity of gastric secretions, pro-inflammatory cytokine assessment, and oxidative stress examination. Results Ethanol-induced gastric ulcer improves with FO 5 or 10 mg/kg pretreatment (P<0.05). FO did have acid-neutralizing activity. FO also increased the levels of glutathione and catalase and decreased the malondialdehyde levels (P<0.05). Moreover, FO reduced the levels of tumour necrosis factor alpha (TNF-α) interleukin-6 (IL-6), through downregulation of nuclear factor kappa B (NF-κB) (P<0.05). Pretreatment with FO attenuates ethanol-induced gastric ulceration. Conclusion The observed effects may be due to the role of FO in regulating gastric secretions, changes in the expression of NF-κB, and changes in the levels of oxidative stress factors.
Collapse
Affiliation(s)
| | | | | | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
6
|
Kim HJ, Jin BR, Lee CD, Kim D, Lee AY, Lee S, An HJ. Anti-Inflammatory Effect of Chestnut Honey and Cabbage Mixtures Alleviates Gastric Mucosal Damage. Nutrients 2024; 16:389. [PMID: 38337674 PMCID: PMC10857084 DOI: 10.3390/nu16030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Gastritis, one of the most common gastrointestinal disorders, damages the stomach lining as it causes a disproportion between the protective and ruinous factors of the gastric system. Cabbage (CB) is widely used to treat gastric lesions but requires the addition of natural sweeteners to counteract its distinct bitter taste. Therefore, this study sought to determine whether the combination of chestnut honey (CH)-which is known for its dark brown color and high kynurenic acid (KA) content-or KA-increased CH (KACH) with CB (CH + CB or KACH + CB) exerts synergistic effects for improving both taste and efficacy. Before confirming the gastroprotective effects in indomethacin (INDO)-induced rats, the anti-inflammatory activities of CH + CB and KACH + CB were assessed in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. As a result, treatment with either CH + CB or KACH + CB downregulated pro-inflammatory cytokine levels in LPS-stimulated RAW 264.7 macrophages by regulating the translocation of nuclear factor kappa B. Furthermore, both CH + CB and KACH + CB not only enhanced the levels of antioxidant enzymes but also triggered the activation of nuclear factor erythroid-related factor 2. Based on these effects, CH + CB or KACH + CB effectively protected the gastric mucosa in INDO-induced rats. Therefore, this study suggests that CH + CB and KACH + CB exert stronger gastroprotective effects when used together.
Collapse
Affiliation(s)
- Hyo-Jung Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-J.K.); (B.-R.J.)
| | - Bo-Ram Jin
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-J.K.); (B.-R.J.)
| | - Chang-Dae Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Doyun Kim
- KEDEM Inc., Chuncheon-si 24341, Republic of Korea;
| | - Ah Young Lee
- Department of Food Science, Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-J.K.); (B.-R.J.)
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Morsi AA, Shawky LM, Shawky TM, Bahr MH, Alnasr MTA, El Bana E. Targeting NF-κB/COX-2 signaling by soyasaponin I alleviates diclofenac-induced gastric ulceration in male albino rats. Cell Biochem Funct 2024; 42:e3927. [PMID: 38269501 DOI: 10.1002/cbf.3927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Gastric ulceration is a prevalent worldwide clinical presentation due to altered gastric defense mechanisms. Nonsteroidal anti-inflammatory drugs are one of the common causes of gastric ulcers mediated by the release of inflammatory mediators. The study aimed to investigate the potential protective effect of soyasaponin I (soya) against diclofenac (DIC)-induced gastric ulcer in rats and to highlight the underlying mechanisms. The experiment was conducted on 40 male Wistar albino rats, equally distributed into five groups: control, DIC-induced ulcer (9 mg/kg/d, orally, twice daily for 3 days), ulcer/soya-, ulcer/ranitidine-, and ulcer/soya/selective nuclear factor kappa B inhibitor (JSH-23)-treated groups. The doses of soya, ranitidine, and JSH were 20, 25, and 5 mg/kg/d, respectively, given orally. Gastric specimens were prepared for gene and histological study and for biochemical analysis of gastric prostaglandin E2 (PGE2), oxidative markers, and inflammatory cytokines. The gastric samples were formalin-fixed, paraffin-embedded, and subjected to hematoxylin and eosin (H&E), PAS staining, and immunohistochemical assay for identification of nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2), and proliferation marker (Ki67) expressions. The findings revealed decreased gastric PGE2 and altered inflammatory and oxidative markers in the ulcer model group. The H&E staining showed mucosal injury characterized by mucosal surface defects and inflammatory cell infiltrations. The polymerase chain reaction (PCR) and immunohistochemistry demonstrated an upregulation of NF-κB and COX-2 expression at gene/protein levels; meanwhile, Ki67 downregulation. The soya-treated group showed maintained biochemical, histological, and PCR findings comparable to the ranitidine-treated group. The JSH-23-treated group still showed partial gastric protection with biochemical and immunohistochemical changes. Soyasaponin I ameliorated DIC-induced gastric ulcers by targeting the COX-2 activity through modulation of NF-κB signaling.
Collapse
Affiliation(s)
- Ahmed A Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Lamiaa M Shawky
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Tamer M Shawky
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt
- Department of Basic Medical Sciences, Vision Colleges, Riyadh, Saudi Arabia
| | - Mohamed H Bahr
- Department of Basic Medical Sciences, Vision Colleges, Riyadh, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Eman El Bana
- Department of Anatomy, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
8
|
Chen X, Yang D, Wang Q, Zhou A. Gastroprotective Effects of the Aqueous Extract of Finger Citron Pickled Products against Ethanol-Induced Gastric Damage: In Vitro and In Vivo Studies. Foods 2023; 12:2355. [PMID: 37372566 DOI: 10.3390/foods12122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Finger citron pickled products (FCPP), as folk remedies, are famous in southern China for protecting gastric mucosa. However, the gastric mucosa protection of FCPP has not been reported yet, and its effective mechanism is unclear. In this study, the protective mechanism of FCPP aqueous extract on gastric mucosa was investigated in vitro and in vivo for the first time, using human gastric mucosa epithelial cells (GES-1) and acute alcoholic gastric ulcer rat model respectively. Furthermore, we also investigated the main substances in the aqueous extract that exert gastroprotective activity using a GES-1 scratch test and basic chemical composition analysis. FCPP aqueous extract was found to play a protective and reparative role in GES-1 by promoting the secretion of trefoil factor thyroid transcription factor 2 (TFF2) and inhibiting the secretion of tumor necrosis factor-α (TNF-α) in cells damaged by alcohol. The ulcer index of gastric tissue induced by alcohol was significantly decreased (p < 0.01) after pretreatment with FCPP aqueous extract, indicating that FCPP aqueous extract had a good protective effect on the stomach mucosa. Moreover, FCPP aqueous extract could increase superoxide dismutase (SOD) activity and inhibit malondialdehyde (MDA) content, exhibiting good antioxidant capacity. Aqueous extract of FCPP could also effectively inhibit the increase of cytokines TNF-α, interleukin-1β (IL-1β) and interleukin-6 (IL-6) in serum of rats, and promote the increase of anti-inflammatory cytokines interleukin-10 (IL-10) to some extent. Furthermore, FCPP aqueous extract could inhibit the expression of nuclear factor kappa-B (NF-κB/P65) protein, caspase-1 protein and IL-1β protein in the gastric tissue of rats, while promoting the expression of IκBα protein, indicating that the gastric mucosa protection effects of FCPP aqueous extract were mainly dependent on the NF-κB/caspase-1/IL-1β axis. The polysaccharides in FCPP aqueous extract might be the main components that exerted gastroprotective activity, as demonstrated by GES-1 cell scratch assay. This study confirmed that FCPP aqueous extract presented promising potential in protecting gastric mucosa and avoiding gastric ulcers, which could provide an experimental basis for further utilizing the medicinal value and developing new products of FCPP.
Collapse
Affiliation(s)
- Xiaoai Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Dan Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Pineda-Peña EA, Capistran-Amezcua D, Reyes-Ramírez A, Xolalpa-Molina S, Chávez-Piña AE, Figueroa M, Navarrete A. Gastroprotective effect methanol extract of Caesalpinia coriaria pods against indomethacin- and ethanol-induced gastric lesions in Wistar rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116057. [PMID: 36574790 DOI: 10.1016/j.jep.2022.116057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caesalpinia coriaria (Jacq.) Willd is widely used as a traditional medinal plant in Mexico for protective and healing purposes and the treatment of gastrointestinal diseases. AIM OF THE STUDY To investigate the gastroprotective effect of extract of Caesalpinia coriaria pods against ethanol-induced and indomethacin-induced gastric lesion models, its anti-inflammatory and antioxidative activities, and its main compounds through LC-MS analysis. MATERIALS AND METHODS Male Wistar rats were orally administered a methanol extract obtained from the pods of C. coriaria at doses of 10, 30, 100, and 300 mg/kg prior to inducing gastric lesions with ethanol or indomethacin. Gastric mucosal lesions were evaluated by macroscopic and histopathological alterations. Determination of prostaglandin E2 (PGE2), alpha tumor necrosis factor (TNF-α), leukotriene B4 (LTB4), nitrites/nitrates, superoxide dismutase (SOD), and H2S gastric levels were investigated. Its main compounds of the active extract through LC-MS analysis. RESULTS Phenolic compounds were identified as major components of methanol extract. LC-MS analysis identified 15 constituents, and the significant compounds were gallic acid, 3-O-galloylquinic acid, digalloylglucose, tetragalloylglucose, valoneic acid dilactone, pentagalloylglucose, digalloylshikimic acid, and ellagic acid. Pretreatment with the extract at doses of 100 and 300 mg/kg significantly reduced gastric ulcer lesions in both models. Compared with the reference drugs (omeprazole or ranitidine, respectively), no significant difference was found (p < 0.05). The extract's gastroprotective effect was accompanied by significant decreases in leukocyte recruitment, and gastric levels of TNF-α and LTB4 by two to fourfold (p < 0.05). Also, gastric levels of PGE2 gastric levels were maintained and the antioxidant enzyme activities of SOD and nitrate/nitrite in the gastric tissue were improved (p < 0.05). The LC-MS analysis indicated the presence of hydrolyzable tannins (mainly gallic acid derivatives). CONCLUSION The results suggest that the gastroprotective effect of the methanol extract of C. coriaria pods occurs through anti-inflammatory, antioxidant, and NO modulation properties, and gallic acid derivatives may be the main possible compounds responsible for its actions.
