1
|
Zhang Z, Ma J, Shi M, Huang J, Xu Z. CIAPIN1 attenuates ferroptosis via regulating PI3K/AKT pathway in LPS-induced podocytes. BMC Nephrol 2025; 26:201. [PMID: 40259237 PMCID: PMC12010576 DOI: 10.1186/s12882-025-04123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025] Open
Abstract
OBJECTIVE Cytokine-induced apoptosis inhibitor 1 (CIAPIN1) is a crucial anti-apoptotic protein; however, its role and associated molecular pathways in ferroptosis remain largely unexplored. This study aimed to investigate the effects of CIAPIN1 on ferroptosis in lipopolysaccharide (LPS)-induced podocytes and the associated underlying phenomenon. METHODS In this study, we recruited 50 sepsis patients (aged 56.63 ± 10.33) with acute kidney injury (AKI), 50 sepsis patients without AKI, and 50 healthy controls. We established an in vitro model of LPS-induced MPC5 podocytes. RT-qPCR and Western blotting were used to evaluate mRNA and protein expression, respectively. RESULTS Serum CIAPIN1 is downregulated in patients with septic AKI and LPS-induced podocytes. CIAPIN1 overexpression (OE-CIAPIN1) attenuated cell proliferation and apoptosis in LPS-induced podocytes. OE-CIAPIN1 elevated phosphorylated phosphoinositide 3-kinase (p-PI3K; p85, Tyr458) and phosphorylated protein kinase B (p-Akt; Ser473) levels in LPS-induced podocytes. OE-CIAPIN1 significantly elevated synaptopodin mRNA levels and remarkably lowered desmin mRNA expression in MPC5 cells. In contrast, treatment with the PI3K/Akt pathway inhibitor, LY294002, reversed synaptopodin and desmin mRNA expression in MPC5 cells. Additionally, OE-CIAPIN1 reduced the malondialdehyde (MDA) content and Fe2 + concentration in the lysate of MPC5 cells, while elevating the MDA content and Fe2 + concentration by LY294002 treatment. Furthermore, OE-CIAPIN1 increased ferroptosis-related proteins, including solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), in MPC5 cells, which was reversed by LY294002 treatment. CONCLUSION These results suggest that serum CIAPIN1 inhibits LPS-induced ferroptosis in podocytes by regulating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Ziqing Zhang
- Department of Emergency Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Jinmiao Ma
- Department of Emergency Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Minyu Shi
- Department of Emergency Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Jingcong Huang
- Department of Emergency Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Zhenyu Xu
- Department of Emergency Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Pudong, Shanghai, 200137, China.
| |
Collapse
|
2
|
Shu P, Xu N, Abudukelimu N, Aiziti P, Zang D, Zhao J, Wang Y. The Pomegranate Flower Water Extract Negatively Regulates Melanogenesis by Suppressing MITF Expression and Its Target Enzymes. J Cosmet Dermatol 2025; 24:e70163. [PMID: 40232012 PMCID: PMC11998895 DOI: 10.1111/jocd.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND The aesthetic issues caused by pigmentation are increasing people's demand for skin whitening. Considering its long-term use, it is very important for searching safe and effective agents. Pomegranate flower, a kind of traditional Chinese medicine, has shown promising anti-inflammatory, antioxidant, and antidiabetic properties, but its potential skin-lightening effects have not been well explored. AIMS We investigated the effect of pomegranate flower water extract (PFE) on skin lightening and elucidated its underlying mechanisms. METHODS The radical scavenging capacity was measured by ABTS and DPPH assays, and the mechanism of lightening was detected by Western blot. RESULTS PFE could obviously inhibit tyrosinase activity, which its inhibition IC50 value was lower than the positive control, kojic acid. Meanwhile, the radical scavenging capacity was also better than vitamin C (VC). Then the synthesis ability of melanin was measured in B16F10 cells; we found that PFE, in its safe concentrations, could reduce the synthesis of melanin resulting from inhibiting TYR activities. The expression of the main melanogenesis enzymes TYR, TRP-1, and TRP-2 was sharply reduced. Interestingly, MITF, a transcription factor of TYR, was obviously decreased its expression when treated with PFE at 50, 100, and 150 μg/mL, which was even significantly lower than the downregulation by kojic acid. CONCLUSION Pomegranate flower extract possessed a strong antimelanogenesis effect, which resulted from inhibiting the expression of MITF and its downstream target enzymes involved in melanin synthesis. These findings provide a strong scientific basis for the use of PFE as a safe and effective skin-lightening ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Peng Shu
- HBN Research Institute and Biological LaboratoryShenzhen Hujia Technology Co., Ltd.ShenzhenChina
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiP.R. China
- University of Chinese Academy of SciencesBeijingP.R. China
| | - Nannan Xu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiP.R. China
| | - Nuermaimaiti Abudukelimu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiP.R. China
| | - Parida Aiziti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiP.R. China
- University of Chinese Academy of SciencesBeijingP.R. China
| | - Deng Zang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiP.R. China
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiP.R. China
| | - Yuan Wang
- HBN Research Institute and Biological LaboratoryShenzhen Hujia Technology Co., Ltd.ShenzhenChina
| |
Collapse
|
3
|
Li T, Liu Y, Cao J, Lu X, Lu Y, Wang Y, Zhang C, Wu M, Deng S, Li L, Shi M. Triphenyl phosphate induces lipid metabolism disorder and promotes obesity through PI3K/AKT signaling pathway. ENVIRONMENT INTERNATIONAL 2025; 198:109428. [PMID: 40199182 DOI: 10.1016/j.envint.2025.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
Triphenyl phosphate (TPHP) is a widely used organic phosphate flame retardant that has been reported as a potential environmental obesogen. However, the potential impact and mechanism of action of TPHP on adipose tissue are still unclear. This study investigates the potential impact of TPHP on lipid metabolism disorders through in vivo and in vitro experiments. Male and female BALB/c mice were exposed to TPHP (0, 1, 10, and 150 mg/kg/day) for 60 days, and 3T3-L1 preadipocytes were treated with concentrations of TPHP (0, 0.1, 1, 10 μM) during differentiation. The results showed that exposure to TPHP could cause gender specific dyslipidemia, with male mice exhibiting dose-dependent increases in inguinal adipose tissue coefficient, adipocyte hypertrophy, and upregulation of adipose differentiation and adipogenesis-related genes. In contrast, female mice did not show significant changes in tissue morphology. This suggested that TPHP might promote the potential occurrence of adiposity by disrupting the lipid metabolism homeostasis of male adipose tissue. During the differentiation and maturation process of 3T3-L1 preadipocytes, exposure to TPHP led to increased lipid accumulation and disrupted lipid homeostasis by simultaneous activation adipogenesis and lipolysis. Multiple omics data showed that the activation of the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway and fatty acid metabolism was the core mechanism of TPHP induced metabolic dysfunction. Further research showed that TPHP activated the PI3K/AKT pathway, and PI3K inhibitor (LY294002) could rescue TPHP induced lipid droplet formation and normalize the expression of adipogenic markers. These findings confirm that TPHP is a potential environmental obesogen that can disrupt the metabolic homeostasis of white adipose tissue through the PPARγ and PI3K/AKT signaling pathways, with higher susceptibility in males. This study provides compelling evidence for the obesogenic effects of TPHP and information for risk assessment of organophosphorus flame retardants.
Collapse
Affiliation(s)
- Tianlan Li
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yiwa Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Jingyi Cao
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Xianzhu Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yinghan Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Yuhan Wang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Chunmei Zhang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Meifen Wu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Song Deng
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China
| | - Li Li
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China.
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808 Guangdong Province, China.
| |
Collapse
|
4
|
Zhong Y, Yang S, Li S, Yuan S, Chen X, Long H, Wu H, Guo Y, Wang T. IL-27 alleviates high-fat diet-induced obesity and metabolic disorders by inhibiting adipogenesis via activating HDAC6. Commun Biol 2025; 8:460. [PMID: 40108289 PMCID: PMC11923273 DOI: 10.1038/s42003-025-07918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Obesity arises from an imbalance between adipogenesis and adipocyte thermogenesis. Interleukin-27 (IL-27), a heterodimer cytokine, is known to promote thermogenesis in brown adipose tissue. However, its role in adipogenesis remains unclear. This study aims to investigate the effects of IL-27 on adipogenesis both in vitro and in vivo, and to elucidate the underlying mechanisms. In vitro, an adipogenic differentiation model of adipose-derived mesenchymal stem cells (ADSCs) demonstrate that IL-27 is non-cytotoxic to ADSCs and inhibits ADSCs adipogenic differentiation. In vivo, using a high-fat diet (HFD)-induced obese mouse model and a targeted adipose tissue-specific IL-27 overexpression adeno-associated viral (AAV) vector, we confirm that IL-27 suppresses adipogenesis, prevents weight gain, and improves glucose and lipid metabolic homeostasis in obese mice. Additionally, the inhibition of adipogenesis by IL-27 is mediated through HDAC6 activation of the TGFβ/Smad3 signaling pathway. Our study suggests that IL-27 is a potential therapeutic target for obesity and metabolic disorders.
Collapse
Affiliation(s)
- Yinsheng Zhong
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Shujun Yang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Shuangmei Li
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Sijun Yuan
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Xuxiang Chen
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Huibao Long
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Haidong Wu
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China
| | - Yajie Guo
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China.
| | - Tong Wang
- Department of Emergency, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, 518003, PR China.
| |
Collapse
|
5
|
Sun T, Hao Z, Meng F, Li X, Wang Y, Zhu H, Li Y, Ding Y. The Effects of Sika Deer Antler Peptides on 3T3-L1 Preadipocytes and C57BL/6 Mice via Activating AMPK Signaling and Gut Microbiota. Molecules 2025; 30:1173. [PMID: 40076396 PMCID: PMC11901460 DOI: 10.3390/molecules30051173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
(1) Background: To explore the anti-obesity effects and mechanisms of sika deer velvet antler peptides (sVAP) on 3T3-L1 preadipocytes and in high-fat diet (HFD)-induced obese mice. (2) Methods: sVAP fractions of different molecular weights were obtained via enzymatic hydrolysis and ultrafiltration. Their anti-lipid effects on 3T3-L1 cells were assessed with Oil Red O staining. The optimal fraction was tested in HFD-induced obese C57BL/6 mice to explore anti-obesity mechanisms. Peptide purification used LC-MS/MS, followed by sequence analysis and molecular docking for activity prediction. (3) Results: The peptide with the best anti-obesity activity was identified as sVAP-3K (≤3 kDa). sVAP-3K reduced lipid content and proliferation in 3T3-L1 cells, improved lipid profiles and ameliorated adipocyte degeneration in HFD mice, promoted the growth of beneficial gut microbiota, and maintained lipid metabolism. Additionally, sVAP-3K activated the AMP-activated protein kinase (AMPK) signaling pathway, regulating adipogenic transcription factors. sVAP-3K exhibited ten major components (peak area ≥ 1.03 × 108), with four of the most active components being newly discovered natural oligopeptides: RVDPVNFKL (m/z 363.21371), GGEFTPVLQ (m/z 474.24643), VDPENFRL (m/z 495.25735), and VDPVNFK (m/z 818.44043). (4) Conclusion: This study identifies four novel oligopeptides in sVAP-3K as key components for anti-obesity effects, offering new evidence for developing natural weight-loss drugs from sika deer velvet.
Collapse
Affiliation(s)
- Tong Sun
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Zezhuang Hao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Fanying Meng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Xue Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Yihua Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Haowen Zhu
- College of Life Sciences, University of Camerino, 62032 Camerino, Macerata Province, Italy;
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China; (T.S.); (Z.H.); (F.M.); (X.L.); (Y.W.)
| |
Collapse
|
6
|
Chen K, Dou X, Lin Y, Bai D, Luo Y, Zhou L. Pachymic acid promotes brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX. Zhejiang Da Xue Xue Bao Yi Xue Ban 2025:1-9. [PMID: 39807020 DOI: 10.3724/zdxbyxb-2024-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
OBJECTIVES To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes 3T3-L1 MBX. METHODS The brown cocktail method was employed to induce 3T3-L1 MBX cells to differentiate into beige adipocytes. The impact of pachymic acid on the viability of 3T3-L1 MBX preadipocytes was evaluated using the CCK-8 assay. The formation of lipid droplets following treatment with pachymic acid was observed through oil red O staining, and the content of lipids in differentiated cells was determined. The expression levels of key browning genes, including uncoupling protein (Ucp) 1, the peroxisome proliferation-activating receptor gamma coactivator (Pgc)-1α, and the transcription factor containing PR domain 16 (Prdm16) were detected by quantitative reverse transcription polymerase chain reaction. The expression of sterol regulatory element binding protein (Srebp) 1c, acetyl-CoA carboxylase (Acc), fatty acid synthetase (Fas), and steroid-sensitive lipase (Hsl), fatty triglyceride hydrolase (Atgl), and carnitine palmitoyl transferase (Cpt) 1 of lipolysis-related genes were also examined. RESULTS The 3T3-L1 MBX was induced in vitro to form beige adipocytes with high expression of key browning genes, including Ucp1, Pgc-1α, Prdm16, and beige adipose-marker genes, including Cd137, Tbx1, and Tmem26. The concentration range of 0-80 μM pachymic acid was non-cytotoxic to 3T3-L1 MBX. Pachymic acid treatment significantly inhibited the differentiation of 3T3-L1 MBX, resulting in a notable decrease in lipid accumulation content (P<0.01). Additionally, there was a marked increase in the expression of key browning genes and their proteins, such as Ucp1, Pgc-1α, and Prdm16, while the expressions of fat synthesis-related genes Srebp1c, Acc and Fas were significantly decreased (all P<0.05). The expressions of lipolysis-related genes, including Hsl, Atgl, and Cpt1, were significantly increased (all P<0.05). Besides, treating with 20 μmol/L pachymic acid showed the most pronounced effect. CONCLUSIONS Pachymic acid can inhibit fat synthesis and promote lipid decomposition by regulating the brown formation and lipid differentiation of 3T3-L1 MBX preadipocytes.
