1
|
Mousavi SF, Arsalani N, Ghorbani M. Preparation of sodium alginate and xanthan gum bionanocomposite films reinforced with hybrid halloysite nanotubes containing ZnO and licorice root extract for wound dressing applications. Int J Biol Macromol 2025; 307:141974. [PMID: 40086546 DOI: 10.1016/j.ijbiomac.2025.141974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study aims to fabricate bio-nanocomposite films using a solution-casting method based on sodium alginate (SA)1 and xanthan gum (XG).2 These films are reinforced with hybrid Halloysite nanotubes (Hal)3 containing zinc oxide nanoparticles (ZnO-Hal) and licorice root extract (ZnO-Hal-LRE) in various concentrations. These films were characterized using FT-IR, XRD, and scanning electron microscopy (SEM). The ZnO-Hal-LRE nanohybrids significantly enhanced the films' mechanical properties, thermal stability, and water vapor permeability (WVP) barrier. The tensile strength (TS) increased from 6 MPa to 13.204 MPa, and the WVP improved from 1.82 × 10-9 g·m·m-2·h-1·Pa-1 to 1.25 × 10-9 g·m·m-2·h-1·Pa-1. Furthermore, incorporating LRE4 into the nanohybrids enhanced antibacterial and antioxidant activities and increased the cell viability of NIH-3T3 fibroblast cells. The in vitro release study of licorice extract from the nanocomposite film demonstrated a controlled and sustained release, prolonging the half-life of the licorice extract. These findings indicate that the prepared bio-nanocomposite films have significant potential for biomedical applications, particularly wound dressing.
Collapse
Affiliation(s)
- Seyyede Fatemeh Mousavi
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Wu XX, Law SK, Ma H, Jiang Z, Li YF, Au DCT, Wong CK, Luo DX. Bio-active metabolites from Chinese Medicinal Herbs for treatment of skin diseases. Nat Prod Res 2025; 39:2872-2894. [PMID: 39155491 DOI: 10.1080/14786419.2024.2391070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Skin diseases have become serious issues to human health and affect one-third of the world's population according to the World Health Organisation (WHO). These consist of internal (endogenous) and external (exogenous) factors referring to genetics, hormones, and the body's immune system, as well as environmental situations, UV radiation, or environmental pollution respectively. Generally, Western Medicines (WMs) are usually treated with topical creams or strong medications for skin diseases that help superficially, and often do not treat the root cause. The relief may be instant and strong, sometimes these medicines have adverse reactions that are too strong to be able and sustained over a long period, especially steroid drug type. Chinese Medicinal Herbs (CMHs) are natural resources and relatively mild in the treatment of both manifestation and the root cause of disease. Nowadays, CMHs are attractive to many scientists, especially in studying their formulations for the treatment of skin diseases. METHODS The methodology of this review was searched in nine electronic databases including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without regard to language constraints. All eligible studies are analysed and summarised. RESULTS Based on the literature findings, some extracts or active metabolites divided from CMHs, including Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan, and Calendula officinalis L., are effective for the treatment and prevention of skin diseases because of a wide range of pharmacological activities, e.g. anti-bacterial, anti-microbial, anti-virus, and anti-inflammation to enhance the body's immune system. It is also responsible for skin whitening to prevent pigmentation and premature ageing through several mechanisms, such as regulation or inhibition of nuclear factor kappa B (IκB/NF-κB) signalling pathways. CONCLUSION This is possible to develop CMHs, such as Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan and Calendula officinalis L. The ratio of multiple CMH formulations and safety assessments on human skin diseases required studying to achieve better pharmacological activities. Nano formulations are the future investigation for CMHs to combat skin diseases.
Collapse
Affiliation(s)
- Xiao Xiao Wu
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Siu Kan Law
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Zhou Jiang
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Yi Fan Li
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Xian Luo
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
- Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
3
|
Tang Z, Wang F, Lv J, Yang G, Shen X, Zeng F, Meng L, Zhou W, Zhan L, Weng Z. Neuroprotective effect of Licochalcone A against aluminum chloride-induced neurotoxicity by reducing Aβ accumulation, oxidative stress and inflammatory reaction. Neurotoxicology 2025; 108:295-305. [PMID: 40311879 DOI: 10.1016/j.neuro.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Excessive aluminum exposure is a contributing factor in several neurodegenerative diseases. Natural plant compounds such as Licochalcone A have been shown to have significant neuroprotective effects in vivo and in vitro. In this study, we aim to elucidate the neuroprotective effect of Licochalcone A against aluminum chloride-induced neurotoxicity and its possible mechanism. Adult zebrafish and PC12 cells were used as animal and cell models. Zebrafish and PC12 cells were treated with excessive aluminum trichloride (100 μg/L aluminum chloride hexahydrate solutions for zebrafish or 500 μM Al-malt solution for PC12 cells) to cause neuronal damage. The neuroprotective effect of Licochalcone A was evaluated by measuring ROS production, Aβ1-42 accumulation, inflammatory cytokines, neuronal apoptosis-associated genes, and MAPK pathway-related proteins to elucidate the mechanism of Licochalcone A against aluminum chloride-induced neurotoxicity. Licochalcone A effectively reduced the level of ROS production and inflammatory cytokines in both zebrafish and PC12 cells treated with excessive aluminum trichloride. In addition, Licochalcone A reduced the expression of BACE1 and generation of Aβ1-42 as well as the expression of p-JNK and MAPK, the key factor of the MAPK pathway. These results indicated that Licochalcone A has a remarkable neuroprotective effect against neurotoxicity induced by aluminum and has a high potential in the development of therapeutic drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhijuan Tang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Jintao Lv
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gaohong Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Fei Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lingling Meng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Zhou
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Libin Zhan
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Liaoning 110847, China.
| | - Zebin Weng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Abo-Saif MA, Ragab AE, Talaat IM, Saber-Ayad M, Ibrahim AO, Selim HM. Cranberry Extract Ameliorates Diabetic Cognitive Impairment in Rats Via LncRNA GAS-5 Downregulation and Pyroptosis Pathway Inhibition. J Neuroimmune Pharmacol 2025; 20:44. [PMID: 40257540 PMCID: PMC12011949 DOI: 10.1007/s11481-025-10199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/22/2025] [Indexed: 04/22/2025]
Abstract
The pathophysiology of diabetes-induced brain injury involves pyroptosis, an inflammatory programmed cell death. This study aimed to investigate the potential protective effect of cranberry extract (CE) against diabetes-induced brain injury. Type 1 diabetes was induced by intraperitoneal injection of streptozotocin in rats. Brain tissue samples were investigated for biochemical determination of the reduced glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA), and the quantitative RT-PCR for the gene expression of glial cell-derived neurotrophic factor (GDNF), lncRNA GAS-5, and pyroptosis markers. ELISA was used to determine the caspase-1 level and immunohistochemical staining for assessing IL-1β. Prophylactic dosing of the CE in diabetic rats improved cognitive behavior and significantly suppressed MDA concentration, pyroptosis genes expression (gasdermin D and caspase 1), and lncRNA GAS-5. In addition, CE significantly elevated GSH concentration, SOD activity, and gene expression of GDNF and markedly reduced IL-1β positive stained cells score in the brain. Phytochemical characterization of the CE by FT-IR and UPLC-PDA-MS/MS revealed cyanidin arabinoside, procyanidins, quercetin, and isorhamnetin as key components. CE protects against diabetes-induced cognitive dysfunction in rats by targeting redox-related signaling pathways and inducing an anti-inflammatory effect. LncRNA GAS-5 downregulation and pyroptosis pathway inhibition may contribute to its beneficial effects, suggesting its therapeutic potential.
Collapse
Affiliation(s)
- Mariam Ali Abo-Saif
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Amany E Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Iman M Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt.
| | - Maha Saber-Ayad
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmacology, College of Medicine, Cairo University, Giza, 11956, Egypt
| | - Amera O Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Hend Mostafa Selim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Qiu YT, Luo XY, Deng YF, Zheng X, Qiu JG, Zhang LS, Huang XQ, Zheng XB, Huang HY. Modified Pulsatilla decoction alleviates 5-fluorouracil-induced intestinal mucositis by modulating the TLR4/MyD88/NF-κB pathway and gut microbiota. World J Gastroenterol 2025; 31:98806. [PMID: 39991674 PMCID: PMC11755253 DOI: 10.3748/wjg.v31.i7.98806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/19/2024] [Accepted: 12/25/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Modified Pulsatilla decoction (PD), a PD with licorice and ejiao, is a classic Traditional Chinese Medicine formula with significant efficacy in treating intestinal mucositis (IM) induced by tumor therapy. However, its specific molecular and biological mechanisms remain unclear. AIM To investigate the therapeutic effect and mechanism of modified PD in IM. METHODS This study used an IM mouse model established using 5-fluorouracil injections to investigate the effects of the modified PD (3, 6, and 12 g/kg) in IM. The primary chemical components of the modified PD were identified using liquid chromatography-mass spectrometry. Body weight loss, diarrhea scores, intestinal length, histopathological scores, and inflammatory cytokine levels were measured to evaluate the effects of the modified PD in IM. Effects on the TLR4/MyD88/NF-κB pathway were evaluated using western blot analysis. The intestinal microbiota was characterized using Illumina NovaSeq sequencing. RESULTS The results showed that modified PD significantly improved weight loss and diarrhea and shortened the intestines in IM mice. Mechanistically, modified PD suppressed the TLR4/MyD88/NF-κB pathway and downregulated the expression of reactive oxygen species, lipopolysaccharides, and pro-inflammatory cytokines (IL-1β, TNF-α, IFN-γ, IL-6, IL-8, and IL-17), while increasing the expression of the anti-inflammatory cytokine IL-10. Furthermore, modified PD protected the intestinal mucosal barrier by increasing the expression of tight junction proteins (occludin-1, claudin-1, and ZO-1) and mucin-2. Finally, 16S rDNA sequencing revealed that modified PD improved intestinal dysbiosis. CONCLUSION Our research offers new insights into the potential mechanism of modified PD in alleviating IM and provides experimental evidence supporting its pharmaceutical application in clinical IM treatment.