Collapse
Affiliation(s)
- Elizabeth Arlen Pineda-Peña
- Carrera Médico Cirujano, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Campus I, Av. Guelatao, No. 66, Ejercito de Oriente, Iztapalapa, C.P, 09230, CDMX, Mexico; Unidad Multidisciplinaria de Investigación Experimental (UMIEZ), Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de mayo esquina Fuerte de Loreto, Ejército de Oriente, Iztapalapa, C.P, 09230, CDMX, Mexico.
| | - David Capistran-Amezcua
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, C.P, 04510, CDMX, Mexico.
| | - Adelfo Reyes-Ramírez
- Unidad Multidisciplinaria de Investigación Experimental (UMIEZ), Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de mayo esquina Fuerte de Loreto, Ejército de Oriente, Iztapalapa, C.P, 09230, CDMX, Mexico.
| | - Santiago Xolalpa-Molina
- Herbario Medicinal del Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional Siglo XXI, CDMX, Mexico.
| | - Aracely Evangelina Chávez-Piña
- Laboratorio de Farmacología, Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional, Guillermo Massieu Helguera, No. 239, Fracc. La Escalera, Ticomán, C.P, 07320, CDMX, Mexico.
| | - Mario Figueroa
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, C.P, 04510, CDMX, Mexico.
| | - Andrés Navarrete
- Unidad Multidisciplinaria de Investigación Experimental (UMIEZ), Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de mayo esquina Fuerte de Loreto, Ejército de Oriente, Iztapalapa, C.P, 09230, CDMX, Mexico; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad Universitaria Coyoacán, C.P, 04510, CDMX, Mexico.
| |
Collapse
|
10
|
Yang Q, Wu X, Pan Z, Guan R, Yang P, Liu Y, Yang X, Du W, Liang J, Hu J, Cai W, Ma G. Integration of pharmacodynamics, network pharmacology and metabolomics to elucidate effect and mechanism of Artemisia capillaris Thunb. in the treatment of jaundice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115943. [PMID: 36414211 DOI: 10.1016/j.jep.2022.115943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As one of the most commonly used herbs, Artemisia capillaris Thunb. (ACT) display favorable effect in the treatment of jaundice. However, mechanism of ACT in the treatment of jaundice remains unclear at present, which limits its development and application. AIM OF THE STUDY To investigate effect and mechanism of Artemisia capillaris Thunb. (ACT) in the treatment of jaundice using pharmacodynamics, network pharmacology and metabolomics. METHODS Effect of ACT in treating jaundice was evaluated by biochemical assays and pathological observation using the α-naphthyl isothiocyanate (ANIT)-induced mice. Jaundice-relieving mechanism of ACT was investigated by integration of network pharmacology and metabolomics. RESULTS After the mice with jaundice were administrated ACT extract for 9 days, compared to that of the model group, serum D-BIL, T-BIL and ALP levels of the mice in the low, medium, high dose of ACT group decreased by 39.81%, 15.30% and 16.92%; 48.06%, 42.54% and 36.91%; 26.90%, 12.34% and 16.90%, respectively. The pathologic study indicated that ACT improved the symptoms of liver injury of the mice with jaundice. The network of herb (i.e., ACT)-components-targets-disease (i.e., jaundice) was established, which consisted of 17 components classified in flavonoids, chromones, organic acids, terpenoids, and 234 targets related to treatment of jaundice. Metabolomics analysis showed that, compared to that in the model group, level of 8 differential metabolites were upregulated and level of 29 differential metabolites were downregulated in the mice liver in the ACT group, respectively. The main metabolic pathways involved in treatment of jaundice by ACT were pantothenate and CoA biosynthesis, glutathione metabolism, biosynthesis of unsaturated fatty acids, primary bile acid biosynthesis in the liver, respectively. The integrated analysis of network pharmacology and metabolomics showed that 3α,7α,12α a-Trihydroxy-5β-cholanate, glycocholate, taurocholate, pantetheine 4'-phosphate, and d-4'-phosphopantothenate were the potential biomarkers for treatment of jaundice, and AKR1C4, ALDH2 and HSD11B were the potential drug targets in the treatment of jaundice by ACT. CONCLUSION The study based on metabolomics and network pharmacology indicated that ACT can display favorable jaundice-relieving effect by its multiple components regulating multiple biomarkers, multiple targets and multiple pathways, and may be a rational therapy for the treatment of jaundice.
Collapse
Affiliation(s)
- Qing Yang
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xubo Wu
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Zhiyu Pan
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Ruifang Guan
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Ping Yang
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Ye Liu
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xiaolei Yang
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Wandi Du
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Jingru Liang
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Jiarong Hu
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Weimin Cai
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Guo Ma
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| |
Collapse
|
11
|
Elucidation of the potential molecular mechanism of the active compounds of Bryophyllum pinnatum (L. f.) Oken against gastritis based on network pharmacology. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Bamboo Shoot and Artemisia capillaris Extract Mixture Ameliorates Dextran Sodium Sulfate-Induced Colitis. Curr Issues Mol Biol 2022; 44:5086-5103. [PMID: 36286060 PMCID: PMC9600592 DOI: 10.3390/cimb44100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract and is characterized by recurrent chronic inflammation and mucosal damage of the gastrointestinal tract. Recent studies have demonstrated that bamboo shoot (BS) and Artemisia capillaris (AC) extracts enhance anti-inflammatory effects in various disease models. However, it is uncertain whether there is a synergistic protective effect of BS and AC in dextran sodium sulfate (DSS)-induced colitis. In the current study, we tested the combined effects of BS and AC extracts (BA) on colitis using in vivo and in vitro models. Compared with control mice, oral administration of DSS exacerbated colon length and increased the disease activity index (DAI) and histological damage. In DSS-induced colitis, treatment with BA significantly alleviated DSS-induced symptoms such as colon shortening, DAI, histological damage, and colonic pro-inflammatory marker expression compared to single extracts (BS or AC) treatment. Furthermore, we found BA treatment attenuated the ROS generation, F-actin formation, and RhoA activity compared with the single extract (BS or AC) treatment in DSS-treated cell lines. Collectively, these findings suggest that BA treatment has a positive synergistic protective effect on colonic inflammation compared with single extracts, it may be a highly effective complementary natural extract mixture for the prevention or treatment of IBD.
Collapse
|
13
|
Noman M, Qazi NG, Rehman NU, Khan AU. Pharmacological investigation of brucine anti-ulcer potential. Front Pharmacol 2022; 13:886433. [PMID: 36059979 PMCID: PMC9429807 DOI: 10.3389/fphar.2022.886433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/13/2022] [Indexed: 01/16/2023] Open
Abstract
Gastric ulcer is one of the most common chronic gastrointestinal diseases characterized by a significant defect in the mucosal barrier. The current study has been conducted to evaluate the brucine anti-ulcer effect. Brucine has binding energy values ranging from −2.99 to −8.11 kcal/mol against chosen targets, according to in silico research. Brucine exhibits an inhibitory effect against Helicobacter pylori. In vivo findings revealed that brucine (3 mg/kg) showed effective results in healing ethanol-induced ulcer lesions of the gastric region in rats. Brucine showed an inhibitory effect against H+/K+-ATPase. Levels of glutathione, glutathione-s-transferase, and catalase were enhanced in the gastric rat tissue with the use of brucine, while a significant decrease in lipid peroxide levels was seen. Histopathological evaluation showed improvement in cellular architecture and a decrease in inflammatory indicators like cyclooxygenase, tumor necrosis factor, and nuclear factor kappa B expression, validated through immunohistochemistry, enzyme-linked immunosorbent assay, and Western blot techniques. In the reverse transcription–polymerase chain reaction, brucine decreased H+/K+-ATPase mRNA levels. This study reveals that brucine possesses stable binding affinities against selected targets. Brucine exhibits an anti-ulcer effect, mediated via anti-H. pylori, H+/K+-ATPase inhibition, and antioxidant and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Muhammad Noman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Neelum Gul Qazi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Najeeb Ur Rehman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Arif-ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- *Correspondence: Arif-ullah Khan,
| |
Collapse
|
14
|
Boeing T, de Souza P, da Silva LM, Gasparotto Junior A. Herbal Medicines in the Treatment of Dyspepsia: An Overview. PLANTA MEDICA 2022; 88:664-677. [PMID: 34474492 DOI: 10.1055/a-1580-7782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This review focuses on the efficacy of herbal medicines for managing dyspepsia in humans and animals. Searches were conducted on the PubMed, Science Direct, and Medline databases, for publications in the last 3 years. In each database, the search terms used consisted of the 2 key terms describing the disorder and subtypes plus each of the terms relating to the therapy. The key terms used were "natural product" and "medicinal plant" in a cross-over with "dyspepsia" and "functional dyspepsia" (i.e., gastroprotection, Helicobacter pylori infection, prokinetic). We included all human and animal studies on the effects of herbal medicines reporting the key outcome of dyspepsia symptoms. Preclinical studies using critically validated models showed that most medicinal plants with gastroprotective action had antioxidant, anti-inflammatory, anti-apoptotic, and antisecretory effects. Moreover, several species displayed anti Helicobacter pylori and prokinetic efficacy. The data availability of controlled clinical studies is currently minimal. The use of different methodologies and the minimal number of patients raise doubts about the effects of these preparations. Only adequate clinical trials with scientifically validated methods can determine whether different herbal medicines can be used as viable alternatives to the conventional pharmacological treatments used to control dyspepsia symptoms.
Collapse
Affiliation(s)
- Thaise Boeing
- Pharmaceutical Sciences Graduate Program, University of Vale do Itajaí, Itajaí, Brazil
| | - Priscila de Souza
- Pharmaceutical Sciences Graduate Program, University of Vale do Itajaí, Itajaí, Brazil
| | - Luisa Mota da Silva
- Pharmaceutical Sciences Graduate Program, University of Vale do Itajaí, Itajaí, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFac), Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| |
Collapse
|
15
|
Bruguiera gymnorrhiza (L.) Lam. Fruit Accelerates Healing in Gastric Injury via the Regulation of the NF-κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1046712. [PMID: 35754686 PMCID: PMC9232338 DOI: 10.1155/2022/1046712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
Abstract
Objective The present study aimed at the anti-inflammatory and antioxidant effects of the extract of Bruguiera gymnorrhiza (L.) Lam. fruit (BGF) on the gastric injury. Materials and Methods The chemical components in the extract of BGF were used in UPLC/Q-Orbitrap analysis. 60 SD rats were randomized into six groups: normal group (MC), ethanol-injured control group (EC), omeprazole group, and three groups with different doses (50, 100, and 200 mg/kg) of BGF. After continuous administration for seven days, the stomachs of rats were taken out to observe the pathological gastric tissue changes; inflammatory factors and oxidative stress markers in the stomach tissues were measured. Western blot (WB) analyses were conducted to explore the mechanism of BGF on gastric tissue and RAW 246.7 cells with excessive inflammation. Results BGF enhanced gastric mucosal protection by improving the mucosal blood flow of the stomach and significantly decreased inflammatory factors and oxidative stress markers. Moreover, BGF significantly reduced the expression of p-NF-κB p65. Consistently, BGF demonstrated similar effects on LPS-induced RAW 264.7 cells as it did in vivo. Conclusion BGF could accelerate the healing of gastric injury by exerting antioxidant and anti-inflammatory effects and maintaining mucosal integrity.
