1
|
Wu W, Mi Y, Meng Q, Li N, Li W, Wang P, Hou Y. Natural polyphenols as novel interventions for aging and age-related diseases: Exploring efficacy, mechanisms of action and implications for future research. CHINESE HERBAL MEDICINES 2025; 17:279-291. [PMID: 40256718 PMCID: PMC12009074 DOI: 10.1016/j.chmed.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025] Open
Abstract
Natural polyphenols are a group of components widely found in traditional Chinese medicines and have been demonstrated to delay or prevent the development of aging and age-related diseases in recent years. As far as we know, the studies of natural polyphenols in aging and aging-related diseases have never been extensively reviewed. In the present paper, we reviewed recent advances of natural polyphenols in aging and common age-related diseases and the current technological methods to improve the bioavailability of natural polyphenols. The results showed that natural polyphenols have the potential to prevent or treat aging and common age-related diseases through multiple mechanisms. Nanotechnology, structural modifications, and matrix processing could provide strong technical support for the development of natural polyphenols to prevent or treat aging and age-related diseases. In conclusion, natural polyphenols have important potential in the prevention and treatment of aging and age-related diseases.
Collapse
Affiliation(s)
- Wenze Wu
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yan Mi
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Qingqi Meng
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Ning Li
- Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 117004, China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
| | - Pu Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Yue Hou
- Liaoning Key Laboratory of Bioresource Research and Development, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| |
Collapse
|
2
|
Xu QH, Wang YL, Wang C, Jiang SS, Zhang BR, Tian J. Exploring the active ingredients and potential mechanisms of Pingchan granules in Parkinson's disease treatment through network pharmacology and transcriptomics. Sci Rep 2025; 15:7847. [PMID: 40050654 PMCID: PMC11885611 DOI: 10.1038/s41598-025-91344-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, poses significant challenges to single-target therapeutic strategies due to its complex etiology. This has driven interest in multi-target approaches, particularly those leveraging natural compounds. Pingchan granules (PCG), a traditional Chinese medicine composed of plant- and animal-derived compounds, have shown efficacy in alleviating PD symptoms. Here, we identify 96 PCG-associated anti-PD targets, enriched in neuronal synaptic signaling and G protein-coupled receptor pathways. Through protein-protein interaction network analysis of anti-PD targets and random forest modeling of substantia nigra transcriptomic data from PD patients, SLC6A3 and SRC emerged as central hub targets, with Mendelian randomization further validating SRC as a potential therapeutic target. Molecular docking and single-cell sequencing reveal that dauricine, PCG's principal active compound, binds strongly to SLC6A3 and SRC, modulating glucose metabolism pathways in dopaminergic neurons. These findings illuminate the molecular basis of PCG's therapeutic effects, offer a foundation for future drug development, and underscore the potential of dauricine as a targeted treatment for PD.
Collapse
Affiliation(s)
- Qiu-Han Xu
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Yi-Ling Wang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Cheng Wang
- Department of Neurosurgey, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Si-Si Jiang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Bao-Rong Zhang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.
| | - Jun Tian
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
3
|
Tan J, Wang C, Hu Z, Zhang X. Wash-free fluorescent tools based on organic molecules: Design principles and biomedical applications. EXPLORATION (BEIJING, CHINA) 2025; 5:20230094. [PMID: 40040824 PMCID: PMC11875451 DOI: 10.1002/exp.20230094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/28/2024] [Indexed: 01/05/2025]
Abstract
Fluorescence-assisted tools based on organic molecules have been extensively applied to interrogate complex biological processes in a non-invasive manner with good sensitivity, high resolution, and rich contrast. However, the signal-to-noise ratio is an essential factor to be reckoned with during collecting images for high fidelity. In view of this, the wash-free strategy is proven as a promising and important approach to improve the signal-to-noise ratio, thus a thorough introduction is presented in the current review about wash-free fluorescent tools based on organic molecules. Firstly, generalization and summarization of the principles for designing wash-free molecular fluorescent tools (WFTs) are made. Subsequently, to make the thought of molecule design more legible, a wash-free strategy is highlighted in recent studies from four diverse but tightly binding aspects: (1) special chemical structures, (2) molecular interactions, (3) bio-orthogonal reactions, (4) abiotic reactions. Meanwhile, biomedical applications including bioimaging, biodetection, and therapy, are ready to be accompanied by. Finally, the prospects for WFTs are elaborated and discussed. This review is a timely conclusion about wash-free strategy in the fluorescence-guided biomedical applications, which may bring WFTs to the forefront and accelerate their extensive applications in biology and medicine.
Collapse
Affiliation(s)
- Jingyun Tan
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Chunfei Wang
- Faculty of Health SciencesUniversity of MacauMacauChina
- Department of PharmacologySchool of PharmacyWannan Medical CollegeWuhuChina
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSweden
| | - Xuanjun Zhang
- Faculty of Health SciencesUniversity of MacauMacauChina
- MOE Frontiers Science Centre for Precision OncologyUniversity of MacauMacauChina
| |
Collapse
|
4
|
Luo Y, Hu B, Yuan Z, Bi H, Yu J, Pan Q. Emerging insights into traditional Chinese medicine associated with neurodegenerative diseases: A bibliometric analysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118785. [PMID: 39241972 DOI: 10.1016/j.jep.2024.118785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Research suggests that traditional Chinese medicine (TCM) holds promise in offering innovative approaches to tackle neurodegenerative disorders. In our endeavor, we conducted a comprehensive bibliometric analysis to delve into the landscape of TCM research within the realm of neurodegenerative diseases, aiming to uncover the present scenario, breadth, and trends in this field. This analysis presents potentially valuable insights for the clinical application of traditional Chinese medicine and provides compelling evidence supporting its efficacy in the treatment of neurodegenerative conditions. AIM OF THE STUDY The incidence of neurodegenerative diseases is on the rise, yet effective treatments are still lacking. Research indicates that TCM could offer novel perspectives for addressing neurodegenerative conditions. Nonetheless, the literature on this topic is intricate and multifaceted, with existing reviews offering only limited coverage. To gain a thorough understanding of TCM research in neurodegenerative diseases, we undertook a bibliometric analysis to explore the current status, scope, and trends in this area. MATERIALS AND METHODS A literature search was carried out on April 1, 2024, utilizing the Web of Science Core Collection (WoSCC). Visualization and quantitative analyses were then performed with the assistance of CiteSpace, VOSviewer, and R software. RESULTS A total of 6856 articles were retrieved in the search. Research on TCM for neurodegenerative diseases commenced in 1989 and has exhibited a notable overall growth since then. Main research contributors include East Asian countries like China, as well as the United States. Through our analysis, we identified 15 highly productive authors, 10 top-tier journals, 13 citation clusters, 11 influential articles, and observed a progression in keyword evolution across 4 distinct categories. In 2020, there was a significant upsurge in the knowledge base, collaboration efforts, and publication output within the field. This field is interdisciplinary: network pharmacology emerges as the cutting-edge paradigm in TCM research, while Alzheimer's disease remains a prominent focus among neurodegenerative conditions due to its evolving etiology. A burst detection analysis unveils that in 2024, the focal points of research convergence between TCM and neurodegenerative diseases lie in two key biological processes or mechanisms: autophagy and microbiota. CONCLUSIONS For the first time, this study quantitatively and visually captures the evolution of TCM in addressing neurodegenerative diseases, showcasing a notable acceleration in recent years. Our findings underscore the pivotal role of interdisciplinary collaboration and the necessity for increased global partnerships. Network pharmacology, leveraging the advancements of the big data era, embraces a holistic and systematic approach as a novel paradigm in exploring traditional Chinese medicine and unraveling their fundamental mechanisms. Three ethnomedical plants-Tianma, Renshen, and Wuweizi-demonstrate the promise of their bioactive compounds in treating neurodegenerative disorders, bolstered by their extensive historical usage for such ailments. Moreover, our intricate analysis of the evolutionary trajectories of key themes such as targets and biomarkers substantially enriches our comprehension of the underlying mechanisms involved.
Collapse
Affiliation(s)
- Yijie Luo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Boqi Hu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Zhenjun Yuan
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Houjia Bi
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jiaqi Yu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qian Pan
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Song D, Zhang J, Hu X, Liu X. Progress in the treatment of Alzheimer's disease based on nanosized traditional Chinese medicines. J Mater Chem B 2025; 13:1548-1572. [PMID: 39711283 DOI: 10.1039/d4tb02062f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Traditional Chinese medicine (TCM) has been employed for centuries in treating and managing Alzheimer's disease (AD). However, their effective delivery to target sites can be a major challenge. This is due to their poor water solubility, low bioavailability, and potential toxicity. Furthermore, the blood-brain barrier (BBB) is a major obstacle to effective TCM delivery, significantly reducing efficacy. Advancements in nanotechnology and its applications in TCM (nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain area. This review summarizes the recent advances in nanocarrier-based delivery systems for different types of active constituents of TCM for AD, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones. Besides, the main challenges and opportunities for the future development of these advanced TCM nanocarriers are emphasized. In conclusion, this review provides valuable insights and guidance for utilizing nanocarriers to shape future TCM drug delivery.
Collapse
Affiliation(s)
- Dan Song
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610044, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610044, China.
| | - Xiaoyan Liu
- West China Hospital of Sichuan University, 610041, China
| |
Collapse
|
6
|
Zhang K, Wu D, Huang C. Crosstalk between non-coding RNA and apoptotic signaling in diabetic nephropathy. Biochem Pharmacol 2024; 230:116621. [PMID: 39542182 DOI: 10.1016/j.bcp.2024.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease in diabetes mellitus. It is also a significant contributor to cardiovascular morbidity and mortality in diabetic patients Thereby, Innovative therapeutic approaches are needed to retard the initiation and advancement of DN. Hyperglycemia can induce apoptosis, a regulated form of cell death, in multiple renal cell types, such as podocytes, mesangial cells, and proximal tubule epithelial cells, ultimately contributing to the pathogenesis of DN. Recent genome-wide investigations have revealed the widespread transcription of the human genome, resulting in the production of numerous regulatory non-protein-coding RNAs (ncRNAs), including microRNAs (miRNAs) and diverse categories of long non-coding RNAs (lncRNAs). They play a critical role in preserving physiological homeostasis, while their dysregulation has been implicated in a broad spectrum of disorders, including DN. Considering the established association between apoptotic processes and the expression of ncRNAs in DN, a thorough understanding of their intricate interplay is essential. Therefore, the current work thoroughly analyzes the intricate interplay among miRNAs, lncRNAs, and circular RNAs in the context of apoptosis within the pathogenesis of DN. Additionally, in the final section, we demonstrated that ncRNA-mediated modulation of apoptosis can be achieved through stem cell-derived exosomes and herbal medicines, presenting potential avenues for the treatment of DN.
Collapse
Affiliation(s)
- Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
7
|
Gu YY, Zhao XR, Zhang N, Yang Y, Yi Y, Shao QH, Liu MX, Zhang XL. Mitochondrial dysfunction as a therapeutic strategy for neurodegenerative diseases: Current insights and future directions. Ageing Res Rev 2024; 102:102577. [PMID: 39528070 DOI: 10.1016/j.arr.2024.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative diseases, as common diseases in the elderly, tend to become younger due to environmental changes, social development and other factors. They are mainly characterized by progressive loss or dysfunction of neurons in the central or peripheral nervous system, and common diseases include Parkinson's disease, Alzheimer's disease, Huntington's disease and so on. Mitochondria are important organelles for adenosine triphosphate (ATP) production in the brain. In recent years, a large amount of evidence has shown that mitochondrial dysfunction plays a direct role in neurodegenerative diseases, which is expected to provide new ideas for the treatment of related diseases. This review will summarize the main mechanisms of mitochondrial dysfunction in neurodegenerative diseases, as well as collating recent advances in the study of mitochondrial disorders and new therapies.