Collapse
Affiliation(s)
- Kunling Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yiyou Lin
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Danyao Bai
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yangzhou Luo
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liping Zhou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
7
|
Özer C, Var G, Demir Özer E, Kiliç B. Effects of Pomegranate Flower Extracts on Antioxidant Properties, Phenolic Content, and Quality Attributes of Nitrite Reduced Chicken Sausages. Anim Sci J 2025; 96:e70039. [PMID: 39946847 PMCID: PMC11825183 DOI: 10.1111/asj.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
The objective of present study was to examine the potential use of pomegranate flower extracts (PFEs) obtained from water and ethanol at antimicrobial doses in nitrite-reduced chicken sausages. The impact of the extracts on the physicochemical, textural, and sensory attributes of the sausages was evaluated using both reduced doses of nitrite and a nitrite-free preparation. The results revealed that incorporating PFE resulted in a sixfold and twofold enhancement in total phenolic content and antioxidant activity, respectively. The DPPH radical scavenging activity in sausages produced with ethanol-based PFE was more than twice as high as in sausages treated with sodium nitrite. Additionally, the combination of low-dose nitrite with PFE showed a reduction in TBARS values, leading to the prevention of lipid oxidation. Sausages with PFE exhibited lower pH and redness values, while maintaining similar aroma and odor characteristics as the controls. Although there was a slight negative impact on texture, color, and overall acceptability, PFE can be considered a potential alternative for improving bioactive content and oxidative stability of low-nitrite chicken sausages. The application of PFE could offer a promising opportunity to enhance the nutritional profile and quality attributes of processed meat products.
Collapse
Affiliation(s)
- Cem Okan Özer
- Faculty of Engineering and Architecture, Department of Food EngineeringNevsehir Hacı Bektas Veli UniversityNevsehirTurkey
| | - Ganime Beyzanur Var
- Faculty of Engineering and Architecture, Department of Food EngineeringNevsehir Hacı Bektas Veli UniversityNevsehirTurkey
| | - Ezgi Demir Özer
- School of Applied Sciences, Department of Gastronomy and Culinary ArtsCappadocia UniversityNevsehirTurkey
| | - Birol Kiliç
- Faculty of Engineering, Department of Food EngineeringSüleyman Demirel UniversityIspartaTurkey
| |
Collapse
|
8
|
Valizadeh R, Zandi M, Ganjloo A, Dardmeh N. Bioactive multilayer film based on the sage seed gum-gelatin, TiO 2 and electrospun zein fibers encapsulating pomegranate peel extract. Int J Biol Macromol 2024; 283:137826. [PMID: 39566805 DOI: 10.1016/j.ijbiomac.2024.137826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Despite the desirable features, electrospun fibers are mechanically fragile. To enhance their usability in packaging applications, these fibers need to be supported on a substrate. In this research, bio-based electrospun multilayered films were developed based on the strong sage seed gum-gelatin film as the outer layers and an electrospun zein-pomegranate flower extract (0, 20, 40, 60, and 80 g.m-2) as the middle layer. The findings revealed that the developed multilayer films exhibited a thickness ranging from 0.18 to 0.25 mm. Increased electrospun layer thickness enhanced interfacial adhesion, resulting in a denser film structure, which subsequently improved tensile strength (from 60.8 to 70.2 MPa) and elastic modulus (from 279.9 to 379.2 MPa). These modifications led to a reduction in water vapor and oxygen permeability by 72.4 % and 82.6 %, respectively. Additionally, the opacity of the film >200 %. Increasing the thickness of the electrospun layer also resulted in an increase in total phenolic content (TPC) and antioxidant activity by 899 % and 547 %, respectively. The FTIR analysis revealed molecular interactions between the different layers of the multilayer film. Furthermore, X-ray diffraction (XRD) analysis indicated that the multilayer film possesses a semi-crystalline structure, with an increase in crystallinity observed as the thickness of the electrospun layer increased, which consequently enhanced the thermal stability of the multilayer films. A reduction in water solubility, moisture content, and swelling ratio, as well as an increase in antimicrobial activity, was also observed with the increasing thickness of the electrospun layer. Release kinetics results showed that the lowest release rate occurred in the fatty food simulant. This research advances the development of bio-based electrospun multilayered films to improve their mechanical strength and barrier properties for packaging. It highlights the potential of these materials in sustainable packaging and paves the way for future innovations in environmentally friendly practices.
Collapse
Affiliation(s)
- Romina Valizadeh
- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran
| | - Mohsen Zandi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Ali Ganjloo
- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran
| | - Nazila Dardmeh
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
9
|
Rak-Pasikowska A, Hałucha K, Kamińska M, Niewiadomska J, Noszczyk-Nowak A, Bil-Lula I. The Effect of Pomegranate Peel Extract on the Oxidative and Inflammatory Status in the Spleens of Rats with Metabolic Syndrome. Int J Mol Sci 2024; 25:12253. [PMID: 39596317 PMCID: PMC11594348 DOI: 10.3390/ijms252212253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Polyphenols have antioxidant and anti-inflammatory properties and maintain the immune system in balance; therefore, the aim of the study was to investigate the effect of polyphenols present in pomegranate peel extract on the spleens of rats with metabolic syndrome. The study objects were adult male Zucker Diabetic Fatty (ZDF-Leprfa/Crl, fa/fa) rats. The rats were divided into a control group (MetS) consisting of rats with metabolic syndrome and four study groups consisting of rats with metabolic syndrome (MetS + 100 mg and MetS + 200 mg) or healthy animals (H + 100 mg and H + 200 mg) receiving polyphenol extract at a dose of 100 mg or 200 mg/kg, respectively. Concentrations of IL-6, NF-κB, NFATc1, Cyt-C, TNFα, MMP-2, ROS/RNS, and MDA were measured; the activities of GPX, SOD, CAT, MMP-2, and MMP-9 were assessed; and the expression of the BAX and BCL-2 genes was evaluated in homogenized spleens. In conclusion, pomegranate extract may lead to an increase in catalase and glutathione peroxidase activity. Additionally, it may have a reducing effect on the ROS/RNS level, leading to a reduction in the activity of SOD in the MetS groups with PPE administration. Moreover, the BCL-2 gene showed lower expression in the MetS + 100 mg group compared to the H + 100 mg group, indicating that the balance between pro- and antiapoptotic factors of the BCL-2 family may be disrupted by the metabolic syndrome promoting the proapoptotic pathway.
Collapse
Affiliation(s)
- Alina Rak-Pasikowska
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (K.H.); (I.B.-L.)
| | - Kornela Hałucha
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (K.H.); (I.B.-L.)
- Lower Silesian Oncology, Pulmonology and Hematology Center, 12 Hirszfeld Square, 53-413 Wrocław, Poland
| | - Marta Kamińska
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (K.H.); (I.B.-L.)
| | - Joanna Niewiadomska
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Grunwaldzki Square 47, 50-375 Wrocław, Poland; (J.N.); (A.N.-N.)
| | - Agnieszka Noszczyk-Nowak
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Grunwaldzki Square 47, 50-375 Wrocław, Poland; (J.N.); (A.N.-N.)
| | - Iwona Bil-Lula
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (K.H.); (I.B.-L.)
| |
Collapse
|
10
|
Chen J, Wang H, Zhu J. Extract from Falcaria vulgaris loaded with exosomes for the treatment of hypertension in pregnant mice: In vitro and In vivo investigations. Biomed Mater Eng 2024; 35:509-521. [PMID: 39365319 DOI: 10.3233/bme-240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
BACKGROUND Hypertensive disorders during pregnancy pose significant risks to both maternal and fetal health, necessitating safe and effective therapeutic interventions. OBJECTIVE This study aimed to investigate the potential of an extract derived from Falcaria vulgaris (FV), loaded with exosomes to form the Exo/FV complex, as a novel therapeutic agent for the management of hypertension in pregnant mice: antioxidants, antimicrobials, and phenolic compounds present in FV lower blood pressure. METHODS The isolation of exosomes was done by ultracentrifugation methods and the FV was loaded into the exosomes by electroporation method. RESULTS The Exo/FV was found to be spherical with diameter ranges from 20 to 30 nm and they were tested for biocompatibility in NHI 3T3 cell lines and found to be effective. This research investigated in vivo hypertension in mice induced by L-NAME and treated with FV and Exo/FV and found that AChE and MAO determine mice's redox state tends to reduce blood pressure. Increased non-protein thiol (NP-SH) and decreased lipid peroxidation were also found, and PDE-5, ACE, Arginase, and MDA activity has also been tested. CONCLUSION This analysis showed that Exo/FV effectively treated hypertension during pregnancy.
Collapse
Affiliation(s)
- Jing Chen
- Obstetrical Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Huan Wang
- Infection Department (Fever Clinic), The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jing Zhu
- Obstetrical Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
11
|
Liu Y, Yin Q, Liu B, Lu Z, Liu M, Meng L, He C, Chang J. Fisetin reduces ovalbumin-triggered airway remodeling by preventing phenotypic switching of airway smooth muscle cells. Respir Res 2024; 25:370. [PMID: 39402516 PMCID: PMC11479573 DOI: 10.1186/s12931-024-03005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The transformation of airway smooth muscle cells (ASMCs) from a quiescent phenotype to a hypersecretory and hypercontractile phenotype is a defining feature of asthmatic airway remodeling. Fisetin, a flavonoid compound, possesses anti-inflammatory characteristics in asthma; yet, its impact on airway remodeling and ASMCs phenotype transition has not been investigated. OBJECTIVES This research seeked to assess the impact of fisetin on ovalbumin (OVA) induced asthmatic airway remodeling and ASMCs phenotype transition, and clarify the mechanisms through network pharmacology predictions as well as in vivo and in vitro validation. METHODS First, a fisetin-asthma-ASMCs network was constructed to identify potential targets. Subsequently, cellular and animal studies were carried out to examine the inhibitory effects of fisetin on airway remodeling in asthmatic mice, and to detemine how fisetin impacts the phenotypic transition of ASMCs. RESULTS Network analysis indicated that fisetin might affect asthma via mediating the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) pathway. Intraperitoneal administration of fisetin in vivo reduced airway inflammation and remodeling, as shown by reduced inflammatory cells, decreased T helper type 2 (Th2) cytokine release, diminished collagen accumulation, mitigated airway smooth muscle thickening, and decreased expression of osteopontin (OPN), collagen-I and α-smooth muscle actin (α-SMA). Moreover, fisetin suppressed the PI3K/AKT pathway in asthmatic lung tissue. According to the in vitro data, fisetin downregulated the expression of the synthetic phenotypic proteins OPN and collagen-I, contractile protein α-SMA, and inhibited cellular migration, potentially through the PI3K/AKT pathway. CONCLUSION These results suggest that fisetin inhibits airway remodeling in asthma by regulating ASMCs phenotypic shift, emphasizing that fisetin is a promising candidate for the treatment of airway smooth muscle remodeling.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Qiling Yin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Bin Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Zheng Lu
- Tai'an Tumour Prevention and Treatment Hospital, Tai'an, Shandong, 271000, China
| | - Meijun Liu
- Shandong First Medical University, Tai'an, Shandong, 271000, China
| | - Ling Meng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China.
| | - Chao He
- Department of Gastrointestinal Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai'an, Shandong, 271000, China.
| | - Jin Chang
- Department of Oncology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, 271000, China.
| |
Collapse
|
12
|
Inpan R, Sakuludomkan C, Na Takuathung M, Koonrungsesomboon N. Network Pharmacology Revealing the Therapeutic Potential of Bioactive Components of Triphala and Their Molecular Mechanisms against Obesity. Int J Mol Sci 2024; 25:10755. [PMID: 39409084 PMCID: PMC11476943 DOI: 10.3390/ijms251910755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Obesity, characterized by the excessive accumulation of fat, is a prevalent metabolic disorder that poses a significant global health concern. Triphala, an herbal combination consisting of Phyllanthus emblica Linn, Terminalia chebula Retz, and Terminalia bellerica (Gaertn) Roxb, has emerged as a potential solution for addressing concerns related to obesity. This study aimed to investigate the network pharmacology and molecular docking of Triphala to identify its bioactive ingredients and their interactions with pathways associated with obesity. The bioactive compounds present in Triphala and genes linked to obesity were identified, followed by an analysis of the protein-protein interaction networks. Enrichment analysis, including Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis, was conducted. Prominent genes and compounds were selected for further investigation through molecular docking studies. The study revealed a close correlation between obesity and the AKT1 and PPARG genes. The observed binding energy between beta-sitosterol, 7-dehydrosigmasterol, peraksine, α-amyrin, luteolin, quercetin, kaempferol, ellagic acid, and phyllanthin with AKT1 and PPARG indicated a favorable binding affinity. In conclusion, nine compounds showed promise in regulating these genes for obesity prevention and management. Further research is required to validate their specific effects.