Collapse
|
16
|
Lokman MS, Zaafar D, Althagafi HA, Abdel Daim MM, Theyab A, Hasan Mufti A, Algahtani M, Habotta OA, Alghamdi AAA, Alsharif KF, Albrakati A, Oyouni AAA, Bauomy AA, Baty RS, Zhery AS, Hassan KE, Abdel Moneim AE, Kassab RB. Antiulcer activity of proanthocyanidins is mediated via suppression of oxidative, inflammatory, and apoptotic machineries. J Food Biochem 2022; 46:e14070. [PMID: 35034361 DOI: 10.1111/jfbc.14070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Gastric ulcer (GU) is a lesion in the gastric mucosa associated with excessive oxidative damage, inflammatory response, apoptotic events, and irritation which may develop into cancer. However, medications commonly used in GU treatment cannot normalize gastric mucosa, while causing several adverse effects. Proanthocyanidins (PAs) are dietary flavonoids with numerous biological and pharmacological activities. In the current investigation, we studied the potential anti-ulcerative activity of PAs against acidified ethanol (HCl/ethanol)-caused gastric ulceration. Fifty male albino Wistar rats were allocated into five equal groups: control, HCl/ethanol (3 mL/kg), lansoprazole (LPZ, 30 mg/kg) + HCl/ethanol, and PAs (100 and 250 mg/kg) + HCl/ethanol. LPZ and PAs were applied one week before gastric ulcer induction. PAs pretreatment notably reduced gastric mucosal macroscopic and microscopic pathological changes in a dose-dependent manner. Additionally, PAs activated the innate antioxidant molecules including glutathione and its derived antioxidants (glutathione peroxidase and glutathione reductase), along with superoxide dismutase and catalase, while attenuating pro-oxidant formation, including malondialdehyde and nitric oxide. Interestingly, PAs supplementation at a higher dose suppressed gastric inflammatory and apoptotic responses, as demonstrated by the reduced levels of interleukin-1β, interleukin-6, tumor necrosis factor alpha, high-mobility group box 1, cyclooxygenase 2, prostaglandin E2, nuclear factor kappa-B, Bcl-2-associated X protein, and caspase-3, while B cell lymphoma 2 was elevated. Hence, PAs could exhibit antiulcer activity by protecting gastric tissue from the development of oxidative damage, inflammatory responses, and apoptosis events associated with ulceration. PRACTICAL IMPLICATIONS: Gastric ulcer is a lesion in the gastric mucosal layer associated with excessive inflammatory response, apoptotic events, oxidative damage, and irritation, and may develop into cancer with about 5%-10% morbidity rate. However, medications commonly used in GU treatment cannot normalize gastric mucosa, while causing several adverse effects. Therefore, new therapeutic approaches are needed to treat or prevent gastric ulceration. Proanthocyanidins (PAs, condensed tannins) are dietary flavonoids found in abundance in different plant species, including their fruits, bark, and seeds. Due to their potent antioxidative activity, PAs have been applied to prevent or treat oxidative stress-related diseases, including cancer, as well as metabolic, neurodegenerative, cardiovascular, and inflammatory disorders. Here, we examine the potential therapeutic role of proanthocyanidins (PAs) against acidified ethanol-induced gastric ulcer in rats through evaluating oxidative challenge, inflammatory response, apoptotic events, and histopathological changes in the gastric tissue.
Collapse
Affiliation(s)
- Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Saudi Arabia
| | - Mohamed M Abdel Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Ahmad Hasan Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Mohammad Algahtani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Amira A Bauomy
- Department of Science Laboratories, College of Science and Arts, Qassim University, Saudi Arabia
| | - Roua S Baty
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed S Zhery
- Kasr Al-Eini School of Medicine, Cairo University, Cairo, Egypt
| | - Khalid E Hassan
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Saudi Arabia
| |
Collapse
|
17
|
Hwang SJ, Yeo D, Song YS, Choi Y, Youn HJ, Lee HJ. An aqueous extract from Artemisia capillaris inhibits acute gastric injury through mucosal stabilization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1255-1262. [PMID: 34358346 DOI: 10.1002/jsfa.11463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Artemisia capillaris is among the most abundantly used traditional medicines, utilized in East Asia to treat diverse illnesses, including gastrointestinal tract diseases. We previously reported that an aqueous extract of A. capillaris (AEAC) inhibited gastric inflammation induced by HCl/ethanol via reactive oxygen species scavenging and NF-κB downregulation. To date, the pharmacological potential of AEAC for promoting mucosal integrity has not been studied. RESULTS Here, we report that a single treatment with AEAC increased mucus production, and repeated administration of AEAC abolished HCl/ethanol-induced mucosal injury in vivo. Single- and multiple-dose AEAC treatments measurably increased the expression of mucosal stabilizing factors in vivo, including mucin (MUC) 5 AC, MUC6, and trefoil factor (TFF) 1 and TFF2 (but not TFF3). AEAC also induced mucosal stabilizing factors in both SNU-601 cells and RGM cells through phosphorylation of extracellular signal-regulated kinases. CONCLUSION Taken together, our results suggest that AEAC protects against HCl/ethanol-induced gastritis by upregulating MUCs and TFFs and stabilizing the mucosal epithelium. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Dahee Yeo
- College of Pharmacy, Inje University, Gimhae, South Korea
| | - Ye-Seul Song
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Youngbin Choi
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Hyun-Joo Youn
- College of Pharmacy, Inje University, Gimhae, South Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
18
|
Huang Z, Shi Y, Wang H, Chun C, Chen L, Wang K, Lu Z, Zhao Y, Li X. Protective Effects of Chitosan-Bilirubin Nanoparticles Against Ethanol-Induced Gastric Ulcers. Int J Nanomedicine 2022; 16:8235-8250. [PMID: 34992363 PMCID: PMC8709796 DOI: 10.2147/ijn.s344805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose Gastric ulcers (GU) are a disease of the gastrointestinal tract that can be caused by excessive alcohol consumption and heavy use of nonsteroidal anti-inflammatory drugs. GU manifests predominantly as pathological damage, such as extensive inflammatory erosion and superficial bleeding of the gastric mucosa. Oxidative stress damage and the inflammatory response are now considered important predisposing factors for GU, suggesting that antioxidant and anti-inflammatory drugs could be treatments for GU. Nanoparticle drug carriers offer many advantages over conventional drugs, such as improved drug efficiency, increased drug stability, and increased half-life. Methods We designed chitosan-bilirubin conjugate (CS-BR) nanoparticles and assessed the anti-inflammatory and antioxidant abilities of CS-BR in gastric epithelial cells. Then, we evaluated the intragastric retention time and the anti-ulcer effects of CS-BR in vivo. Results The in vitro data showed that CS-BR nanoparticles protect gastric epithelial cells against oxidative/inflammatory injury. The in vivo study demonstrated that CS-BR nanoparticles accumulate permanently in the stomach and exert powerful antioxidant and anti-inflammatory effects against GU. Conclusion This study applied bilirubin to the treatment of GU and confirmed that CS-BR nanoparticles are effective at alleviating acute GU in an experimental model. The findings provide innovative ideas for prophylaxis against or treatment of GU.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Hengcai Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Changju Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Longwang Chen
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325035, People's Republic of China
| | - Kang Wang
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325035, People's Republic of China
| | - Zhongqiu Lu
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325035, People's Republic of China
| | - Yingzheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Xinze Li
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325035, People's Republic of China
| |
Collapse
|
19
|
Gao J, Liu Y, Chen J, Tong C, Wang Q, Piao Y. Curcumin treatment attenuates cisplatin-induced gastric mucosal inflammation and apoptosis through the NF- κ B and MAPKs signaling pathway. Hum Exp Toxicol 2022; 41:9603271221128738. [DOI: 10.1177/09603271221128738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
To investigate the protective effects of curcumin (Cur) on gastric mucosal injury induced by cisplatin (DDP), and explore possible molecular mechanisms. A mouse of gastric mucosal injury was established by intraperitoneal injection of DDP (27 mg/kg). Thirty mice were randomly divided into control group, DDP group and DDP + Cur group. Serum and gastric mucosal samples were collected on the 7th day after Cur treatment. The index of gastric mucosa injury was calculated, and the expression levels of inflammation, apoptosis and signaling pathway proteins were evaluated using hematoxylin and eosin staining, ELISA and western blotting analysis. These data showed that Cur treatment significantly attenuated DDP-induced decrease in body weight, food intake, fat and muscle ratios, and improved the gross gastric injury, scores of ulcer index, and histopathology changes triggered by DDP ( p < .05). Meanwhile, Cur significantly decreased serum IL-23 and IL-17 proteins, reduced the expression levels of gastric mucosal IL-1β, TNF- α and MPO, and restored the level of IL-10 protein ( p < .05). Moreover, Cur treatment significantly inhibited the expression levels of Caspase-3, PARP and Bax, and increased the expression of Bcl-2 protein. Furthermore, Cur treatment significantly decreased the expression levels of IL-1R, MyD88 and TAK1, and also repressed the activation of NF-κB and nuclear translocation of NF-κB p65. And more importantly, Cur treatment significantly inhibited DDP-induced gastric mucosal JNK1/2, ASK1, P38 and JUN phosphorylation, and promoted the phosphorylation of ERK1/2 and C-Myc proteins. Our data suggest that Cur treatment alleviates DDP-induced gastric mucosal inflammation and apoptosis, which may be mediated through the NF- κ B and MAPKs signaling pathway.
Collapse
Affiliation(s)
- Jinping Gao
- Department of Oncology, General Hospital of Northern Theater Command, China
| | - Yunen Liu
- The Veterans General Hospital of Liaoning Province, The Second Affiliated Hospital of Shenyang Medical College, China
| | - Juan Chen
- Department of Oncology, General Hospital of Northern Theater Command, China
| | - Changci Tong
- The Veterans General Hospital of Liaoning Province, The Second Affiliated Hospital of Shenyang Medical College, China
| | - Qian Wang
- Department of Oncology, Shengjing Hospital of China Medical University, China
| | - Ying Piao
- Department of Oncology, General Hospital of Northern Theater Command, China
| |
Collapse
|
20
|
Li X, Wang Y, Li M, Wang H, Dong X. Metal Complexes or Chelators with ROS Regulation Capacity: Promising Candidates for Cancer Treatment. Molecules 2021; 27:148. [PMID: 35011380 PMCID: PMC8746559 DOI: 10.3390/molecules27010148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) are rapidly eliminated and reproduced in organisms, and they always play important roles in various biological functions and abnormal pathological processes. Evaluated ROS have frequently been observed in various cancers to activate multiple pro-tumorigenic signaling pathways and induce the survival and proliferation of cancer cells. Hydrogen peroxide (H2O2) and superoxide anion (O2•-) are the most important redox signaling agents in cancer cells, the homeostasis of which is maintained by dozens of growth factors, cytokines, and antioxidant enzymes. Therefore, antioxidant enzymes tend to have higher activity levels to maintain the homeostasis of ROS in cancer cells. Effective intervention in the ROS homeostasis of cancer cells by chelating agents or metal complexes has already developed into an important anti-cancer strategy. We can inhibit the activity of antioxidant enzymes using chelators or metal complexes; on the other hand, we can also use metal complexes to directly regulate the level of ROS in cancer cells via mitochondria. In this review, metal complexes or chelators with ROS regulation capacity and with anti-cancer applications are collectively and comprehensively analyzed, which is beneficial for the development of the next generation of inorganic anti-cancer drugs based on ROS regulation. We expect that this review will provide a new perspective to develop novel inorganic reagents for killing cancer cells and, further, as candidates or clinical drugs.