Collapse
Affiliation(s)
- Ying-Ying Gu
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Xin-Ru Zhao
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Nan Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yuan Yang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Ying Yi
- College of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Qian-Hang Shao
- Department of Pharmacy, Peking University People's Hospital, Beijing 100871, P R China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| | - Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
8
|
Toader C, Tataru CP, Munteanu O, Serban M, Covache-Busuioc RA, Ciurea AV, Enyedi M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer's, Parkinson's, and ALS. Int J Mol Sci 2024; 25:12613. [PMID: 39684324 PMCID: PMC11641752 DOI: 10.3390/ijms252312613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, ALS, and Huntington's, remain formidable challenges in medicine, with their relentless progression and limited therapeutic options. These diseases arise from a web of molecular disturbances-misfolded proteins, chronic neuroinflammation, mitochondrial dysfunction, and genetic mutations-that slowly dismantle neuronal integrity. Yet, recent scientific breakthroughs are opening new paths to intervene in these once-intractable conditions. This review synthesizes the latest insights into the underlying molecular dynamics of neurodegeneration, revealing how intertwined pathways drive the course of these diseases. With an eye on the most promising advances, we explore innovative therapies emerging from cutting-edge research: nanotechnology-based drug delivery systems capable of navigating the blood-brain barrier, gene-editing tools like CRISPR designed to correct harmful genetic variants, and stem cell strategies that not only replace lost neurons but foster neuroprotective environments. Pharmacogenomics is reshaping treatment personalization, enabling tailored therapies that align with individual genetic profiles, while molecular diagnostics and biomarkers are ushering in an era of early, precise disease detection. Furthermore, novel perspectives on the gut-brain axis are sparking interest as mounting evidence suggests that microbiome modulation may play a role in reducing neuroinflammatory responses linked to neurodegenerative progression. Taken together, these advances signal a shift toward a comprehensive, personalized approach that could transform neurodegenerative care. By integrating molecular insights and innovative therapeutic techniques, this review offers a forward-looking perspective on a future where treatments aim not just to manage symptoms but to fundamentally alter disease progression, presenting renewed hope for improved patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Ophthalmology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
9
|
Li X, Xu X, Zhang J, Wang X, Zhao C, Liu Q, Fan K. Review of the therapeutic effects of traditional Chinese medicine in sepsis-associated encephalopathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118588. [PMID: 39029543 DOI: 10.1016/j.jep.2024.118588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sepsis-associated encephalopathy (SAE) is a common and serious complication during the acute phase of and after recovery from sepsis that seriously affects the quality of life of patients. Traditional Chinese medicine (TCM) has been widely used in modern medicine for neurological anomalies and has become a therapeutic tool for the treatment of SAE due to its multitargeting effects and low toxicity and side effects. AIMS OF THE STUDY This review provides insights into the pathogenesis and treatments of SAE, focusing on the clinical and experimental impacts of TCM formulations and their single components. METHODS Several known databases such as PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others were extensively explored with keywords and phrases such as "sepsis-associated encephalopathy", "traditional Chinese medicine", "herbs", "SAE", "sepsis", "cerebral" or other relevant terms to obtain literature between 2018 and 2024. RESULTS Extensive evidence indicated that TCM could decrease mortality and normalize neurological function in patients with sepsis; these effects might be associated with factors such as reduced oxidative stress and downregulated expression of inflammatory factors. CONCLUSIONS TCM shows notable efficacy in treating SAE, warranting deeper mechanistic studies to optimize its clinical application.
Collapse
Affiliation(s)
- Xingyao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Jun Zhang
- Intensive Care Unit, Wuhan Hospital of Traditional Chinese Medicine, Wu Han, 430014, China.
| | - Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Chunming Zhao
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Kai Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Manju, Bharadvaja N. Exploring the Potential Therapeutic Approach Using Ginsenosides for the Management of Neurodegenerative Disorders. Mol Biotechnol 2024; 66:1520-1536. [PMID: 37330923 DOI: 10.1007/s12033-023-00783-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
There is a need for an efficient and long-lasting treatment due to the population's increasing prevalence of neurodegenerative disorders. In an effort to generate fresh ideas and create novel therapeutic medications, scientists have recently started to investigate the biological functions of compounds derived from plants and herbs. Ginseng, famous Chinese herbal medicine, has therapeutic value by virtue of its compounds ginsenosides or panaxosides, which are triterpene saponins and steroid glycosides. Research revealed positive impacts on ameliorating various disease conditions and found it as a possible drug candidate. Several neuroprotection mechanisms followed by this compound are inhibition of cell apoptosis, oxidative stress, inflammatory, and tumor activity. It has been demonstrated that controlling these mechanisms enhances cognitive performance and safeguards the brain against neurodegenerative disorders. The main objective of this review is to give a description of the most recent studies on ginsenoside's possible therapeutic application in the treatment of neurodegenerative diseases. Using organic compounds like ginseng and its various components may create new avenues for innovative treatment approaches development for neurological diseases. However, further research is necessary to confirm the stability and effectiveness of ginsenosides for neurodegenerative disease.
Collapse
Affiliation(s)
- Manju
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
11
|
Yang EJ. Combined Treatment with Bojungikgi-tang (Buzhong Yiqi Decoction) and Riluzole Attenuates Cell Death in TDP-43-Expressing Cells. Chin J Integr Med 2024; 30:616-622. [PMID: 37695446 DOI: 10.1007/s11655-023-3557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE To examine the effect of combined treatment with Bojungikgi-tang (BJIGT, Buzhong Yiqi Decoction) and riluzole (RZ) in transactive response DNA-binding protein 43 (TDP-43) stress granule (SG) cells, a amyotrophic lateral sclerosis (ALS) cell line using transcriptomic and molecular techniques. METHODS TDP-43 SG cells were pretreated with BJIGT (100 µg/mL), RZ (50 µmol/L), and combined BJIGT (100 µg/mL)/RZ (50 µmol/L) for 6 h before treatment with lipopolysaccharide (LPS, 200 µmol/L). Cell viability assay was performed to elucidate cell toxicity in TDP-43 SC cells using a cell-counting kit-8 (CCK8) assay kit. The expression levels of cell death-related proteins, including Bax, caspase 1, cleaved caspase 3 and DJ1 in TDP-43 SG cells were examined by Western blot analysis. The autophagy-related proteins, including pmTOR/mTOR, LC3b, P62, ATG7 and Bcl-2-associated athanogene 3 (Bag3) were investigated using immunofluorescence and immunoblotting assays. RESULTS Cell viability assay and Western blot analysis showed that combined treatment with BJIGT and RZ suppressed LPS-induced cell death and expression of cell death-related proteins, including Bax, caspase 1, and DJ1 (P<0.05 or P<0.01). Immunofluorescence and immunoblotting assays showed that combined treatment with BJIGT and RZ reduced LPS-induced formation of TDP-43 aggregates and regulated autophagy-related protein levels, including p62, light chain 3b, Bag3, and ATG7, in TDP-43-expressing cells (P<0.05 or P<0.01). CONCLUSION The combined treatment of BJIGT and RZ might reduce inflammation and regulate autophagy dysfunction in TDP-43-induced ALS.
Collapse
Affiliation(s)
- Eun Jin Yang
- Department of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, Yuseong-gu, 34054, Republic of Korea.
| |
Collapse
|
12
|
Zhu Z, Xu X, Huang J, Xu G, Liu S, Hong F, Chen Y, Yi X, Li H, Li J. Transcriptomic analysis of Vibrio alginolyticus challenged by Rhizoma coptidis reveals mechanisms of virulence genes. Gene 2024; 905:148188. [PMID: 38278336 DOI: 10.1016/j.gene.2024.148188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Rhizoma coptidis, a Chinese herbal medicine widely used to treat various bacterial infections, has the potential to develop antibiotic substitutes to overcome the drug resistance of Vibrio alginolyticus. To study the inhibitory effect of R. coptidis on V. alginolyticus, we sequenced the transcriptomes of three groups of samples of wild-type V. alginolyticus (CK) and V. alginolyticus, which were stressed by 5 mg/mL R. coptidis for 2 h (RC_2 h) and 4 h (RC_4 h). CK was compared with RC_2 h and RC_4 h, respectively, and a total of 1565 differentially expressed genes (DEGs) (988 up-regulated and 577 down-regulated) and 1737 DEGs (1152 up-regulated and 585 down-regulated) were identified. Comparing RC_2 h with RC_4 h, 156 DEGs (114 up-regulated and 42 down-regulated) were identified. The ability of biofilm formation and motility of V. alginolyticus altered upon with different concentrations of R. coptidis. Interestingly, relative expression patterns of virulence genes appeared statistically significantly varied, upon different concentrations of R. coptidis extract. DEGs were annotated to the Gene Ontology (GO) database for function enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the results showed that the main enriched pathways, was those related to the virulence of V. alginolyticus. This study provides a new perspective for understanding the complex pathogenic mechanism of V. alginolyticus. R. coptidis could potnetially be used as alternative or complimnetary to antibiotics to treat infections after further research.
Collapse
Affiliation(s)
- Zhiqin Zhu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - XiaoJin Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed (Fujian Tianma Science and Technology Group Co., Ltd, China.
| | - Jiangyuan Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Genhuang Xu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - ShiChao Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Fei Hong
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Yunong Chen
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Xin Yi
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China
| | - Huiyao Li
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Jun Li
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, Fujian 361021, China, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fujian Province, Xiamen 361021, China.
| |
Collapse
|
13
|
Cai Q, Zhao C, Xu Y, Lin H, Jia B, Huang B, Lin S, Chen D, Jia P, Wang M, Lin W, Zhang L, Chu J, Peng J. Qingda granule alleviates cerebral ischemia/reperfusion injury by inhibiting TLR4/NF-κB/NLRP3 signaling in microglia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117712. [PMID: 38184025 DOI: 10.1016/j.jep.2024.117712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingda granule (QDG) is effective for treating hypertension and neuronal damage after cerebral ischemia/reperfusion. However, the anti-neuroinflammatory effect of QDG on injury due to cerebral ischemia/reperfusion is unclear. AIM OF THE STUDY The objective was to evaluate the effectiveness and action of QDG in treating neuroinflammation resulting from cerebral ischemia/reperfusion-induced injury. MATERIALS AND METHODS Network pharmacology was used to predict targets and pathways of QDG. An in vivo rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) as well as an in vitro model of LPS-stimulated BV-2 cells were established. Magnetic resonance imaging (MRI) was used to quantify the area of cerebral infarction, with morphological changes in the brain being assessed by histology. Immunohistochemistry (IHC) was used to assess levels of the microglial marker IBA-1 in brain tissue. Bioplex analysis was used to measure TNF-α, IL-1β, IL-6, and MCP-1 in sera and in BV-2 cell culture supernatants. Simultaneously, mRNA levels of these factors were examined using RT-qPCR analysis. Proteins of the TLR4/NF-κB/NLRP3 axis were examined using IHC in vivo and Western blot in vitro, respectively. While NF-κB translocation was assessed using immunofluorescence. RESULTS The core targets of QDG included TNF, NF-κB1, MAPK1, MAPK3, JUN, and TLR4. QDG suppressed inflammation via modulation of TLR4/NF-κB signaling. In addition, our in vivo experiments using MCAO/R rats demonstrated the therapeutic effect of QDG in reducing brain tissue infarction, improving neurological function, and ameliorating cerebral histopathological damage. Furthermore, QDG reduced the levels of TNF-α, IL-1β, IL-6, and MCP-1 in both sera from MCAO/R rats and supernatants from LPS-induced BV-2 cells, along with a reduction in the expression of the microglia biomarker IBA-1, as well as that of TLR4, MyD88, p-IKK, p-IκBα, p-P65, and NLRP3 in MCAO/R rats. In LPS-treated BV-2 cells, QDG downregulated the expression of proinflammatory factors and TLR4/NF-κB/NLRP3 signaling-related proteins. Additionally, QDG reduced translocation of NF-κB to the nucleus in both brains of MCAO/R rats and LPS-induced BV-2 cells. Moreover, the combined treatment of the TLR4 inhibitor TAK242 and QDG significantly reduced the levels of p-P65, NLRP3, and IL-6. CONCLUSIONS QDG significantly suppressed neuroinflammation by inhibiting the TLR4/NF-κB/NLRP3 axis in microglia. This suggests potential for QDG in treating ischemia stroke.
