1
|
Su Y, Chen J, Hu J, Qian C, Ma J, Brynjolfsson S, Fu W. Manipulation of ion/electron carrier genes in the model diatom Phaeodactylum tricornutum enables its growth under lethal acidic stress. iScience 2024; 27:110482. [PMID: 39758278 PMCID: PMC11700652 DOI: 10.1016/j.isci.2024.110482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/14/2024] [Accepted: 07/08/2024] [Indexed: 01/07/2025] Open
Abstract
A major obstacle to exploiting industrial flue gas for microalgae cultivation is the unfavorable acidic environment. We previously identified three upregulated genes in the low-pH-adapted model diatom Phaeodactylum tricornutum: ferredoxin (PtFDX), cation/proton antiporter (PtCPA), and HCO3 - transporter (PtSCL4-2). Here, we individually overexpressed these genes in P. tricornutum to investigate their respective roles in resisting acidic stress (pH 5.0). The genetic modifications enabled positive growths of transgenic strains under acidic stress that completely inhibited the growth of the wild-type strain. Physiological studies indicated improved photosynthesis and reduced oxidative stress in the transgenic strains. Transcriptomes of the PtCPA- and PtSCL4-2-overexpressing transgenics showed widespread upregulation of various transmembrane transporters, which could help counteract excessive external protons. This work highlights ion/electron carrier genes' role in enhancing diatom resistance to acidic stress, providing insights into phytoplankton adaptation to ocean acidification and a strategy for biological carbon capture and industrial flue gas CO2 utilization.
Collapse
Affiliation(s)
- Yixi Su
- Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
- Center for Systems Biology and Faculty of Industrial Engineering, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavík, Iceland
| | - Jiwei Chen
- Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
| | - Jingyan Hu
- Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
| | - Cheng Qian
- Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jiahao Ma
- Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
| | - Sigurður Brynjolfsson
- Center for Systems Biology and Faculty of Industrial Engineering, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavík, Iceland
| | - Weiqi Fu
- Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
- Center for Systems Biology and Faculty of Industrial Engineering, School of Engineering and Natural Sciences, University of Iceland, 101 Reykjavík, Iceland
| |
Collapse
|
2
|
Mao BD, Vadiveloo A, Qiu J, Gao F. Artificial photosynthesis: Promising approach for the efficient production of high-value bioproducts by microalgae. BIORESOURCE TECHNOLOGY 2024; 401:130718. [PMID: 38641303 DOI: 10.1016/j.biortech.2024.130718] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Recently, microalgae had received extensive attention for carbon capture and utilization. But its overall efficiency still could not reach a satisfactory degree. Artificial photosynthesis showed better efficiency in the conversion of carbon dioxide. However, artificial photosynthesis could generally only produce C1-C3 organic matters at present. Some studies showed that heterotrophic microalgae can efficiently synthesize high value organic matters by using simple organic matter such as acetate. Therefore, the combination of artificial photosynthesis with heterotrophic microalgae culture showed great potential for efficient carbon capture and high-value organic matter production. This article systematically analyzed the characteristics and challenges of carbon dioxide conversion by microalgae and artificial photosynthesis. On this basis, the coupling mode and development trend of artificial photosynthesis combined with microalgae culture were discussed. In summary, the combination of artificial photosynthesis and microalgae culture has great potential in the field of carbon capture and utilization, and deserves further study.