Collapse
Affiliation(s)
- Xiang Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuhui Wang
- School of Chemistry, Central China Normal University, Wuhan 430079, China; (Y.W.); (M.L.)
| | - Man Li
- School of Chemistry, Central China Normal University, Wuhan 430079, China; (Y.W.); (M.L.)
| | - Huipeng Wang
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China;
| | - Xiongwei Dong
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430073, China;
| |
Collapse
|
21
|
The Pharmacological Effects and Pharmacokinetics of Active Compounds of Artemisia capillaris. Biomedicines 2021; 9:biomedicines9101412. [PMID: 34680529 PMCID: PMC8533588 DOI: 10.3390/biomedicines9101412] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Artemisia capillaris Thunb. (A.capillaris, Yin-Chen in Chinese) is a traditional medicinal herb with a wide spectrum of pharmacological properties ranging from effects against liver dysfunction to treatments of severe cirrhosis and cancer. We used relevant keywords to search electronic databases, including PubMed, Medline, and Google Scholar, for scientific contributions related to this medicinal herb and the pharmacokinetics of its components. The pharmaceutical effects of A.capillaris contribute to the treatment not only of viral hepatitis, cirrhosis, and hepatocellular hepatoma, but also metabolic syndrome, psoriasis, and enterovirus in the clinic. The bioactive compounds, including scoparone, capillarisin, scopoletin, and chlorogenic acid, exhibit antioxidant, anti-inflammatory, antisteatotic, antiviral, and antitumor properties, reflecting the pharmacological effects of A.capillaris. The pharmacokinetics of the main bioactive compounds in A. capillaris can achieve a maximum concentration within 1 hour, but only chlorogenic acid has a relatively long half-life. Regarding the use of the A. capillaris herb by health professionals to treat various diseases, the dosing schedule of this herb should be carefully considered to maximize therapeutic outcomes while lessening possible side effects.
Collapse
|
22
|
de Lira KL, Machado FDF, Viana AFSC, Oliveira IS, Silva FVD, Fernandes HDB, Almeida JRGDS, Oliveira FDA, Branco A, Oliveira RDCM. Gastroprotective Activity of Neoglaziovia variegata (Arruda) Mez. (Bromeliaceae) in Rats and Mice. J Med Food 2021; 24:1113-1123. [PMID: 34425057 DOI: 10.1089/jmf.2020.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Neoglaziovia variegata (Arruda) Mez (Bromeliaceae) is a medicinal plant popularly known as "caroá." The leaves are made up of highly resistant fibers, which is of great commercial value to the handicraft and textile industry. Some studies have demonstrated that ethanolic extract of N. variegata have gastroprotective properties. This study aimed to investigate the gastroprotective activity and cytoprotective mechanisms of ethyl acetate (Nv-AcOEt), hexane (Nv-Hex), and chloroform (Nv-CHCl3) fractions of N. variegata leaves. The gastroprotective activity of Nv-AcOEt, Nv-Hex, and Nv-CHCl3 was evaluated using the ethanol and ethanol/HCl-induced gastric injury model. To elucidate the gastroprotective mechanisms, the functions of prostaglandins (PGs), nitric oxide (NO), and KATP channels were evaluated. In addition, the nonprotein sulfhydryl groups and the mucus content in the gastric tissues were analyzed. All fractions of N. variegata leaves at oral doses of 100, 200, and 400 mg/kg significantly decreased ethanol and ethanol/HCl-induced gastric lesions, leading to gastroprotection, accompanied by an increase in reduced glutathione (GSH) and gastric mucus. Gastroprotective activity of Nv-AcOEt was inhibited after pretreatment with ibuprofen and N(G)-nitro-L-arginine (L-NOARG). Gastroprotective effect of Nv-Hex and Nv-CHCl3 was also inhibited after pretreatment with L-NOARG and with glibenclamide. The results indicate that N. variegata (Arruda) Mez exhibits promising gastroprotective activity with the possible participation of NO, PGs, mucus, sulfhydryl groups, and KATP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alexsandro Branco
- Health Department, State University of Feira de Santana, Feira de Santana, Brazil
| | | |
Collapse
|
23
|
Qu HJ, Lin KW, Li XL, Ou HY, Tan YF, Wang M, Wei N. Chemical Constituents and Anti-Gastric Ulcer Activity of Essential Oils of Alpinia officinarum (Zingiberaceae), Cyperus rotundus (Cyperaceae), and Their Herbal Pair. Chem Biodivers 2021; 18:e2100214. [PMID: 34402190 DOI: 10.1002/cbdv.202100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The essential oil (EO) of the herbal pair (HP), Alpinia officinarum-Cyperus rotundus (HP G-X) has been conventionally used in traditional Chinese medicine (TCM) for 'warming the stomach' and relieving pain. However, its pharmacologically active compounds, as well as the mechanism of its anti-gastric ulcer properties remain unclear. In this study, the EOs obtained from HP G-X and its corresponding single herbs were analyzed using GC/MS. A total of 74, 56, and 85 compounds were detected in A. officinarum (GLJ), C. rotundus (XF), and HP G-X, accounting for 93.2 %, 89.5 %, and 92.0 % of the total content, respectively. GLJ mainly contains 1,8-cineol (22.0 %) and α-terpineol (11.8 %), whereas cyperenone (22.4 %) and cyperene (12.3 %) were the major constituents in XF. These four compounds were also detected in the HP G-X with relatively high composition as 11.8 %, 5.5 %, 11.8 %, and 10.6 %, respectively. Although no new compounds were detected in HP G-X, the relative concentration of some compounds increased, while others decreased or even disappeared. HP G-X showed the lowest toxicity (TC50 >800 μg/mL) against human gastric mucosal epithelial cells (GES-1) and had the best protective effect against ethanol-induced GES-1 cell damage compared to the individual herbs. In vitro studies demonstrated that HP G-X and the corresponding single herbs significantly reduced IL-6, TNF-α, and COX-2. In addition, in vivo investigations indicated that HP G-X can protect the gastric mucosa of mice from ethanol-induced damage by inhibiting the inflammatory reaction and providing analgesia. It can also inhibit the expression of NF-κBp65, COX-2, and TRPV1 protein, reduce the concentrations of IL-6 and TNF-α, and relieve heat-induced pain. This study further substantiated the traditional application of HP G-X against gastric ulcers through both in vivo and in vitro investigations.
Collapse
Affiliation(s)
- Hui-Juan Qu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Kai-Wen Lin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Xiao-Liang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Hong-Ya Ou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yin-Feng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, Oxford, MS 38677, USA
| | - Na Wei
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| |
Collapse
|
24
|
Protective Effects of Anwulignan against HCl/Ethanol-Induced Acute Gastric Ulcer in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9998982. [PMID: 34335857 PMCID: PMC8298145 DOI: 10.1155/2021/9998982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023]
Abstract
Gastric ulcer is one of the most common gastrointestinal diseases. Anwulignan (AN) is a major active component of Schisandra sphenanthera Rehd. This study was designed to evaluate the protective effect of AN against the acute gastric ulcer induced by HCl/ethanol in mice. The mice were given HCl/ethanol by gavage to establish an acute gastric ulcer model. Then, the serum and gastric tissue samples were taken for biochemical analyses. The results showed that the pretreatment with AN could significantly reduce the gastric ulcer index (GUI) and increase the ulcer inhibition rate, indicating that AN can protect against gastric ulcers. AN showed its antioxidant roles by decreasing the content of reactive oxygen species (ROS), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) and increasing the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and anti-inflammatory roles by decreasing the content of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and myeloperoxidase (MPO) and increasing the content of interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-10 (IL-10), prostaglandin E2 (PGE2), and nitric oxide (NO) in both serum and gastric tissue. Furthermore, AN also activated the NRF2/ARE signaling pathway and inhibited the MAPK/NF-κB signaling pathway. AN improves the acute gastric ulcer induced by HCl/ethanol in mice, which may be mainly through its antioxidant capacity and anti-inflammatory effect.
Collapse
|
25
|
Anti- Helicobacter pylori Activity of Artemisia ludoviciana subsp. mexicana and Two of Its Bioactive Components, Estafiatin and Eupatilin. Molecules 2021; 26:molecules26123654. [PMID: 34203927 PMCID: PMC8232798 DOI: 10.3390/molecules26123654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Artemisia ludoviciana subsp. mexicana has been traditionally used for the treatment of digestive ailments such as gastritis, whose main etiological agent is Helicobacter pylori. In a previous screening study, the aqueous extract exhibited a good in vitro anti-H. pylori activity. With the aim of determining the efficacy of this species as a treatment for H. pylori related diseases and finding bioactive compounds, its aqueous extract was subjected to solvent partitioning and the fractions obtained were tested for their in vitro anti-H. pylori effect, as well as for their in vivo gastroprotective and anti-inflammatory activities. The aqueous extract showed a MIC = 250 µg/mL. No acute toxicity was induced in mice. A gastroprotection of 69.8 ± 3.8%, as well as anti-inflammatory effects of 47.6 ± 12.4% and 38.8 ± 10.2% (by oral and topical administration, respectively), were attained. Estafiatin and eupatilin were isolated and exhibited anti-H. pylori activity with MBCs of 15.6 and 31.2 µg/mL, respectively. The finding that A. ludoviciana aqueous extract has significant anti-H. pylori, gastroprotective and anti-inflammatory activities is a relevant contribution to the ethnopharmacological knowledge of this species. This work is the first report about the in vivo gastroprotective activity of A. ludoviciana and the anti-H. pylori activity of eupatilin and estafiatin.
Collapse
|
26
|
Tureyen A, Ince S. Magnolin Alleviates Gastric Ulcer Induced by Ethanol/HCl in Mice Model via Oxidative Stress and NF-κB Pathway. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.380.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Pei Z, Lou Z, Zhang B, Wang H, Li Y. Development of a compound oral liquid containing herbal extracts and its effect on immunity and gastric mucosa. J Food Sci 2021; 86:2684-2699. [PMID: 34096062 DOI: 10.1111/1750-3841.15761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 01/21/2023]
Abstract
Nowadays, consumers have an increasing demand for health products. In this study, an oral liquid was developed using a compound extract consisting of three herbal extracts (Dendrobium nobile Lindl., Lycium barbarum, and Puerariae lobatae Radix) because the compound extract (a combination of all three extracts) was superior to every single extract in promoting the phagocytic capacity of RAW264.7 macrophages and the proliferation ability of GES-1 cells. In this oral liquid, the dosage of the stabilizer and the sweetener was selected using a stability test and sensory quality evaluation. When 0.30% (m/v) xanthan gum and 0.20% (m/v) mogroside were added, the oral liquid had not only a good stability but also the highest sensory score for overall acceptability. The chemical composition analysis showed that the oral liquid had various functional ingredients including polysaccharides, phenols, alkaloids, and so forth. The immune-enhancing efficacy of the oral liquid was evaluated in BALB/c mice by measuring the levels of different immune indicators. The results indicated that the oral liquid obviously enhanced nonspecific and specific immunity. A rat model with ethanol-induced gastric ulcer was used to examine the protective effect of the oral liquid on the gastric mucosa and to explore the related mechanisms. The oral administration of the oral liquid for days significantly prevented the formation of gastric ulcer. This study provided an effective oral liquid that could enhance immunity and protect gastric mucosa.