Collapse
Affiliation(s)
- Ratchanon Inpan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand or (R.I.); (C.S.); (M.N.T.)
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chotiwit Sakuludomkan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand or (R.I.); (C.S.); (M.N.T.)
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand or (R.I.); (C.S.); (M.N.T.)
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand or (R.I.); (C.S.); (M.N.T.)
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Laurindo LF, Rodrigues VD, Minniti G, de Carvalho ACA, Zutin TLM, DeLiberto LK, Bishayee A, Barbalho SM. Pomegranate (Punica granatum L.) phytochemicals target the components of metabolic syndrome. J Nutr Biochem 2024; 131:109670. [PMID: 38768871 DOI: 10.1016/j.jnutbio.2024.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Pomegranate (Punica granatum L.) is a multipurpose dietary and medicinal plant known for its ability to promote various health benefits. Metabolic syndrome (MetS) is a complex metabolic disorder driving health and socioeconomic challenges worldwide. It may be characterized by insulin resistance, abdominal obesity, hypertension, and dyslipidemia. This study aims to conduct a review of pomegranate's effects on MetS parameters using a mechanistic approach relying on pre-clinical studies. The peel, juice, roots, bark, seeds, flowers, and leaves of the fruit present several bioactive compounds that are related mainly to anti-inflammatory and antioxidant activities as well as cardioprotective, antidiabetic, and antiobesity effects. The use of the juice extract can work as a potent inhibitor of angiotensin-converting enzyme activities, consequently regulating blood pressure. The major bioactive compounds found within the fruit are phenolic compounds (hydrolysable tannins and flavonoids) and fatty acids. Alkaloids, punicalagin, ellagitannins, ellagic acid, anthocyanins, tannins, flavonoids, luteolin, and punicic acid are also present. The antihyperglycemia, antihyperlipidemia, and weight loss promoting effects are likely related to the anti-inflammatory and antioxidant effects. When considering clinical application, pomegranate extracts are found to be frequently well-tolerated, further supporting its efficacy as a treatment modality. We suggest that pomegranate fruit, extract, or processed products can be used to counteract MetS-related risk factors. This review represents an important step towards exploring potential avenues for further research in this area.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), São Paulo, São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), São Paulo, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Antonelly Cassio Alves de Carvalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Tereza Laís Menegucci Zutin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil
| | - Lindsay K DeLiberto
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL USA.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), São Paulo, São Paulo, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), São Paulo, São Paulo, Brazil.
| |
Collapse
|
14
|
Jin Z, Wang X. Traditional Chinese medicine and plant-derived natural products in regulating triglyceride metabolism: Mechanisms and therapeutic potential. Pharmacol Res 2024; 208:107387. [PMID: 39216839 DOI: 10.1016/j.phrs.2024.107387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The incidence of cardiometabolic disease is increasing globally, with a trend toward younger age of onset. Among these, atherosclerotic cardiovascular disease is a leading cause of mortality worldwide. Despite the efficacy of traditional lipid-lowering drugs, such as statins, in reducing low-density lipoprotein cholesterol levels, a significant residual risk of cardiovascular events remains, which is closely related to unmet triglyceride (TG) targets. The clinical application of current TG-lowering Western medicines has certain limitations, necessitating alternative or complementary therapeutic strategies. Traditional Chinese medicine (TCM) and plant-derived natural products, known for their safety owing to their natural origins and diverse biological activities, offer promising avenues for TG regulation with potentially fewer side effects. This review systematically summarises the mechanisms of TG metabolism and subsequently reviews the regulatory effects of TCM and plant-derived natural products on TG metabolism, including the inhibition of TG synthesis (via endogenous and exogenous pathways), promotion of TG catabolism, regulation of fatty acid absorption and transport, enhancement of lipophagy, modulation of the gut microbiota, and other mechanisms. In conclusion, through a comprehensive analysis of recent studies, this review consolidates the multifaceted regulatory roles of TCM and plant-derived natural products in TG metabolism and elucidates their potential as safer, multi-target therapeutic agents in managing hypertriglyceridemia and mitigating cardiovascular risk, thereby providing a basis for new drug development.
Collapse
Affiliation(s)
- Zhou Jin
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolong Wang
- Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
15
|
Guo PP, Yao XR, Xu YN, Jin X, Li Q, Yan CG, Kim NH, Li XZ. Insulin interacts with PPARγ agonists to promote bovine adipocyte differentiation. Domest Anim Endocrinol 2024; 88:106848. [PMID: 38574690 DOI: 10.1016/j.domaniend.2024.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Insulin is a potent adipogenic hormone that triggers a series of transcription factors that regulate the differentiation of preadipocytes into mature adipocytes. Ciglitazone specifically binds to peroxisome proliferator-activated receptor-γ (PPARγ), thereby promoting adipocyte differentiation. As a natural ligand of PPARγ, oleic acid (OA) can promote the translocation of PPARγ into the nucleus, regulate the expression of downstream genes, and promote adipocyte differentiation. We hypothesized that ciglitazone and oleic acid interact with insulin to enhance bovine preadipocyte differentiation. Preadipocytes were cultured 96 h in differentiation medium containing 10 mg/L insulin (I), 10 mg/L insulin + 10 µM cycloglitazone (IC), 10 mg/L insulin + 100 µM oleic acid (IO), or 10 mg/L insulin + 10 µM cycloglitazone+100 µM oleic acid (ICO). Control preadipocytes (CON) were cultured in differentiation medium (containing 5% fetal calf serum). The effects on the differentiation of Yanbian cattle preadipocytes were examined using molecular and transcriptomic techniques, including differentially expressed genes (DEGs) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. I, IC, IO, and ICO treatments produced higher concentrations of triglycerides (TAG) and lipid droplet accumulation in preadipocytes compared with CON treatment (P < 0.05). Co-treatment of insulin and PPARγ agonists significantly increased the expression of genes involved in regulating adipogenesis and fatty acid synthesis. (P < 0.05). Differential expression analysis identified 1488, 1764, 1974 and 1368 DEGs in the I, IC, IO and ICO groups, respectively. KEGG pathway analysis revealed DEGs mainly enriched in PPAR signalling, FOXO signaling pathway and fatty acid metabolism. These results indicate that OA, as PPARγ agonist, can more effectively promote the expression of bovine lipogenesis genes and the content of TAG and adiponectin when working together with insulin, and stimulate the differentiation of bovine preadipocytes. These findings provide a basis for further screening of relevant genes and transcription factors in intramuscular fat deposition and meat quality to enhance breeding programs.
Collapse
Affiliation(s)
- Pan Pan Guo
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; Healthcare International Innovation Institute, Jiangmen 529020, PR China; Guangdong University of Technology, Guangzhou 510000, PR China; Engineering Research Centre of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, College of Agriculture, Yanbian University, Yanji 133002, PR China
| | - Xue Rui Yao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; Healthcare International Innovation Institute, Jiangmen 529020, PR China; Guangdong University of Technology, Guangzhou 510000, PR China
| | - Yong Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xin Jin
- Engineering Research Centre of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, College of Agriculture, Yanbian University, Yanji 133002, PR China; Laboratory Animal Center, Yanbian University, Yanji 133002, PR China
| | - Qiang Li
- Engineering Research Centre of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, College of Agriculture, Yanbian University, Yanji 133002, PR China
| | - Chang Guo Yan
- Engineering Research Centre of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, College of Agriculture, Yanbian University, Yanji 133002, PR China; Yanbian Hongchao Wisdom Animal Husbandry Co., LTD, Yanji 133002, PR China
| | - Nam Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xiang Zi Li
- Engineering Research Centre of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, College of Agriculture, Yanbian University, Yanji 133002, PR China.
| |
Collapse
|
16
|
Zhang N, Zhou H, Xu Y, Zhang Y, Yu F, Gui L, Zhang Q, Lu Y. Liraglutide promotes UCP1 expression and lipolysis of adipocytes by promoting the secretion of irisin from skeletal muscle cells. Mol Cell Endocrinol 2024; 588:112225. [PMID: 38570133 DOI: 10.1016/j.mce.2024.112225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Although Liraglutide (Lira) increases serum irisin levels in type 2 diabetes mellitus (T2DM), it is unclear whether it induces expression of uncoupling protein 1 (UCP1) of adipocytes via promoting irisin secretion from skeletal muscle. Male T2DM rats were treated with 0.4 mg/kg/d Lira twice a day for 8 weeks, and the protein expression of phosphorylated AMP kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase 1 (p-ACC1) and UCP1 in white adipose tissues were detected. Differentiated C2C12 cells were treated with palmitic acid (PA) and Lira to detect the secretion of irisin. Differentiated 3T3-L1 cells were treated with irisin, supernatant from Lira-treated C2C12 cells, Compound C or siAMPKα1, the triglyceride (TG) content and the related gene expression were measured. The transcriptome in irisin-treated differentiated 3T3-L1 cells was analyzed. Lira elevated serum irisin levels, decreased the adipocyte size and increased the protein expression of UCP1, p-AMPK and p-ACC1 in WAT. Moreover, it promoted the expression of PGC1α and FNDC5, the secretion of irisin in PA-treated differentiated C2C12 cells. The irisin and supernatant decreased TG synthesis and promoted the expression of browning- and lipolysis-related genes in differentiated 3T3-L1 cells. While Compound C and siAMPKα1 blocked AMPK activities and expression, irisin partly reversed the pathway. Finally, the transcriptome analysis indicated that differently expressed genes are mainly involved in browning and lipid metabolism. Overall, our findings showed that Lira modulated muscle-to-adipose signaling pathways in diabetes via irisin-mediated AMPKα/ACC1/UCP1/PPARα pathway. Our results suggest a new mechanism for the treatment of T2DM by Lira.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Heng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yijing Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fangmei Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Li Gui
- The Comprehensive Laboratory, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Qiu Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Yunxia Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Anhui Medical University, Hefei, China; The Comprehensive Laboratory, School of Basic Medical Science, Anhui Medical University, Hefei, China.
| |
Collapse
|
17
|
Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis 2024; 15:443. [PMID: 38914551 PMCID: PMC11196735 DOI: 10.1038/s41419-024-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation, adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis. Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases. Further research is needed to improve our understanding of this phenomenon.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
18
|
Zhou N, Cao Y, Luo Y, Wang L, Li R, Di H, Gu T, Cao Y, Zeng T, Zhu J, Chen L, An D, Ma Y, Xu W, Tian Y, Lu L. The Effects of Resveratrol and Apigenin on Jejunal Oxidative Injury in Ducks and on Immortalized Duck Intestinal Epithelial Cells Exposed to H 2O 2. Antioxidants (Basel) 2024; 13:611. [PMID: 38790716 PMCID: PMC11117746 DOI: 10.3390/antiox13050611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress increases the apoptosis of intestinal epithelial cells and impairs intestinal epithelial cell renewal, which further promotes intestinal barrier dysfunction and even death. Extensive evidence supports that resveratrol and apigenin have antioxidant, anti-inflammatory, and antiproliferative properties. Here, we investigated the ability of these two compounds to alleviate diquat-induced jejunal oxidative stress and morphological injury, using the duck as a model, as well as the effects of apigenin on oxidative stress induced by H2O2 in immortalized duck intestinal epithelial cells (IDECs). Ducks were randomly assigned to the following four groups, with five replicates: a control (CON) group, a diquat-challenged (DIQ) group, a resveratrol (500 mg/kg) + diquat (RES) group, and an apigenin (500 mg/kg) + diquat (API) group. We found that serum catalase (CAT) activity and total antioxidant capacity (T-AOC) markedly reduced in the RES and API groups as compared to the DIQ group (p < 0.05); moreover, serum S superoxide dismutase (SOD) levels increased significantly in the API group as compared to the DIQ group (p < 0.05). In jejunal mucosa, the malondialdehyde (MDA) content in the RES and API groups decreased more than that in the DIQ group (p < 0.05). In addition, the jejunal expression levels of the NRF2 and GCLM genes in the RES and API groups increased notably compared with those in the DIQ group (p < 0.05); meanwhile, CAT activity in the RES and API groups was markedly elevated compared with that in the CON group (p < 0.05). In IDECs, apigenin significantly restrained the H2O2-mediated increase in MDA content and decrease in CAT levels (p < 0.05). Furthermore, apigenin increased the protein expression of p-NRF2, NRF2, p-AKT, and p-P38; downregulated that of cleaved caspase-3 and cleaved caspase-9; and reduced the ratio of Bax/Bcl-2 in H2O2-treated IDECs (p < 0.05). In conclusion, resveratrol and apigenin can be used as natural feed additives to protect against jejunal oxidative stress in ducks.