Collapse
Affiliation(s)
- Yi-Tong Qiu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
| | - Xin-Yi Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
- Druggability Research Team, Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, Guangdong Province, China
| | - Ya-Feng Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
| | - Xue Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
- Druggability Research Team, Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, Guangdong Province, China
| | - Jian-Guo Qiu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
- Institute of Traditional Chinese Medicine, Dongguan Hospital of Traditional Chinese Medicine, Dongguan 523000, Guangdong Province, China
| | - Lin-Sheng Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
| | - Xiao-Qi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
- Druggability Research Team, Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, Guangdong Province, China
| | - Xue-Bao Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
- Druggability Research Team, Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, Guangdong Province, China
| | - Hai-Yang Huang
- Institute of Traditional Chinese Medicine, Dongguan Hospital of Traditional Chinese Medicine, Dongguan 523000, Guangdong Province, China
| |
Collapse
|
6
|
Lu PH, Tung SF, Wen CC, Huang CY, Huang JW, Chen CH, Chen YH. Pro-angiogenic effects of Guo Min decoction in a zebrafish model. Tzu Chi Med J 2025; 37:58-64. [PMID: 39850390 PMCID: PMC11753522 DOI: 10.4103/tcmj.tcmj_59_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 01/25/2025] Open
Abstract
Objectives Guo Min decoction (GMD) is a Chinese traditional medicine that can regulate allergy-related symptoms. Although GMD treatment was reported to treat allergy-associated symptoms by regulating the immune response, the rationale between GMD treatment and angiogenesis has not been reported yet. Our objective is to investigate the angiogenesis-modulating activity of GMD. Materials and Methods In this study, we used fluorescence recording, alkaline phosphatase (AP) activity staining, and real-time polymerase chain reaction (PCR) experiments to examine the effects of GMD on angiogenesis in a zebrafish model. Results GMD-treated zebrafish embryos exhibited more intercapillary spaces in the caudal vein plexus (Mock: 11.1 ± 1.8 [n = 20; n: numbers of embryos]; GMD-treated: 16.2 ± 1.9 [n = 20]). AP activity staining showed that treatment with GMD and liquorice (Gan Cao, a component of GMD) induced subintestinal vein outgrowth. However, glycyrrhizin (a component of Gan Cao) had no obvious pro-angiogenic effects on zebrafish. Furthermore, real-time PCR experiments indicated that GMD exposure might be through regulating angiogenesis-related genes (cdh5, nrp1a, and flt1) expressions. Conclusion Based on these observations, we proposed that GMD had pro-angiogenic activity in a zebrafish model, and it might partially be contributed by one of the components, liquorice.
Collapse
Affiliation(s)
- Ping-Hsun Lu
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Sheng-Fen Tung
- Department of Chemistry, Tamkang University, New Taipei, Taiwan
| | - Chi-Chung Wen
- Department of Mathematics, Tamkang University, New Taipei, Taiwan
| | | | - Jhih-Wei Huang
- Department of Chemistry, Tamkang University, New Taipei, Taiwan
| | - Chih-Hsin Chen
- Department of Chemistry, Tamkang University, New Taipei, Taiwan
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, New Taipei, Taiwan
| |
Collapse
|
7
|
Gonçalves S, Fernandes L, Caramelo A, Martins M, Rodrigues T, Matos RS. Soothing the Itch: The Role of Medicinal Plants in Alleviating Pruritus in Palliative Care. PLANTS (BASEL, SWITZERLAND) 2024; 13:3515. [PMID: 39771213 PMCID: PMC11677410 DOI: 10.3390/plants13243515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/05/2025]
Abstract
Chronic pruritus, or persistent itching, is a debilitating condition that severely impacts quality of life, especially in palliative care settings. Traditional treatments often fail to provide adequate relief or are associated with significant side effects, prompting interest in alternative therapies. This review investigates the antipruritic potential of eight medicinal plants: chamomile (Matricaria chamomilla), aloe vera (Aloe barbadensis), calendula (Calendula officinalis), curcumin (Curcuma longa), lavender (Lavandula angustifolia), licorice (Glycyrrhiza glabra), peppermint (Mentha piperita), and evening primrose (Oenothera biennis). These plants are analyzed for their traditional applications, active bioactive compounds, mechanisms of action, clinical evidence, usage, dosage, and safety profiles. Comprehensive searches were conducted in databases including PubMed, Web of Science, Scopus, and b-on, focusing on in vitro, animal, and clinical studies using keywords like "plant", "extract", and "pruritus". Studies were included regardless of publication date and limited to English-language articles. Findings indicate that active compounds such as polysaccharides in aloe vera, curcuminoids in turmeric, and menthol in peppermint exhibit significant anti-inflammatory, antioxidant, and immune-modulating properties. Chamomile and calendula alleviate itching through anti-inflammatory and skin-soothing effects, while lavender and licorice offer antimicrobial benefits alongside antipruritic relief. Evening primrose, rich in gamma-linolenic acid, is effective in atopic dermatitis-related itching. Despite promising preclinical and clinical results, challenges remain in standardizing dosages and formulations. The review highlights the necessity of further clinical trials to ensure efficacy and safety, advocating for integrating these botanical therapies into complementary palliative care practices. Such approaches emphasize holistic treatment, addressing chronic pruritus's physical and emotional burden, thereby enhancing patient well-being.
Collapse
Affiliation(s)
- Sara Gonçalves
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Associação Internacional de Aromaterapeutas Profissionais (IAAP-Portugal), 4445-088 Alfena, Portugal;
| | - Lisete Fernandes
- Centro de Química-Vila Real (CQ-VR), UME-CIDE Unidade de Microscopia Eletrónica-Centro de Investigação e Desenvolvimento, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Caramelo
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- School of Health, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- RISE-Health Research Network, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Maria Martins
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Palliative Medicine, Local Health Unit of Trás-os-Montes and Alto Douro EPE, 5400-261 Chaves, Portugal
| | - Tânia Rodrigues
- Associação Internacional de Aromaterapeutas Profissionais (IAAP-Portugal), 4445-088 Alfena, Portugal;
| | - Rita S. Matos
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Local Health Unit of Trás-os-Montes and Alto Douro (ULSTMAD), 5050-275 Peso da Régua, Portugal
- Palliative Medicine, Local Health Unit of Nordeste, 5370-210 Mirandela, Portugal
| |
Collapse
|
8
|
Liu X, Aikebaier G, Shawuer A, Abudurezike A, Zhang W. Effects of water and fertilizer combination on the dynamic variations in glycyrrhizic acid levels in distinct regions of Glycyrrhiza uralensis grown in arid territories. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:10. [PMID: 39623079 DOI: 10.1007/s10661-024-13364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/29/2024] [Indexed: 01/23/2025]
Abstract
Licorice derived from Glycyrrhiza uralensis Fisch. is a significant component of traditional Chinese medicine. Proper irrigation and fertilization are essential for its successful cultivation. To identify the optimal water and fertilizer combination for enhancing glycyrrhizic acid content in various parts of G. uralensis planted in arid regions, we conducted a four-year study from 2019 to 2022. This research took place in the arid and semi-arid areas at the northern foothills of the Tianshan Mountains in Xinjiang, China. We applied an orthogonal two-factor multilevel design to study the effects of water and fertilizer on glycyrrhizic acid content in different plant parts: root, horizontal rhizome, leaf, stem, and rhizome. The study considered variations in irrigation and fertilizer combinations, growth stages, and seasonal changes. Our results showed that the roots contained the highest glycyrrhizic acid concentration. Over time, glycyrrhizic acid levels increased in the leaves, stems, and horizontal rhizomes. Seasonal influences revealed a distinct pattern: the horizontal rhizome showed the highest concentration in spring, while the roots had the highest concentration in summer and fall. The amount of irrigation was found to have a more significant impact on glycyrrhizic acid content than the amount of fertilizer. Furthermore, our mixed-effects analysis indicated that the irrigation amount had a more substantial effect on glycyrrhizic acid content in all plant parts compared to the fertilizer amount. The interaction effects on glycyrrhizic acid content followed the order of stem > rhizome > horizontal rhizome > leaf > root. The glycyrrhizic acid content in each part was significantly higher under the X1Y0-4 gradient than under the X4Y0-4 gradient. This study identifies the optimal water and fertilizer combination for enhancing glycyrrhizic acid content, contributing to the sustainable cultivation of G. uralensis in arid regions.