Collapse
Affiliation(s)
- Zejun Pei
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai, China.,Department of Pharmacy, Nanjing Medical University Affiliated Wuxi No. 2 People's hospital, Wuxi, China
| | - Zaixiang Lou
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingjie Zhang
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongxin Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaqin Li
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Company Ltd., Shanghai, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
28
|
Gastroprotective Effect of Ethanol Extracts from Bark of Magnolia officinalis on Ethanol-Induced Gastric Mucosal Damage in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6688414. [PMID: 34159200 PMCID: PMC8187047 DOI: 10.1155/2021/6688414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
Background. Magnolia officinalis Rehd. and Wils. is widely used in Asian countries because of its multiple pharmacological effects. This study investigated the gastroprotective effect and mechanisms of the ethanol extracts from the bark of Magnolia officinalis (MOE) against ethanol-induced gastric mucosal damage in rats. Methods. MOE was prepared by reflux extraction with 70% ethanol, and its main compounds were analyzed by UPLC-Q-Exactive Orbitrap-MS. DPPH, ABTS, and FRAP methods were used to evaluate the antioxidant capacity of MOE in vitro. The gastroprotective effects of MOE were evaluated by the area of gastric injury, H&E (hematoxylin-eosin), and PAS (periodic acid-Schiff). The mechanism was explored by measuring the levels of cytokines and protein in the NF-κB signaling pathway. Results. 30 compounds were identified from MOE, mainly including lignans and alkaloids. MOE presented a high antioxidant activity in several oxidant in vitro systems. Gastric ulcer index and histological examination showed that MOE reduced ethanol-induced gastric mucosal injury in a dose-dependent manner. MOE pretreatment significantly restored the depleted activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) enzymes, reduced malondialdehyde (MDA), and prostaglandin E2 (PGE2) levels in the gastric tissue in rats. In addition, MOE also inhibited the activation of nuclear factor kappa B (NF-κB) pathway and decreased the production of proinflammatory cytokines. Conclusions. The gastroprotective effect of MOE was attributed to the inhibition of oxidative stress and the NF-κB inflammatory pathway. The results provided substantial evidence that MOE could be a promising phytomedicine for gastric ulcer prevention.
Collapse
|
29
|
Humulene Inhibits Acute Gastric Mucosal Injury by Enhancing Mucosal Integrity. Antioxidants (Basel) 2021; 10:antiox10050761. [PMID: 34064830 PMCID: PMC8150829 DOI: 10.3390/antiox10050761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
This study was designed to determine whether α-humulene, a major constituent in many plants used in fragrances, has a protective role against gastric injury in vivo and in vitro. A rat model of hydrochloric acid (HCl)/ethanol-induced gastritis and human mast cells (HMC-1) were used to investigate the mucosal protective effect of α-humulene. α-Humulene significantly inhibited gastric lesions in HCl/ethanol-induced acute gastritis and decreased gastric acid secretion pyloric ligation-induced gastric ulcers in vivo. In addition, α-humulene reduced the amount of reactive oxygen species and malondialdehyde through upregulation of prostaglandin E2 (PGE2) and superoxide dismutase (SOD). In HMC-1 cells, α-humulene decreased intracellular calcium and increased intracellular cyclic adenosine monophosphate (cAMP) levels, resulting in low histamine levels. α-Humulene also reduced the expression levels of cytokine genes such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF) by downregulating nuclear factor-κB (NF-κB) nuclear translocation. Finally, α-humulene upregulated the expression levels of mucin 5AC (Muc5ac), Muc6, trefoil factor 1 (Tff1), trefoil factor 2 (Tff2), and polymeric immunoglobulin receptor (pigr). α-Humulene may attenuate HCl/ethanol-induced gastritis by inhibiting histamine release and NF-κB activation and stimulating antioxidants and mucosal protective factors, particularly Muc5ac and Muc6. Therefore, these data suggest that α-humulene is a potential drug candidate for the treatment of stress-induced or alcoholic gastritis.
Collapse
|
30
|
Hu J, Luo J, Zhang M, Wu J, Zhang Y, Kong H, Qu H, Cheng G, Zhao Y. Protective Effects of Radix Sophorae Flavescentis Carbonisata-Based Carbon Dots Against Ethanol-Induced Acute Gastric Ulcer in Rats: Anti-Inflammatory and Antioxidant Activities. Int J Nanomedicine 2021; 16:2461-2475. [PMID: 33814910 PMCID: PMC8009542 DOI: 10.2147/ijn.s289515] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
AIM To explore the effects of Radix Sophorae Flavescentis carbonisata-based carbon dots (RSFC-CDs) on an ethanol-induced acute gastric ulcer rat model. METHODS The structure, optical properties, functional groups and elemental composition of RSFC-CDs synthesized by one-step pyrolysis were characterized. The gastric protective effects of RSFC-CDs were evaluated and confirmed by applying a rat model of ethanol-induced acute gastric ulcers. The underlying mechanisms were investigated through the nuclear factor-kappa B (NF-κB) signalling pathway and oxidative stress. RESULTS RSFC-CDs with a diameter ranging from 2-3 nm mainly showed gastric protective effects by reducing the levels of NF-κB, tumour necrosis factor-α (TNF-α), interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione (GSH), malondialdehyde (MDA) and inducible nitric oxide synthase (iNOS) to inhibit ethanol-induced inflammation and oxidative stress. CONCLUSION RSFC-CDs have anti-inflammatory and anti-oxidative effects, making them promising for application in ethanol-induced gastric injury.
Collapse
Affiliation(s)
- Jie Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Jiashu Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Guoliang Cheng
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, 276000, People’s Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
31
|
Nam HH, Choo BK. Geranium koreanum, a medicinal plant Geranii Herba, ameliorate the gastric mucosal injury in gastritis-induced mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113041. [PMID: 32492494 DOI: 10.1016/j.jep.2020.113041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Geranii Herba, the traditional medicinal plants Korean and northeast China, has been used in the healing of a variety of gastrointestinal inflammation disorders. Geranium koreanum is a congeneric origin plant of Geranii Herba that can be used as medicinal plants with Geranium thunbergii, Geranium sibiricum, Geranium carolinianum, Geranium nepalense, and Geranium japonicam. However, research on the biological activity of Geranium koreanum is currently insufficient. AIM OF THE STUDY Gastritis is typically characterized by inflammation and irritation, and it is commonly caused by factors such as stress, alcohol consumption, smoking, and the use of anti-inflammatory drugs. In particular, excessive ethanol ingestion is an important cause of gastric disease mediated by mucosal damage by inflammatory cells infiltration. In this study, we investigated whether Geranium koreanum, the well-known traditional medicinal plant, could have a protective effect on gastric mucosal damage in an HCl/EtOH-induced gastritis model by analyzing the inflammation response in gastric tissue. MATERIAL AND METHODS The cytotoxicity and anti-inflammatory effects of Geranium koreanum were analyzed by determining cell viability and nitric oxide (NO) production, as well as the levels of nuclear factor (NF)-κB proteins in lipopolysaccharide (LPS)-induced cells. Additionally, we measured the damage ratio, conducted histopathological assay by H&E and PAS staining, and determined the levels of pro-inflammation mediator proteins in gastric tissue after induction of gastritis by HCl/EtOH administration in order to analyze the gastro-protective effects of Gerranium koreanum. RESULTS The ulcer ratio and inflammatory cell infiltration in gastric mucosa were reduced by treatment with Geranium koreanum. Additionally, the expression of inflammatory mediators in gastric tissue was effectively decreased by extracts administrated at 200 mg/kg, as compared to the gastritis control. CONCLUSIONS We demonstrated that Geranium koreanum could have ameliorating effects against HCl/EtOH-induced gastritis through the anti-inflammatory response, which indicates the potential use of this plant as a natural preventive medicine for gastritis treatment.
Collapse
Affiliation(s)
- Hyeon Hwa Nam
- Department of Crop Science & Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Byung Kil Choo
- Department of Crop Science & Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
32
|
Phytochemistry and pharmacological activity of the genus artemisia. Arch Pharm Res 2021; 44:439-474. [PMID: 33893998 PMCID: PMC8067791 DOI: 10.1007/s12272-021-01328-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023]
Abstract
Artemisia and its allied species have been employed for conventional medicine in the Northern temperate regions of North America, Europe, and Asia for the treatments of digestive problems, morning sickness, irregular menstrual cycle, typhoid, epilepsy, renal problems, bronchitis malaria, etc. The multidisciplinary use of artemisia species has various other health benefits that are related to its traditional and modern pharmaceutical perspectives. The main objective of this review is to evaluate the traditional, modern, biological as well as pharmacological use of the essential oil and herbal extracts of Artemisia nilagirica, Artemisia parviflora, and other allied species of Artemisia. It also discusses the botanical circulation and its phytochemical constituents viz disaccharides, polysaccharides, glycosides, saponins, terpenoids, flavonoids, and carotenoids. The plants have different biological importance like antiparasitic, antimalarial, antihyperlipidemic, antiasthmatic, antiepileptic, antitubercular, antihypertensive, antidiabetic, anxiolytic, antiemetic, antidepressant, anticancer, hepatoprotective, gastroprotective, insecticidal, antiviral activities, and also against COVID-19. Toxicological studies showed that the plants at a low dose and short duration are non or low-toxic. In contrast, a high dose at 3 g/kg and for a longer duration can cause toxicity like rapid respiration, neurotoxicity, reproductive toxicity, etc. However, further in-depth studies are needed to determine the medicinal uses, clinical efficacy and safety are crucial next steps.
Collapse
|
33
|
Wang R, Sun F, Ren C, Zhai L, Xiong R, Yang Y, Yang W, Yi R, Li C, Zhao X. Hunan insect tea polyphenols provide protection against gastric injury induced by HCl/ethanol through an antioxidant mechanism in mice. Food Funct 2020; 12:747-760. [PMID: 33367402 DOI: 10.1039/d0fo02677h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purposes of this study were to explore the preventive and treatment effects of Hunan insect tea polyphenols (HITPs) on gastric injury in mice induced by HCl/ethanol and to investigate their molecular mechanisms of action. Both HITPs and ranitidine inhibited the formation and further deterioration of gastric mucosal lesions, reduced the secretion of gastric juice, and raised gastric juice pH compared to the control. The HITPs-H treated group had lower serum levels of motilin, substance P, and endothelin than the control group, but they had higher serum levels of vasoactive intestinal peptide and somatostatin. Mice treated with HITPs had lower serum levels of cytokines interleukin (IL)-6, IL-12, tumor necrosis factor-α (TNF-α), and interferon-γ than the control group. The activities of superoxide dismutase (SOD), nitric oxide, and glutathione peroxidase (GSH-Px) were higher in the gastric tissues of HITP-treated mice, but the malondialdehyde content was lower. Quantitative PCR analysis indicated that the mRNA expression of occludin, epidermal growth factor (EGF), EGF receptor (EGFR), vascular EGF (VEGF), inhibitor kappaB-α, cuprozinc-superoxide dismutase, manganese-superoxide dismutase, GSH-Px, neuronal nitric oxide synthase, and endothelial NOS increased significantly in the gastric tissues of HITP-treated mice. However, the activated B cell, inducible NOS, cyclooxygenase-2, TNF-α, IL-1 beta, and IL-6 mRNA expression levels in the HITPs group were lower than those in the control group. The protective effect of a high concentration (200 mg per kg bw) of HITPs on gastric injury induced by HCl/ethanol was stronger than that of a low concentration (100 mg per kg bw) of HITPs. High-performance liquid chromatography (HPLC) revealed that the HITPs contained cryptochlorogenic acid, (-)-epicatechin gallate, and isochlorogenic acid C. Taken together, our findings indicate that the HITPs played a role in the prevention of gastric damage. The antioxidant effect of the HITPs contributed to their potential value in the prevention and treatment of gastric injury. HITPs have broad prospects as biologically active substances for food development.