Collapse
Affiliation(s)
- Qiaoyan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China.
| | - Chunyu Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Yaoyao Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Haowei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Beibei Jia
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Bin Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Daxin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Peizhi Jia
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Meiling Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Wei Lin
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China.
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian 350122, China.
| |
Collapse
|
14
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
15
|
Xu X, Shi D, Chen Y, Wang L, Jiang J, Xiao S. The Effects of Traditional Chinese Herbal Dietary Formula on the Ability of Daily Life and Physical Function in Elderly Patients with Mild Cognitive Impairment. Brain Sci 2024; 14:333. [PMID: 38671985 PMCID: PMC11047931 DOI: 10.3390/brainsci14040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
We aimed to examine the association of traditional Chinese herbal dietary formulas with ability of daily life and physical function in elderly patients with mild cognitive impairment. The current study included 60 cases of elderly patients with mild cognitive impairment from Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine and Hongkou District, Shanghai. The participants were randomly divided into two groups: group A (herbal dietary formula group, consisting of Alpiniae Oxyphyllae Fructus, Nelumbinis plumula, Chinese Yam, Poria cocos, and Jineijin), 30 cases, and group B (vitamin E), 30 cases, treatment for 3 months. Cognitive function was measured using the Montreal Cognitive Assessment (MOCA) and Mini-Mental State Examination (MMSE); body function was measured using the Chinese Simplified Physical Performance Test (CMPPT), including stand static balance, sitting-up timing, squat timing, and six-meter walk timing. Daily life based on ability was measured by grip strength and the Activity of Daily Living Scale (ADL). The lower the scores of the above items, the poorer the disease degree, except for ADL: the lower the score, the higher the self-care ability. After 3 months of treatment, the two-handed grip strength of both the herbal dietary formula group and vitamin E group increased; the ADL, sitting-up timing, squatting timing, and six-meter walking timing decreased after medication, being statistically significantly different (p < 0.05). The two-handed grip strength of group A increased significantly, and the ADL, sitting-up timing, squatting timing, and six-meter walking timing decreased distinctly compared with the vitamin E group. There was a statistically significant difference (p < 0.05). The scores of MMSE, MOCA, total CMPPT, and standing static balance of the herbal dietary formula group increased after medication. The difference was statistically significant (p < 0.05). The vitamin E group's MMSE and MOCA scores, CMPPT total scores, and standing resting balance scores did not change significantly after medication (p > 0.05). In summary, a traditional Chinese herbal dietary formula can improve body and cognitive function in patients with MCI, and the curative effect is better than that of vitamin E. Traditional Chinese herbal dietary formulas can improve the daily life quality of MCI patients, which has clinical application value.
Collapse
Affiliation(s)
- Xiaofan Xu
- Department of Brain and Mental Disease, Shanghai Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200444, China; (X.X.); (Y.C.)
| | - Dan Shi
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200444, China;
| | - Yuchen Chen
- Department of Brain and Mental Disease, Shanghai Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200444, China; (X.X.); (Y.C.)
| | - Luyao Wang
- Institute of Biomedical Engineering, Shanghai University, Shanghai 200444, China;
| | - Jiehui Jiang
- Institute of Biomedical Engineering, Shanghai University, Shanghai 200444, China;
| | - Shuyun Xiao
- Department of Brain and Mental Disease, Shanghai Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200444, China; (X.X.); (Y.C.)
| |
Collapse
|
16
|
Liu Z, Lu T, Qian R, Wang Z, Qi R, Zhang Z. Exploiting Nanotechnology for Drug Delivery: Advancing the Anti-Cancer Effects of Autophagy-Modulating Compounds in Traditional Chinese Medicine. Int J Nanomedicine 2024; 19:2507-2528. [PMID: 38495752 PMCID: PMC10944250 DOI: 10.2147/ijn.s455407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background Cancer continues to be a prominent issue in the field of medicine, as demonstrated by recent studies emphasizing the significant role of autophagy in the development of cancer. Traditional Chinese Medicine (TCM) provides a variety of anti-tumor agents capable of regulating autophagy. However, the clinical application of autophagy-modulating compounds derived from TCM is impeded by their restricted water solubility and bioavailability. To overcome this challenge, the utilization of nanotechnology has been suggested as a potential solution. Nonetheless, the current body of literature on nanoparticles delivering TCM-derived autophagy-modulating anti-tumor compounds for cancer treatment is limited, lacking comprehensive summaries and detailed descriptions. Methods Up to November 2023, a comprehensive research study was conducted to gather relevant data using a variety of databases, including PubMed, ScienceDirect, Springer Link, Web of Science, and CNKI. The keywords utilized in this investigation included "autophagy", "nanoparticles", "traditional Chinese medicine" and "anticancer". Results This review provides a comprehensive analysis of the potential of nanotechnology in overcoming delivery challenges and enhancing the anti-cancer properties of autophagy-modulating compounds in TCM. The evaluation is based on a synthesis of different classes of autophagy-modulating compounds in TCM, their mechanisms of action in cancer treatment, and their potential benefits as reported in various scholarly sources. The findings indicate that nanotechnology shows potential in enhancing the availability of autophagy-modulating agents in TCM, thereby opening up a plethora of potential therapeutic avenues. Conclusion Nanotechnology has the potential to enhance the anti-tumor efficacy of autophagy-modulating compounds in traditional TCM, through regulation of autophagy.
Collapse
Affiliation(s)
- Zixian Liu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Tianming Lu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruoning Qian
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zian Wang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zhengguang Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| |
Collapse
|
17
|
Niu B, Zhao M, Gao X, Xu J, Yu L. TMT-based quantitative proteomics analysis of neuroprotective effects of Forsythoside A on the MPTP-induced Parkinson's disease mouse model. Exp Neurol 2024; 373:114642. [PMID: 38056584 DOI: 10.1016/j.expneurol.2023.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characteristized by the presence of dyskinesia and the progressive loss of dopaminergic neurons. Although certain drugs can mitigate the symptoms of PD, they are unable to delay the disease progression, and their prolonged use may result in complications. Therefore, there exists an urgent necessity to identify potential agents that can effectively delay PD progression with fewer side effects. Recent research has unveiled that several traditional Chinese medicines (TCM) exhibit neuroprotective properties in various models pertinent to PD. Forsythoside A (FSA), the primary bioactive compound derived from TCM Lianqiao, has undergone extensive research in animal models of Alzheimer's disease and cerebral ischemia. However, the investigation into the impact of FSA on PD is limited in existing research. In this study, we aimed to evaluate the neuroprotective effects of FSA on MPTP-induced PD mouse model. FSA demonstrated significant improvements in the behavioral and neuropathological changes triggered by MPTP in mice. Furthermore, it exerted a suppressive effect on the activations of astrocyte and microglia. Meanwhile, Tandem mass tag (TMT)-based quantitative proteomics of striatal tissue and bioinformatics analysis were performed to elucidate the underlying mechanisms of FSA on PD mouse model. Proteomics demonstrated a total of 68 differentially expressed proteins (DEPs) were identified between HFSA and MPTP groups including 26 upregulated and 42 downregulated. Systematic bioinformatics analysis of the 68 DEPs illustrated that they were predominantly related to estrogen signaling pathway and calcium signaling pathway. The related DEPs (PLCβ4, Grm2, HPAC and Cox4i1) expression levels were verified by Western blot. FSA effectively restored the altered expression of the four DEPs induced by MPTP. Summarily, FSA exerted remarkable neuroprotective effects in MPTP-induced mice. Further, our research may provide proteomics insights that contribute to the further exploration of FSA as a potential treatment for PD.
Collapse
Affiliation(s)
- Bo Niu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Minhong Zhao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Xiu'an Gao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Key Laboratory of Mental Health of the Ministry of Education, Guangzhou 510515, China.
| | - Linzhong Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
18
|
Cao J, Li L, Zhang R, Shu Z, Zhang Y, Sun W, Zhang Y, Hu Z. Libertellenone C attenuates oxidative stress and neuroinflammation with the capacity of NLRP3 inhibition. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:17. [PMID: 38407685 PMCID: PMC10897105 DOI: 10.1007/s13659-024-00438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
Neurodegenerative diseases (NDs) are common chronic diseases arising from progressive damage to the nervous system. Here, in-house natural product database screening revealed that libertellenone C (LC) obtained from the fermentation products of Arthrinium arundinis separated from the gut of a centipede collected in our Tongji campus, showed a remarkable neuroprotective effect. Further investigation was conducted to clarify the specific mechanism. LC dose-dependently reversed glutamate-induced decreased viability, accumulated reactive oxygen species, mitochondrial membrane potential loss, and apoptosis in SH-SY5Y cells. Network pharmacology analysis predicted that the targets of LC were most likely directly related to oxidative stress and the regulation of inflammatory factor-associated signaling pathways. Further study demonstrated that LC attenuated nitrite, TNF-α, and IL-1β production and decreased inducible nitric oxide synthase and cyclooxygenase expression in lipopolysaccharide-induced BV-2 cells. LC could directly inhibit NLRP3 inflammasome activation by decreasing the expression levels of NLRP3, ASC, cleaved Caspase-1, and NF-κB p65. Our results provide a new understanding of how LC inhibits the NLRP3 inflammasome in microglia, providing neuroprotection. These findings might guide the development of effective LC-based therapeutic strategies for NDs.
Collapse
Affiliation(s)
- Jie Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lanqin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Runge Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhou Shu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yaxin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
19
|
Guan Y, Tang G, Li L, Shu J, Zhao Y, Huang L, Tang J. Herbal medicine and gut microbiota: exploring untapped therapeutic potential in neurodegenerative disease management. Arch Pharm Res 2024; 47:146-164. [PMID: 38225532 PMCID: PMC10830735 DOI: 10.1007/s12272-023-01484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
The gut microbiota that exists in the human gastrointestinal tract is incredibly important for the maintenance of general health as it contributes to multiple aspects of host physiology. Recent research has revealed a dynamic connection between the gut microbiota and the central nervous system, that can influence neurodegenerative diseases (NDs). Indeed, imbalances in the gut microbiota, or dysbiosis, play a vital role in the pathogenesis and progression of human diseases, particularly NDs. Herbal medicine has been used for centuries to treat human diseases, including NDs. These compounds help to relieve symptoms and delay the progression of NDs by improving intestinal barrier function, reducing neuroinflammation, and modulating neurotransmitter production. Notably, herbal medicine can mitigate the progression of NDs by regulating the gut microbiota. Therefore, an in-depth understanding of the potential mechanisms by which herbal medicine regulates the gut microbiota in the treatment of NDs can help explain the pathogenesis of NDs from a novel perspective and propose novel therapeutic strategies for NDs. In this review, we investigate the potential neuroprotective effects of herbal medicine, focusing on its ability to regulate the gut microbiota and restore homeostasis. We also highlight the challenges and future research priorities of the integration of herbal medicine and modern medicine. As the global population ages, access to this information is becoming increasingly important for developing effective treatments for these diseases.