Collapse
Affiliation(s)
- Xinghong Liu
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Gulimila Aikebaier
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Ayixiamu Shawuer
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Abudukeyoumu Abudurezike
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
- National Central Asian Characteristic Crop Germplasm Resources Medium-Term Gene Bank (Urumqi), Institute of Crop Variety Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Wentai Zhang
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Resources and Environment, Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
9
|
Zivelonghi G, Melotti L, Carolo A, Venerando A, Roncoroni M, Martinelli G, Maccatrozzo L, Marzorati S, Sugni M, Patruno M. Sea food by-products valorization for biomedical applications: evaluation of their wound regeneration capabilities in an Ex vivo skin model. Front Vet Sci 2024; 11:1491385. [PMID: 39660177 PMCID: PMC11629400 DOI: 10.3389/fvets.2024.1491385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction The skin is often exposed to harmful stimuli that might compromise its integrity and functionality. After an injury, the skin has a limited capability to restore its complex structure, and in the case of severe skin damage, surgical operations and rapid application of wound dressings are often required to promote optimal wound healing. Nowadays, collagen-based biomaterials are widely used in combination with bioactive molecules able to prevent excessive inflammation and possible infections. In line with a circular economy and blue biotechnology approach, it was recently demonstrated that both collagen and bioactive molecules (i.e., antioxidant compounds) can be sustainably obtained from sea food by-products and effectively used for biomaterial development. Herein, we describe and compare the application of two marine collagen-based wound dressings (CBWDs), produced with materials obtained from sea urchin food waste, for the treatment of skin lesions in a wound healing organ culture (WHOC) model. Methods The ex vivo WHOC model was set up starting from rat skin explants and the induced lesions were assigned into three different groups: control (CTRL) group, not treated, marine collagen wound dressing (MCWD) group, and antioxidants-enriched marine collagen wound dressing (A-MCWD) group. After 5 and 10 days, specimens were examined for organ maintenance and assessed for the healing process. Results Immunohistochemical results showed that both CBWDs were similarly successful in prolonging skin repair, preserving the epidermal barrier up to 5 days under static culture conditions. Histological and gene expression analysis highlighted that the A-MCWD might support and accelerate skin wound healing by exerting antioxidant activity and counteracting inflammation. Discussion Overall, these findings underline the potential of sea urchin food waste as a novel resource for the development of functional medical devices for the treatment of skin wounds.
Collapse
Affiliation(s)
- Giulia Zivelonghi
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Anna Carolo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Andrea Venerando
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Margherita Roncoroni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Giordana Martinelli
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Lisa Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
10
|
Olivero-Verbel J, Quintero-Rincón P, Caballero-Gallardo K. Aromatic plants as cosmeceuticals: benefits and applications for skin health. PLANTA 2024; 260:132. [PMID: 39500772 PMCID: PMC11538177 DOI: 10.1007/s00425-024-04550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
MAIN CONCLUSION This review highlights the potential of aromatic plants as natural antioxidants in cosmeceuticals to combat skin aging and promote health and rejuvenation. Aromatic plant extracts, essential oils, or their phytoconstituents have a long history of use in skincare, dating back centuries. Currently, these plant-based sources are extensively researched and utilized in the cosmeceutical industry to formulate products that enhance skin health and promote a youthful appearance. These plants' diverse bioactivities and sensory properties make them ideal ingredients for developing anti-aging agents recommended for maintaining healthy skin through self-care routines, offering a natural alternative to synthetic products. Reactive oxygen species (ROS) accumulation in the dermis, attributed to intrinsic and extrinsic aging factors, particularly prolonged sun exposure, is identified as the primary cause of skin aging. Plant extracts enriched with antioxidant compounds including flavonoids, phenolics, tannins, stilbenes, terpenes, and steroids, are fundamental to counteract ROS-induced oxidative stress. Noteworthy effects observed from the use of these natural sources include photoprotective, senolytic, anti-inflammatory, anti-wrinkle, anti-acne, and anti-tyrosinase activities, encompassing benefits like photoprotection, wound healing, skin whitening, anti-pigmentation, tissue regeneration, among others. This review highlights several globally distributed aromatic plant species renowned for their benefits for skin, including Foeniculum vulgare Mill. (Apiaceae), Calendula officinalis L. and Matricaria chamomilla L. (Asteraceae), Thymus vulgaris L. (Lamiaceae), Litsea cubeba (Lour.) Pers. (Lauraceae), Althaea officinalis L. (Malvaceae), Malaleuca alternifolia (Maiden y Betche) Cheel (Myrtaceae), Cymbopogon citratus (DC.) Stapf (Poaceae), Rubus idaeus L. (Rosaceae), and Citrus sinensis L. Osbeck (Rutaceae), emphasizing their potential in skincare formulations and their role in promoting health and rejuvenation.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
| | - Patricia Quintero-Rincón
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
11
|
Mary AS, Muthuchamy M, Thillaichidambaram M, Lee S, Sivaraj B, Magar S, Ghosh S, Roy CL, Sundaresan S, Kannan M, Govindarajan S, Cho WS, Rajaram K. Formulation of Dual-Functional Nonionic Cetomacrogol Creams Incorporated with Bacteriophage and Human Platelet Lysate for Effective Targeting of MDR P. aeruginosa and Enhanced Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:6583-6593. [PMID: 39262041 DOI: 10.1021/acsabm.4c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Successful development of phage-based therapeutics and their utility predominantly depend on the mode and route of phage administration. Topical and site-directed phage application evokes minimal immune clearance and allows more phage-host adsorption, thereby ensuring higher phage efficacy. However, a notable drawback of conventional topical phage applications is the absence of sustained release. Occlusive emollients guarantee the controlled release of active pharmaceutical ingredients (APIs), thereby facilitating administration, preventing moisture loss, and acting as a skin barrier. In this study, we developed phage and human platelet lysate (h-PL) incorporated cetomacrogol-based creams for combined phage therapy and wound healing. The base material for phage immobilization was formulated by emulsifying paraffin and sterile water with cetomacrogol (emulsifying agent). Specifically, we incorporated a Pseudomonas aeruginosa-infecting lytic phage vB_PaeM_M12PA in the formulation and characterized its genome in this study. Cetomacrogol, a nonionic PEG (polyethylene glycol) based ether, rendered phage stability and allowed initial burst release followed by continuous controlled release of phages from the embedding matrix in the initial 6-8 h. Rheological studies showed that the material has elastic properties with storage moduli (G') values ranging from 109.51 ± 2.10 to 126.02 ± 3.13 kPa, indicating frequency-independent deformation. Platelet lysates in the cream acted as wound healing agents, and in vitro evaluation of cell migration and wound healing capacity of h-PL showed a significant enhancement by the sixth hour compared to untreated groups. The phage-incorporated cream showed sustained phage release in solid media and a significant reduction in bacterial growth in liquid cultures. In vivo wound healing studies in 6-week-old Wistar rats with full-thickness excision wounds and subsequent histopathological studies showed that the formulation enhanced wound healing and tissue restoration efficiency. In conclusion, the study unveils a promising approach for integrated phage therapy and wound healing strategies.
Collapse
Affiliation(s)
- Aarcha Shanmugha Mary
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu - 610101, India
| | - Maruthupandy Muthuchamy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Muneeswaran Thillaichidambaram
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Sinuk Lee
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Barath Sivaraj
- Department of Biological Sciences, SRM University-AP, Amaravati, Andhra Pradesh - 522240, India
| | - Sharayu Magar
- Department of Biological Sciences, SRM University-AP, Amaravati, Andhra Pradesh - 522240, India
| | - Somnath Ghosh
- Department of Humanities and Sciences, Indian Institute of Petroleum and Energy, Visakhapatnam, Andhra Pradesh - 530003, India
| | - Chitrali Laha Roy
- Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu - 610101, India
| | - Srivignesh Sundaresan
- Department of Horticulture, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu - 610101, India
| | - Meganathan Kannan
- Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu - 610101, India
| | - Sutharsan Govindarajan
- Department of Biological Sciences, SRM University-AP, Amaravati, Andhra Pradesh - 522240, India
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Republic of Korea
| | - Kaushik Rajaram
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu - 610101, India
| |
Collapse
|
12
|
Kırgız Ö, Altuğ M, Özkan H, Han M, Akçakavak G, Özarslan A, Yücel S. 45S5 Bioactive Glass-Ointment Positively Effects on Wound Healing in Rats by Regulating TNFα, Il-10, VEGF, and TGFβ. J Clin Lab Anal 2024; 38:e25094. [PMID: 39235180 PMCID: PMC11484740 DOI: 10.1002/jcla.25094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/03/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
AIM This study aimed to investigate the effects of 45S5 bioactive glass-ointment (BG) on cutaneous wound healing in rats at the molecular, biochemical, and histopathological levels. MATERIALS AND METHODS Thirty-two rats were divided into four groups (n = 8): Control, Sham, BG, and DEX (Dexpanthenol). While no wound treatment was applied to the CONTROL, a wound model was created in the Sham, and no treatment was applied. A wound model was created for other groups, and BG and DEX were applied locally for 21 days. During the 21-day experiment period, feed and water consumption and weight changes were observed. Wound areas were calculated on days 0, 3, 7, 4, and 21. Following treatment, the rats were euthanized and tissues from the wound area and blood samples were collected. While the expression levels of tumor necrosis factor-alpha (TNFα), Interleukin 6 (IL6), Interleukin 10 (IL10), transforming growth factor-beta (TGFβ), and vascular endothelial growth factor (VEGF) genes were determined by qPCR, the levels of TNFα, IL6, and IL10 proteins were measured by ELISA. RESULTS It was observed that the BG group showed anti-inflammatory activity by suppressing TNFα levels and stimulating IL-10. In addition, it was determined that BG increased fibroblast activity and vascularization. CONCLUSION Current findings showed that topical application of BG has anti-inflammatory effects, while also accelerating healing by increasing vascularity and making positive contributions to tissue healing.