Collapse
Affiliation(s)
- Ranran Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ren S, Wei Y, Wang R, Wei S, Wen J, Yang T, Chen X, Wu S, Jing M, Li H, Wang M, Zhao Y. Rutaecarpine Ameliorates Ethanol-Induced Gastric Mucosal Injury in Mice by Modulating Genes Related to Inflammation, Oxidative Stress and Apoptosis. Front Pharmacol 2020; 11:600295. [PMID: 33324227 PMCID: PMC7726440 DOI: 10.3389/fphar.2020.600295] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Rutaecarpine (RUT), a major quinazolino carboline alkaloid compound from the dry unripe fruit Tetradium ruticarpum (A. Juss.) T. G. Hartley, has various pharmacological effects. The aim of this present study was to investigate the potential gastroprotective effect of rutaecarpine on ethanol-induced acute gastric mucosal injury in mice and associated molecular mechanisms, such as activating Nrf2 and Bcl-2 via PI3K/AKT signaling pathway and inhibiting NF-κB. Methods: Gastric ulcer index and histopathology was carried out to determine the efficacy of RUT in gastric ulceration, and the content of SOD, GSH in serum and CAT, MDA, MPO, TNF-α, IL-6, IL-1β in tissue were measured by kits. Besides, in order to illustrate the potential inflammatory, oxidative, and apoptotic perturbations, the mRNA levels of NF-κB p65, PI3K, AKT, Nrf2, Nqo1, HO-1, Bcl-2 and Bax were analyzed. In addition, the protein expression of NF-κB p65 and Nrf2 in cytoplasm and nucleus, AKT, p-AKT, Bcl-2 Bax and Caspase 3 were analyzed for further verification. Finally, immunofluorescence analysis was performed to further verify nuclear translocation of NF-κB p65. Results: Current data strongly demonstrated that RUT alleviated the gross gastric damage, ulcer index and the histopathology damage caused by ethanol. RUT inhibited the expression and nuclear translocation of NF-κB p65 and the expression of its downstream signals, such as TNF-α, IL-6, IL-1β and MPO. Immunofluorescence analysis also verifies the result. In the context of oxidative stress, RUT improved the antioxidant milieu by remarkably upregulating the expression Nqo1 and HO-1 with activating Nrf2, and could remarkably upregulate antioxidant SOD, GSH, CAT and downregulate levels of MDA. Additionally, RUT activate the expression of Bcl-2 and inhibited the expression of downstream signals Bax and Caspase 3 to promote gastric cellular survival. These were confirmed by RUT activation of the PI3K/AKT pathway manifested by enhanced expression of PI3K and promotion of AKT phosphorylation. Conclusion: Taken together, these results strongly demonstrated that RUT exerted a gastroprotective effect against gastric mucosal injury induced by ethanol. The underlying mechanism might be associated with the improvement of anti-inflammatory, anti-oxidation and anti-apoptosis system.
Collapse
Affiliation(s)
- Sichen Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tao Yang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shihua Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Wang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
35
|
Kalotra S, Kaur G. PSA mimetic 5-nonyloxytryptamine protects cerebellar neurons against glutamate induced excitotoxicity: An in vitro perspective. Neurotoxicology 2020; 82:69-81. [PMID: 33197482 DOI: 10.1016/j.neuro.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022]
Abstract
PSA-NCAM is a molecule of therapeutic interest for its key role in promoting neuritogenesis and synaptic plasticity. The current study was aimed to investigate the neuroregenerative potential of 5-nonyloxytryptamine (5-NOT) as PSA mimetic compound against glutamate induced excitotoxicity. 2D and 3D cultures of cerebellar neurons challenged with glutamate were used to ascertain the effect of 5-NOT on neurite outgrowth, migration and expression of neuronal plasticity markers. Glutamate excitotoxicity is one of the major underlying pathological factor responsible for neurodegeneration in various neurological disorders such as trauma, stroke, ischemia, epilepsy and neurodegenerative diseases.5-NOT treatment was observed to promote axonal growth and defasiculation in glutamate challenged neurons as well as promoted the migration of cerebellar neurons in both wound scratched area and cerebellar explant cultures. Further, 5-NOT treatment upregulated the expression of synaptic plasticity and cell survival pathway proteins which showed reduced expression after glutamate induced excitotoxicity. Thus, this preliminary data reveals thatPSA-mimetic,5-NOT may prove to be a potential neuroprotective candidate for neurodegenerative diseases.
Collapse
Affiliation(s)
- Shikha Kalotra
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
36
|
Duran Y, Karaboğa İ, Polat FR, Polat E, Erboğa ZF, Ovalı MA, Öztopuz RÖ, Çelikkol A, Yılmaz A. Royal jelly attenuates gastric mucosal injury in a rat ethanol-induced gastric injury model. Mol Biol Rep 2020; 47:8867-8879. [PMID: 33135128 DOI: 10.1007/s11033-020-05939-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The aim of the study was to investigate traditionally used Royal Jelly (RJ) for treating an ethanol-induced gastric ulcer model in rats. A total of 32 Wistar albino male rats were divided into 4 groups of 8: group I = Control, group II = Ethanol, group III = RJ + Ethanol, and group IV = Lansoprazole + Ethanol. In groups II, III, and IV, animals were administered 1 ml of absolute ethanol orally after a 24-h fast to induce ulcer formation. The histopathological changes in the gastric mucosa were determined using hematoxylin-eosin (H&E) staining. Immunohistochemically, inducible nitric oxide (iNOS) and nuclear factor kappa beta (Nf-κβ) markings were evaluated in gastric tissue. Cell death in the gastric mucosa was determined by the TUNEL method. Oxidative status markers, superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), and myeloperoxidase (MPO) levels were determined spectrophotometrically. Expression of the interleukin - 1 beta (IL-1β) and tumor necrosis factor-α (TNF-α) genes in gastric tissues was determined by real-time PCR; and TNF-α, IL-10, and IL-1β levels were determined. RJ was found to inhibit iNOS and Nf-κβ activity in the gastric mucosa and prevent epithelial cell apoptosis. In particular, pro-inflammatory cytokines TNF-α and IL-1β levels were significantly decreased in the RJ + Ethanol group compared to the Ethanol group. In addition, a decrease in the MPO level indicated that RJ prevented tissue damage, especially by preventing inflammatory cell infiltration. The study demonstrated a possible gastroprotective effect of RJ in a rat ethanol-induced gastric ulcer model.
Collapse
Affiliation(s)
- Yasin Duran
- Tekirdağ Namık Kemal University, Faculty of Medicine, Department of General Surgery, Tekirdağ, Turkey
| | - İhsan Karaboğa
- Tekirdağ Namık Kemal University, School of Health, Department of Emergency and Disaster Management, Tekirdağ, Turkey.
| | - Fatin Rüştü Polat
- Tekirdağ Namık Kemal University, Faculty of Medicine, Department of General Surgery, Tekirdağ, Turkey
| | - Elif Polat
- Tekirdağ Namık Kemal University, Faculty of Medicine, Department of Histology and Embryology, Tekirdağ, Turkey
| | - Zeynep Fidanol Erboğa
- Tekirdağ Namık Kemal University, Faculty of Medicine, Department of Histology and Embryology, Tekirdağ, Turkey
| | - Mehmet Akif Ovalı
- Çanakkale Onsekiz Mart University, Faculty of Medicine, Department of Physiology, Çanakkale, Turkey
| | - Rahime Özlem Öztopuz
- Çanakkale Onsekiz Mart University, Faculty of Medicine, Department of Biophysics, Çanakkale, Turkey
| | - Aliye Çelikkol
- Tekirdağ Namık Kemal University, Faculty of Medicine, Department of Medical Biochemistry, Tekirdağ, Turkey
| | - Ahsen Yılmaz
- Tekirdağ Namık Kemal University, Faculty of Medicine, Department of Medical Biochemistry, Tekirdağ, Turkey
| |
Collapse
|
37
|
Effect of Cuttlebone on Healing of Indomethacin-Induced Acute Gastric Mucosal Lesions in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9592608. [PMID: 33082835 PMCID: PMC7563050 DOI: 10.1155/2020/9592608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
The continuing use of nonsteroidal anti-inflammatory drugs (NSAIDs) usually increases the side effects such as peptic ulcer and acute gastric lesions in the gastrointestinal tract. Cuttlebone (CB), isolated from Sepiella maindroni de Rochebrune, was reported to have antioxidant activities, but its role in the treatment of indomethacin-induced gastric lesions has not yet been confirmed. In this research, we investigate the protective effect of cuttlebone on indomethacin-related ulcers in rats and possible mechanisms. Here, gastric ulcers were induced by oral administration of indomethacin, and then the rats were treated with omeprazole (4 mg/kg) or different doses (750, 1500, and 3000 mg/kg of body weight) of cuttlebone. We evaluated lesion index, inflammation score, and a series of oxidant/antioxidant parameters. The data demonstrated that cuttlebone could protect against gastric ulcers induced by indomethacin in a dose-dependent manner (positive correlation). Also, these effects were associated with attenuating the expression of malonaldehyde (MDA) and increasing the levels of some protective ingredients like epidermal growth factor (EGF), prostaglandin E2 (PGE2), and superoxide dismutase (SOD). Thus, considering its ability to protect indomethacin-induced acute gastric mucosal lesions and the underlying mechanisms, CB might be a potential candidate for treating gastric damage caused by NSAIDs.
Collapse
|
38
|
Chemical constituents and gastro-protective potential of Pachira glabra leaves against ethanol-induced gastric ulcer in experimental rat model. Inflammopharmacology 2020; 29:317-332. [PMID: 32914383 DOI: 10.1007/s10787-020-00749-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
Gastric ulcer is a very common illness that adversely affects a significant number of people all over the globe. Phytochemical investigation of P. glabra leaf alcohol extract (PGLE) resulted in the isolation and Characterization of a new nature compound, quercetin-3- O-α -L-rhamnosyl-(1'''-6'')-(4''- O -acetyl)-β -D-galactoside (4), in addition to seven known compounds. They are ferulic acid (1), p- coumaric acid (2), quercetin 3-O-α-L-rhamnoside-3'-O-β-D-glucoside (3), quercetin-3- O-α -L-rhamnosyl-(1'''-6'')-(4''- O -acetyl)- β -Dgalactoside (4), quercetin-3- O-β -D-galactoside (5), 7-hydroxy maltol-3-O-β-D-glucoside (6), maltol-3- O-β -D-glucoside (7), and methyl coumarate (8) that were first to be isolated from the genus Pachira. PGLE demonstrated in vitro anti-Helicobacter pylori activity. Moreover, the in vivo gastroprotective assessment of PGLE at different dosses, 100, 200, and 400 mg/kg against ethanol induced ulceration revealed a dose-dependent gastroprotection comparable to omeprazole. PGLE attenuated gastric lesions and histopathological changes triggered by ethanol. Interestingly, PGLE exhibited an anti-inflammatory effect through down-regulating the expression of nuclear factor-ĸB and pro-inflammatory enzyme cyclooxygenase-2 in the ulcer group. It also hindered apoptosis through decreasing Bax and increasing Bcl-2 expression hence decreasing Bax/Bcl2 ratio with a subsequent reduction in caspase 3 expression. Collectively, P. glabra is a rich reservoir of various phytochemicals reflecting a promising potential for alleviation of gastric ulcer through the mediation of inflammatory and apoptotic cascades.