Collapse
Affiliation(s)
- Yueyue Guan
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Guohua Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jianzhong Shu
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yuhua Zhao
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Li Huang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Jun Tang
- Department of Brain Disease, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|
20
|
Zhang W, Yang F, Yan Q, Li J, Zhang X, Jiang Y, Dai J. Hypoxia inducible factor-1α related mechanism and TCM intervention in process of early fracture healing. CHINESE HERBAL MEDICINES 2024; 16:56-69. [PMID: 38375046 PMCID: PMC10874770 DOI: 10.1016/j.chmed.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 02/21/2024] Open
Abstract
As a common clinical disease, fracture is often accompanied by pain, swelling, bleeding as well as other symptoms and has a high disability rate, even threatening life, seriously endangering patients' physical and psychological health and quality of life. Medical practitioners take many strategies for the treatment of fracture healing, including Traditional Chinese Medicine (TCM). In the early stage of fracture healing, the local fracture is often in a state of hypoxia, accompanied by the expression of hypoxia inducible factor-1α (HIF-1α), which is beneficial to wound healing. Through literature mining, we thought that hypoxia, HIF-1α and downstream factors affected the mechanism of fracture healing, as well as dominated this process. Therefore, we reviewed the local characteristics and related signaling pathways involved in the fracture healing process and summarized the intervention of TCM on these mechanisms, in order to inspirit the new strategy for fracture healing, as well as elaborate on the possible principles of TCM in treating fractures based on the HIF molecular mechanism.
Collapse
Affiliation(s)
- Wenxian Zhang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Fusen Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qikai Yan
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Jiahui Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaogang Zhang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yiwei Jiang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
21
|
Yadav SA, Hasan S, Gnanaselvan S, Baskaran S, Danaraj J. Biological Activities and Nanoparticle Synthesis of Dioscorea bulbifera and its Mechanistic Action - An Extensive Review. Pharm Nanotechnol 2024; 12:379-390. [PMID: 38265372 DOI: 10.2174/0122117385284106240110065809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Dioscorea bulbifera is commonly known as air potato present in the tropical and subtropical regions. It is a perennial climber traditionally used for various therapeutic purposes by traditional healers. This review explores various medicinal uses of D. bulbifera and its active ingredients, as well as describes its nanoparticle synthesis for medical applications. METHODS The Google Scholar search engine was used to conduct this comprehensive review along with the databases of the following publishers: Elsevier, Springer, Taylor and Francis, Bentham, and PubMed. DISCUSSION D. bulbifera contains several bioactive compounds that are responsible for its pharmacological properties, such as antioxidant, anti-inflammatory, neuroprotective, anticancer, and antidiabetic properties. It is also used as a nutritive functional food. D. bulbifera-mediated nanoparticle synthesis has been established by the scientific communities for various medicinal applications. CONCLUSION D. bulbifera contains numerous active ingredients, including diosbulbins, bafoudiosbulbin, β-sitosterol, diosgenin, dioscin, pennogenin, myricetin, quercetin, and stigmasterols with numerous biological activities. In addition, it has a vital role in synthesizing nanoparticles with good pharmacological applications, especially in drug delivery systems. However, its potential characteristic features and functional properties of the active molecules present in this tuber need to be further explored in clinical trials. We suggest that using this edible tuber, we may formulate the valueadded food with good medicinal applications.
Collapse
Affiliation(s)
- Sangilimuthu Alagar Yadav
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Shiek Hasan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Suvathika Gnanaselvan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Santhoshraman Baskaran
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | - Jayapragash Danaraj
- Centre for Ocean Research, Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, 600 119, India
| |
Collapse
|
22
|
Fu L, Duan H, Cai Y, Chen X, Zou B, Yuan L, Liu G. Moxibustion ameliorates osteoarthritis by regulating gut microbiota via impacting cAMP-related signaling pathway. Biomed Pharmacother 2024; 170:116031. [PMID: 38113621 DOI: 10.1016/j.biopha.2023.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent progressive disorder. Moxibustion has found widespread use in clinical practice for OA, while its underlying mechanism remains elusive. OBJECTIVE To investigate whether moxibustion can ameliorate OA by influencing the metabolic processes in OA and to elucidate the specific metabolic mechanisms involved. METHODS C57BL/6J WT mice were randomly assigned to one of three groups: the SHAM group, the ACLT group, and the ACLT+M group. In the ACLT+M group, mice underwent moxibustion treatment at acupoints Shenshu (BL23) and Zusanli (ST36) for a continuous period of 28 days, with each session lasting 20 min. We conducted a comprehensive analysis to assess the impact of moxibustion on OA, focusing on pathological changes, intestinal flora composition, and serum metabolites. RESULTS Moxibustion treatment effectively mitigated OA-related pathological changes. Specifically, moxibustion treatment resulted in the amelioration of articular cartilage damage, synovial inflammation, subchondral bone sclerosis when compared to the ACLT group. Moreover, 16S rDNA sequencing analysis revealed that moxibustion treatment positively influenced the composition of the flora, making it more similar to that of the SHAM group. Notably, moxibustion treatment led to a reduction in the abundance of Ruminococcus and Proteobacteria in the intestine. In addition, non-targeted metabolomics analysis identified 254 significantly different metabolites between the groups. Based on KEGG pathway analysis and the observed impact of moxibustion on OA-related inflammation, moxibustion therapy is closely associated with the cAMP-related signaling pathway. CONCLUSION Moxibustion can relieve OA by regulating intestinal flora and via impacting cAMP-related signaling pathway.
Collapse
Affiliation(s)
- Liping Fu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huimin Duan
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yisi Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China; Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuelan Chen
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Binhua Zou
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Lixia Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
23
|
Dong Q, Yang S, Liao H, He Q, Xiao J. Bioinformatics findings reveal the pharmacological properties of ferulic acid treating traumatic brain injury via targeting of ferroptosis. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2185178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Qinghua Dong
- Intensive Care Unit, Guilin Municipal Hospital of Traditional Chinese Medicine, Guilin, PR China
| | - Shenglin Yang
- Intensive Care Unit, Guilin Municipal Hospital of Traditional Chinese Medicine, Guilin, PR China
| | - Huafeng Liao
- Intensive Care Unit, Guilin Municipal Hospital of Traditional Chinese Medicine, Guilin, PR China
| | - Qi He
- Intensive Care Unit, Guilin Municipal Hospital of Traditional Chinese Medicine, Guilin, PR China
| | - Junxin Xiao
- Intensive Care Unit, Guilin Municipal Hospital of Traditional Chinese Medicine, Guilin, PR China
| |
Collapse
|
24
|
Hu Z, Luo Y, Zhu J, Jiang D, Luo Z, Wu L, Li J, Peng S, Hu J. Role of the P2 × 7 receptor in neurodegenerative diseases and its pharmacological properties. Cell Biosci 2023; 13:225. [PMID: 38093352 PMCID: PMC10720200 DOI: 10.1186/s13578-023-01161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
Neurodegenerative diseases seriously affect patients' physical and mental health, reduce their quality of life, and impose a heavy burden on society. However, their treatment remains challenging. Therefore, exploring factors potentially related to the pathogenesis of neurodegenerative diseases and improving their diagnosis and treatment are urgently needed. Recent studies have shown that P2 × 7R plays a crucial role in regulating neurodegenerative diseases caused by neuroinflammation. P2 × 7R is an adenosine 5'-triphosphate ligand-gated cation channel receptor present in most tissues of the human body. An increase in P2 × 7R levels can affect the progression of neurodegenerative diseases, and the inhibition of P2 × 7R can alleviate neurodegenerative diseases. In this review, we comprehensively describe the biological characteristics (structure, distribution, and function) of this gene, focusing on its potential association with neurodegenerative diseases, and we discuss the pharmacological effects of drugs (P2 × 7R inhibitors) used to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Ziyan Hu
- Department of the second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Yifan Luo
- Department of the second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Jinxi Zhu
- Department of the second Clinical Medical College, Nanchang University, Nanchang, 330006, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhenzhong Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Lidong Wu
- Department of Emergency medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jin Li
- Department of Emergency medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Jialing Hu
- Department of Emergency medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
25
|
Li Z, Zheng Y, Liu K, Liang Y, Lu J, Li Q, Zhao B, Liu X, Li X. Lignans as multi-targeted natural products in neurodegenerative diseases and depression: Recent perspectives. Phytother Res 2023; 37:5599-5621. [PMID: 37669911 DOI: 10.1002/ptr.8003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/09/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023]
Abstract
As the global population ages, the treatment of neurodegenerative diseases is becoming more and more important. There is an urgent need to discover novel drugs that are effective in treating neurological diseases. In recent years, natural products and their biological activities have gained widespread attention. Lignans are a class of metabolites extensively present in Chinese herbal medicine and possess good pharmacological effects. Latest studies have demonstrated their neuroprotective pharmacological activity in preventing acute/chronic neurodegenerative diseases and depression. In this review, the pharmacological effects of these disorders, the pharmacokinetics, safety, and clinical trials of lignans were summarized according to the scientific literature. These results proved that lignans mainly exert antioxidant and anti-inflammatory activities. Anti-apoptosis, regulation of nervous system functions, and modulation of synaptic signals are also potential effects. Despite the substantial evidence of the neuroprotective potential of lignans, it is not sufficient to support their use in the clinical management. Our study suggests that lignans can be used as prospective agents for the treatment of neurodegenerative diseases and depression, with a view to informing their further development and utilization.
Collapse
Affiliation(s)
- Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Kuang F, Xiang T. Molecular mechanism of Acanthopanax senticosus in the treatment of Alzheimer's disease based on network pharmacology and molecular docking. Mol Divers 2023; 27:2849-2865. [PMID: 36576665 DOI: 10.1007/s11030-022-10586-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease is the most common neurodegenerative disease. Acanthopanax senticosus, also known as Ciwujia or Siberian ginseng in Chinese, has a wide range of antioxidant and anti-inflammatory activities. The study aims to explore the action mechanism of A. senticosus against Alzheimer's disease using network pharmacology and molecular docking. The active ingredients and targets of A. senticosus were searched through the ETCM database, and Alzheimer's disease-related targets were obtained through the OMIM and GeneCards databases. The Cytoscape 3.7.2 software was used to construct a "drug-component-target" relationship network, and the target genes of A. senticosus against Alzheimer's disease were imported into the String database to establish a protein interaction (PPI) network. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes gene enrichment analyses were performed through the Metascape database to obtain potential pathways of action of A. senticosus for the treatment of Alzheimer's disease, and the ability of these active ingredients to bind to core targets was then verified by molecular docking. 51 active ingredients were screened from A. senticosus, and 88 effective targets for Alzheimer's disease were screened. Topological and pathway-enrichment analyses revealed that A. senticosus could play a beneficial role in the treatment of Alzheimer's disease by regulating apoptosis and inflammation. Molecular docking results showed that Ciwujianoside B, Chiisanoside, and Ciwujianoside D1 had strong binding abilities to key target proteins (TNFα, IL1β, and CASP3). Collectively, A. senticosus is feasible in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Feng Kuang
- Department of Emergency, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Tao Xiang
- Department of Neurology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
27
|
Wang L, Yu T, Dong F, Xu J, Fu J, Sun H. Tongqiao Mingmu formula alleviates retinal ganglion cell autophagy through PI3K/AKT/mTOR pathway. Anat Rec (Hoboken) 2023; 306:3120-3130. [PMID: 36098527 DOI: 10.1002/ar.25060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/20/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Glaucoma is a severe blindness-causing optic nerve disease characterized by a loss of retinal ganglion cells (RGCs). Previous studies have shown that the Tongqiao Mingmu (TQMM) formula can reduce retinal and optic nerve damage, but its mechanism of action requires further elucidation. In this study, an RGC injury model was prepared using glutamate and then treated with serum-containing drug from the TQMM formula (hereafter called "TQMM formula serum"). In the glutamate-induced RGC injury model, cell viability decreased with an increase in glutamate concentration, whereas the expression of autophagy-related biomarkers LC3 and Belicin-1 increased. An adenovirus transfection experiment revealed that glutamate markedly promoted autophagic flux in RGCs. Notably, TQMM formula serum inhibited the expression of autophagy-related biomarkers, reduced autophagy flux, and reversed the damage caused by glutamate to RGCs. Furthermore, the PI3K inhibitor LY294002 was used to intervene in the RGC autophagy model and was found to suppress the PI3K/AKT/mTOR pathway and enhance RGC autophagy. However, TQMM formula serum could generate an opposite effect and upregulate the expressions of the PI3K/AKT/mTOR pathway genes and proteins. In conclusion, the TQMM formula can prevent glutamate-induced autophagy in RGCs, possibly by activating the PI3K/AKT/mTOR pathway and reducing the expression of autophagy-related biomarkers LC3 and Belicin-1 to attenuate autophagy and maintain RGC viability.