Collapse
Affiliation(s)
- Ömer Kırgız
- Department of Surgery, Faculty of Veterinary MedicineHatay Mustafa Kemal UniversityHatayTurkey
| | - Muhammed Enes Altuğ
- Department of Surgery, Faculty of Veterinary MedicineHatay Mustafa Kemal UniversityHatayTurkey
| | - Hüseyin Özkan
- Department of Genetics, Faculty of Veterinary MedicineHatay Mustafa Kemal UniversityHatayTurkey
| | - Mehmet Cengiz Han
- Department of SurgeryFirat University Faculty of Veterinary MedicineElazığTurkey
| | - Gökhan Akçakavak
- Department of PathologyAksaray University Faculty of Veterinary MedicineAksarayTurkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Faculty of EngineeringIstanbul University‐CerrahpasaIstanbulTurkey
- Health Biotechnology Joint Research and Application Center of ExcellenceIstanbulTurkey
| | - Sevil Yücel
- Health Biotechnology Joint Research and Application Center of ExcellenceIstanbulTurkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical EngineeringYildiz Technical UniversityIstanbulTurkey
| |
Collapse
|
13
|
Zhang M, Mi M, Hu Z, Li L, Chen Z, Gao X, Liu D, Xu B, Liu Y. Polydopamine-Based Biomaterials in Orthopedic Therapeutics: Properties, Applications, and Future Perspectives. Drug Des Devel Ther 2024; 18:3765-3790. [PMID: 39219693 PMCID: PMC11363944 DOI: 10.2147/dddt.s473007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic disease prevention and treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Man Mi
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zilong Hu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Lixian Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Zhiping Chen
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Xiang Gao
- Stem Cell Research and Cellular Therapy Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People’s Republic of China
| | - Di Liu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
- Guangdong Provincial Key Laboratory for Research and Development of Natural Drug, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Bilian Xu
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Provincial Administration of Traditional Chinese Medicine (Central People’s Hospital of Zhanjiang), Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| |
Collapse
|
14
|
Safwan Kamarazaman I, Sui Kiong L, Nik Hasan MK, Basherudin N, Mohd Kasim NA, Ali AA, Ramli S, Maniam S, Johari James R, Rojsitthisak P, Halim H. Baeckea frutescens L. Promotes wound healing by upregulating expression of TGF-β, IL-1 β, VEGF and MMP-2. Saudi Pharm J 2024; 32:102110. [PMID: 38817820 PMCID: PMC11135039 DOI: 10.1016/j.jsps.2024.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Baeckea frutescens L. has been traditionally used for treating snakebites and is known to possess antifebrile and hemostatic properties. These properties are closely related to wound healing. This study aimed to evaluate the wound healing properties of B. frutescens leaves extract (BFLE) in vitro and in vivo. The in vitro study focused on proliferation, migration, and expression of TGF-β, IL-1β, VEGF, and MMP-2 genes and proteins. The in vivo study included excisional wound healing, histology, and tensile strength studies. The ethanolic extract of B. frutescens (BFLE) was tested for its effects on proliferation and migration using keratinocytes (HaCaT) and fibroblasts (BJ) cells. Gene and protein expression related to wound healing were analyzed using real-time PCR and Western blot assays. The wound healing properties of BFLE were evaluated in vivo using Wistar albino rats, focusing on excisional wound healing, histology, and tensile strength studies. The BFLE displayed significant proliferative and migratory effects on keratinocytes and fibroblasts cells, while upregulating the expression of TGF-β, IL-1β, VEGF, and MMP-2 genes and proteins. BFLE also exhibited significant wound healing effects on Wistar albino rats' excisional wounds and improved the overall tensile strength. The results suggest that BFLE has strong wound healing properties, as demonstrated by its ability to increase keratinocytes and fibroblasts proliferation and migration, upregulate genes and proteins involved in the wound healing process, and improve wound healing rates and tensile strength. The findings of this study provide important insights into the potential use of B. frutescens as a natural wound healing agent.
Collapse
Affiliation(s)
- Ihsan Safwan Kamarazaman
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
- Natural Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Ling Sui Kiong
- Natural Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Mohd Kamal Nik Hasan
- Natural Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Norlia Basherudin
- Natural Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Nur Aini Mohd Kasim
- Natural Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Aida Azlina Ali
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Salfarina Ramli
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Richard Johari James
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hasseri Halim
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
15
|
Ali MM, Al-Mokaddem AK, Abdel-Sattar E, El-Shiekh RA, Farag MM, Aljuaydi SH, Shaheed IB. Enhanced wound healing potential of arabincoside B isolated from Caralluma Arabica in rat model; a possible dressing in veterinary practice. BMC Vet Res 2024; 20:282. [PMID: 38951783 PMCID: PMC11218188 DOI: 10.1186/s12917-024-04128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Wound management is a critical procedure in veterinary practice. A wound is an injury that requires the body's cells' alignment to break down due to external assault, such as trauma, burns, accidents, and diseases. Re-epithelization, extracellular matrix deposition, especially collagen, inflammatory cell infiltration, and development of new blood capillaries are the four features that are used to evaluate the healing process. Using a natural extract for wound management is preferred to avoid the side effects of synthetic drugs. The current study aimed to assess the effect of major pregnane glycoside arabincoside B (AR-B) isolated from Caralluma arabica (C. arabica) for the wound healing process. METHOD AR-B was loaded on a gel for wound application. Rats were randomly distributed into six groups: normal, positive control (PC), MEBO®, AR-B 0.5%, AR-B 1%, and AR-B 1.5%, to be 6 animals in each group. Wounds were initiated under anesthesia with a 1 cm diameter tissue needle, and treatments were applied daily for 14 days. The collected samples were tested for SOD, NO, and MDA. Gene expression of VEGF and Caspase-3. Histopathological evaluation was performed at two-time intervals (7 and 14 days), and immunohistochemistry was done to evaluate α -SMA, TGF-β, and TNF-α. RESULT It was found that AR-B treatment enhanced the wound healing process. AR-B treated groups showed reduced MDA and NO in tissue, and SOD activity was increased. Re-epithelization and extracellular matrix deposition were significantly improved, which was confirmed by the increase in TGF-β and α -SMA as well as increased collagen deposition. TNF-α was reduced, which indicated the subsiding of inflammation. VEGF and Caspase-3 expression were reduced. CONCLUSION Our findings confirmed the efficiency of AR-B in enhancing the process of wound healing and its potential use as a topical wound dressing in veterinary practice.
Collapse
Affiliation(s)
- Mawada Mohamed Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | | | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Michael M Farag
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Samira H Aljuaydi
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Iman B Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
16
|
Pathak D, Mazumder A. A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. Daru 2024; 32:379-419. [PMID: 38225520 PMCID: PMC11087437 DOI: 10.1007/s40199-023-00502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
PURPOSE Chronic diseases often hinder the natural healing process, making wound infections a prevalent clinical concern. In severe cases, complications can arise, potentially leading to fatal outcomes. While allopathic treatments offer numerous options for wound repair and management, the enduring popularity of herbal medications may be attributed to their perceived minimal side effects. Hence, this review aims to investigate the potential of herbal remedies in efficiently treating wounds, presenting a promising alternative for consideration. METHODS A literature search was done including research, reviews, systematic literature review, meta-analysis, and clinical trials considered. Search engines such as Pubmed, Google Scholar, and Scopus were used while retrieving data. Keywords like Wound healing 'Wound healing and herbal combinations', 'Herbal wound dressing', Nanotechnology and Wound dressing were used. RESULT This review provides valuable insights into the role of natural products and technology-based formulations in the treatment of wound infections. It evaluates the use of herbal remedies as an effective approach. Various active principles from herbs, categorized as flavonoids, glycosides, saponins, and phenolic compounds, have shown effectiveness in promoting wound closure. A multitude of herbal remedies have demonstrated significant efficacy in wound management, offering an additional avenue for care. The review encompasses a total of 72 studies, involving 127 distinct herbs (excluding any common herbs shared between studies), primarily belonging to the families Asteraceae, Fabaceae, and Apiaceae. In research, rat models were predominantly utilized to assess wound healing activities. Furthermore, advancements in herbal-based formulations using nanotechnology-based wound dressing materials, such as nanofibers, nanoemulsions, nanofiber mats, polymeric fibers, and hydrogel-based microneedles, are underway. These innovations aim to enhance targeted drug delivery and expedite recovery. Several clinical-based experimental studies have already been documented, evaluating the efficacy of various natural products for wound care and management. This signifies a promising direction in the field of wound treatment. CONCLUSION In recent years, scientists have increasingly utilized evidence-based medicine and advanced scientific techniques to validate the efficacy of herbal medicines and delve into the underlying mechanisms of their actions. However, there remains a critical need for further research to thoroughly understand how isolated chemicals extracted from herbs contribute to the healing process of intricate wounds, which may have life-threatening consequences. This ongoing research endeavor holds great promise in not only advancing our understanding but also in the development of innovative formulations that expedite the recovery process.
Collapse
Affiliation(s)
- Deepika Pathak
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India.