Collapse
|
39
|
Nam HH, Kim JS, Lee J, Seo YH, Kim HS, Ryu SM, Choi G, Moon BC, Lee AY. Pharmacological Effects of Agastache rugosa against Gastritis Using a Network Pharmacology Approach. Biomolecules 2020; 10:biom10091298. [PMID: 32916904 PMCID: PMC7565599 DOI: 10.3390/biom10091298] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Agastache rugosa is used as a Korean traditional medicine to treat gastric diseases. However, the active ingredients and pharmacological targets of A. rugosa are unknown. In this study, we aimed to reveal the pharmacological effects of A. rugosa on gastritis by combining a mice model and a network pharmacology method. The macrophage and gastritis-induced models were used to evaluate the pharmacological effects of A. rugosa. The results show that A. rugosa relieved mucosal damage induced by HCl/EtOH in vivo. Network analysis identified 99 components in A. rugosa; six components were selected through systematic screening, and five components were linked to 45 gastritis-related genes. The main components were acacetin and luteolin, and the identified core genes were AKT serine/threonine kinase 1 (AKT1), nuclear factor kappa B inhibitor alpha (NFKBIA), and mitogen-activated protein kinase-3 (MAPK3) etc. in this network. The network of components, target genes, protein–protein interactions, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was closely connected with chemokines and with phosphoinositide 3-kinase-Akt (PI3K/AKT), tumor-necrosis-factor alpha (TNFα), mitogen-activated protein kinase, nuclear factor kappa B, and Toll-like receptor (TLR) pathways. In conclusion, A. rugosa exerts gastro-protective effects through a multi-compound and multi-pathway regulatory network and holds potential for treating inflammatory gastric diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - A Yeong Lee
- Correspondence: ; Tel.: +82-61-338-7128; Fax: +82-61-338-7136
| |
Collapse
|
40
|
Yu L, Li R, Liu W, Zhou Y, Li Y, Qin Y, Chen Y, Xu Y. Protective Effects of Wheat Peptides against Ethanol-Induced Gastric Mucosal Lesions in Rats: Vasodilation and Anti-Inflammation. Nutrients 2020; 12:nu12082355. [PMID: 32784583 PMCID: PMC7469019 DOI: 10.3390/nu12082355] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Alcohol consumption increases the risk of gastritis and gastric ulcer. Nutritional alternatives are considered for relieving the progression of gastric mucosal lesions instead of conventional drugs that produce side effects. This study was designed to evaluate the gastroprotective effects and investigate the defensive mechanisms of wheat peptides against ethanol-induced acute gastric mucosal injury in rats. Sixty male Sprague-Dawley rats were divided into six groups and orally treated with wheat peptides (0.1, 0.2, 0.4 g/kgbw) and omeprazole (20 mg/kgbw) for 4 weeks, following absolute ethanol administration for 1 h. Pretreatment with wheat peptides obviously enhanced the vasodilation of gastric mucosal blood vessels via improving the gastric mucosal blood flow and elevating the defensive factors nitric oxide (NO) and prostaglandin E2 (PGE2), and lowering the level of vasoconstrictor factor endothelin (ET)-1. Wheat peptides exhibited anti-inflammatory reaction through decreasing inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and increasing trefoil factor 1 (TFF1) levels. Moreover, wheat peptides significantly down-regulated the expression of phosphorylated nuclear factor kappa-B (p-NF-κB) p65 proteins in the NF-κB signaling pathway. Altogether, wheat peptides protect gastric mucosa from ethanol-induced lesions in rats via improving the gastric microcirculation and inhibiting inflammation mediated by the NF-κB signaling transduction pathway.
Collapse
Affiliation(s)
- Lanlan Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Ruijun Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Wei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yong Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yuhan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China; (L.Y.); (R.L.); (W.L.); (Y.Z.); (Y.L.); (Y.Q.); (Y.C.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100083, China
- Correspondence: ; Tel.: +86-10-8280-2552
| |
Collapse
|
41
|
Mousavi T, Hadizadeh N, Nikfar S, Abdollahi M. Drug discovery strategies for modulating oxidative stress in gastrointestinal disorders. Expert Opin Drug Discov 2020; 15:1309-1341. [PMID: 32749894 DOI: 10.1080/17460441.2020.1791077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Taraneh Mousavi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Hadizadeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Albasher G, Aljarba N, Al Sultan N, Alqahtani WS, Alkahtani S. Evaluation of the neuro-protective effect of Artemisia judaica extract in a murine diabetic model. J Food Biochem 2020; 44:e13337. [PMID: 32588466 DOI: 10.1111/jfbc.13337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
Chronic hyperglycemia is associated with several negative outcomes including neuronal injury. Medicinal plants supplementation has been widely applied to treat or decrease diabetic complications. Here, the possible neuroprotective effect of Artemisia judaica extract (AjE. 300 mg kg-1 day-1 ) against neuronal deficits in diabetes model induced by high-fat diet (HFD) administration and streptozotocin (STZ, 30 mg/Kg) injection in rats was investigated. Diabetic rats showed a disturbance in the neuronal redox homeostasis as confirmed by the elevated lipoperoxidation and nitric oxide formation along with the decreased antioxidant molecules. In addition, a state of neuroinflammation and apoptosis were recorded in the brain tissue in diabetic rats. Furthermore, HFD/STZ provoked neurochemical alterations. However, AjE administration was found to abrogate significantly the neuronal impairments associated with diabetes. This neuroprotective effect comes from its strong antioxidant, anti-inflammatory, antiapoptotic, and neuromodulatory activity; suggesting that AjE may be applied to alleviate neurological impairments in diabetic patients. PRACTICAL APPLICATIONS: Diabetes mellitus (DM) is a metabolic disorder characterized by high blood glucose level comes from the dysregulation of insulin production and/or its action. The persisted hyperglycemia is correlated with the progression of several physical complications including renal, hepatic, vascular, retinal, and neuronal dysfunction. Artemisia is used in the nutritional and medicinal proposes due to the enriched bioactive molecules such as essential oil, flavonoids, phenolics, sesquiterpenoids, triterpenoids, and artemisinin. And we found that Artemisia judaica extract (AjE) administration was able to abrogate significantly the neuronal impairments associated with diabetes. This neuroprotective effect comes from its strong antioxidant, anti-inflammatory, anti-apoptotic and neuromodulatory activity; suggesting that AjE may be applied to alleviate neurological impairments in diabetic patients.
Collapse
Affiliation(s)
- Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nada Aljarba
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Al Sultan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S Alqahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Chen W, Wu D, Jin Y, Li Q, Liu Y, Qiao X, Zhang J, Dong G, Li Z, Li T, Yang Y. Pre-protective effect of polysaccharides purified from Hericium erinaceus against ethanol-induced gastric mucosal injury in rats. Int J Biol Macromol 2020; 159:948-956. [PMID: 32450327 DOI: 10.1016/j.ijbiomac.2020.05.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
The β-glucan H6PC20 (Mw: 2390 kDa) and α-heteropolysaccharide HPB-3 (Mw: 15 kDa) were purified from the fruiting body of Hericium erinaceus according to the previous methods. Their gastroprotective activities and corresponding structure-activity relationship were studied in the ethanol-induced gastric ulcer model of rats. After intragastric administrated with H6PC20 and HPB-3 for 14 days, macroscopic and histological evaluation of gastric mucosa was improved significantly. The defense and repair factors (EGF, bFGF and PGE2) were increased, meanwhile, the inflammatory cytokines (IL-1β and TNF-α) and MDA were reduced. These results indicated that H6PC20 and HPB-3 presented gastroprotective activities with the mechanism of activating repair and defense system, decreasing the inflammatory response and alleviating the oxidative injury. Furthermore, the structure-activity relationship showed that the macromolecular β-glucan was better for repair and defense system, while the low weight molecular α-heteropolysaccharide focused on the anti-inflammatory effect. The polysaccharides purified from H. erinaceus can be developed as a potential gastroprotective ingredient for applications in pharmaceutical field.
Collapse
Affiliation(s)
- Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yueling Jin
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China
| | - Qiaozhen Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Xuxin Qiao
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Guochao Dong
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Tingting Li
- Shanghai University of Medicine & Health Sciences, Shanghai, 200237, PR China.
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China.
| |
Collapse
|
44
|
Abstract
Gastrointestinal disease is a major global threat to public health. In the past few decades, numerous studies have focuses on the application of small molecule gases in the disease treatment. Increasing evidence has shown that hydrogen sulfide (H2S) has anti-inflammatory and anti-oxidative effects, and can regulate gastric mucosal blood flow in the gastric mucosa. After gastric mucosa damage, the level of H2S in the stomach decreases. Administration of H2S can protect and repair the damaged gastric mucosa. Therefore, H2S is a new target for the repair and treatment of gastric mucosa damage. In this review, we introduce the roles of H2S in the treatment of gastric mucosa damage and provide the potential strategies for further clinical treatment.
Collapse
Affiliation(s)
- Fang Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Chong-Shun Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Mei-Fen Shen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
45
|
Sasahara GL, Gouveia Júnior FS, Rodrigues RDO, Zampieri DS, Fonseca SGDC, Gonçalves RDCR, Athaydes BR, Kitagawa RR, Santos FA, Sousa EHS, Nagao-Dias AT, Lopes LGDF. Nitro-imidazole-based ruthenium complexes with antioxidant and anti-inflammatory activities. J Inorg Biochem 2020; 206:111048. [PMID: 32151873 DOI: 10.1016/j.jinorgbio.2020.111048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Inflammation is a physiological process triggered in response to tissue damage, and involves events related to cell recruitment, cytokines release and reactive oxygen species (ROS) production. Failing to control the process duration lead to chronification and may be associated with the development of various pathologies, including autoimmune diseases and cancer. Considering the pharmacological potential of metal-based compounds, two new ruthenium complexes were synthesized: cis-[Ru(NO2)(bpy)2(5NIM)]PF6 (1) and cis-[RuCl(bpy)2(MTZ)]PF6 (2), where bpy = 2,2'-bipyridine, 5NIM = 5-nitroimidazole and MTZ = metronidazole. Both products were characterized by spectroscopic techniques, followed by Density Functional Theory (DFT) calculations in order to support experimental findings. Afterwards, their in vitro cytotoxic, antioxidant and anti-inflammatory activities were investigated. Compounds 1 and 2 presented expressive in vitro antioxidant activity, reducing lipid peroxidation and decreasing intracellular ROS levels with comparable effectiveness to the standard steroidal drug dexamethasone or α-tocopherol. These complexes showed no noticeable cytotoxicity on the tested cancer cell lines. Bactericidal assay against metronidazole-resistant Helicobacter pylori, a microorganism able to disrupt oxidative balance, unraveled compound 1 moderate activity over that strain. Besides this, it was able to inhibit interleukin-6 (IL-6) and tumor necrosis factor-α (TNF- α) production as well as interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2) expression in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. This latter activity is remarkable, which has not been reported for other ruthenium-based complexes. Altogether, these results suggest cis-[Ru(NO2)(bpy)2(5NIM)]PF6 complex has potential pharmacological application as an anti-inflammatory agent that deserve further biological investigation.