Collapse
Affiliation(s)
- Ning Zhou
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Youwen Luo
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Lihua Wang
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Ruiqing Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Heshuang Di
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Yun Cao
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Jianping Zhu
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Dong An
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Yue Ma
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| | - Lizhi Lu
- College of Pet Sciences, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (N.Z.); (Y.L.); (L.W.); (H.D.); (Y.C.); (J.Z.); (D.A.); (Y.M.)
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China; (Y.C.); (R.L.); (T.G.); (T.Z.); (L.C.); (W.X.)
| |
Collapse
|
19
|
Zhan F, He L, Wu J, Wu X. Bioinformatic Analysis Identifies Potential Extracellular Matrix Related Genes in the Pathogenesis of Early Onset Preeclampsia. Biochem Genet 2024; 62:646-665. [PMID: 37498421 DOI: 10.1007/s10528-023-10461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
Early-onset preeclampsia (EOPE) is a complex pregnancy complication that poses significant risks to the health of both mothers and fetuses, and research on its pathogenesis and pathophysiology remains insuffcient. This study aims to explore the role of candidate genes and their potential interaction mechanisms in EOPE through bioinformatics analysis techniques. Two gene expression datasets, GSE44711 and GSE74341, were obtained from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs) between EOPE and gestational age-matched preterm control samples. Functional enrichment analysis was performed utilizing the kyoto encyclopedia of genes and genomes (KEGG), gene ontology (GO), and gene set enrichment analysis (GSEA). A protein-protein interaction (PPI) network was constructed using the STRING database, and hub DEGs were identified through Cytoscape software and comparative toxicogenomics database (CTD) analysis. Furthermore, a diagnostic logistic model was established using these hub genes, which were confirmed through reverse transcription polymerase chain reaction (RT-PCR). Finally, immune cell infiltration was analyzed using CIBERSORT. In total, 807 DEGs were identified in the GSE44711 dataset (451 upregulated genes and 356 downregulated genes), and 787 DEGs were identified in the GSE74341 dataset (446 upregulated genes and 341 downregulated genes). These DEGs were significantly enriched in various molecular functions such as extracellular matrix structural constituent, receptor-ligand activity binding, cytokine activity, and platelet-derived growth factor. KEGG and GSEA annotation revealed significant enrichment in pathways related to ECM-receptor interaction, PI3K-AKT signaling, and focal adhesion. Ten hub genes were identified through the CytoHubba plugin in Cytoscape. Among these hub genes, three key DEGs (COL1A1, SPP1, and THY1) were selected using CTD analysis and various topological methods in Cytoscape. The diagnostic logistic model based on these three genes exhibited high efficiency in predicting EOPE (AUC = 0.922). RT-PCR analysis confirmed the downregulation of these genes in EOPE, and immune cell infiltration analysis suggested the significant role of M1 and M2 macrophages in EOPE. In conclusion, this study highlights the association of three key genes (COL1A1, SPP1, and THY1) with EOPE and their contribution to high diagnostic efficiency in the logistic model. Additionally, it provides new insights for future research on EOPE and emphasizes the diagnostic value of these identified genes. More research is needed to explore their functional and diagnostic significance in EOPE.
Collapse
Affiliation(s)
- Feng Zhan
- College of Engineering, Fujian Jiangxia University, Fuzhou, 350108, Fujian, China
- School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Lidan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China.
| | - Jianbo Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Xiuyan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China
| |
Collapse
|
20
|
Maleki MH, Abdizadeh Javazm S, Dastghaib S, Panji A, Hojjati Far M, Mahmoodi H, Siri M, Shafiee SM. The effect of quercetin on adipogenesis, lipolysis, and apoptosis in 3T3-L1 adipocytes: The role of SIRT1 pathways. Obes Sci Pract 2024; 10:e752. [PMID: 38618521 PMCID: PMC11015901 DOI: 10.1002/osp4.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
Background Lipotoxicity, caused by adipocyte triglyceride over-accumulation, contributes to obesity-related comorbidities such as hypertension, type 2 diabetes, coronary heart disease, respiratory dysfunction, and osteoarthritis. This study focuses on determining how sirtuin-1 (SIRT-1) mediates quercetin's (QCT) effect on 3T3-L1 adipocytes. Key aspects of this study include preventing adipogenesis, inducing lipolysis, and stimulating adipocyte apoptosis. Methods 3T3-L1 adipocytes underwent treatment with varying QCT doses, lipopolysaccharide (LPS), and the SIRT-1 inhibitor EX-527, followed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide [MTT] assay for cell viability assessment. Furthermore, quantitative real-time polymerase chain reaction measured mRNA expression levels of adipogenesis markers (fatty acid synthase [FASN] and peroxisome proliferator-activated receptor gamma [PPARγ]), lipolysis markers (adipose triglyceride lipase [ATGL] and hormone-sensitive lipase [HSL]), and apoptosis markers (B-cell lymphoma2 [Bcl-2], Bcl-2 Associated -X-protein [BAX] and Caspase-3). Results The data showed that LPS + QCT significantly reduced cell viability in a dose- and time-dependent manner, unaffected by LPS + QCT + EX-527. Treatment with LPS + QCT did not affect FASN and PPARγ expression but significantly increased ATGL and HSL mRNA expression compared with LPS alone. Interestingly, EX-527 reversed the effects of LPS + QCT on lipogenesis and lipolysis markers completely. QCT enhanced apoptosis in a SIRT-1 independent pattern. Conclusion The data suggest that QCT suppresses adipogenesis while increasing lipolysis via SIRT-1. However, QCT's effects on apoptosis appear to be independent of SIRT-1. These findings provide further evidence for QCT's effects on adipocytes, particularly its interaction with SIRT-1.
Collapse
Affiliation(s)
- Mohammad Hasan Maleki
- Department of Clinical BiochemistrySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Sara Abdizadeh Javazm
- Department of MicrobiologyFaculty of SciencesKaraj BranchIslamic Azad UniversityKarajIran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research CenterShiraz University of Medical ScienceShirazIran
- Autophagy Research CenterShiraz University of Medical SciencesShirazIran
| | - Anahita Panji
- Department of Plant Production and Genetic EngineeringFaculty of AgricultureLorestan UniversityKhorramabadIran
| | - Mohammad Hojjati Far
- Department of PhysiologySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Hajar Mahmoodi
- Department of MicrobiologyCollege of Science, Agriculture and Modern TechnologyShiraz BranchIslamic Azad UniversityShirazIran
| | - Morvarid Siri
- Autophagy Research CenterDepartment of Clinical BiochemistrySchool of MedicineShiraz University of Medical SciencesShirazIran
| | - Sayed Mohammad Shafiee
- Autophagy Research CenterDepartment of Clinical BiochemistrySchool of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
21
|
Cheng Y, Ferdousi F, Foronda BA, Linh TN, Ganbold M, Yada A, Arimura T, Isoda H. A comparative transcriptomics analysis reveals ethylene glycol derivatives of squalene ameliorate excessive lipogenesis and inflammatory response in 3T3-L1 preadipocytes. Heliyon 2024; 10:e26867. [PMID: 38463791 PMCID: PMC10923669 DOI: 10.1016/j.heliyon.2024.e26867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/27/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Squalene (SQ) is a natural compound with anti-inflammatory, anti-cancer, and anti-oxidant effects, but due to its low solubility, its biological properties have been greatly underestimated. This study aims to explore the differences in gene expression patterns of four newly synthesized amphipathic ethylene glycol (EG) derivatives of SQ by whole-genome transcriptomics analysis using DNA microarray to examine the mRNA expression profile of adipocytes differentiated from 3T3-L1 cells treated with SQ and its EG derivatives. Enrichment analyses of the transcriptional data showed that compared with SQ, its EG derivatives exerted different, in most cases desirable, biological responses. EG derivatives showed increased enrichment of mitochondrial functions, lipid and glucose metabolism, and inflammatory response. Mono-, di-, and tetra-SQ showed higher enrichment of the cellular component-ribosome. Histological staining showed EG derivatives prevented excessive lipid accumulation. Additionally, mitochondrial transcription factors showed upregulation in tetra-SQ-treated cells. Notably, EG derivatives showed better anti-inflammatory effects. Further, gene-disease association analysis predicted substantial improvement in the bioactivities of SQ derivatives in metabolic diseases. Cluster analyses revealed di- and tetra-SQ had more functional similarities than others, reflected in their scanning electron microscopy images; both di- and tetra-SQ self-organized into similar sizes and shapes of vesicles, subsequently improving their cation binding activities. Protein-protein interaction networks further revealed that cation binding activity might explain a major part, if not all, of the differences observed in functional analyses. Altogether, the addition of EG derivatives may improve the biological responses of SQ and thus may enhance its health-promoting potential.
Collapse
Affiliation(s)
- Yu Cheng
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan
- Alliance of Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | | | - Tran Ngoc Linh
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Munkhzul Ganbold
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Akira Yada
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Takashi Arimura
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Tsukuba Life Science Innovation Program (T-LSI), Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan
- Alliance of Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- National Institute of Advanced Industrial Science and Technology (AIST)-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
22
|
Hu B, Zhou W, Deng X, Sun M, Sun R, Li Q, Ren J, Jiang W, Wang Y, Liu S, Zhan J. Structural analysis of polysaccharide from Inonotus obliquus and investigate combined impact on the sex hormones, intestinal microbiota and metabolism in SPF male mice. Int J Biol Macromol 2024; 262:129686. [PMID: 38331071 DOI: 10.1016/j.ijbiomac.2024.129686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
The dysregulation of sex hormone levels is associated with metabolic disorders such as obesity. Inonotus obliquus polysaccharide (IOP) exhibits a promising therapeutic effect on conditions like obesity and diabetes, potentially linked to its influence on intestinal microbiota and metabolism. The exact cause and mechanisms that link sex hormones, gut microbiota and metabolism are still unknown. In this research, we examined the molecular weight, monosaccharide composition, and glycosidic bond type of IOP. We found that IOP mostly consists of alpha-structured 6‑carbon glucopyranose, with a predominant (1 → 4) linkage to monosaccharides and a uniform distribution. Following this, we administered two different concentrations of IOP to mice through gavage. The results of the enzyme-linked immunosorbent assay (ELISA) demonstrated a significant increase in testosterone (T) levels in the IOP group as compared to the control group. Additionally, the results of tissue immunofluorescence indicated that increased IOP led to a decrease in adiponectin content and an increase in SET protein expression. The study also revealed changes in the intestinal microbiota and metabolic changes in mice through 16S rRNA data and non-targeted LC-MS data, respectively. The study also found that IOP mainly affects pathways linked to glycerophospholipid metabolism. In addition, it has been observed that there is an increase in the number of beneficial bacteria, such as the Eubacterium coprostanoligenes group and g.Lachnospiraceae NK4A136 group, while the levels of metabolites that are linked to obesity or diabetes, such as 1,5-anhydrosorbitol, are reduced. Furthermore, biomarker screening has revealed that the main microorganism responsible for the differences between the three groups is g.Erysipelatoclostridiaceae. In summary, these findings suggest that IOP exerts its therapeutic effects through a synergistic interplay between sex hormones, gut microbiome composition, and metabolic processes.
Collapse
Affiliation(s)
- Binhong Hu
- College of Chemistry and life Sciences, Chengdu Normal University, China; Department of Forest Mycology and Plant pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China.
| | - Wenjing Zhou
- College of Chemistry and life Sciences, Chengdu Normal University, China; College of Veterinary Medicine, Yangzhou University (Institute of Comparative Medicine), Yangzhou, China
| | - Xin Deng
- College of Chemistry and life Sciences, Chengdu Normal University, China; College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mengxue Sun
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Rong Sun
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Qing Li
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Jingyuan Ren
- College of Chemistry and life Sciences, Chengdu Normal University, China
| | - Wei Jiang
- College of Chemistry and life Sciences, Chengdu Normal University, China; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Yanping Wang
- College of Chemistry and life Sciences, Chengdu Normal University, China; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Songqing Liu
- College of Chemistry and life Sciences, Chengdu Normal University, China; Sichuan Provincial key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
23
|
Zhang Z, Zhang Y, Ma L, Bao Q, Liang C, Chu M, Guo X, Bao P, Yan P. DNA methylation dynamics during yak adipocyte differentiation. Int J Biol Macromol 2024; 261:129715. [PMID: 38281519 DOI: 10.1016/j.ijbiomac.2024.129715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
In mammals, epigenetic modifications involving DNA methylation are necessary for the completion of the cell differentiation process. However, the global DNA methylation landscape and its dynamics during yak adipocyte differentiation remain unexplored. Here, we performed whole-genome bisulfite sequencing (WGBS) to asses DNA methylation in yak preadipocytes and adipocytes, combining these results with those of our previous studies on changes in chromatin accessibility and gene expression during yak adipogenesis. The results showed that CG methylation levels were lower in promoter than in exon and intron, and gradually decreasing from the distal regions to transcription start site (TSS). There was a significant negative correlation between CG methylation levels located in promoter and gene expression levels. The 46 genes shared by CG differentially methylated regions (DMRs) and differential chromatin accessibility were significantly enriched in Hedgehog and PI3K-Akt signaling pathways. ATAC-seq peaks with high chromatin accessibility located in both promoter (≤ 2 kb from TSS) and distal (> 2 kb from TSS) regions corresponded to low methylation levels. Taken together, these findings demonstrated that DNA methylation and its interactions with chromatin accessibility regulate gene expression during yak adipocyte differentiation, contributing to the understanding of mechanisms of various epigenetic modifications and their interactions in adipogenesis.