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India
| |
Collapse
|
17
|
Ji X, Liu N, Huang S, Zhang C. A Comprehensive Review of Licorice: The Preparation, Chemical Composition, Bioactivities and Its Applications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:667-716. [PMID: 38716617 DOI: 10.1142/s0192415x24500289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Licorice (Glycyrrhiza) is a medicinal and food homologue of perennial plants derived from the dried roots and rhizomes of the genus Glycyrrhiza in the legume family. In recent years, the comprehensive utilization of licorice resources has attracted people's attention. It is widely utilized to treat diseases, health food products, food production, and other industrial applications. Furthermore, numerous bioactive components of licorice are found using advanced extraction processes, which mainly include polyphenols (flavonoids, dihydrostilbenes, benzofurans, and coumarin), triterpenoids, polysaccharides, alkaloids, and volatile oils, all of which have been reported to possess a variety of pharmacological characteristics, including anti-oxidant, anti-inflammatory, antibacterial, antiviral, anticancer, neuroprotective, antidepressive, antidiabetic, antiparasitic, antisex hormone, skin effects, anticariogenic, antitussive, and expectorant activities. Thereby, all of these compounds promote the development of novel and more effective licorice-derived products. This paper reviews the progress of research on extraction techniques, chemical composition, bioactivities, and applications of licorice to provide a reference for further development and application of licorice in different areas.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, P. R. China
- Henan Engineering Research Center of Livestock and Poultry, Emerging Disease Detection and Control, Luoyang 471023, P. R. China
| | - Ning Liu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, P. R. China
- Henan Engineering Research Center of Livestock and Poultry, Emerging Disease Detection and Control, Luoyang 471023, P. R. China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, P. R. China
- Henan Engineering Research Center of Livestock and Poultry, Emerging Disease Detection and Control, Luoyang 471023, P. R. China
| |
Collapse
|
18
|
Jeong JY, Hwang YJ. Natural Phytochemical and Visible Light at Different Wavelengths Show Synergistic Antibacterial Activity against Staphylococcus aureus. Pharmaceutics 2024; 16:612. [PMID: 38794274 PMCID: PMC11125442 DOI: 10.3390/pharmaceutics16050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
As the risk of antibiotic-resistant bacteria increases, interest in non-antibiotic treatment is also increasing. Among the methods used in non-antibiotic therapy, natural antibiotics such as essential oils have disadvantages such as low efficiency. In the case of phototherapy, the light used for antibacterial activities has low penetration into the human body because of its short wavelength, making it of low medical utility. To solve this problem, this study aimed to determine conditions for enhancing the antibacterial activity of natural phytochemicals and visible light. Four natural phytochemical extracts that showed high antibacterial properties in previous studies were analyzed. Synergistic effects on antibacterial activity and cytotoxicity were determined when natural phytochemical extracts and visible light were simultaneously used. As a result, it was confirmed that the antibacterial activity increased by four times when Sanguisorba officinalis L. was irradiated with 465 nm for 10 min and 520 nm for 40 min, and Uncaria gambir Roxb. was irradiated with 465 nm for 10 min and 520 nm for 60 min compared to when Sanguisorba officinalis L. and Uncaria gambir Roxb. were used alone. The synergistic effect on antibacterial activity was independent of the absorption peak of the natural phytochemical extracts. In addition, in the case of natural phytochemical extracts with improved antibacterial activity, it was confirmed that the improvement of antibacterial activity was increased in inverse proportion to the light irradiation wavelength and in proportion to the light irradiation time. The antibacterial activity was enhanced regardless of antibiotic resistance. In the case of cytotoxicity, it was confirmed that there was no toxicity to A549 cells when treated with 465 nm, the shortest wavelength among the natural phytochemical extracts. These results show how to replace blue light, which has been underutilized due to its low transmittance and cytotoxicity. They also demonstrate the high medical potential of using natural phytochemical and visible light as a combination therapy.
Collapse
Affiliation(s)
- Jae-Young Jeong
- Department of Biohealth & Medical Engineering, College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea;
| | - You-Jin Hwang
- Department of Biohealth & Medical Engineering, College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Biomedical Engineering, College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
19
|
Moussa SG, El Hoffy NM, Mouselhy YY, Mubarak R, Attia RT, Khalil N, Amer SA. Sustainable Treatment of Oral Traumatic Ulcers with Licorice Containing Hydrogels: Integrating Computational Modeling, Quality by Design, Green Synthesis, and Molecular Biological Evaluation. Pharmaceutics 2023; 15:2734. [PMID: 38140075 PMCID: PMC10748055 DOI: 10.3390/pharmaceutics15122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
The urge to implement innovative approaches that align with eco-friendly practices and hold promise for enhancing oral health while promoting environmental sustainability has been increasing. This current work aims to develop a sustainable treatment for oral traumatic ulcers using licorice-based hydrogels (LHGs) containing hydroxyethyl cellulose (HEC) as the green gelling agent. Licorice root aqueous extract was phytochemically profiled using UPLC-ESI-MS/MS. Forty-three compounds were detected, with Glycyrrhizic acid being the major component of the extract (34.85 ± 2.77%). By implementing a Quality by Design (QbD) approach, the study investigates the effects of different licorice extract and HEC concentrations on key variables such as pH and viscosity of the prepared formulations, ulcer and wound healing scores, and tissue growth factors via a Full Factorial Experimental Design. The LHGs exhibited desirable consistency, spreadability, and clarity. Statistical analysis, employing an ANOVA test, revealed the high significance of the constructed models with the licorice concentration being the key independent factor affecting all dependent outputs. The pH as well as the viscosity of the prepared LHGs were positively influenced by licorice extract concentration, with higher concentrations leading to increased alkalinity and viscosity. Rheological behavior analysis revealed a pseudoplastic flow with demonstrated thixotropy which is advantageous for application and prolongation of residence time. The wound healing process was assessed through ulcer size, traumatic ulcer healing score (UHS), collagen-1 expression (COL-1), growth factors (EGF, VEGF), pro-inflammatory markers (TNF-α), wound healing score (WHS). LHGs prepared using higher levels of both factors, 30% dried licorice root extract and 4% HEC, demonstrated enhanced wound healing, elevated growth factor expression of 66.67% and 23.24%, respectively, and 88% reduced inflammation compared to the control group, indicating their potential in expediting oral ulcer recovery. Overall, these findings highlight the promising role of green licorice-based hydrogels in promoting sustainable oral mucosal healing.
Collapse
Affiliation(s)
- Sarah G. Moussa
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt; (S.G.M.); (R.M.); (S.A.A.)
| | - Nada M. El Hoffy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Yara Y. Mouselhy
- Department of Oral Pathology, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt;
| | - Ramy Mubarak
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt; (S.G.M.); (R.M.); (S.A.A.)
| | - Reem T. Attia
- Department of Pharmacology and Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Noha Khalil
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Sherif A. Amer
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt; (S.G.M.); (R.M.); (S.A.A.)
| |
Collapse
|
20
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
21
|
Muhammad H, Salahuddin Z, Akhtar T, Aftab U, Rafi A, Hussain S, Shahzad M. Immunomodulatory effect of glabridin in ovalbumin induced allergic asthma and its comparison with methylprednisolone in a preclinical rodent model. J Cell Biochem 2023; 124:1503-1515. [PMID: 37584465 DOI: 10.1002/jcb.30459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023]
Abstract
Glabridin, a polyphenolic flavonoid derived from Glycyrrhiza glabra (licorice) roots, has shown anti-inflammatory and antioxidant properties. The current study sought to investigate glabridin's immunomodulatory effect in ovalbumin induced allergic asthma. Healthy male Wistar rats were divided into five groups. Group I served as a control group. Asthma was induced in groups II- IV. Groups III and IV were treated with glabridin (40 mg/kg) and methylprednisolone (15 mg/kg), respectively. Inflammatory cells counts were determined in blood and bronchoalveolar lavage fluid (BALF). Serum IgE levels and levels of catalase, superoxide dismutase and glutathione peroxidase in lung homogenate were measured. The levels of mRNA expression of pro-inflammatory, anti-inflammatory and oxidative stress markers were analysed. Delayed type hypersensitivity (DTH) and acute toxicity of glabridin were also checked. Glabridin significantly decreased inflammatory cells in the blood and BALF. It increased the concentration of antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase. Glabridin markedly decreased serum IgE levels and DTH when compared to asthmatic rats. It significantly alleviated the expression of TNF-α, IL-4, IL-5, CXCL1, iNOS, and NF-κB. Administering 10 times the therapeutic dose of glabridin did not show any signs of acute toxicity. Findings suggest that glabridin has the potential to ameliorate allergic asthma and its effects are comparable to those of methylprednisolone. The immunomodulatory effect of glabridin might be contributed by the suppression of pro-inflammatory cytokines, oxidative stress markers, IgE antibodies, and elevation of antioxidant enzymes, suggesting future study and clinical trials to propose it as a candidate to treat allergic asthma.
Collapse
Affiliation(s)
- Hafsa Muhammad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Zari Salahuddin
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Ali Rafi
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Safdar Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
22
|
Bokhari N, Yasmeen A, Ali A, Khalid H, Wang R, Bashir M, Sharif F. Silk Meshes Coated with Chitosan-Bioactive Phytochemicals Activate Wound Healing Genes In Vitro. Macromol Biosci 2023; 23:e2300039. [PMID: 37203244 DOI: 10.1002/mabi.202300039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/15/2023] [Indexed: 05/20/2023]
Abstract
Meshes from natural silk are hand knitted and surface functionalized to facilitate hernia repair and other load bearing, tissue applications. Purified organic silk is - hand knitted and then coated with chitosan (CH)/bacterial cellulose (BC) blend polymer using four phytochemicals such as pomegranate (PG) peel, Nigella sativa (NS) seed, Licorice root (LE), and Bearberry leaf extracts (BE) separately. Characterizations using GCMS analysis shows the presence of bioactive chemicals in the extracts. Scanning electron microcopy (SEM) shows that the surface is coated with the composite polymer t. Fourier transform infrared spectroscopy (FTIR) shows significant elements found in CH, BC, and phytochemicals in plant extracts with no chemical changes. Tensile strength of the coated meshes is higher to support tissue as implants. The release kinetics suggest sustained release of phytochemical extracts. In vitro studies confirmed the noncytotoxic, biocompatible, wound healing potential of the meshes. Furthermore, gene expression analysis of 3-wound healing genes shows marked increase in the in vitro cell cultures due to the presence of extracts. These results suggest that the composite meshes can efficiently support hernia closure while facilitating wound/tissue healing and combating bacterial infections. Therefore, these meshes can be good candidates for fistula and cleft palate repair.