Collapse
Affiliation(s)
- Liyuan Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Ophthalmology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Heilongjiang Academy of Sciences of Traditional Chinese Medicine, Harbin, China
| | - Tianyang Yu
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feixue Dong
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Ophthalmology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiayu Xu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jin Fu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - He Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Ophthalmology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
28
|
Jiang S, Borjigin G, Sun J, Li Q, Wang Q, Mu Y, Shi X, Li Q, Wang X, Song X, Wang Z, Yang C. Identification of Uncaria rhynchophylla in the Potential Treatment of Alzheimer's Disease by Integrating Virtual Screening and In Vitro Validation. Int J Mol Sci 2023; 24:15457. [PMID: 37895137 PMCID: PMC10607254 DOI: 10.3390/ijms242015457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Uncaria rhynchophylla (Gouteng in Chinese, GT) is the main medicine in many traditional recipes in China. It is commonly used to alleviate central nervous system (CNS) disorders, although its mechanism in Alzheimer's disease is still unknown. This study was designed to predict and validate the underlying mechanism in AD treatment, thus illustrating the biological mechanisms of GT in treating AD. In this study, a PPI network was constructed, KEGG analysis and GO analysis were performed, and an "active ingredient-target-pathway" network for the treatment of Alzheimer's disease was constructed. The active ingredients of GT were screened out, and the key targets were performed by molecular docking. UHPLC-Q-Exactive Orbitrap MS was used to screen the main active ingredients and was compared with the network pharmacology results, which verified that GT did contain the above ingredients. A total of targets were found to be significantly bound up with tau, Aβ, or Aβ and tau through the network pharmacology study. Three SH-SY5Y cell models induced by okadaic acid (OA), Na2S2O4, and H2O2 were established for in vitro validation. We first found that GT can reverse the increase in the hyperphosphorylation of tau induced by OA to some extent, protecting against ROS damage. Moreover, the results also indicated that GT has significant neuroprotective effects. This study provides a basis for studying the potential mechanisms of GT in the treatment of AD.
Collapse
Affiliation(s)
- Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Gilwa Borjigin
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Jiahui Sun
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Qi Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Qianbo Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Yuanqiu Mu
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Xuepeng Shi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Xiaotong Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Xiaodan Song
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (S.J.); (G.B.); (J.S.); (Q.L.); (Q.W.); (Y.M.); (X.S.); (Q.L.); (X.W.); (X.S.)
- Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
29
|
Zhao J, Liu GW, Tao C. Hotspots and future trends of autophagy in Traditional Chinese Medicine: A Bibliometric analysis. Heliyon 2023; 9:e20142. [PMID: 37780780 PMCID: PMC10539644 DOI: 10.1016/j.heliyon.2023.e20142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
OBJECTIVE To discuss the hotspots and future trends of autophagy in traditional Chinese medicine (TCM) and provide a reference for researchers in this field. METHOD Using visual analysis tools, metrological statistics and visual research on the pertinent literature in the area of autophagy use in TCM were undertaken in the core collection database of the Web of Science. By examining the authors, keywords, research circumstances, research hotspots, and trends of linked research, the use of autophagy in TCM was investigated. RESULTS AND CONCLUSIONS A total of 916 studies were included, among which Beijing University Chinese Medicine was the largest number of advantageous research institutions, followed by Shanghai University Traditional Chinese Medicine and Guangzhou University Chinese Medicine.The keywords of literature research primarily comprise apoptosis, activation, inhibition, pathway, mechanism, oxidative stress, proliferation, NF-κB, cancer, mtor, etc. At present, the research on autophagy in the field of TCM is increasing on a year-to-year basis. The research has focused on the role played by TCM in malignant tumors, atherosclerosis, Alzheimer's disease through autophagy, and the regulation of autophagy signaling pathways (e.g., PI3K/AKT/mTOR signaling pathway, TLR4 signaling pathway,nrf2 signaling pathway and NF-κB signaling pathway). In the future, the therapeutic effect of TCM on chemotherapy-resistant tumor cells through autophagy pathway, the role of TCM mediating mitophagy and activating autophagy function, and the therapeutic effect of TCM components represented by luteolin on tumors, asthma, myocardial injury and other diseases through autophagy mechanism will be the research hotspots in the future.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Guang-wei Liu
- Department of Gastrointestinal surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Cheng Tao
- Scientific Research Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| |
Collapse
|
30
|
Pan Y, Lin T, Shao L, Zhang Y, Han Q, Sheng L, Guo R, Sun T, Zhang Y. Lignin/Puerarin Nanoparticle-Incorporated Hydrogel Improves Angiogenesis through Puerarin-Induced Autophagy Activation. Int J Nanomedicine 2023; 18:5095-5117. [PMID: 37705868 PMCID: PMC10496927 DOI: 10.2147/ijn.s412835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Purpose Puerarin is the main isoflavone extracted from Radix Puerariae lobata (Willd.) and exerts a strong protective effect on endothelial cells. This isoflavone also exerts proven angiogenic effects; however, the potential underlying mechanism has not been fully explored. Here in this work, we aimed to determine the proangiogenesis effect of a puerarin-attached lignin nanoparticle-incorporated hydrogel and explore the underlying mechanism. Materials and Methods Puerarin-attached lignin nanoparticles were fabricated and mixed with the GelMA hydrogel. After the hydrogel was characterized, the angiogenic effect was evaluated in a mouse hind-limb ischemia model. To further explore the mechanism of angiogenesis, human endothelial cell line EA.hy926 was exposure to different concentrations of puerarin. Wound healing assays and tube formation assays were used to investigate the effects of puerarin on cell migration and angiogenesis. qPCR and Western blotting were performed to determine the changes in the levels of angiogenesis indicators, autophagy indicators and PPARβ/δ. 3-MA was used to assess the role of autophagy in the puerarin-mediated angiogenesis effect in vivo and in vitro. Results The hydrogel significantly improved blood flow restoration in mice with hind-limb ischemia. This effect was mainly due to puerarin-mediated increases in the angiogenic capacity of endothelial cells and the promotion of autophagy activation. A potential underlying mechanism might be that puerarin-mediated activation of autophagy could induce an increase in PPARβ/δ expression. Conclusion The puerarin-attached lignin nanoparticle-incorporated hydrogel effectively alleviated blood perfusion in mice with hind-limb ischemia. Puerarin has a prominent proangiogenic effect. The potential mechanisms might be that puerarin-mediated autophagy activation and increase in PPARβ/δ.
Collapse
Affiliation(s)
- Yingjing Pan
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528225, People’s Republic of China
| | - Tianci Lin
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528225, People’s Republic of China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Yulin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Qiao Han
- Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, People’s Republic of China
| | - Liyuan Sheng
- Shenzhen Institute, Peking University, Shenzhen, 518057, People’s Republic of China
| | - Rui Guo
- Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ting Sun
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, 528225, People’s Republic of China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| |
Collapse
|
31
|
Krishnamoorthi S, Iyaswamy A, Sreenivasmurthy SG, Thakur A, Vasudevan K, Kumar G, Guan XJ, Lu K, Gaurav I, Su CF, Zhu Z, Liu J, Kan Y, Jayaraman S, Deng Z, Chua KK, Cheung KH, Yang Z, Song JX, Li M. PPARɑ Ligand Caudatin Improves Cognitive Functions and Mitigates Alzheimer's Disease Defects By Inducing Autophagy in Mice Models. J Neuroimmune Pharmacol 2023; 18:509-528. [PMID: 37682502 DOI: 10.1007/s11481-023-10083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
The autophagy-lysosomal pathway (ALP) is a major cellular machinery involved in the clearance of aggregated proteins in Alzheimer disease (AD). However, ALP is dramatically impaired during AD pathogenesis via accumulation of toxic amyloid beta (Aβ) and phosphorylated-Tau (phospho-Tau) proteins in the brain. Therefore, activation of ALP may prevent the increased production of Aβ and phospho-Tau in AD. Peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor that can activate autophagy, and transcriptionally regulate transcription factor EB (TFEB) which is a key regulator of ALP. This suggests that targeting PPARα, to reduce ALP impairment, could be a viable strategy for AD therapy. In this study, we investigated the anti-AD activity of Caudatin, an active constituent of Cynanchum otophyllum (a traditional Chinese medicinal herb, Qing Yang Shen; QYS). We found that Caudatin can bind to PPARα as a ligand and augment the expression of ALP in microglial cells and in the brain of 3XTg-AD mice model. Moreover, Caudatin could activate PPARα and transcriptionally regulates TFEB-augmented lysosomal degradation of Aβ and phosphor-Tau aggregates in AD cell models. Oral administration of Caudatin decreased AD pathogenesis and ameliorated the cognitive dysfunction in 3XTg-AD mouse model. Conclusively, Caudatin can be a potential AD therapeutic agent via activation of PPARα-dependent ALP.
Collapse
Affiliation(s)
- Senthilkumar Krishnamoorthi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | | | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, The University of Chicago, Illinois, USA
| | | | - Gaurav Kumar
- Department of Clinical Research, School of Biological and Biomedical Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Xin-Jie Guan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Kejia Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
| | - Cheng-Fu Su
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zhou Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Jia Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Yuxuan Kan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine, Department of Biochemistry, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Zhiqiang Deng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Ka Kit Chua
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - King-Ho Cheung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
| | - Ju-Xian Song
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
32
|
Wu Y, Bai Y, Lu Y, Zhang Z, Zhao Y, Huang S, Tang L, Liang Y, Hu Y, Xu C. Transcriptome sequencing and network pharmacology-based approach to reveal the effect and mechanism of Ji Chuan Jian against Parkinson's disease. BMC Complement Med Ther 2023; 23:182. [PMID: 37270490 DOI: 10.1186/s12906-023-03999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/14/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Ji Chuan Jian (JCJ), a classic Traditional Chinese Medicine (TCM) formula, has been widely applied in treating Parkinson's disease (PD) in China, However, the interaction of bioactive compounds from JCJ with the targets involved in PD remains elusive. METHODS Based on the transcriptome sequencing and network pharmacology approaches, the chemical compounds of JCJ and gene targets for treating PD were identified. Then, the Protein-protein interaction (PPI) and "Compound-Disease-Target" (C-D-T) network were constructed by using of Cytoscape. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied to these target proteins. Finally, AutoDock Vina was used for applying molecular docking. RESULTS In the present study, a total number of 2669 differentially expressed genes (DEGs) were identified between PD and healthy controls using whole transcriptome RNA sequencing. Then, 260 targets of 38 bioactive compounds in JCJ were identified. Of these targets, 47 were considered PD-related targets. Based on the PPI degree, the top 10 targets were identified. In C-D-T network analysis, the most important anti-PD bioactive compounds in JCJ were determined. Molecular docking revealed that potential PD-related targets, matrix metalloproteinases-9 (MMP9) were more stably bound with naringenin, quercetin, baicalein, kaempferol and wogonin. CONCLUSION Our study preliminarily investigated the bioactive compounds, key targets, and potential molecular mechanism of JCJ against PD. It also provided a promising approach for identifying the bioactive compounds in TCM as well as a scientific basis for further elucidating the mechanism of TCM formulae in treating diseases.