Collapse
Affiliation(s)
- Zhilong Zhang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfeng Zhang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; School of Basic Medical Science, Xi'an Medical University, Xi'an 710021, China
| | - Lanhua Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Qi Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
24
|
Jiang H, Wang W, Mao Y, Jiang L, Yu J, Zhu X, Fu H, Lin Z, Shen H, Pan X, Xue X. Morroniside-mediated mitigation of stem cell and endothelial cell dysfunction for the therapy of glucocorticoid-induced osteonecrosis of the femoral head. Int Immunopharmacol 2024; 127:111421. [PMID: 38157694 DOI: 10.1016/j.intimp.2023.111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Prolonged use of glucocorticoids (GCs) potentially lead to a condition known as GCs-induced osteonecrosis of the femoral head (GIONFH). The primary mechanisms underlying this phenomenon lies in stem cells and endothelial cells dysfunctions. Morroniside, an iridoid glycoside sourced from Cornus officinalis, possesses numerous biological capabilities, including combating oxidative stress, preventing apoptosis, opposing ischemic effects, and promoting the regeneration of bone tissue. PURPOSE This study aimed to analyze the impact of Morroniside on Dexamethasone (DEX)-induced dysfunction in stem cells and endothelial cells, and its potential as a therapeutic agent for GIONFH in rat models. METHODS ROS assay, JC-1 assay, and TUNEL assay were used to detect oxidative stress and apoptosis levels in vitro. For the evaluation of the osteogenic capability of bone marrow-derived mesenchymal stem cells, we employed ALP and ARS staining. Additionally, the angiogenic ability of endothelial cells was assessed using tube formation assay and migration assay. Microcomputed tomography analysis, hematoxylin-eosin staining, and immunohistochemical staining were utilized to evaluate the in vivo therapeutic efficacy of Morroniside. RESULTS Morroniside mitigates DEX-induced excessive ROS expression and cell apoptosis, effectively reducing oxidative stress and alleviating cell death. In terms of osteogenesis, Morroniside reverses DEX-induced osteogenic impairment, as evidenced by enhanced ALP and ARS staining, as well as increased osteogenic protein expression. In angiogenesis, Morroniside counteracts DEX-induced vascular dysfunction, demonstrated by an increase in tube-like structures in tube formation assays, a rise in the number of migrating cells, and elevated levels of angiogenic proteins. In vivo, our results further indicate that Morroniside alleviates the progression of GIONFH. CONCLUSION The experimental findings suggest that Morroniside concurrently mitigates stem cell and endothelial cell dysfunction through the PI3K/AKT signaling pathway both in vitro and in vivo. These outcomes suggest that Morroniside serves as a potential therapeutic agent for GIONFH.
Collapse
Affiliation(s)
- Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yiwen Mao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liting Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiachen Yu
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xinyi Zhu
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haonan Fu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhongnan Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hanting Shen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
25
|
Sun Z, Liu Z, Xi J, Liu Y, Zheng Z, Li N, Li Z, Liang S, Li Q, Zhang H, Yan J, Sun C, Mu S. Effects of myonectin on porcine intramuscular adipocyte differentiation and exogenous free fatty acid utilization. Anim Biotechnol 2023; 34:3757-3764. [PMID: 37382421 DOI: 10.1080/10495398.2023.2224838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
As an important factor secreted by skeletal muscle, myonectin can regulate lipid metabolism and energy metabolism, but its role in the utilization of peripheral free fatty acids (FFAs) by porcine intramuscular fat cells remains to be further investigated. In this study, porcine intramuscular adipocytes were treated with recombinant myonectin and palmitic acid (PA), either alone or in combination, and then were examined for their uptake of exogenous FFAs, intracellular lipid synthesis and catabolism, and mitochondrial oxidation of fatty acids. The results showed that myonectin decreased the area of lipid droplets in intramuscular adipocytes (p < 0.05) and significantly increased (p < 0.05) the expression levels of hormone-sensitive lipase (HSL) and lipoprotein lipase (LPL). Moreover, myonectin can up-regulate the expression of p38 mitogen-activated protein kinase (p38 MAPK). Myonectin significantly promoted the uptake of peripheral FFAs (p < 0.01), improved (p < 0.05) the expression of fatty transport protein 1 (FATP1) and fatty acid binding protein 4 (FABP4) in intramuscular adipocytes. Myonectin also significantly increased (p < 0.05) the expression levels of fatty acid oxidation markers: transcription factor (TFAM), uncoupling protein-2 (UCP2) and oxidative respiratory chain marker protein complex I (NADH-CoQ) in mitochondria of intramuscular adipocytes. In summary, myonectin promoted the absorption, transport, and oxidative metabolism of exogenous FFAs in mitochondria, thereby inhibiting lipid deposition in porcine intramuscular adipocytes.
Collapse
Affiliation(s)
- Zhuwen Sun
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhengqun Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingning Xi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zi Zheng
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Ning Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zeqing Li
- Tianjin Agricultural Development Service Cent, Tianjin, China
| | - Shiyue Liang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Qianjun Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Yan
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shuqin Mu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, China
| |
Collapse
|
26
|
Liu J, Xu X, Zhou J, Sun G, Li Z, Zhai L, Wang J, Ma R, Zhao D, Jiang R, Sun L. Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways. J Ginseng Res 2023; 47:714-725. [PMID: 38107393 PMCID: PMC10721457 DOI: 10.1016/j.jgr.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 12/19/2023] Open
Abstract
Background Our previous investigation indicated that the preparation of Panax ginseng Meyer (P. ginseng) inhibited melanogenesis. It comprised salicylic acid (SA), protocatechuic acid (PA), p-coumaric acid (p-CA), vanillic acid (VA), and caffeic acid (CA). In this investigation, the regulatory effects of P. ginseng phenolic acid monomers on melanin production were assessed. Methods In vitro and in vivo impact of phenolic acid monomers were assessed. Results SA, PA, p-CA and VA inhibited tyrosinase (TYR) to reduce melanin production, whereas CA had the opposite effects. SA, PA, p-CA and VA significantly downregulated the melanocortin 1 receptor (MC1R), cycle AMP (cAMP), protein kinase A (PKA), cycle AMP-response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF) pathway, reducing mRNA and protein levels of TYR, tyrosinase-related protein 1 (TYRP1), and TYRP2. Moreover, CA treatment enhanced the cAMP, PKA, and CREB pathways to promote MITF mRNA level and phosphorylation. It also alleviated MITF protein level in α-MSH-stimulated B16F10 cells, comparable to untreated B16F10, increasing the expression of phosphorylation glycogen synthase kinase 3β (p-GSK3β), β-catenin, p-ERK/ERK, and p-p38/p38. Furthermore, the GSK3β inhibitor promoted p-GSK3β and p-MITF expression, as observed in CA-treated cells. Moreover, p38 and ERK inhibitors inhibited CA-stimulated p-p38/p38, p-ERK/ERK, and p-MITF increase, which had negative binding energies with MC1R, as depicted by molecular docking. Conclusion P. ginseng roots' phenolic acid monomers can safely inhibit melanin production by bidirectionally regulating melanin synthase transcription. Furthermore, they reduced MITF expression via MC1R/cAMP/PKA signaling pathway and enhanced MITF post-translational modification via Wnt/mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Jianzeng Liu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaohao Xu
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Jingyuan Zhou
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Guang Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Zhenzhuo Li
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Lu Zhai
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Wang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Rui Ma
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun, China
| |
Collapse
|
27
|
Bu S, Xiong A, Yang Z, Aissa-Brahim F, Chen Y, Zhang Y, Zhou X, Cao F. Bilobalide Induces Apoptosis in 3T3-L1 Mature Adipocytes through ROS-Mediated Mitochondria Pathway. Molecules 2023; 28:6410. [PMID: 37687239 PMCID: PMC10489643 DOI: 10.3390/molecules28176410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Bilobalide exhibits numerous beneficial bioactivities, including neuroprotective, anti-inflammatory, and antioxidant activity. Our previous study demonstrated that bilobalide inhibits adipogenesis and promotes lipolysis. The dose-dependent cytotoxicity was found to be specific to the mature adipocytes only, indicating the potential for regulating apoptosis in them. Herein, we aimed to investigate the apoptotic effects of bilobalide on 3T3-L1 mature adipocytes and elucidate the underlying mechanisms thereof. Flow cytometry analysis (FACS) revealed the pro-apoptotic effects of bilobalide on these cells. Bilobalide induced early apoptosis by reducing the mitochondrial membrane potential (MMP). DNA fragmentation was confirmed using TUNEL staining. Additionally, bilobalide increased the intracellular reactive oxygen species (ROS) levels and activities of Caspases 3/9. Pre-treatment with NAC (an ROS scavenger) confirmed the role of ROS in inducing apoptosis. Moreover, bilobalide up- and down-regulated the expression of Bax and Bcl-2, respectively, at the mRNA and protein expression levels; upregulated the Bax/Bcl-2 ratio; triggered the release of cytochrome c from the mitochondria; and increased the protein expression of cleaved Caspase 3, cleaved Caspase 9, and PARP cleavage. These results support the conclusion that bilobalide induces apoptosis in mature 3T3-L1 adipocytes through the ROS-mediated mitochondrial pathway, and offers potential novel treatment for obesity.
Collapse
Affiliation(s)
- Su Bu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Anran Xiong
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Zhiying Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Faycal Aissa-Brahim
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Ying Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Yichun Zhang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Xunyong Zhou
- HC Enzyme (Shenzhen) Biotech Co., Ltd., Shenzhen 518001, China;
| | - Fuliang Cao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
28
|
Xiong S, Yu S, Wang K, Xiong X, Xia M, Zeng G, Huang Q. Dietary Apigenin Relieves Body Weight and Glycolipid Metabolic Disturbance via Pro-Browning of White Adipose Mediated by Autophagy Inhibition. Mol Nutr Food Res 2023; 67:e2200763. [PMID: 37436078 DOI: 10.1002/mnfr.202200763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/05/2023] [Indexed: 07/13/2023]
Abstract
SCOPE Apigenin (AP) has many pharmacological activities, including anti-inflammation, hyperlipidemia-lowering, and so on. Previous studies show that AP can reduce lipid accumulation in adipocytes in vitro. However, it remains unclear whether and how AP can promote fat-browning. Therefore, mouse obesity model and preadipocyte induction model in vitro are used to investigate the effects of AP on glycolipid metabolism, browning and autophagy as well as the possible mechanisms. METHODS AND RESULTS The obese mice are intragastrically administrated with AP (0.1 mg g-1 d-1 ) for 4 weeks; meanwhile, the differentiating preadipocytes are respectively treated with the indicated concentrations of AP for 48 h. Metabolic phenotype, lipid accumulation, and fat-browning are respectively evaluated by morphological, functional, and specific markers analysis. The results show that AP treatment alleviates the body weight, glycolipid metabolic disorder, and insulin resistance in the obese mice , which is contributed to the pro-browning effects of AP in vivo and in vitro. Moreover, the study finds that the pro-browning effect of AP is accomplished through autophagy inhibition mediated by the activation of PI3K-Akt-mTOR pathway. CONCLUSIONS The findings highlight that autophagy inhibition promotes the browning of white adipocytes and suggest that AP would prevent and treat obesity and the associated metabolic disorders.
Collapse
Affiliation(s)
- Shaofeng Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Shumin Yu
- Nanchang Joint Programme, Queen Mary University of London, Nanchang, Jiangxi, 330006, P. R. China
- 302 Clinical Medical School, Peking University, Beijing, 100039, P. R. China
| | - Kun Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Xiaowei Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Min Xia
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Guohua Zeng
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Qiren Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| |
Collapse
|
29
|
Saad B. Management of Obesity-Related Inflammatory and Cardiovascular Diseases by Medicinal Plants: From Traditional Uses to Therapeutic Targets. Biomedicines 2023; 11:2204. [PMID: 37626701 PMCID: PMC10452657 DOI: 10.3390/biomedicines11082204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/09/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation is a crucial factor in the development and progression of cardiovascular diseases (CVD). Cardiac remodeling in the presence of persistent inflammation leads to myocardial fibrosis and extracellular matrix changes, which reduce cardiac function, induce arrhythmias, and finally, cause heart failure. The majority of current CVD treatment plans concentrate on reducing risk factors such as hyperlipidemia, type 2 diabetes, and hypertension. One such strategy could be inflammation reduction. Numerous in vitro, animal, and clinical studies indicate that obesity is associated with low-grade inflammation. Recent studies have demonstrated the potential of medicinal plants and phytochemicals to cure and prevent obesity and inflammation. In comparison to conventional therapies, the synergistic effects of several phytochemicals boost their bioavailability and impact numerous cellular and molecular targets. Focusing on appetite, pancreatic lipase activity, thermogenesis, lipid metabolism, lipolysis and adipogenesis, apoptosis in adipocytes, and adipocyte life cycle by medicinal plants and phytochemicals represent an important goal in the development of new anti-obesity drugs. We conducted an extensive review of the literature and electronic databases, including Google Scholar, PubMed, Science Direct, and MedlinePlus, for collecting data on the therapeutic effects of medicinal plants/phytochemicals in curing obesity and its related inflammation and CVD diseases, including cellular and molecular mechanisms, cytokines, signal transduction cascades, and clinical trials.