Collapse
Affiliation(s)
- Natasha Bokhari
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
- Department of Chemistry, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Abida Yasmeen
- Department of Chemistry, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Asif Ali
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent, 9000, Belgium
| | - Hamad Khalid
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Rong Wang
- Biomedical Polymer Research Group, Cixi Institute of, Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 99 Xuelin Road, Cixi, Ningbo, 315000, China
| | - Mustehsan Bashir
- Department of Plastic, Reconstructive Surgery and Burn Unit, King Edward Medical University, Lahore, 54000, Pakistan
| | - Faiza Sharif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| |
Collapse
|
23
|
Mahrous RS, Fathy H, Ibrahim RS. Metabolic bioprofiling of different Glycyrrhiza glabra solvent fractions for the identification of anti-adenoviral compounds using LC-HRMS/MS and in-vitro cytopathic assay coupled with chemometry. BMC Complement Med Ther 2023; 23:259. [PMID: 37479993 PMCID: PMC10362705 DOI: 10.1186/s12906-023-04063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023] Open
Abstract
Human adenovirus type-7 (HAdV-7) is a common pathogen that may cause significant morbidity as well as severe complications. Currently, there is no approved drug for the treatment of HAdV-7 infections and the contemporary strategy mainly rely on nonspecific antivirals. Glycyrrhiza glabra; (licorice), is a well-recognized edible plant used in food and beverages. The plant is renowned for its pharmacological and biological activities including antiviral activities against wide range of viruses. The following study reported for the first time the anti-adenoviral activity of licorice extract using in-vitro cytopathic inhibitory assay. Different solvent fractions showed promising activity with IC50 reaching 1.431 μg/ml. Certain fractions had selectivity index (SI) greater than 10 indicating their efficacy together with relatively low cytotoxic effect. Metabolic profiling using LC-HRMS/MS resulted in identification of 41 compounds from licorice fractions. Chemometric modeling using Orthogonal Projections to Latent Structures (OPLS) suggested the compounds; kaempferol-3-O-rutinoside, violanthin, rhamnoliquiritin, isoliquiritigenin isomer, licoagroside B and liquiritin apioside as potential markers against (HAdV-7). Finally, kaempferol-3-O-rutinoside was further confirmed via in-vitro adenovirus inhibitory assay to possess strong antiviral activity with IC50 and CC50 of 54.7 ± 1.93 μM and 655.7 ± 2.22 μM, respectively.
Collapse
Affiliation(s)
- Rahma Sr Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, 1 el-Khartoum square Azarita, Alexandria, 21521, Egypt
| | - Hoda Fathy
- Department of Pharmacognosy, Faculty of Pharmacy, 1 el-Khartoum square Azarita, Alexandria, 21521, Egypt.
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, 1 el-Khartoum square Azarita, Alexandria, 21521, Egypt
| |
Collapse
|
24
|
Abo-Saif MA, Ragab AE, Ibrahim AO, Abdelzaher OF, Mehanyd ABM, Saber-Ayad M, El-Feky OA. Pomegranate peel extract protects against the development of diabetic cardiomyopathy in rats by inhibiting pyroptosis and downregulating LncRNA-MALAT1. Front Pharmacol 2023; 14:1166653. [PMID: 37056985 PMCID: PMC10086142 DOI: 10.3389/fphar.2023.1166653] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Pyroptosis is an inflammatory programmed cell death accompanied by activation of inflammasomes and maturation of pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. Pyroptosis is closely linked to the development of diabetic cardiomyopathy (DC). Pomegranate peel extract (PPE) exhibits a cardioprotective effect due to its antioxidant and anti-inflammatory properties. This study aimed to investigate the underlying mechanisms of the protective effect of PPE on the myocardium in a rat model of DC and determine the underlying molecular mechanism.Methods: Type 1 diabetes (T1DM) was induced in rats by intraperitoneal injection of streptozotocin. The rats in the treated groups received (150 mg/kg) PPE orally and daily for 8 weeks. The effects on the survival rate, lipid profile, serum cardiac troponin-1, lipid peroxidation, and tissue fibrosis were assessed. Additionally, the expression of pyroptosis-related genes (NLRP3 and caspase-1) and lncRNA-MALAT1 in the heart tissue was determined. The PPE was analyzed using UPLC-MS/MS and NMR for characterizing the phytochemical content.Results: Prophylactic treatment with PPE significantly ameliorated cardiac hypertrophy in the diabetic rats and increased the survival rate. Moreover, prophylactic treatment with PPE in the diabetic rats significantly improved the lipid profile, decreased serum cardiac troponin-1, and decreased lipid peroxidation in the myocardial tissue. Histopathological examination of the cardiac tissues showed a marked reduction in fibrosis (decrease in collagen volume and number of TGF-β-positive cells) and preservation of normal myocardial structures in the diabetic rats treated with PPE. There was a significant decrease in the expression of pyroptosis-related genes (NLRP3 and caspase-1) and lncRNA-MALAT1 in the heart tissue of the diabetic rats treated with PPE. In addition, the concentration of IL-1β and caspase-1 significantly decreased in the heart tissue of the same group. The protective effect of PPE on diabetic cardiomyopathy could be due to the inhibition of pyroptosis and downregulation of lncRNA-MALAT1. The phytochemical analysis of the PPE indicated that the major compounds were hexahydroxydiphenic acid glucoside, caffeoylquinic acid, gluconic acid, citric acid, gallic acid, and punicalagin.Conclusion: PPE exhibited a cardioprotective potential in diabetic rats due to its unique antioxidant, anti-inflammatory, and antifibrotic properties and its ability to improve the lipid profile. The protective effect of PPE on DC could be due to the inhibition of the NLRP3/caspase-1/IL-1β signaling pathway and downregulation of lncRNA-MALAT1. PPE could be a promising therapy to protect against the development of DC, but further clinical studies are recommended.
Collapse
Affiliation(s)
- Mariam Ali Abo-Saif
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amany E. Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- *Correspondence: Amany E. Ragab, ; Maha Saber-Ayad,
| | - Amera O. Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | | | - Maha Saber-Ayad
- Department of Clinical Sciences, College of Medicine and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacology, College of Medicine, Cairo University, Giza, Egypt
- *Correspondence: Amany E. Ragab, ; Maha Saber-Ayad,
| | - Ola A. El-Feky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
25
|
Budiawan A, Purwanto A, Puradewa L, Cahyani ED, Purwaningsih CE. Wound healing activity and flavonoid contents of purslane ( Portulaca grandiflora) of various varieties. RSC Adv 2023; 13:9871-9877. [PMID: 36998519 PMCID: PMC10043994 DOI: 10.1039/d3ra00868a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Purslane has various varieties with different active metabolite contents that need to be explored further to find each variety's activity in wound healing. Different purslane herbs showed different antioxidant activities, suggesting they will have different flavonoid content and wound healing activity. This research aimed to evaluate purslane's total flavonoid content and wound-healing activity. The wounds induced on the rabbit back skin were divided into 6 treatment groups such as negative control, positive control, 10 and 20% purslane herbs extract varieties A, and 10 and 20% purslane herbs extract varieties C. Wounds were treated twice daily for 2 weeks, and measured on day 0, 7, 11, and 14. Total flavonoid content was measured with the AlCl3 colorimetric method. The wounds treated with 10 and 20% purslane herbs extract varieties A (Portulaca grandiflora magenta flower) have 0.32 ± 0.55 and 1.63 ± 1.96 mm wound diameters on day 7 and healed on day 11. The wounds treated with 10 and 20% purslane herbs extract varieties C (Portulaca grandiflora pink flower) showed 2.88 ± 0.51 and 0.84 ± 1.45 mm diameter and healed on day 11. The purslane herb A showed the highest wound healing activity, and purslane varieties A and C total flavonoid contents were 0.55 ± 0.02 and 1.58 ± 0.02% w/w, respectively.