Collapse
Affiliation(s)
- Yao Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu Bai
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Lu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhennian Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Zhao
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sirui Huang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lili Tang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Liang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Hu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Chengcheng Xu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
33
|
Wang M, Yu H, He Y, Liao S, Xu D. Cross-talk between traditional Chinese medicine and Parkinson's disease based on cell autophagy. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2023; 7:100235. [DOI: 10.1016/j.prmcm.2023.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
34
|
Zhang Y, Xue X, Meng L, Li D, Qiao W, Wang J, Xie D. Roles of autophagy-related genes in the therapeutic effects of Xuanfei Pingchuan capsules on chronic obstructive pulmonary disease based on transcriptome sequencing analysis. Front Pharmacol 2023; 14:1123882. [PMID: 37274101 PMCID: PMC10232735 DOI: 10.3389/fphar.2023.1123882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Objective: Autophagy plays an important role in the occurrence and development of chronic obstructive pulmonary disease (COPD). We evaluated the effect of Xuanfei Pingchuan capsule (XFPC) on autophagy-related genes of COPD by a bioinformatics analysis and experimental verification. Methods: The best treatment duration was screened by CCK8 assays. HBE cells were divided into three groups: blank, CSE and XFPC. After intervened by XFPC, HBE cells were collected and sent to Shenzhen Huada Gene Company for transcriptome sequencing. Subsequently, differential expression analyses, target gene prediction, and function enrichment analyses were carried out. Expression changes were verified in HBE cells by real-time Quantitative PCR (RT-qPCR) and western blotting (WB). Results: The result of differential expression analysis displayed that 125 target genes of HBE cells were mainly related to mitogen-activated protein kinase (MKK) binding, interleukin 33 binding, 1-Pyrroline-5-carboxylate dehydrogenase activity, and the mitogen-activated protein kinase (MAPK) signal pathway. Among the target genes, the core genes related to autophagy obtained by maximum neighborhood component algorithm were CSF1, AREG, MAPK9, MAP3K7, and AKT3. RT-qPCR and WB methods were used to verify the result, it showed similar expression changes in CSF1, MAPK9, MAP3K7, and AKT3 in bronchial epithelial cells to those in the bioinformatics analysis. Conclusion: Through transcriptome sequencing and validation analysis, we predicted that CSF1, MAPK9, MAP3K7, and AKT3 may be the potential autophagy-related genes that play an important role in the pathogenesis of COPD. XFPC may regulate autophagy by down-regulating the expression of CSF1, MAPK9, MAP3K7, and AKT3, thus achieving the purpose of treating chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
| | - Xiaoming Xue
- Graduate School, Shanxi University of Chinese Medicine, Taiyuan, China
| | | | | | | | | | | |
Collapse
|
35
|
Chen N, Yan J, Hu Y, Hao L, Liu H, Yang H. Study of the mechanism underlying the role of PINK1/Parkin in the formic acid-induced autophagy of PC12 cells. Basic Clin Pharmacol Toxicol 2023; 132:329-342. [PMID: 36598398 DOI: 10.1111/bcpt.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
This study aimed to explore PINK1/Parkin's role in methanol metabolite formic acid-induced autophagy in PC12 cells and provide a theoretical basis for elucidating methanol-induced neurotoxicity. After treatment with different formic acid concentrations, we observed the morphology and mitochondria of PC12 cells. We used an ultra-micro enzyme kit to detect the mitochondrial Na+ -K+ -ATPase and Ca2+ -Mg2+ -ATPase activities; a JC-1 kit to detect changes in the mitochondrial membrane potential (MMP); MDC staining to detect the autophagy levels; and western blotting to measure the expression levels of the mitochondrial marker protein COX IV and the autophagy-related proteins Beclin1, P62 and LC3II/LC3I, and the mitochondrial and cytoplasmic levels of PINK1, Parkin and P-Parkin. Compared with the control group, the mitochondrial diameters, the mitochondrial Na+ -K+ -ATP and Ca2+ -Mg2+ -ATPase activities, the MMP, and the COX IV expression levels decreased significantly (P < 0.05). The fluorescence signal intensity (indicating autophagy); relative Beclin1 and LC3II/LC3I protein expression levels; and relative mitochondrial PINK1, Parkin and P-Parkin levels increased significantly, and the relative P62 protein expression levels and relative cytoplasmic PINK1, Parkin and P-Parkin levels decreased significantly (P < 0.05) compared with the control group. Thus, formic acid alters mitochondrial morphology, causes mitochondrial dysfunction, affects the PINK/Parkin pathway and, thus, activates the process of mitochondrial autophagy.
Collapse
Affiliation(s)
- Nan Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| | - Jiao Yan
- Xi'an Chang'an District Center for Disease Control and Prevention, Xi'an, Shanxi, People's Republic of China
| | - Yundi Hu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| | - Lele Hao
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| | - Herong Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| | - Huifang Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
36
|
Iyaswamy A, Vasudevan K, Jayaraman S, Jaganathan R, Thakur A, Chang RCC, Yang C. Editorial: Advances in Alzheimer’s disease diagnostics, brain delivery systems, and therapeutics. Front Mol Biosci 2023; 10:1162879. [PMID: 37006608 PMCID: PMC10064118 DOI: 10.3389/fmolb.2023.1162879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Affiliation(s)
- Ashok Iyaswamy
- School of Chinese Medicine, Mr. And Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
- *Correspondence: Ashok Iyaswamy, ,
| | | | - Selvaraj Jayaraman
- Centre of Molecular Medicine, Department of Biochemistry, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Ravindran Jaganathan
- Preclinical Department, Faculty of Medicine, Royal College of Medicine Perak, Universiti Kuala Lumpur, Perak, Malaysia
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Science, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
37
|
Katiyar D, Singhal S, Bansal P, Nagarajan K, Grover P. Nutraceuticals and phytotherapeutics for holistic management of amyotrophic lateral sclerosis. 3 Biotech 2023; 13:62. [PMID: 36714551 PMCID: PMC9880136 DOI: 10.1007/s13205-023-03475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Amyotrophic lateral sclerosis" (ALS) is a progressive neuronal disorder that affects sensory neurons in the brain and spinal cord, causing loss of muscle control. Moreover, additional neuronal subgroups as well as glial cells such as microglia, astrocytes, and oligodendrocytes are also thought to play a role in the aetiology. The disease affects upper motor neurons and lowers motor neurons and leads to that either lead to muscle weakness and wasting in the arms, legs, trunk and periventricular area. Oxidative stress, excitotoxicity, programmed cell death, altered neurofilament activity, anomalies in neurotransmission, abnormal protein processing and deterioration, increased inflammation, and mitochondrial dysfunction may all play a role in the progression of ALS. There are presently hardly FDA-approved drugs used to treat ALS, and they are only beneficial in slowing the progression of the disease and enhancing functions in certain individuals with ALS, not really in curing or preventing the illness. These days, researchers focus on understanding the pathogenesis of the disease by targeting several mechanisms aiming to develop successful treatments for ALS. This review discusses the epidemiology, risk factors, diagnosis, clinical features, pathophysiology, and disease management. The compilation focuses on alternative methods for the management of symptoms of ALS with nutraceuticals and phytotherapeutics.
Collapse
Affiliation(s)
- Deepti Katiyar
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - Shipra Singhal
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - Priya Bansal
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - K. Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| |
Collapse
|
38
|
Khalifa J, Bourgault S, Gaudreault R. Interactions of Polyphenolic Gallotannins with Amyloidogenic Polypeptides Associated with Alzheimer's Disease: From Molecular Insights to Physiological Significance. Curr Alzheimer Res 2023; 20:603-617. [PMID: 38270140 DOI: 10.2174/0115672050277001231213073043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024]
Abstract
Polyphenols are natural compounds abundantly found in plants. They are known for their numerous benefits to human health, including antioxidant properties and anti-inflammatory activities. Interestingly, many studies have revealed that polyphenols can also modulate the formation of amyloid fibrils associated with disease states and can prevent the formation of cytotoxic oligomer species. In this review, we underline the numerous effects of four hydrolysable gallotannins (HGTs) with high conformational flexibility, low toxicity, and multi-targeticity, e.g., tannic acid, pentagalloyl glucose, corilagin, and 1,3,6-tri-O-galloyl-β-D-glucose, on the aggregation of amyloidogenic proteins associated with the Alzheimer's Disease (AD). These HGTs have demonstrated interesting abilities to reduce, at different levels, the formation of amyloid fibrils involved in AD, including those assembled from the amyloid β-peptide, the tubulin-associated unit, and the islet amyloid polypeptide. HGTs were also shown to disassemble pre-formed fibrils and to diminish cognitive decline in mice. Finally, this manuscript highlights the importance of further investigating these naturally occurring HGTs as promising scaffolds to design molecules that can interfere with the formation of proteotoxic oligomers and aggregates associated with AD pathogenesis.
Collapse
Affiliation(s)
- Jihane Khalifa
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
| | - Roger Gaudreault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| |
Collapse
|
39
|
Wiklund L, Sharma A, Muresanu DF, Zhang Z, Li C, Tian ZR, Buzoianu AD, Lafuente JV, Nozari A, Feng L, Sharma HS. TiO 2-Nanowired Delivery of Chinese Extract of Ginkgo biloba EGb-761 and Bilobalide BN-52021 Enhanced Neuroprotective Effects of Cerebrolysin Following Spinal Cord Injury at Cold Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:353-384. [PMID: 37480466 DOI: 10.1007/978-3-031-32997-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel during combat or peacekeeping operations are exposed to extreme climates of hot or cold environments for longer durations. Spinal cord injury is quite common in military personnel following central nervous system (CNS) trauma indicating a possibility of altered pathophysiological responses at different ambient temperatures. Our previous studies show that the pathophysiology of brain injury is exacerbated in animals acclimated to cold (5 °C) or hot (30 °C) environments. In these diverse ambient temperature zones, trauma exacerbated oxidative stress generation inducing greater blood-brain barrier (BBB) permeability and cell damage. Extracts of Ginkgo biloba EGb-761 and BN-52021 treatment reduces brain pathology following heat stress. This effect is further improved following TiO2 nanowired delivery in heat stress in animal models. Several studies indicate the role of EGb-761 in attenuating spinal cord induced neuronal damages and improved functional deficit. This is quite likely that these effects are further improved following nanowired delivery of EGb-761 and BN-52021 with cerebrolysin-a balanced composition of several neurotrophic factors and peptide fragments in spinal cord trauma. In this review, TiO2 nanowired delivery of EGb-761 and BN-52021 with nanowired cerebrolysin is examined in a rat model of spinal cord injury at cold environment. Our results show that spinal cord injury aggravates cord pathology in cold-acclimated rats and nanowired delivery of EGb-761 and BN-52021 with cerebrolysin significantly induced superior neuroprotection, not reported earlier.