Collapse
Affiliation(s)
- Bashar Saad
- Al-Qasemi Academic College, Baqa Algharbiya 30100, Israel; or
- Department of Biochemistry, Faculty of Medicine, The Arab American University, Jenin P203, Palestine
| |
Collapse
|
30
|
Fan W, Lan S, Yang Y, Liang J. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of Huang-Qi-Gui-Zhi-Wu-Wu decoction against deep vein thrombosis. J Orthop Surg Res 2023; 18:475. [PMID: 37391801 DOI: 10.1186/s13018-023-03948-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Huangqi Guizhi Wuwu decoction (HQGZWWD) has been used to treat and prevent deep vein thrombosis (DVT) in China. However, its potential mechanisms of action remain unclear. This study aimed to utilize network pharmacology and molecular docking technology to elucidate the molecular mechanisms of action of HQGZWWD in DVT. METHODS We identified the main chemical components of HQGZWWD by reviewing the literature and using a Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. We used GeneCards and Online Mendelian Inheritance in Man databases to identify the targets of DVT. Herb-disease-gene-target networks using Cytascape 3.8.2 software; a protein-protein interaction (PPI) network was constructed by combining drug and disease targets on the STRING platform. Additionally, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, molecular docking verification of active components and core protein targets was conducted. RESULTS A total of 64 potential targets related to DVT were identified in HQGZWWD, with 41 active components; quercetin, kaempferol, and beta-sitosterol were the most effective compounds. The PPI network analysis revealed that AKT1, IL1B, and IL6 were the most abundant proteins with the highest degree. GO analysis indicated that DVT treatment with HQGZWWD could involve the response to inorganic substances, positive regulation of phosphorylation, plasma membrane protein complexes, and signaling receptor regulator activity. KEGG analysis revealed that the signaling pathways included pathways in cancer, lipid and atherosclerosis, fluid shear stress and atherosclerosis, and the phosphatidylinositol 3-kinases/protein kinase B(PI3K-Akt) and mitogen-activated protein kinase (MAPK) signaling pathways. The molecular docking results indicated that quercetin, kaempferol, and beta-sitosterol exhibited strong binding affinities for AKT1, IL1B, and IL6. CONCLUSION Our study suggests that AKT1, IL1B, and IL6 are promising targets for treating DVT with HQGZWWD. The active components of HQGZWWD likely responsible for its effectiveness against DVT are quercetin, kaempferol, and beta-sitosterol, they may inhibit platelet activation and endothelial cell apoptosis by regulating the PI3K/Akt and MAPK signaling pathways, slowing the progression of DVT.
Collapse
Affiliation(s)
- Wei Fan
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, China
| | - Shuangli Lan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yunkang Yang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, China.
| | - Jie Liang
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou, China.
| |
Collapse
|
31
|
Li M, Gao S, Kang M, Zhang X, Lan P, Wu X, Yan X, Dang H, Zheng J. Quercitrin alleviates lipid metabolism disorder in polycystic ovary syndrome-insulin resistance by upregulating PM20D1 in the PI3K/Akt pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154908. [PMID: 37321077 DOI: 10.1016/j.phymed.2023.154908] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/08/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Abnormal endocrine metabolism caused by polycystic ovary syndrome combined with insulin resistance (PCOS-IR) poses a serious risk to reproductive health in females. Quercitrin is a flavonoid that can efficiently improve both endocrine and metabolic abnormalities. However, it remains unclear if this agent can exert therapeutic effect on PCOS-IR. METHODS The present study used a combination of metabolomic and bioinformatic methods to screen key molecules and pathways involved in PCOS-IR. A rat model of PCOS-IR and an adipocyte IR model were generated to investigate the role of quercitrin in regulating reproductive endocrine and lipid metabolism processes in PCOS-IR. RESULTS Peptidase M20 domain containing 1 (PM20D1) was screened using bioinformatics to evaluate its participation in PCOS-IR. PCOS-IR regulation via the PI3K/Akt signaling pathway was also investigated. Experimental analysis showed that PM20D1 levels were reduced in insulin-resistant 3T3-L1 cells and a letrozole PCOS-IR rat model. Reproductive function was inhibited, and endocrine metabolism was abnormal. The loss of adipocyte PM20D1 aggravated IR. In addition, PM20D1 and PI3K interacted with each other in the PCOS-IR model. Furthermore, the PI3K/Akt signaling pathway was shown to participate in lipid metabolism disorders and PCOS-IR regulation. Quercitrin reversed these reproductive and metabolic disorders. CONCLUSION PM20D1 and PI3K/Akt were required for lipolysis and endocrine regulation in PCOS-IR to restore ovarian function and maintain normal endocrine metabolism. By upregulating the expression of PM20D1, quercitrin activated the PI3K/Akt signaling pathway, improved adipocyte catabolism, corrected reproductive and metabolic abnormalities, and had a therapeutic effect on PCOS-IR.
Collapse
Affiliation(s)
- Meihe Li
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, 710061, China; Institute of Organ Transplantation, Xi'an Jiaotong University, 710061, China
| | - Shan Gao
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Institute of Organ Transplantation, Xi'an Jiaotong University, 710061, China
| | - Minchao Kang
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xuan Zhang
- Health Science Center of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Lan
- Department of Nephrology, Hospital of Nephrology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaofei Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Huimin Dang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jin Zheng
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, 710061, China; Institute of Organ Transplantation, Xi'an Jiaotong University, 710061, China.
| |
Collapse
|
32
|
Ai S, Li D, Gu X, Xu Y, Wang Y, Wang HL, Chen XT. Profile of N6-methyladenosine of Pb-exposed neurons presents epitranscriptomic alterations in PI3K-AKT pathway-associated genes. Food Chem Toxicol 2023:113821. [PMID: 37269892 DOI: 10.1016/j.fct.2023.113821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
Lead (Pb) is a pervasive heavy metal with multi-organ toxicity. However, the molecular mechanisms of Pb-induced neurotoxicity are not fully understood. The dynamics of N6-methylademine (m6A) is an emerging regulatory mechanism for gene expression, which is closely related to nervous system diseases. To elucidate the association between m6A modification and Pb-mediated neurotoxicity, primary hippocampal neurons exposed to 5 μM Pb for 48 h were used as the paradigm neurotoxic model in this study. According to the results, Pb exposure reprogrammed the transcription spectrum. Simultaneously, Pb exposure remodeled the transcriptome-wide distribution of m6A while disrupting the overall level of m6A in cellular transcripts. United analysis of MeRIP-Seq and RNA-Seq was applied to further identify the core genes whose expression levels are regulated by m6A in the process of lead-induced nerve injury. GO and KEGG analysis unveiled that the modified transcripts were overrepresented by the PI3K-AKT pathway. Mechanically, we elucidated the regulatory role of the methyltransferase like3 (METTL3) in the process of lead-induced neurotoxicity and the downregulation of the PI3K-AKT pathway. In conclusion, our novel findings shed new light on the functional roles of m6A modification in the expressional alternations of downstream transcripts caused by lead, providing an innovative molecular basis to explain Pb neurotoxicity.
Collapse
Affiliation(s)
- Shu Ai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Danyang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Xiaozhen Gu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yi Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yi Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, PR China
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| | - Xiang-Tao Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|
33
|
Li X, Ye F, Wang Y, Sun X, Chen H, Chen T, Gao Y, Chen H. Synthesis, structure-activity relationship, and biological evaluation of quinolines for development of anticancer agents. Arch Pharm (Weinheim) 2023:e2200673. [PMID: 37160703 DOI: 10.1002/ardp.202200673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Tetrahydro-β-carbolines (THβCs) are a kind of natural alkaloids with multiple pharmaceutical activities. Herein, a focused compound library derived from THβCs was synthesized and their anticancer activities were studied in several cancer cell lines. Among them, three compounds showed considerable anticancer activities with low micromolar to submicromolar IC50 values. The abilities to induce apoptosis and alter mitochondrial membrane potential levels, which are comparable to those of the commercial anticancer drug adriamycin, were confirmed by one representative compound (21) on the B16/F10 cell line. Our preliminary structure-activity relationship studies indicated that alkylamines with suitable lengths are very important for potency improvement.
Collapse
Affiliation(s)
- Xudong Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Fu Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Yuran Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Xianbin Sun
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Hui Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Tingyan Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
34
|
Liu G, Chen J, Bao Z. Promising antitumor effects of the curcumin analog DMC-BH on colorectal cancer cells. Aging (Albany NY) 2023; 15:2221-2236. [PMID: 36971681 PMCID: PMC10085616 DOI: 10.18632/aging.204610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/04/2023] [Indexed: 04/07/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system worldwide. DMC-BH, a curcumin analog, has been reported to possess anticancer properties against human gliomas. However, its effects and mechanism on CRC cells are still unknown. Our present study demonstrated that DMC-BH had stronger cytostatic ability than curcumin against CRC cells in vitro and in vivo. It effectively inhibited the proliferation and invasion and promoted the apoptosis of HCT116 and HT-29 cells. RNA-Seq and data analysis indicated that its effects might be mediated by regulation of the PI3K/AKT signaling. Western blotting further confirmed that it dose-dependently suppressed the phosphorylation of PI3K, AKT and mTOR. The Akt pathway activator SC79 reversed the proapoptotic effects of DMC-BH on CRC cells, indicating that its effects are mediated by PI3K/AKT/mTOR signaling. Collectively, the results of the present study suggest that DMC-BH exerts more potent effects than curcumin against CRC by inactivating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Gang Liu
- Department of General Surgery, Suzhou Medical College of Soochow University, Suzhou 215300, Jiangsu Province, China
- Department of General Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, Jiangsu Province, China
| | - Jian Chen
- Department of General Surgery, Suzhou Medical College of Soochow University, Suzhou 215300, Jiangsu Province, China
- Department of General Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou 215300, Jiangsu Province, China
| | - Zhicheng Bao
- Department of Rehabilitation, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou 215300, Jiangsu Province, China
| |
Collapse
|
35
|
Targeting PI3K/AKT signaling pathway in obesity. Biomed Pharmacother 2023; 159:114244. [PMID: 36638594 DOI: 10.1016/j.biopha.2023.114244] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Obesity is a disorder with an increasing prevalence, which impairs the life quality of patients and intensifies societal health care costs. The development of safe and innovative prevention strategies and therapeutic approaches is thus of great importance. The complex pathophysiology of obesity involves multiple signaling pathways that influence energy metabolism in different tissues. The phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT) pathway is critical for the metabolic homeostasis and its function in insulin-sensitive tissues is described in the context of health, obesity and obesity-related complications. The PI3K family participates in the regulation of diverse physiological processes including but not limited to cell growth, survival, differentiation, autophagy, chemotaxis, and metabolism depending on the cellular context. AKT is downstream of PI3K in the insulin signaling pathway, and promotes multiple cellular processes by targeting a plethora of regulatory proteins that control glucose and lipid metabolism. Natural products are essential for prevention and treatment of many human diseases, including obesity. Anti-obesity natural compounds effect multiple pathophysiological mechanisms involved in obesity development. Numerous recent preclinical studies reveal the advances in using plant secondary metabolites to target the PI3K/AKT signaling pathway for obesity management. In this paper the druggability of PI3K as a target for compounds with anti-obesity potential is evaluated. Perspectives on the strategies and limitations for clinical implementation of obesity management using natural compounds modulating the PI3K/AKT pathway are suggested.
Collapse
|
36
|
Zhang W, Raza SHA, Li B, Sun B, Wang S, Pant SD, Al-Abbas NS, Shaer NA, Zan L. miR-33a Inhibits the Differentiation of Bovine Preadipocytes through the IRS2-Akt Pathway. Genes (Basel) 2023; 14:529. [PMID: 36833456 PMCID: PMC9957011 DOI: 10.3390/genes14020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Several microRNAs (miRNAs) are known to participate in adipogenesis. However, their role in this process, especially in the differentiation of bovine preadipocytes, remains to be elucidated. This study was intended to clarify the effect of microRNA-33a (miR-33a) on the differentiation of bovine preadipocytes by cell culture, real-time fluorescent quantitative PCR (qPCR), Oil Red staining, BODIPY staining, and Western blotting. The results indicate that overexpression of miR-33a significantly inhibited lipid droplet accumulation and decreased the mRNA and protein expression of adipocyte differentiation marker genes such as peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), and fatty acid-binding protein 4 (FABP4). In contrast, the interference expression of miR-33a promoted lipid droplet accumulation and increased the expression of marker genes. Additionally, miR-33a directly targeted insulin receptor substrate 2 (IRS2) and regulated the phosphorylation level of serine/threonine kinase (Akt). Furthermore, miR-33a inhibition could rescue defects in the differentiation of bovine preadipocytes and the Akt phosphorylation level caused by small interfering IRS2 (si-IRS2). Collectively, these results indicate that miR-33a could inhibit the differentiation of bovine preadipocytes, possibly through the IRS2-Akt pathway. These findings might help develop practical means to improve the quality of beef.