Collapse
Affiliation(s)
- Antonius Budiawan
- Pharmacy Diploma III Department, Widya Mandala Surabaya Catholic University Manggis 15-17 Madiun City 63131 East Java Indonesia
| | - Agus Purwanto
- Biology Department, Widya Mandala Surabaya Catholic University Manggis 15-17 Madiun City 63131 East Java Indonesia
| | - Levi Puradewa
- Pharmacy Diploma III Department, Widya Mandala Surabaya Catholic University Manggis 15-17 Madiun City 63131 East Java Indonesia
| | - Erlien Dwi Cahyani
- Pharmacy Diploma III Department, Widya Mandala Surabaya Catholic University Manggis 15-17 Madiun City 63131 East Java Indonesia
| | | |
Collapse
|
26
|
Sharma A, Dheer D, Singh I, Puri V, Kumar P. Phytoconstituent-Loaded Nanofibrous Meshes as Wound Dressings: A Concise Review. Pharmaceutics 2023; 15:pharmaceutics15041058. [PMID: 37111544 PMCID: PMC10143731 DOI: 10.3390/pharmaceutics15041058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
In the past, wounds were treated with natural materials, but modern wound dressings include functional elements to expedite the process of healing and to improve skin recovery. Due to their exceptional properties, nanofibrous wound dressings are now the most cutting-edge and desirable option. Similar in structure to the skin’s own extracellular matrix (ECM), these dressings can promote tissue regeneration, wound fluid transportation, and air ductility for cellular proliferation and regeneration owing to their nanostructured fibrous meshes or scaffolds. Many academic search engines and databases, such as Google Scholar, PubMed, and Sciencedirect, were used to conduct a comprehensive evaluation of the literature for the purposes of this investigation. Using the term “nanofibrous meshes” as a keyword, this paper focuses on the importance of phytoconstituents. This review article summarizes the most recent developments and conclusions from studies on bioactive nanofibrous wound dressings infused with medicinal plants. Several wound-healing methods, wound-dressing materials, and wound-healing components derived from medicinal plants were also discussed.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
- Correspondence: (V.P.); (P.K.)
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa
- Correspondence: (V.P.); (P.K.)
| |
Collapse
|
27
|
In vitro and in vivo synergistic wound healing and anti-methicillin-resistant Staphylococcus aureus (MRSA) evaluation of liquorice-decorated silver nanoparticles. J Antibiot (Tokyo) 2023; 76:291-300. [PMID: 36854977 DOI: 10.1038/s41429-023-00603-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/28/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
The multi-drug resistant Staph. aureus strain, Methicillin-resistant Staphylococcus aureus (MRSA), is an emerging pathogen that could penetrate skin cuts and wounds, causing a life-threatening condition. The green biosynthesis of silver nanoparticles with liquorice extract has been demonstrated over several years for anticancer and antioxidant effects, as well as antibacterial effect against both Gram-positive and Gram-negative bacteria. The study was designed to evaluate the synergistic in vivo and in vitro wound healing and anti-MRSA activity of decorated liquorice silver nanoparticles (LD-AgNPs). The LD-AgNPs were prepared by thoroughly mixing diluted liquorice extract with AgNO3 at room temperature. The prepared nanoparticles were characterized by size measurement, IR spectroscopy, TEM imaging, and X-ray diffraction. The in vitro and in vivo antibacterial and wound healing testing were also performed. The obtained LD-AgNPs were spherical in shape and had a hydrodynamic size of about 50.16 ± 5.37 nm. Moreover, they showed potent antibacterial activity against Gram-positive and Gram-negative resistant bacteria, produced a significantly higher level of procollagen type I compared to either liquorice extract or standard silver sulfadiazine, and promoted the wound healing process in rabbits. The formulation of silver nanoparticles with liquorice extract showed synergetic effects in enhancing the treatment of wounds, with significant antibacterial activity against E. coli and MRSA.
Collapse
|
28
|
Leite CDS, Bonafé GA, Pires OC, dos Santos TW, Pereira GP, Pereira JA, Rocha T, Martinez CAR, Ortega MM, Ribeiro ML. Dipotassium Glycyrrhizininate Improves Skin Wound Healing by Modulating Inflammatory Process. Int J Mol Sci 2023; 24:ijms24043839. [PMID: 36835248 PMCID: PMC9965141 DOI: 10.3390/ijms24043839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound healing is characterized by a systemic and complex process of cellular and molecular activities. Dipotassium Glycyrrhizinate (DPG), a side product derived from glycyrrhizic acid, has several biological effects, such as being antiallergic, antioxidant, antibacterial, antiviral, gastroprotective, antitumoral, and anti-inflammatory. This study aimed to evaluate the anti-inflammatory effect of topical DPG on the healing of cutaneous wounds by secondary intention in an in vivo experimental model. Twenty-four male Wistar rats were used in the experiment, and were randomly divided into six groups of four. Circular excisions were performed and topically treated for 14 days after wound induction. Macroscopic and histopathological analyses were performed. Gene expression was evaluated by real-time qPCR. Our results showed that treatment with DPG caused a decrease in the inflammatory exudate as well as an absence of active hyperemia. Increases in granulation tissue, tissue reepithelization, and total collagen were also observed. Furthermore, DPG treatment reduced the expression of pro-inflammatory cytokines (Tnf-α, Cox-2, Il-8, Irak-2, Nf-kB, and Il-1) while increasing the expression of Il-10, demonstrating anti-inflammatory effects across all three treatment periods. Based on our results, we conclude that DPG attenuates the inflammatory process by promoting skin wound healing through the modulation of distinct mechanisms and signaling pathways, including anti-inflammatory ones. This involves modulation of the expression of pro- and anti-inflammatory cytokine expression; promotion of new granulation tissue; angiogenesis; and tissue re-epithelialization, all of which contribute to tissue remodeling.
Collapse
Affiliation(s)
- Camila dos Santos Leite
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Oscar César Pires
- Laboratory of Pharmacology, Taubaté University (UNITAU), Taubaté, São Paulo 12030-180, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Geovanna Pacciulli Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - José Aires Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Thalita Rocha
- Postgraduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, São Paulo 05014-901, Brazil
| | - Carlos Augusto Real Martinez
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Correspondence:
| |
Collapse
|
29
|
Fermented Chinese Herbal Medicine Promoted Growth Performance, Intestinal Health, and Regulated Bacterial Microbiota of Weaned Piglets. Animals (Basel) 2023; 13:ani13030476. [PMID: 36766365 PMCID: PMC9913397 DOI: 10.3390/ani13030476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
To investigate the effects of fermented Chinese herbal medicine on growth performance, diarrhea rate, nutrient digestibility, and intestinal health of weaned piglets, and to provide the theoretical basis for applying fermented Chinese herbal medicines to weaned piglet production, a total of 162 weaned and castrated piglets at 25 days of age (Duroc × Landrace × Yorkshire, half male and half female) with an initial body weight of 7.77 ± 0.03 kg were randomly divided into the following three groups according to the principle of similar body weight: basal diet (CON) group, basal diet + 3 kg/t fermented Chinese herbal medicine (LFHM) group, and basal diet + 5 g/kg fermented Chinese herbal medicine (HFHM) group. Each group underwent six replicates and there were nine piglets in each replicate. The experiment lasted 24 days, i.e., 3 days for preliminary feeding, and 21 days for the experiment. From Day 1 of the experiment, the piglets were observed and recorded for diarrhea each day. As compared with the CON group, the results indicated: Following the addition of fermented Chinese herbal medicine, the piglets in the LFHM and HFHM groups increased final weight (FW); average daily feed intake (ADFI); average daily gain (ADG) (p < 0.01); apparent digestibility of crude protein (CP) (p < 0.05); as well as chymotrypsin, α-amylase, and lipase activities (p < 0.01). In addition, α-amylase activity in the LFHM group was higher than that in the HFHM group (p < 0.05); chymotrypsin activity in the LFHM group was lower than that in the HFHM group (p < 0.05); as compared with the CON group, the LFHM and the HFHM increased villus height (VH) and crypt depth (CD) in piglet jejunum; isovaleric acid concentration with the HFHM was higher than those with the CON and the LFHM (p < 0.05), but butyrate concentration with the HFFM was lower than those with the CON and the LFHM (p < 0.05). The high-throughput 16S rRNA sequencing of intestinal microbiota results showed that the LFHM and the HFHM affected the microbial α diversity index in weaned piglet colon (p < 0.01). In conclusion, fermented Chinese herbs can improve the growth performance of weaned piglets by promoting the secretion of intestinal digestive enzymes, changing intestinal microbial diversity, regulating the contents of intestinal short chain fatty acids (SCFAs), promoting intestinal health, and improving nutrients digestibility.