Collapse
Affiliation(s)
- Lars Wiklund
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Yuexiu District, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Hari Shanker Sharma
- Department of Surgical Sciences, International Experimental Central Nervous System Injury & Repair (IECNSIR), Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
40
|
Biswas P, Ghorai M, Mishra T, Gopalakrishnan AV, Roy D, Mane AB, Mundhra A, Das N, Mohture VM, Patil MT, Rahman MH, Jha NK, Batiha GES, Saha SC, Shekhawat MS, Radha, Kumar M, Pandey DK, Dey A. Piper longum L.: A comprehensive review on traditional uses, phytochemistry, pharmacology, and health-promoting activities. Phytother Res 2022; 36:4425-4476. [PMID: 36256521 DOI: 10.1002/ptr.7649] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 07/29/2022] [Accepted: 09/18/2022] [Indexed: 12/13/2022]
Abstract
Piper longum (family Piperaceae), commonly known as "long-pepper" or "Pippali" grows as a perennial shrub or as an herbaceous vine. It is native to the Indo-Malaya region and widely distributed in the tropical and subtropical world including the Indian subcontinent, Sri Lanka, Middle-East, and America. The fruits are mostly used as culinary spice and preservatives and are also a potent remedy in various traditional medicinal systems against bronchitis, cough, cold, snakebite, and scorpion-sting and are also used as a contraceptive. Various bioactive-phytochemicals including alkaloids, flavonoids, esters, and steroids were identified from the plant extracts and essential oils from the roots and fruits were reported as antimicrobial, antiparasitic, anthelminthic, mosquito-larvicidal, antiinflammatory, analgesic, antioxidant, anticancer, neuro-pharmacological, antihyperglycaemic, hepato-protective, antihyperlipidaemic, antiangiogenic, immunomodulatory, antiarthritic, antiulcer, antiasthmatic, cardioprotective, and anti-snake-venom agents. Many of its pharmacological properties were attributed to its antioxidative and antiinflammatory effects and its ability to modulate a number of signalling pathways and enzymes. This review comprehensively encompasses information on habit, distribution, ethnobotany, phytochemistry, and pharmacology of P. longum in relation to its medicinal importance and health benefits to validate the traditional claims supported by specific scientific experiments. In addition, it also discusses the safety and toxicity studies, application of green synthesis and nanotechnology as well as clinical trials performed with the plant also elucidating research gaps and future perspectives of its multifaceted uses.
Collapse
Affiliation(s)
- Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Tulika Mishra
- Department of Botany, DDU Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Debleena Roy
- Department of Botany, Lady Brabourne College, Kolkata, West Bengal, India
| | | | - Avinash Mundhra
- Department of Botany, Rishi Bankim Chandra College, Naihati, India
| | - Neela Das
- Department of Botany, Rishi Bankim Chandra College, Naihati, India
| | | | - Manoj Tukaram Patil
- Department of Botany, SNJB's KKHA Arts SMGL Commerce and SPHJ Science College Chandwad (Nashik) Maharashtra, Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India.,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | | | - Mahipal S Shekhawat
- Plant Biotechnology Unit, KM Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Manoj Kumar
- Department of Botany, Lady Brabourne College, Kolkata, West Bengal, India.,Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.,Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
41
|
Zhao N, Jiang R, Cheng J, Xiao Q. Effects of gastrodin on the expression of brain aging-related genes in SAM/P-8 mice based on network pharmacology. IBRAIN 2022; 9:157-170. [PMID: 37786545 PMCID: PMC10529193 DOI: 10.1002/ibra.12076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 10/04/2023]
Abstract
Background Gastrodin can reduce neuronal damage through multiple targets and pathways, and can be useful in preventing and treating degenerative lesions of the central nervous system, but the specific mechanism has not been elucidated. Methods The aging-related genes in the hippocampus and the frontal cortex were detected in adult and aged mice treated with gastrodin or not. In addition, we collected the target genes of gastrodin and aging from a network database, and a Venn diagram was created to obtain the intersection target genes of gastrodin and aging. Then, the String database was used to analyze the protein-protein interactions (PPIs) between aging-related genes and the target genes of gastrodin and aging. The "drug-disease-target-pathway" network was constructed using Cytoscape 3.7.2 software, and the main mechanism and pathway of key genes were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Finally, the reliability of these key genes was further verified by molecular docking technology. Results The results showed that 6 out of 10 genes related to brain aging were differentially expressed after gastrodin intervention. Moreover, there were 11 key genes between gastrodin and differentially expressed genes related to brain aging. GO and KEGG results suggested that material metabolism and carbohydrate digestion and absorption were associated with the pathological mechanism of gastrodin antiaging. Molecular docking results also confirmed the good binding activity of gastrodin to the key genes. Conclusion Gastrodin plays a potential role in antiaging by regulating substance metabolism and carbohydrate digestion and absorption.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Anesthesia, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Rui Jiang
- Department of AnesthesiaAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Jun‐Jie Cheng
- Department of AnesthesiaAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Qiu‐Xia Xiao
- Department of AnesthesiologyNanchong Central HospitalSichuanChina
- Department of AnesthesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
42
|
Electroacupuncture Modulates 5-HT 4R-Mediated cAMP/PKA Signaling to Improve Intestinal Motility Disorders in a Thy1- αSyn Parkinson's Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8659462. [PMID: 36337584 PMCID: PMC9635967 DOI: 10.1155/2022/8659462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/02/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Constipation is one of the most common nonmotor symptoms in patients with Parkinson's disease (PD) and often occurs before motor symptoms. Electroacupuncture effectively improves the symptoms of constipation in patients with PD. In the present study, we used thymus cell antigen 1-α-synuclein (Thy1-αSyn) transgenic mice as a model of intestinal motility disorders in PD to determine the therapeutic effect of electroacupuncture and the underlying mechanisms. Electroacupuncture significantly improved fecal excretion and accelerated the rate of small-intestinal propulsion in Thy1-αSyn mice by upregulating the serotonin concentration and the expression of the serotonin 4 receptor. Consequently, the downstream cyclic AMP/protein kinase A (cAMP/PKA) pathway was affected, and to upregulate and downregulate, the expression of substance P was upregulated, and the expression of calcitonin gene-related peptide was downregulated. In summary, electroacupuncture improved intestinal motility in PD mice by affecting serotonin levels, serotonin 4 receptor expression, and the cAMP/PKA pathway, providing a potentially effective and promising complementary and alternative therapy for relieving constipation symptoms in patients with PD.
Collapse
|
43
|
Xu W, Ren B, Zhang Z, Chen C, Xu T, Liu S, Ma C, Wang X, Wang Q, Cheng F. Network pharmacology analysis reveals neuroprotective effects of the Qin-Zhi-Zhu-Dan Formula in Alzheimer's disease. Front Neurosci 2022; 16:943400. [PMID: 36340795 PMCID: PMC9632440 DOI: 10.3389/fnins.2022.943400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 10/23/2024] Open
Abstract
There is yet no effective drug for Alzheimer's disease (AD) which is one of the world's most common neurodegenerative diseases. The Qin-Zhi-Zhu-Dan Formula (QZZD) is derived from a widely used Chinese patent drug-Qing-Kai-Ling Injection. It consists of Radix Scutellariae, Fructus Gardeniae, and Pulvis Fellis Suis. Recent study showed that QZZD and its effective components played important roles in anti-inflammation, antioxidative stress and preventing brain injury. It was noted that QZZD had protective effects on the brain, but the mechanism remained unclear. This study aims to investigate the mechanism of QZZD in the treatment of AD combining network pharmacology approach with experimental validation. In the network pharmacology analysis, a total of 15 active compounds of QZZD and 135 putative targets against AD were first obtained. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were then applied to clarify the biological mechanism. The anti-inflammatory mechanism of QZZD was proved, and a synthetic pathway-TNFR1-ERK1/2-NF-κBp65 signaling pathway was obtained. On the basis of the above discoveries, we further validated the protective effects QZZD on neurons with an APP/PS1 double transgenic mouse model. Weight change of the mice was monitored to assess QZZD's influence on the digestive system; water maze experiment was used for evaluating the effects on spatial learning and memory; Western blotting and immunohistochemistry analysis were used to detect the predicted key proteins in network pharmacology analysis, including Aβ, IL-6, NF-κBp65, TNFR1, p-ERK1/2, and ERK1/2. We proved that QZZD could improve neuroinflammation and attenuate neuronal death without influencing the digestive system in APP/PS1 double transgenic mice with dementia. Combining animal pharmacodynamic experiments with network pharmacology analysis, we confirmed the importance of inflammation in pathogenesis of AD, clarified the pharmacodynamic characteristics of QZZD in treating AD, and proved its neuroprotective effects through the regulation of TNFR1-ERK1/2-NF-κBp65 signaling pathway, which might provide reference for studies on treatment of AD in the future.
Collapse
Affiliation(s)
- Wenxiu Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Beida Ren
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Zehan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Congai Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuling Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Yan YC, Xu ZH, Wang J, Yu WB. Uncovering the pharmacology of Ginkgo biloba folium in the cell-type-specific targets of Parkinson's disease. Front Pharmacol 2022; 13:1007556. [PMID: 36249800 PMCID: PMC9556873 DOI: 10.3389/fphar.2022.1007556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease with a fast-growing prevalence. Developing disease-modifying therapies for PD remains an enormous challenge. Current drug treatment will lose efficacy and bring about severe side effects as the disease progresses. Extracts from Ginkgo biloba folium (GBE) have been shown neuroprotective in PD models. However, the complex GBE extracts intertwingled with complicated PD targets hinder further drug development. In this study, we have pioneered using single-nuclei RNA sequencing data in network pharmacology analysis. Furthermore, high-throughput screening for potent drug-target interaction (DTI) was conducted with a deep learning algorithm, DeepPurpose. The strongest DTIs between ginkgolides and MAPK14 were further validated by molecular docking. This work should help advance the network pharmacology analysis procedure to tackle the limitation of conventional research. Meanwhile, these results should contribute to a better understanding of the complicated mechanisms of GBE in treating PD and lay the theoretical ground for future drug development in PD.
Collapse
Affiliation(s)
| | | | - Jian Wang
- *Correspondence: Jian Wang, ; Wen-Bo Yu,
| | - Wen-Bo Yu
- *Correspondence: Jian Wang, ; Wen-Bo Yu,
| |
Collapse
|
45
|
Wu LK, Agarwal S, Kuo CH, Kung YL, Day CH, Lin PY, Lin SZ, Hsieh DJY, Huang CY, Chiang CY. Artemisia Leaf Extract protects against neuron toxicity by TRPML1 activation and promoting autophagy/mitophagy clearance in both in vitro and in vivo models of MPP+/MPTP-induced Parkinson's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154250. [PMID: 35752074 DOI: 10.1016/j.phymed.2022.154250] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder involving the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Cellular clearance mechanisms, including the autophagy-lysosome pathway, are commonly affected in the pathogenesis of PD. The lysosomal Ca2+ channel mucolipin TRP channel 1 (TRPML1) is one of the most important proteins involved in the regulation of autophagy. Artemisia argyi Lev. et Vant., is a traditional Chinese herb, that has diverse therapeutic properties and is used to treat patients with skin diseases and oral ulcers. However, the neuroprotective effects of A. argyi are not explored yet. HYPOTHESIS This study aims is to investigate the neuroprotective effects of A. argyi in promoting the TRPML1-mediated autophagy/mitophagy-enhancing effect METHODS: In this study, we used 1-methyl-4-phenyl-pyridinium (MPP+)-induced PD model established in an SH-SY5Y human neuroblastoma cell line as well as in a 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced PD model in C57BL/6 J mice. MTT assay was conducted to measure the cell viability and further MitoSoX and DCFDA assay were used to measure the ROS. Western blot analysis was used to access levels of TRPML1, p-DRP1 (ser616), p-AKT, PI3K, and β-catenin, Additionally, IF and IHC analysis to investigate the expression of TRPML1, LC3B, β-catenin, TH+, α-synuclein. Mitotracker stain was used to check mitophagy levels and a lysosomal intracellular activity kit was used to measure the lysosomal dysfunction. Behavioral studies were conducted by rotarod and grip strength experiments to check motor functions. RESULTS In our in vitro study, A. argyi rescued the MPP+-induced loss of cell viability and reduced the accumulation of mitochondrial and total reactive oxygen species (ROS). Subsequently, it increased the expression of TRPML1 protein, thereby inducing autophagy, which facilitated the clearance of toxic accumulation of α-synuclein. Furthermore, A. argyi played a neuroprotective role by activating the PI3K/AKT/β-catenin cell survival pathway. MPP+-mediated mitochondrial damage was overcome by upregulation of mitophagy and downregulation of the mitochondrial fission regulator p-DRP1 (ser616) in SH-SY5Y cells. In the in vivo study, A. argyi ameliorated impaired motor function and rescued TH+ neurons in the SNpc region. Similar to the results of the in vitro study, TRPML1, LC3B, and β-catenin expression was enhanced in the SNpc region in the A. argyi-treated mice brain. CONCLUSION Thus, our results first demonstrate that A. argyi can exert neuroprotective effects by stimulating TRPML1 and rescuing neuronal cells by boosting autophagy/mitophagy and upregulating a survival pathway, suggesting that A. argyi can further be exploited to slow the progression of PD.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- 1-Methyl-4-phenylpyridinium/toxicity
- Animals
- Artemisia
- Autophagy
- Dopaminergic Neurons
- Humans
- Mice
- Mice, Inbred C57BL
- Mitophagy
- Neuroblastoma/drug therapy
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Parkinson Disease/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Plant Extracts/therapeutic use
- Proto-Oncogene Proteins c-akt/metabolism
- Reactive Oxygen Species/metabolism
- Transient Receptor Potential Channels/metabolism
- alpha-Synuclein/metabolism
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Li-Kung Wu
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Surbhi Agarwal
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Yen-Lun Kung
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | | | - Pi-Yu Lin
- Buddhist Tzu Chi Charity Foundation, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan.