Collapse
Affiliation(s)
- Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Bingzhi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Bing Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Sameer D. Pant
- Gulbali Institute, Charles Sturt University, Boorooma Street, Wagga Wagga, NSW 2678, Australia
| | - Nouf S. Al-Abbas
- Department of Biology, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nehad A. Shaer
- Department of Chemistry, Al Lieth University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
37
|
Wu Z, Yu W, Ni W, Teng C, Ye W, Yu C, Zeng Y. Improvement of obesity by Liupao tea is through the IRS-1/PI3K/AKT/GLUT4 signaling pathway according to network pharmacology and experimental verification. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154633. [PMID: 36628832 DOI: 10.1016/j.phymed.2022.154633] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/02/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Obesity is a state of accumulating excessive body fat, charactering by a high blood lipid and associating with various metabolic diseases. As a kind of dark tea, many studies revealed that long-term drinking Liupao tea (LT) can reduce weight (Liu et al., 2014). However, the anti-obesity mechanism and active ingredients of LT are not known. METHODS Liquid chromatography-mass spectrometry (LC-MS) combined with network pharmacology was used to screen the active components and related targets of Liupao tea water extract (LTWE). The key anti-obesity targets and pathways of LTWE were predicted by protein-protein interaction (PPI) networks, and enrichment analyses using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases. Then, the active components selected by high-performance liquid chromatography (HPLC) fingerprinting were used together with LTWE in an adipogenic model and insulin resistance (IR) model in vitro. RESULTS Most of the compounds identified from LTWE were flavonofids, esters, and amides. Key targets such as RAC-alpha serine/threonine-protein kinase, insulin, and tumor necrosis factor (TNF) were involved in the phosphatidylinositol-3-kinase-protein kinase B (PI3K-AKT) signaling pathway, pathways in cancer, and other pathways. Four active components were screened by network pharmacology combined with HPLC fingerprinting. The in vitro experiment of LTWE and its four active components showed that in insulin-resistant 3T3-L1 cells, LTWE, (-)-epigallocatechin gallate (EGCG) and gallic acid (GA) inhibited adipocyte differentiation. Three factors could inhibit the differentiation of 3T3-L1 cells by decreasing gene expression of peroxisome proliferators-activated receptor γ (PPARγ), fatty acid synthase (FAS), CCAAT/enhancer binding proteins-α (C/EBPα) and interleukin-6 (IL-6). Caffeine and ellagic acid (EA) showed opposite results, but their effects on promoting adipose differentiation diminished with increasing concentrations of drug. In dexamethasone-induced insulin-resistant 3T3-L1 cells, the fluorescence intensity of 2-Deoxy-2-[(7-nitro-2,1,3-Benzoxadiazol-4-yl)amino]-d-glucose revealed that LTWE, GA, EGCG, caffeine, and EA significantly promoted glucose consumption. LTWE, GA, and EA improved insulin resistance in adipocytes by upregulating gene expression of insulin receptor substrate-1 (IRS-1), PI3K, AKT, and glucose transporter 4 (GLUT4). CONCLUSION LC-MS combined with network pharmacology preliminarianized that LTWE acts mainly on the PI3K-AKT signaling pathway. Cell experiments revealed that the anti-obesity effect of LTWE is the result of multi-component action, which inhibits the proliferation and differentiation of preadipocytes by regulating gene expression of adipogenic transcription factors and proinflammatory factors, and improves IR by activating the IRS-1/PI3K/AKT/GLUT4 pathway.
Collapse
Affiliation(s)
- Zhimin Wu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenxin Yu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiju Ni
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cuiqin Teng
- Wuzhou Liupao Tea Research Institute, Wuzhou Institute of Agricultural Science, Guangxi Zhuang Autonomous Region 543002, China
| | - Weile Ye
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cuiping Yu
- Wuzhou Liupao Tea Research Institute, Wuzhou Institute of Agricultural Science, Guangxi Zhuang Autonomous Region 543002, China
| | - Yu Zeng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine,Guangzhou 510006, China
| |
Collapse
|
38
|
Zhao L, Zheng M, Cai H, Chen J, Lin Y, Wang F, Wang L, Zhang X, Liu J. The activity comparison of six dietary flavonoids identifies that luteolin inhibits 3T3-L1 adipocyte differentiation through reducing ROS generation. J Nutr Biochem 2023; 112:109208. [PMID: 36370929 DOI: 10.1016/j.jnutbio.2022.109208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022]
Abstract
Mitochondrial reactive oxygen species (ROS)generation plays an essential role in the process of adipocyte differentiation and is involved in the development of obesity and associated metabolic diseases. Various dietary flavonoids possess the substantial anti-adipogenic activity. However, it is unclear whether these flavonoids inhibit adipocyte differentiation by reducing ROS generation. In this study, the effects of six common dietary flavonoids on adipocyte differentiation were assessed in 3T3-L1 cells. The flavonoids with the same backbone of 5,7-dihydroxylflavone, including flavones apigenin, chrysin, luteolin and flavonols kaempferol, myricetin, quercetin, dose-dependently inhibited 3T3-L1 adipocyte differentiation, suggesting an associated hierarchy of inhibitory capability: luteolin > quercetin > myricetin > apigenin/kaempferol > chrysin. Meanwhile, six flavonoids were found to inhibit adipogenic gene expression and the early stage of adipocyte differentiation. Among the tested flavonoids, luteolin significantly reduced both intracellular and mitochondrial ROS generation during adipocyte differentiation. Further, luteolin treatment depressed the elevation of H2O2 concentration in the early stage of 3T3-L1 differentiation and reversed the facilitated effects of exogenous H2O2 on 3T3-L1 adipocyte differentiation and ROS generation. Altogether, the activity comparison of six dietary flavonoids identifies that luteolin inhibits 3T3-L1 adipocyte differentiation through reducing ROS generation, elucidating a new mechanism underlying the anti-adipogenic actions of flavonoids.
Collapse
Affiliation(s)
- Lingli Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Mengfei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Hao Cai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China.
| | - Fangbin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, Anhui, P R China.
| |
Collapse
|
39
|
Zhang L, Zhang H, Gu J, Xu W, Yuan N, Sun J, Li H. Glabridin inhibits liver fibrosis and hepatic stellate cells activation through suppression of inflammation and oxidative stress by activating PPARγ in carbon tetrachloride-treated mice. Int Immunopharmacol 2022; 113:109433. [DOI: 10.1016/j.intimp.2022.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
|
40
|
Cai Z, Mao C, Wang Y, Zhu Z, Xu S, Chen D, Chen Y, Ruan W, Fang B. Research Progress with Luteolin as an Anti-Tumor Agent. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221133579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In this review, we outline the new expertise and research progress with luteolin as an antitumor agent, and clarify the related results from the aspects of tumor proliferation, apoptosis, invasion, metastasis, sensitivity to radiotherapy and chemotherapy, angiogenesis, and immunotherapy. In recent years, with the development of medical technology, the early detection rate of tumors has increased significantly. However, the number of cancer patients remains high. Therefore, a new and reasonably effective tumor therapeutic drug is urgently demanded. Luteolin, a flavonoid and widespread in nature, attracts more and more attention due to its universal biological utility, especially in the study of antitumor activity. This article reviews the work published in the past 20 years on the role and mechanism of luteolin as an antitumor agent, showing that this compound has a variety of effects for antitumor treatment by acting on different cytokines. Although clinical studies have not yet been widely carried out, a series of basic studies have confirmed that luteolin is a reasonably effective antineoplastic agent or anticancer adjuvant. Besides, derivatives of luteolin have good application prospects.
Collapse
Affiliation(s)
- Zhun Cai
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Zhejiang, China
| | - Chenyang Mao
- Department of Gastrointestinal Surgery, The First People's Hospital of Wenling, Zhejiang, China
| | - Yeqing Wang
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Zheyi Zhu
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Sisi Xu
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Dongqing Chen
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Yufeng Chen
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Wenjie Ruan
- Department of Medicine, Taizhou University, Jiaojiang, China
| | - Binbo Fang
- Department of Medicine, Taizhou University, Jiaojiang, China
| |
Collapse
|
41
|
Kim NY, Lim CM, Park HM, Kim J, Pham TH, Yang Y, Lee HP, Hong JT, Yoon DY. MMPP promotes adipogenesis and glucose uptake via binding to the PPARγ ligand binding domain in 3T3-L1 MBX cells. Front Pharmacol 2022; 13:994584. [PMID: 36339572 PMCID: PMC9634037 DOI: 10.3389/fphar.2022.994584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2022] [Indexed: 08/13/2023] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARγ) is a transcription factor involved in adipogenesis, and its transcriptional activity depends on its ligands. Thiazolidinediones (TZDs), well-known PPARγ agonists, are drugs that improve insulin resistance in type 2 diabetes. However, TZDs are associated with severe adverse effects. As current therapies are not well designed, novel PPARγ agonists have been investigated in adipocytes. (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP) is known to have anti-arthritic, anti-inflammatory, and anti-cancer effects. In this study, we demonstrated the adipogenic effects of MMPP on the regulation of PPARγ transcriptional activity during adipocyte differentiation in vitro. MMPP treatment increased PPARγ transcriptional activity, and molecular docking studies revealed that MMPP binds directly to the PPARγ ligand binding domain. MMPP and rosiglitazone showed similar binding affinities to the PPARγ. MMPP significantly promoted lipid accumulation in adipocyte cells and increased the expression of C/EBPβ and the levels of p-AKT, p-GSK3, and p-AMPKα at an early stage. MMPP enhanced the expression of adipogenic markers such as PPARγ, C/EBPα, FAS, ACC, GLUT4, FABP4 and adiponectin in the late stage. MMPP also improved insulin sensitivity by increasing glucose uptake. Thus, MMPP, as a PPARγ agonist, may be a potential drug for type 2 diabetes and metabolic disorders, which may help increase adipogenesis and insulin sensitivity.
Collapse
Affiliation(s)
- Na-Yeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Chae-Min Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Hyo-Min Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Jinju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Young Yang
- Department of Biological Science, Sookmyung Women’s University, Seoul, Korea
| | - Hee Pom Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Jin Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| |
Collapse
|
42
|
KLF7 promotes preadipocyte proliferation via activation of the Akt signaling pathway by Cis-regulating CDKN3. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1486-1496. [PMID: 36269137 PMCID: PMC9827951 DOI: 10.3724/abbs.2022144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Krüppel-like transcription factor 7 (KLF7) promotes preadipocyte proliferation; however, its target gene in this process has not yet been identified. Using KLF7 ChIP-seq analysis, we previously showed that a KLF7-binding peak is present upstream of the cyclin-dependent kinase inhibitor 3 gene ( CDKN3) in chicken preadipocytes. In the present study, we identify CDKN3 as a target gene of KLF7 that mediates the effects of KLF7 on preadipocyte proliferation. Furthermore, 5'-truncating mutation analysis shows that the minimal promoter is located between nt -160 and nt -7 (relative to the translation initiation codon ATG) of CDKN3. KLF7 overexpression increases CDKN3 promoter activity in the DF-1 and immortalized chicken preadipocyte (ICP1) cell lines. Deletion of the putative binding site of KLF7 abolishes the promotive effect of KLF7 overexpression on CDKN3 promoter activity. Moreover, CDKN3 knockdown and overexpression assays reveal that CDKN3 enhances ICP1 cell proliferation. Flow cytometry analysis shows that CDKN3 accelerates the G1/S transition. Furthermore, we find that KLF7 promotes ICP1 cell proliferation via Akt phosphorylation by regulating CDKN3. Taken together, our results suggest that KLF7 promotes preadipocyte proliferation by activating the Akt signaling pathway by cis-regulating CDKN3, thus driving the G1/S transition.