Collapse
Affiliation(s)
- Greyce Luri Sasahara
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Raphael de Oliveira Rodrigues
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Dávila Souza Zampieri
- Department of Organic and Inorganic Chemistry, Universidade Federal do Ceará, PO Box 6021, Fortaleza, Brazil
| | | | | | - Brena Ramos Athaydes
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Rodrigo Rezende Kitagawa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Flávia Almeida Santos
- Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Aparecida Tiemi Nagao-Dias
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Brazil
| | | |
Collapse
|
46
|
Fahmy NM, Al-Sayed E, Michel HE, El-Shazly M, Singab ANB. Gastroprotective effects of Erythrina speciosa (Fabaceae) leaves cultivated in Egypt against ethanol-induced gastric ulcer in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112297. [PMID: 31606535 DOI: 10.1016/j.jep.2019.112297] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Members of the genus Erythrina have been traditionally used in the treatment of various ailments such as inflammation and gastrointestinal disorders. Erythrina speciosa (Fabaceae) is a spiny, deciduous shrub or small tree native to Southern America in Brazil. It is cultivated in Africa and Asia. The traditional usage of E. speciosa indicated its antibacterial, analgesic, and anti-inflammatory activities. AIM OF THE STUDY Evaluation of the phytochemical constituents, gastroprotective effects and possible mechanism of action of the ethyl acetate fraction obtained from the methanol extract of E. speciosa leaves (ESLE). MATERIALS AND METHODS Chemical characterization of ESLE was done using high performance liquid chromatography coupled to mass spectrometry (HPLC-MS). The gastroprotective activity of ESLE was evaluated using ethanol-induced gastric-ulcer model in rats. Rats were pre-treated with ESLE 25, 50 and 100 mg/kg 1 h before the administration of absolute ethanol. Histological analysis, mucin content, and total acidity were evaluated. The possible mechanism of action of ESLE was studied through the examination of oxidative stress and inflammatory markers, PGE2, and NF-κB, iNOS, COX-2, and HSP-70 immunoexpression. In vitro, anti-Helicobacter pylori activity of ESLE was also studied using micro-well dilution method. RESULTS Fourteen compounds were tentatively identified including alkaloids, flavonoids, and saponins. ESLE exerted a powerful gastroprotective effect. The pre-treatment with ESLE at different doses resulted in a significant reduction in gastric lesions and significant elevation in the mucin production. These effects could be partially mediated by the potent anti-inflammatory activity of ESLE as evidenced by the significant reduction in the immunoexpression of NF-κB, COX-2, iNOS and the reduction in the pro-inflammatory marker, TNF-α. ESLE counteracted the ethanol-induced oxidative stress by increasing the levels of depleted GSH and catalase as well as significantly attenuating the ethanol-induced lipid peroxidation tissue levels. In addition, ESLE exhibited in vitro antibacterial activity against H. pylori. CONCLUSIONS The chemical constituents of ESLE strongly support its potent gastroprotective effect suggesting its future potential application in the management of gastric ulcer by eliminating its symptoms and causes including H. pylori.
Collapse
Affiliation(s)
- Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt
| | - Haidy E Michel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Centre for Drug Discovery and Development Research, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
47
|
de Araújo A, Feitoza G, Oliveira FDS, de Veras B, Lacerda F, da Silva N, Harand W, Paz S, de Melo-Júnior M, Almeida JGDS, da Silva M, Correia MDS. Natural gastroprotective remedy from the branches of Spondias tuberosa arruda. Pharmacognosy Res 2020. [DOI: 10.4103/pr.pr_43_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
48
|
Kwon DA, Kim YS, Baek SH, Kim SK, Kim HK, Jo SK, Jung U, Park HR, Lee HS. Protective effects of a standardized extract (HemoHIM) using indomethacin- and ethanol/HCl-induced gastric mucosal injury models. PHARMACEUTICAL BIOLOGY 2019; 57:543-549. [PMID: 31429615 PMCID: PMC6713185 DOI: 10.1080/13880209.2019.1651875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 05/25/2023]
Abstract
Context: HemoHIM is a medicinal herbal preparation of Angelica gigas Nakai (Apiaceae), Cnidium officinale Makino (Umbelliferae), and Paeonia japonica Miyabe (Paeoniaceae) developed for immune regulation. HemoHIM has been investigated for its ability to enhance tissue self-renewal and stimulate immune systems. To date, studies on the protective effects of HemoHIM against gastritis and gastric ulcers have not been conducted. Objective: The protective effects of HemoHIM using models of indomethacin and ethanol/hydrochloric acid (EtOH/HCl)-induced gastric mucosal injury were investigated. Materials and methods: Rats were divided into five groups (n = 10): control, indomethacin, or EtOH/HCl groups, HemoHIM 250, 500 mg kg-1, and cimetidine 100 mg kg-1, respectively. Indomethacin (80 mg kg-1) and 60% EtOH/150 mM HCl were administered orally 1 h after the administration of samples and rats were anesthetized 3 h after induction. The lesion area (%), inhibition ratio (%), and total acidity were investigated, and tissues were histopathologically analyzed using hematoxylin and-eosin (H&E) staining. Results: HemoHIM significantly reduced gastric injury in indomethacin-induced model (250 and 500 mg kg-1; 64.30% and 67.75%, p < 0.001) compared to indomethacin group. In the EtOH/HCl-induced model, HemoHIM reduced gastric lesion (250 and 500 mg kg-1; 61.05% and 73.37%, p < 0.001) and gastric acidity (250 and 500 mg kg-1; 37.80 and 45.20 meq L-1, p < 0.001) compared to EtOH/HCl group. H&E staining of the gastric mucosa showed decreased erosion and hemorrhage in HemoHIM group compared to EtOH/HCl group. Discussion and conclusions: Based on the results, HemoHIM is potential candidate for the treatment of gastritis and gastric ulcers.
Collapse
Affiliation(s)
- Da-Ae Kwon
- Food Science R&D Center, Kolmar BNH Co., Ltd, Sejong-Si, Republic of Korea
| | - Yong Sang Kim
- Food Science R&D Center, Kolmar BNH Co., Ltd, Sejong-Si, Republic of Korea
| | - Sin Hwa Baek
- Food Science R&D Center, Kolmar BNH Co., Ltd, Sejong-Si, Republic of Korea
| | - Seul-Ki Kim
- Food Science R&D Center, Kolmar BNH Co., Ltd, Sejong-Si, Republic of Korea
| | - Hyun Kyu Kim
- Food Science R&D Center, Kolmar BNH Co., Ltd, Sejong-Si, Republic of Korea
| | - Sung-Kee Jo
- Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeonbuk, Republic of Korea
| | - Uhee Jung
- Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeonbuk, Republic of Korea
| | - Hae-Ran Park
- Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute (KAERI), Jeonbuk, Republic of Korea
| | - Hak Sung Lee
- Food Science R&D Center, Kolmar BNH Co., Ltd, Sejong-Si, Republic of Korea
| |
Collapse
|
49
|
Xie W, Huang X, Chen R, Chen R, Li T, Wu W, Huang Z. Esomeprazole alleviates the damage to stress ulcer in rats through not only its antisecretory effect but its antioxidant effect by inactivating the p38 MAPK and NF-κB signaling pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2969-2984. [PMID: 31686780 PMCID: PMC6709796 DOI: 10.2147/dddt.s193641] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/16/2019] [Indexed: 12/14/2022]
Abstract
Background Stress ulcer is a severe complication in critically ill patients and causes a high mortality. The proton pump inhibitor esomeprazole is widely applied in the treatment of stress ulcers because of its powerful acid suppression ability. However, the mechanism of stress ulcer and the precise gastroprotective effect of esomeprazole in stress ulcer remain unclear. Purpose In the present study, the rats with water-immersed and restraint (WIR)-induced stress ulcer were used to further elucidate the anti-ulcerogenic capacity of esomeprazole in stress ulcer in addition to its anti-acid secreting ability. Methods and results The rats were randomly divided into 5 groups: control group (NS), water-immersed and restraint group (WIR), high-dose application of esomeprazole plus stress ulcer-induced group (HE+WIR), low-dose application of esomeprazole plus stress ulcer-induced group (LE+WIR), and high-dose application of esomeprazole without stress ulcer-induced group (HE). Our study showed that the pretreatment of esomeprazole alleviated gastric tissue damage in both macroscopic and histopathological manifestations. Pretreatment of esomeprazole elevated the decline in PEG2 level affected by WIR; and it inhibited the secretion of gastric acid, gastrin and pepsin. Moreover, esomeprazole exerted its antioxidant effects by reducing malondialdehyde levels, enhancing the expressions of antioxidant factors like glutathione and superoxide dismutase (SOD) and reducing the compensatory transcriptional elevation of SOD1 gene. Esomeprazole also reduced the levels of MPO (myeloperoxidase), tumor necrosis factor (TNF)-α and interleukin (IL)-1β according to its anti-inflammatory effects. We further explored the possible mechanism of esomeprazole pretreatment on stress ulcer and demonstrated that esomeprazole attenuated the high phosphorylation levels of nuclear factor kappa B (NF-κB) p65 and p38 MAPK, and decreased the NF-κB p65 nuclear translocation induced by WIR related stress ulcer. Conclusion Our study provides some evidence that the esomeprazole pretreatment exerts gastroprotective effects in WIR-induced stress ulcer through not only its antisecretory effect but also its antioxidant effect by inactivating the p38 MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Wei Xie
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xielin Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Renpin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ruru Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tang Li
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wei Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhiming Huang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
50
|
Zhong L, Tong H, Zhu J, Lv M. Pharmacological effects of different ginger juices on the concurrent symptoms in animal models of functional dyspepsia: A comparative study. Food Sci Nutr 2019; 7:2205-2213. [PMID: 31367349 PMCID: PMC6657707 DOI: 10.1002/fsn3.990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/16/2019] [Accepted: 02/16/2019] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Patients with gastrointestinal disorders commonly suffer from poor treatment outcomes and adverse effects of traditional pharmacological therapy. Herbal medicine is a favorable alternative due to the low risk of side effects. This study was performed to explore the antiemetic effects and the improvement effect on gastrointestinal function of components of three ginger juice excipients. METHODS The compositions were analyzed by liquid chromatograph mass spectrometer (LC-MS), especially the gingerols of dried ginger juice (DGJ), fresh ginger juice (FGJ), and fresh ginger boiled juice (FGBJ). Furthermore, the respective gastrointestinal effects on rat models with functional dyspepsia (FD) were compared. RESULTS The 6-keto-PGF1α levels in the serum of the treated groups were significantly reduced (p < 0.05), as compared with the control group. Compared with the cisplatin group, there was an apparent reduction in kaolin intake for DGJ, FGJ, and FGBJ (p < 0.01; p < 0.01; p < 0.05). The intestinal propulsive rate of the rats in the treated group was significantly higher than that in the control group (p < 0.05). Ginger juices significantly improved gastrointestinal function in rats. Eight common components were found in DGJ, FGJ, and FGBJ, among which 6-paradol, 10-gingerol, and 12-shogaol led to inhibited gastric mucosal damage function effect according to the Pearson correlation analysis. Only 6-shogaol was found to have a positive correlation with gastrointestinal function effect through Pearson correlation analysis. CONCLUSION Ginger juice should be recommended for the medicinal materials used in the treatment of concurrent symptoms of FD.
Collapse
Affiliation(s)
- Ling‐yun Zhong
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Heng‐li Tong
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Jing Zhu
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Mu Lv
- School of PharmacyJiangxi University of Traditional Chinese MedicineNanchangChina
| |
Collapse
|