Collapse
|
30
|
Hasan MM, Shahid MA. PVA, licorice, and collagen (PLC) based hybrid bio-nano scaffold for wound healing application. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-20. [PMID: 36576335 DOI: 10.1080/09205063.2022.2163454] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanofibrous scaffolds with core-shell structures can deliver bioactive agents, augment mechanical properties, provide a high surface area to volume ratio, and most importantly mimic the structure of extracellular matrix (ECM) which enables to maintain of a moist environment, elimination of excess exudates and provide antibacterial properties to impede infections. This study has developed PVA, licorice, and collagen (PLC) based hybrid bio-nano scaffold by co-axial electrospinning technique for enhancing wound closure. The core layer was made by PVA & licorice extract and shell layer was created by collagen & licorice extract solution. The morphology, moisture management properties, presence of constituent polymer, thermal behavior, and mechanical properties of the developed samples were characterized by FE-SEM, moisture management tester (MMT), FT/IR, TGA, tensile testing machine. Furthermore, in vitro antibacterial assay was conducted by Kirby-Bauer disk diffusion method for investigating antibacterial properties and an in-vivo wound healing assessment was employed by observing the wound healing. Then FE-SEM images showed the lowest and highest average diameters 119 nm and 154 nm respectively, FT/IR spectra ensured the presence of all materials in the sample. Furthermore, the moisture management test result demonstrated slow absorbing and slow drying scaffolds which emphasized the eligibility of the sample to be an ideal candidate for wound healing. Moreover, the minimum and maximum zones of inhibition (ZOI) were found 7 mm and 8 mm against the bacteria Staphylococcus aureus. Finally, an in vivo wound healing assessment revealed a better healing performance of the developed samples after 10 days.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Md Abdus Shahid
- Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| |
Collapse
|
31
|
BalaYadav R, Pathak DP, Varshney R, Arora R. Design and optimization of a novel herbosomal-loaded PEG-poloxamer topical formulation for the treatment of cold injuries: a quality-by-design approach. Drug Deliv Transl Res 2022; 12:2793-2823. [PMID: 35445943 DOI: 10.1007/s13346-022-01140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 12/16/2022]
Abstract
The spectrum of cold injuries ranges from frostnip, chilblains to severe frostbite. Cold injuries occur upon prolonged exposure to freezing temperature and are pathologically a combination of ice crystal formation in the tissue resulting in inflammation, thrombosis and ischemia in the extremities, often necessitating limb amputation in extreme cases due to tissue necrosis. Severe forms of frostbite are a cause of major concern to patients as well as the treating physician. Due to the lack of effective treatment modalities and paucity of research on prophylaxis and therapeutics of cold injuries, we developed a novel herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF) employing quality-by-design (QBD) approach. Natural compounds exhibiting potent therapeutic potential for the management of cold injuries were incorporated in novel lipid vesicles (herbosomes) loaded in PEG-poloxamer polymers. The herbosomal formulation effectively creates an occlusion barrier that promotes epithelial regeneration, desmosome scale-up and angiogenesis and thus promotes rapid healing, indicating controlled release of herbosomes. Optimized novel herbosomes showed entrapment efficiency > 90% and < 300 nm mean particle size and in vitro drug permeation of about 2 µg/cm2 followed Higuchi's release kinetics. Skin irritancy study on female Sprague-Dawley rats showed no edema or erythema. In vivo bio-efficacy study revealed significant efficacy (p < 0.05) when compared to the standard treatment groups. Graphical abstract presenting the designing and optimization of novel herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF) and predictive model for the in vivo study of the developed n-HPTF on cold injury rat skin model.
Collapse
Affiliation(s)
- Renu BalaYadav
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Science and Research, Pushp Vihar, New Delhi, India
| | - Rajeev Varshney
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India
| | - Rajesh Arora
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, India.
| |
Collapse
|
32
|
Unravelling the In Vitro and In Vivo Anti- Helicobacter pylori Effect of Delphinidin-3- O-Glucoside Rich Extract from Pomegranate Exocarp: Enhancing Autophagy and Downregulating TNF-α and COX2. Antioxidants (Basel) 2022; 11:antiox11091752. [PMID: 36139826 PMCID: PMC9495706 DOI: 10.3390/antiox11091752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
Fruits containing antioxidants, e.g., anthocyanins, exhibit antimicrobial activities. The emergence of drug resistance represents a major challenge in eradicating H. pylori. The current study aims to explore the effect of pomegranate exocarp anthocyanin methanol extract (PEAME) against H. pylori isolates recovered from antral gastric biopsies. The UPLC-PDA-MS/MS and 1H NMR analyses indicated delphinidin-3-O-glucoside as the major anthocyanin in the extract. The PEAME showed activity against all tested resistant isolates in vitro recording minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 128 and 256 µg/mL, respectively. In vivo investigation included evaluation of the rat gastric mucosa for malondialdehyde (MDA), catalase activity, COX2, TNF-α, and key autophagy gene expression. The combination of pomegranate with metronidazole markedly reduced the viable count of H. pylori and the level of COX2, with alleviation of H. pylori-induced inflammation and oxidative stress (reduction of MDA, p-value < 0.001; and increase in catalase activity, p-value < 0.001). Autophagy gene expression was significantly upregulated upon treatment, whereas TNF-α was downregulated. In conclusion, we comprehensively assessed the effect of PEAME against H. pylori isolates, suggesting its potential in combination with metronidazole for eradication of this pathogen. The beneficial effect of PEAME may be attributed to its ability to enhance autophagy.
Collapse
|
33
|
Tanjung SA, Silalahi J, Reveny J. Wound Healing Activity of Nanoemulgel Containing Artocarpus lakoocha Roxb. Extract on Burns Model in Rat. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The content of secondary metabolites in mobe leaves has the potential to be used in wound healing. Artocarpine, one of the secondary metabolites found in mobe leaves, is reported to affect the expression of transforming growth factor-beta (TGF-β) protein, thereby increasing fibroblast cell proliferation and accelerating the wound healing process.
AIM: This study aims to determine the wound healing activity of nanoemulgel-containing ethanol extract of mobe leaves.
MATERIALS AND METHODS: The method used in this study was experimental using chemicals ethanol 96%, Carbopol 940, PEG 400, Propylene glycol, Methyl Paraben, Propyl Paraben, Triethanolamine, Aqua Destillata. Mode leaves which were taken purposively were then formulated in nanoemulgel preparations which were tested for wound healing in male rats. The nanoemulgel preparation was then evaluated which included homogeneity, emulsion type, pH, viscosity, dispersion, and measurement of the nanoemulgel globules of mobe leaf extract, stability of the nanoemulgel preparation. Tests for the healing effect of burns were carried out on male rats for 14 days.
RESULTS: Mobe leaves ethanol extract can be formulated into nanoemulgel dosage forms. This study showed wound healing activity of nanoemulgels with concentration variation of mobe leaves ethanol extract. The percentage of wound diameter reducing and fibroblast cells value were showed to increase and significantly different to negative control (p < 0.05) in 14 days. Platelet-derived growth factor (PDGF)-BB and TGF-β1 immunoexpression evaluation result showed significantly different to Blanko group (p < 0.05) in 14-day observation.
CONCLUSION: From this study, nanoemulgel mobe can stimulate more fibroblast cell proliferation by greatly expressing TGF-β1 and PDGF BB in burn wounds.
Collapse
|
34
|
Sitohang NA, Putra EDL, Kamil H, Musman M. Acceleration of wound healing by topical application of gel formulation of Barringtonia racemosa (L.) Spreng kernel extract. F1000Res 2022; 11:191. [PMID: 35356313 PMCID: PMC8933646 DOI: 10.12688/f1000research.104602.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2022] [Indexed: 08/26/2024] Open
Abstract
Background: Phytomedicines are gaining a spotlight in wound management, where much research has suggested the wound healing potential of Barringtonia racemosa. The objective of this study was to investigate the effectiveness of B. racemosa kernel extract in accelerating wound healing process in animal models. Methods:B. racemosa kernel was extracted using ethanol:water (7:3) solvent and was then used as a bioactive ingredient in a Carbopol 940-based gel formulation in four different concentrations (1, 3, 5 and 7 ppm). A 3 cm diameter wound was made in the dorsal area of Rattus norvegicus rat and wound healing process was assessed up to 12 days using DESIGN (Depth, Exudate, Size of Inflammation/Infection, Granulation tissue, and Necrotic tissue) scoring system. Results: Our data suggested that the DESIGN scores were significantly different among concentration groups after the 3 rd day onward suggesting B. racemosa extract accelerated the wound healing process. Rats treated with gel formulation containing 7 ppm of B. racemosa kernel extract had faster wound healing than that treated with topical Metcovazin. Conclusion:B. racemosa kernel extract was effective in accelerating wound healing on rats. Further study is warranted to purify the bioactive component and the action mechanism in wound healing process.
Collapse
Affiliation(s)
- Nur A. Sitohang
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Faculty of Nursing, Universitas Sumatera Utara, Medan, 20222, Indonesia
| | | | - Hajjul Kamil
- Faculty of Nursing, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Musri Musman
- Faculty of Education and Teachers’ Training, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|
35
|
Sitohang NA, Putra EDL, Kamil H, Musman M. Acceleration of wound healing by topical application of gel formulation of Barringtonia racemosa (L.) Spreng kernel extract. F1000Res 2022; 11:191. [PMID: 35356313 PMCID: PMC8933646 DOI: 10.12688/f1000research.104602.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Phytomedicines are gaining a spotlight in wound management, where much research has suggested the wound healing potential of Barringtonia racemosa. The objective of this study was to investigate the effectiveness of B. racemosa kernel extract in accelerating wound healing process in animal models. Methods:B. racemosa kernel was extracted using ethanol:water (7:3) solvent and was then used as a bioactive ingredient in a Carbopol 940-based gel formulation in four different concentrations (1, 3, 5 and 7 ppm). A 3 cm diameter wound was made in the dorsal area of Rattus norvegicus rat and wound healing process was assessed up to 12 days using DESIGN (Depth, Exudate, Size of Inflammation/Infection, Granulation tissue, and Necrotic tissue) scoring system. Results: Our data suggested that the DESIGN scores were significantly different among concentration groups after the 3 rdday onward suggesting B. racemosa extract accelerated the wound healing process. Rats treated with gel formulation containing 7 ppm of B. racemosa kernel extract had faster wound healing than that treated with topical Metcovazin. On day 6, macroscopic observation on 7 ppm group revealed that the wound had persistent redness, lesion area of < 3 cm 2, and 80% healthy granulation, where presence of exudate and redness were not observable. Conclusion:B. racemosa kernel extract was effective in accelerating wound healing on rats. Further study is warranted to purify the bioactive component and the action mechanism in wound healing process.
Collapse
Affiliation(s)
- Nur A. Sitohang
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
- Faculty of Nursing, Universitas Sumatera Utara, Medan, 20222, Indonesia
| | | | - Hajjul Kamil
- Faculty of Nursing, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Musri Musman
- Faculty of Education and Teachers’ Training, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| |
Collapse
|