Collapse
|
43
|
Edible Vitalmelon Fruit Extract Inhibits Adipogenesis and Ameliorates High-Fat Diet-Induced Obesity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2369650. [PMID: 36193302 PMCID: PMC9526598 DOI: 10.1155/2022/2369650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 12/03/2022]
Abstract
Conventional breeding of wild (Cucumis melo var. makuwa Makino (CM)) and cultivated (Cucumis melo var. reticulatus (CR)) melons is aimed at improving their biological traits. Here, we prepared a nontoxic, bioactive extract of vitalmelon (F1 hybrid) and evaluated its antiadipogenic and antiobesity effects in fully differentiated 3T3-L1 adipocytes and high-fat diet- (HFD-) induced obese C57BL/6 mice. In fully differentiated 3T3-L1 adipocytes, the vitalmelon extract reduced the DMI- (dexamethasone, 3-isobutyl-1-methylxanthine, and insulin-) induced increases in lipid droplet number and intracellular glucose and triglyceride levels. In addition, the extract inhibited 3T3-L1 preadipocyte differentiation by downregulating PPAR-γ and target genes LPL, CD36, HMGCR, and L-FABP. To investigate the inhibitory effects of the vitalmelon extract on lipid metabolism, we measured serum lipid, hormone, and cytokine concentrations; lipolytic activity; lipid accumulation; and adipogenesis in HFD-fed mice treated with the extract. The HFD+vitalmelon-fed mice showed lower blood cholesterol, free fatty acid, sugar, leptin, and insulin concentrations but higher blood adiponectin concentrations than the HFD-fed mice. Moreover, the HFD+vitalmelon-fed mice showed lower abdominal fat levels, smaller fat cells, lower weight, and fewer lipid droplets in the liver tissue than the HFD-fed mice. Therefore, in HFD-fed mice, vitalmelon regulated lipid metabolism through PPAR-γ, highlighting its potential as a promising antiobesity functional food.
Collapse
|
44
|
Zhao Z, Gong F, Duan L, Lv X, Wu H, Tang Y, Zhu H, Chen X. Somatostatin receptor ligands suppressed proliferation and lipogenesis in 3T3-L1 preadipocytes. Basic Clin Pharmacol Toxicol 2022; 131:174-188. [PMID: 35688794 DOI: 10.1111/bcpt.13762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Somatostatin and its analogues, known as somatostatin receptor ligands (SRLs), have been reported to attenuate weight gain in some clinical settings. However, their direct effects on preadipocytes are barely investigated. Therefore, this study aimed to evaluate the influence of SRLs on preadipocytes and to further explore the potential mechanisms. Cell Counting Kit-8 assay, Oil Red O staining, triglyceride contents measurements, qPCR, and western blot were used to investigate the effects of SRLs on preadipocytes. We found that three SRLs (octreotide, TT232, and pasireotide) inhibited cell viability after 8-48 h but not 4 h. Further western blot results showed that they significantly suppressed activation of PI3K/Akt pathway. Besides, lipid accumulation was also significantly inhibited by these SRLs. Moreover, mRNA levels of some critical adipogenic markers, including Pparg, Cebpa, Fasn, Fabp4, Acaca, and Lpl, were downregulated by the treatments of all these SRLs. Consistently, the protein expression of PPARγ, C/EBPα, and FAS were also suppressed by SRLs. SRLs inhibit the proliferation and lipogenesis in preadipocytes. Their inhibitory effects on cell proliferation may be mediated by the downregulated PI3K/Akt pathway, and the suppressive actions on lipogenesis may be related to the decreased PPARγ and C/EBPα expression.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing.,Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Fengying Gong
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Lian Duan
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Xiaorui Lv
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Haijie Wu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Yan Tang
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Huijuan Zhu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing
| |
Collapse
|
45
|
Ge Y, Li F, He Y, Cao Y, Guo W, Hu G, Liu J, Fu S. L-arginine stimulates the proliferation of mouse mammary epithelial cells and the development of mammary gland in pubertal mice by activating the GPRC6A/PI3K/AKT/mTOR signalling pathway. J Anim Physiol Anim Nutr (Berl) 2022; 106:1383-1395. [PMID: 35616019 DOI: 10.1111/jpn.13730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
Amino acids have been shown to affect the development of mammary gland (MG). However, it is unclear whether L-arginine promotes the development of pubertal MG. Therefore, our study aims to explore the effect of L-arginine on the development of MG in pubertal mice. To investigate its internal mechanism of action, we will use mouse mammary epithelial cells (mMECs) line. Whole-mount staining showed that L-arginine can promote the extension of MG duct. In vitro, 0.4 mM L-arginine could activate the G protein-coupled receptor family C, group 6, subtype A (GPRC6A)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway and increase the phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4EBP1) to promote the synthesis of cell cycle regulatory protein D1 (Cyclin D1), leading to the dissociation of the retinoblastoma tumour suppressor protein (Rb)-E2F1 transcription factor (E2F1) complex in mMECs and releasing E2F1 to promote cell proliferation. Furthermore, GPRC6A was knocked down or inhibition of the PI3K/AKT/mTOR signalling pathway with corresponding inhibitors completely abolished the arginine-induced promotion of mMECs proliferation. In vivo, it was further confirmed that 0.1% L-arginine can activate the PI3K/AKT/mTOR signalling pathway in the MG of pubertal mice. These results were able to indicate that L-arginine stimulates the development of MG in pubertal mice through the GPRC6A/PI3K/AKT/mTOR signalling pathway.
Collapse
Affiliation(s)
- Yusong Ge
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yuan He
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yu Cao
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guiqiu Hu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
46
|
Fractalkine deficiency attenuates LPS-induced acute kidney injury and podocyte apoptosis by targeting the PI3K/Akt signal pathway. Clin Exp Nephrol 2022; 26:741-749. [PMID: 35394554 DOI: 10.1007/s10157-022-02218-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Podocyte injury is a major biomarker of primary glomerular disease, which leads to massive proteinuria and kidney failure. The increased production of the chemokine, fractalkine (FKN, CX3CL1), is a hallmark of multiple inflammatory diseases. However, the underlying mechanism of FKN in podocyte injury remains unknown. METHODS In this study, we performed an LPS infusion model in FKN knockout (FKN-/-, FKN-KO) mice. In cultured podocytes, we used plasmids to knockdown FKN and treated the podocytes with PI3K/Akt inhibitor (LY294002). Haematoxylin and eosin (HE) staining, Western Bolt, Co-immunoprecipitation (Co-IP), Immunofluorescence staining and flow cytometric analysis were employed to establish the role of FKN in podocyte injury. RESULTS LPS stimulation resulted in kidney damage, increased the expression of the Bcl-2 family apoptosis protein, and decreased podocyte marker protein (nephrin, podocin and WT1) abundance compared with the WT mice. LPS-induced FKN-KO mice exhibited reduced lethality and inflammatory cell infiltration, podocyte apoptosis, and PI3K/Akt signal pathway inhibition compared to WT mice. In cultured podocytes, the interaction between FKN and the PI3K/Akt signalling pathway was well confirmed. FKN knockdown reduced podocyte apoptosis by regulating the Bcl-2 family; however, this protective effect was reversed by the co-administration of a PI3K/Akt inhibitor (LY294002). CONCLUSION Overall, these findings reveal a novel mechanistic property of FKN, PI3K/Akt signalling, and podocyte apoptosis.
Collapse
|
47
|
Integrated network pharmacology and cellular assay for the investigation of an anti-obesity effect of 6-shogaol. Food Chem 2021; 374:131755. [PMID: 34883426 DOI: 10.1016/j.foodchem.2021.131755] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
This study explored the anti-obesity effect of 6-shogaol and the underlying mechanisms by using Network pharmacology for the prediction and verification of molecular targets and pathways of 6-shogaol against obesity. Furthermore, the results were verified by molecular docking and cell experiments. A total of 86 core targets of 6-shogaol towards obesity were identified. Among them, AKT1 and PIK3CA were confirmed by using the molecular docking. In 3T3-L1 preadipocyte model, 6-shogaol significantly inhibited proliferation and differentiation, reducing the accumulation of lipid droplets. Compared with the control group, the inhibition rates of 6-shogaol on TG and TC were 90.8% and 40.0%, respectively. Additionally, 6-shogaol down-regulated the expression of PPAR-γ and C/EBP-α, while it decreased the phosphorylation of IRS-1, PI3K and AKT. This study, for the first time, confirmed the effect of 6-shogaol on improving obesity through PI3K/AKT pathway. An anti-obesity bioactivity study was further recommended for the development of novel anti-obesity products.
Collapse
|
48
|
Wu W, Jiang S, Liu M, Tian S. Simultaneous process optimization of ultrasound-assisted extraction of polyphenols and ellagic acid from pomegranate (Punica granatum L.) flowers and its biological activities. ULTRASONICS SONOCHEMISTRY 2021; 80:105833. [PMID: 34798525 PMCID: PMC8605316 DOI: 10.1016/j.ultsonch.2021.105833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 05/02/2023]
Abstract
This study was designed to optimize the extraction rate of total polyphenols and ellagic acid from pomegranate flowers. Single factors were investigated for liquid-to-material ratio (5-25), ethanol concentration (20%-60%), sonication time (5-60 min), and sonication power (150-500 W). The level range of the Box-Bokhen design was determined with respect to the single-factor results. The components of each index were normalized using the entropy weighting method for obtaining the comprehensive evaluation value. Under the actual conditions, the final optimization results were 17 for liquid-to-material ratio, 43% for ethanol concentration, 10 min for ultrasonic time, and 300 W for ultrasonic power. The extracts obtained under optimal conditions were tested for the inhibition of Streptococcus mutans and its biofilm, and results showed that pomegranate flowers exerted some inhibitory effects on the bacterium. Phosphomolybdenum and FRAP assays were used, and DPPH, ABTS, and O2- radical scavenging tests were conducted, indicating that pomegranate flower extracts have good antioxidant capacity.
Collapse
Affiliation(s)
- Wenxia Wu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Shan Jiang
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Mengmeng Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Shuge Tian
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830011, Xinjiang, China.
| |
Collapse
|
49
|
Balbaa M, El-Zeftawy M, Abdulmalek SA. Therapeutic Screening of Herbal Remedies for the Management of Diabetes. Molecules 2021; 26:6836. [PMID: 34833928 PMCID: PMC8618521 DOI: 10.3390/molecules26226836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
The study of diabetes mellitus (DM) patterns illustrates increasingly important facts. Most importantly, they include oxidative stress, inflammation, and cellular death. Up to now, there is a shortage of drug therapies for DM, and the discovery and the development of novel therapeutics for this disease are crucial. Medicinal plants are being used more and more as an alternative and natural cure for the disease. Consequently, the objective of this review was to examine the latest results on the effectiveness and protection of natural plants in the management of DM as adjuvant drugs for diabetes and its complex concomitant diseases.
Collapse
Affiliation(s)
- Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| | - Marwa El-Zeftawy
- Biochemistry Department, Faculty of Veterinary Medicine, New Valley University, New Valley 72511, Egypt;
| | - Shaymaa A. Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
- Center of Excellency for Preclinical Study (CE-PCS), Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, Alexandria 21511, Egypt
| |
Collapse
|
50
|
Feng S, Yang X, Weng X, Wang B, Zhang A. Aqueous extracts from cultivated Cistanche deserticola Y.C. Ma as polysaccharide adjuvant promote immune responses via facilitating dendritic cell activation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114256. [PMID: 34062250 DOI: 10.1016/j.jep.2021.114256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal polysaccharides have exhibited great immune-enhancing potential. Adjuvants are a key tool for developing efficacious vaccines. In our previous study, a water-soluble polysaccharide extracted from wild Cistanche deserticola Y.C. Ma showed potent immunostimulatory activity. AIM OF STUDY In this study, the immune profiles and efficacy of aqueous extracts of cultivated Cistanche deserticola Y.C. Ma (AECCD) on ICR mice against ovalbumin (OVA) were investigated. In vitro experiments, the possible DC activation mechanism by AECCD was evaluated. MATERIALS AND METHODS AECCD were extracted using hot water after which the crude polysaccharides were precipitated by ethanol. Mice were firstly immunized subcutaneously with OVA (10 μg per mouse) alone or OVA (10 μg per mouse) respectively containing different dose of AECCD (200, 400 and 800 μg per mouse) on Days 1 and 14 and the magnitude and kinetics of antibodies and cell-mediated responses were then assessed. RESULTS AECCD elicited vigorous and long-term IgG responses with mixed Th1/Th2 responses and up-regulated levels of Th-associated cytokines (CD4+IL-4, CD4+IFN-γ and CD8+IFN-γ). Moreover, AECCD induced the strong cellular immune response characterized by increased splenocyte proliferation as well as the activated T cell response. Notably, AECCD significantly enhanced the maturation of dendritic cells (DCs) and inhibited Tregs. In vitro experiments, Preliminary tests indicated that AECCD induced DC activation by promoting phenotypic maturation, cytokine section and allostimulatory activity. Toll-like receptor 4 (TLR4) was an essential receptor for DCs to directly bind AECCD. The inhibitors of NF-κB decreased the expression levels of CD40, CD80, CD86 and MHC-II and the production of IFN-γ, TNF-α and IL-6 through DCs. CONCLUSIONS Finally, these findings suggested that AECCD could elicit potent and durable antigen specific immune responses through DC activation, which was involved in the regulation of maturation markers and cytokine expression via TLR4-related NF-κB pathway. The study indicates that AECCD is a potential immunomodulator.
Collapse
Affiliation(s)
- Shuangshuang Feng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, Xinjiang, China
| | - Xiumei Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, Xinjiang, China
| | - Xiang Weng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, Xinjiang, China
| | - Bin Wang
- Key Lab of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ailian Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, Xinjiang, China.
| |
Collapse
|