| | - Chien-Yi Chiang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.
| |
Collapse
|
46
|
Sanchez-Mirasierra I, Ghimire S, Hernandez-Diaz S, Soukup SF. Targeting Macroautophagy as a Therapeutic Opportunity to Treat Parkinson's Disease. Front Cell Dev Biol 2022; 10:921314. [PMID: 35874822 PMCID: PMC9298504 DOI: 10.3389/fcell.2022.921314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Macroautophagy, an evolutionary conserved catabolic process in the eukaryotic cell, regulates cellular homeostasis and plays a decisive role in self-engulfing proteins, protein aggregates, dysfunctional or damaged organelles, and invading pathogens. Growing evidence from in vivo and in vitro models shows that autophagy dysfunction plays decisive role in the pathogenesis of various neurodegenerative diseases, including Parkinson's disease (PD). PD is an incurable and second most common neurodegenerative disease characterised by neurological and motor dysfunction accompanied of non-motor symptoms that can also reduce the life quality of patients. Despite the investment in research, the aetiology of the disease is still unknown and the therapies available are aimed mostly at ameliorating motor symptoms. Hence, therapeutics regulating the autophagy pathway might play an important role controlling the disease progression, reducing neuronal loss and even ameliorating non-motor symptoms. In this review, we highlight potential therapeutic opportunities involved in different targeting options like an initiation of autophagy, Leucine-rich repeat kinase 2 (LRRK2) inhibition, mitophagy, lysosomes, lipid metabolism, immune system, gene expression, biomarkers, and also non-pharmacological interventions. Thus, strategies to identify therapeutics targeting the pathways modulating autophagy might hold a future for therapy development against PD.
Collapse
Affiliation(s)
| | - Saurav Ghimire
- Universite Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | | |
Collapse
|
47
|
Study on the Anti-demyelination Mechanism of Bu-Shen-Yi-Sui Capsule in the Central Nervous System Based on Network Pharmacology and Experimental Verification. Mediators Inflamm 2022; 2022:9241261. [PMID: 35865997 PMCID: PMC9296285 DOI: 10.1155/2022/9241261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/16/2022] [Indexed: 12/19/2022] Open
Abstract
Methods The potential active ingredients and corresponding potential targets of BSYS Capsule were obtained from the TCMSP, BATMAN-TCM, Swiss Target Prediction platform, and literature research. Disease targets of CNSD were explored through the GeneCards and the DisGeNET databases. The matching targets of BSYS in CNSD were identified from a Venn diagram. The protein-protein interaction (PPI) network was constructed using bioinformatics methods. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to predict the mechanisms of BSYS. Furthermore, the neuroprotective effects of BSYS were evaluated using a cell model of hydrogen peroxide- (H2O2-) induced cell death in OLN-93 cells. Results A total of 59 potential bioactive components of BSYS Capsule and 227 intersection targets were obtained. Topological analysis showed that AKT had the highest connectivity degrees in the PPI network. Enrichment analysis revealed that the targets of BSYS in the treatment of CNSD were the PI3K-Akt and MAPK signaling pathway, among other pathways. GO analysis results showed that the targets were associated with various biological processes, including apoptosis, reactive oxygen species metabolic process, and response to oxidative stress, among others. The experimental results demonstrated that BSYS drug-containing serum alleviated the H2O2-induced increase in LDH, MDA, and ROS levels and reversed the decrease in SOD and mitochondrial membrane potential induced by H2O2. BSYS treatment also decreased the number of TUNEL (+) cells, downregulated Bcl-2 expression, and upregulated Bax and c-caspase-3 expression by promoting Akt phosphorylation. Conclusion BSYS Capsule alleviated H2O2-induced OLN-93 cell injury by increasing Akt phosphorylation to suppress oxidative stress and cell apoptosis. Therefore, BSYS can be potentially used for CNSD treatment. However, the results of this study are only derived from in vitro experiments, lacking the validation of in vivo animal models, which is a limitation of our study. We will further verify the underlying mechanisms of BSYS in animal experiments in the future.
Collapse
|
48
|
Ye XW, Wang HL, Cheng SQ, Xia LJ, Xu XF, Li XR. Network Pharmacology-Based Strategy to Investigate the Pharmacologic Mechanisms of Coptidis Rhizoma for the Treatment of Alzheimer's Disease. Front Aging Neurosci 2022; 14:890046. [PMID: 35795239 PMCID: PMC9252849 DOI: 10.3389/fnagi.2022.890046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
BackgroundAlzheimer's disease (AD) is becoming a more prevalent public health issue in today's culture. The experimental study of Coptidis Rhizoma (CR) and its chemical components in AD treatment has been widely reported, but the principle of multi-level and multi-mechanism treatment of AD urgently needs to be clarified.ObjectiveThis study focuses on network pharmacology to clarify the mechanism of CR's multi-target impact on Alzheimer's disease.MethodsThe Phytochemical-compounds of CR have been accessed from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) and Symmap database or HPLC determination. The values of Oral Bioavailability (OB) ≥ 30% and Drug Like (DL) ≥ 0.18 or blood ingredient were used to screen the active components of CR; the interactive network of targets and compounds were constructed by STRING and Cytoscape platform, and the network was analyzed by Molecular Complex Detection (MCODE); Gene Ontology (GO) function, Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) and metabolic pathway enrichment of targets were carried out with Metascape, the Database for Annotation, Visualization and Integrated Discovery (DAVID) and MetaboAnalyst platform; Based on CytoHubba, the potential efficient targets were screened by Maximal Clique Centrality (MCC) and Degree, the correlation between potential efficient targets and amyloid β-protein (Aβ), Tau pathology was analyzed by Alzdata database, and the genes related to aging were analyzed by Aging Altas database, and finally, the core targets were obtained; the binding ability between ingredients and core targets evaluated by molecular docking, and the clinical significance of core targets was assessed with Gene Expression Omnibus (GEO) database.Results19 active components correspond to 267 therapeutic targets for AD, of which 69 is potentially effective; in module analysis, RELA, TRAF2, STAT3, and so on are the critical targets of each module; among the six core targets, RELA, MAPK8, STAT3, and TGFB1 have clinical therapeutic significance; GO function, including 3050 biological processes (BP), 257 molecular functions (MF), 184 cellular components (CC), whose functions are mainly related to antioxidation, regulation of apoptosis and cell composition; the HIF-1 signaling pathway, glutathione metabolism is the most significant result of 134 KEGG signal pathways and four metabolic pathways, respectively; most of the active components have an excellent affinity in docking with critical targets.ConclusionThe pharmacological target prediction of CR based on molecular network pharmacology paves the way for a multi-level networking strategy. The study of CR in AD treatment shows a bright prospect for curing neurodegenerative diseases.
Collapse
Affiliation(s)
- Xian-wen Ye
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hai-li Wang
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Shui-qing Cheng
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
| | - Liang-jing Xia
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-fang Xu
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Xin-fang Xu
| | - Xiang-ri Li
- Centre of TCM Processing Research, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiang-ri Li
| |
Collapse
|
49
|
Zhang H, Ye J, Wang X, liu Z, Chen T, Gao J. Therapeutic Effect and Mechanism of Cinnamyl Alcohol on Myocardial Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5107948. [PMID: 35685733 PMCID: PMC9173989 DOI: 10.1155/2022/5107948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Objective To investigate the effect of CA on autophagy and its molecular mechanism after myocardial ischemia/reperfusion injury (MI/RI). Methods The MI/RI model was established by the ligation of the left anterior descending coronary artery with ischemia and reperfusion. In vitro cell models were established using hypoxia/reoxygenation. Western blot was used to determine the expression levels of beclin-1, P62, and LC3 II. The expression levels of IL-1β, IL-6, TNFα, and apoptosis-related genes Bax, Cyt-c, and Bcl-2 were detected by qRT-PCR. Cell activity was detected by CCK-8. Apoptosis was detected by TUNEL staining. Results Beclin-1, P62, and LC3 II protein expression and LC3 II/LC3 I level were significantly increased after myocardial ischemia-reperfusion injury. Compared with model group, CA downregulated beclin-1, P62, and LC3 II protein expression and LC3 II/LC3 I level in the myocardium. The results of cell-level experiments showed that CA inhibited the autophagy response of the cardiomyocytes induced by hypoxia-reperfusion injury. Mechanism studies showed that CA targeted the inhibition of ATG12. Knocking down ATG12 reduces the production of inflammatory cytokines induced by H/R. The knockdown of ATG12 also reduced apoptosis and injury of the myocardial cells. Conclusion Myocardial ischemia-reperfusion can enhance autophagy response and promote apoptosis. CA plays a protective role in myocardium by targeting ATG12, thereby inhibiting autophagy and improving myocardial cell apoptosis.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jian Ye
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xu Wang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - zongjun liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Tao Chen
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Junqing Gao
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| |
Collapse
|
50
|
Gong F, Zhu W, Liao W, Wang M, Zheng X, Wang C, Liu T, Pan W. Mechanism of the Curative Effect of Wen-Shen-Jian-Pi Prescription in the Treatment of Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:873224. [PMID: 35462696 PMCID: PMC9024327 DOI: 10.3389/fnagi.2022.873224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Objective To study the mechanism of the effect of Wen-Shen-Jian-Pi (WSJP) prescription on an ALS model comprising mice knocked out for an encoding RNA editing, mice (AR2). Methods Twenty-four transgenic AR2 mice were randomly divided into a vehicle group, a low dose WSJP group (15 mg), a medium-dose WSJP group (30 mg), and a high-dose WSJP group (45 mg) (all n = 6 per group). In the treatment groups, the WSJP prescription was given once a day while the vehicle group was fed the same volume of water. The weekly changes in body weight, rotarod test, and grip strength were used to detect the changes in the AR2 and changes of the number of normal mitochondria, abnormal mitochondria, and autophagosomes in injured spinal cord cells were used to evaluate the pathogenetic effects of WSJP treatment. Results The WSJP-treated AR2 mice gained weight more quickly from 8 weeks, and showed active behavior and displayed significantly better constant rotarod scores and grip strengths during the experiment compared with those of the vehicle AR2 mice. The number of normal mitochondria in the WSJP-treated AR2 mice had significantly more normal mitochondria than the vehicle group, while the numbers of abnormal mitochondria and autophagosomes were greatly decreased compared with those in the vehicle group. Conclusion The WSJP prescription could delay the decline in motor function of ALS model mice by reducing the degeneration of neurons. The potential of WSJP to treat ALS should be assessed in a clinical trial.
Collapse
Affiliation(s)
- Fan Gong
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhu
- Department of Neurology, Gongli Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Weilong Liao
- Neurology Department of Integrated Chinese and Western Medicine, Shanghai Pudong TCM Hospital, Shanghai, China
| | - Mingzhe Wang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuanlu Zheng
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenghui Wang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Te Liu,
| | - Weidong Pan
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Weidong Pan,
| |
Collapse
|