Collapse
Affiliation(s)
- Bin-Di Mao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ashiwin Vadiveloo
- Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Jian Qiu
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China
| | - Feng Gao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
3
|
Scharfenstein HJ, Alvarez‐Roa C, Peplow LM, Buerger P, Chan WY, van Oppen MJH. Chemical mutagenesis and thermal selection of coral photosymbionts induce adaptation to heat stress with trait trade-offs. Evol Appl 2023; 16:1549-1567. [PMID: 37752965 PMCID: PMC10519419 DOI: 10.1111/eva.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023] Open
Abstract
Despite the relevance of heat-evolved microalgal endosymbionts to coral reef restoration, to date, few Symbiodiniaceae strains have been thermally enhanced via experimental evolution. Here, we investigated whether the thermal tolerance of Symbiodiniaceae can be increased through chemical mutagenesis followed by thermal selection. Strains of Durusdinium trenchii, Fugacium kawagutii and Symbiodinium pilosum were exposed to ethyl methanesulfonate to induce random mutagenesis, and then underwent thermal selection at high temperature (31/33°C). After 4.6-5 years of experimental evolution, the in vitro thermal tolerance of these strains was assessed via reciprocal transplant experiments to ambient (27°C) and elevated (31/35°C) temperatures. Growth, photosynthetic efficiency, oxidative stress and nutrient use were measured to compare thermal tolerance between strains. Heat-evolved D. trenchii, F. kawagutii and S. pilosum strains all exhibited increased photosynthetic efficiency under thermal stress. However, trade-offs in growth rates were observed for the heat-evolved D. trenchii lineage at both ambient and elevated temperatures. Reduced phosphate and nitrate uptake rates in F. kawagutii and S. pilosum heat-evolved lineages, respectively, suggest alterations in nutrition resource usage and allocation processes may have occurred. Increased phosphate uptake rates of the heat-evolved D. trenchii strain indicate that experimental evolution resulted in further trade-offs in this species. These findings deepen our understanding of the physiological responses of Symbiodiniaceae cultures to thermal selection and their capacity to adapt to elevated temperatures. The new heat-evolved Symbiodiniaceae developed here may be beneficial for coral reef restoration efforts if their enhanced thermal tolerance can be conferred in hospite.
Collapse
Affiliation(s)
- Hugo J. Scharfenstein
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | | | - Lesa M. Peplow
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Patrick Buerger
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Applied BioSciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Wing Yan Chan
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Madeleine J. H. van Oppen
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| |
Collapse
|
4
|
Kanna Dasan Y, Lam MK, Chai YH, Lim JW, Ho YC, Tan IS, Lau SY, Show PL, Lee KT. Unlocking the potential of microalgae bio-factories for carbon dioxide mitigation: A comprehensive exploration of recent advances, key challenges, and energy-economic insights. BIORESOURCE TECHNOLOGY 2023; 380:129094. [PMID: 37100295 DOI: 10.1016/j.biortech.2023.129094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
Microalgae are promising alternatives to mitigate atmospheric CO2 owing to their fast growth rates, resilience in the face of adversity and ability to produce a wide range of products, including food, feed supplements, chemicals, and biofuels. However, to fully harness the potential of microalgae-based carbon capture technology, further advancements are required to overcome the associated challenges and limitations, particularly with regards to enhancing CO2 solubility in the culture medium. This review provides an in-depth analysis of the biological carbon concentrating mechanism and highlights the current approaches, including species selection, optimization of hydrodynamics, and abiotic components, aimed at improving the efficacy of CO2 solubility and biofixation. Moreover, cutting-edge strategies such as gene mutation, bubble dynamics and nanotechnology are systematically outlined to elevate the CO2 biofixation capacity of microalgal cells. The review also evaluates the energy and economic feasibility of using microalgae for CO2 bio-mitigation, including challenges and prospects for future development.
Collapse
Affiliation(s)
- Yaleeni Kanna Dasan
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Yee Ho Chai
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Yeek Chia Ho
- Centre for Urban Resource Sustainability, Civil and Environmental Engineering Department, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Penang, Nibong Tebal 14300, Malaysia
| |
Collapse
|
5
|
Selvan ST, Chandrasekaran R, Muthusamy S, Ramamurthy D. Eco-friendly approach for tannery effluent treatment and CO 2 sequestration using unicellular green oleaginous microalga Tetradesmus obliquus TS03. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48138-48156. [PMID: 36752925 DOI: 10.1007/s11356-023-25703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The present study explored the process of bioremediation, sequestration of carbon dioxide, and biofuel production using multifarious potent freshwater microalgae Tetradesmus obliquus TS03. The heavy metals were reduced, viz., 8.34 mg of cadmium (95.13%), 4.56 mg of chromium (97.28%), 1.34 mg of copper (98.67%), 1.24 mg of cobalt (98.19%), 1.93 mg of lead (96.72%), 2.31 mg of nickel (97.14%), and 2.23 mgL-1 of zinc (96.59%) using photobioreactor microalgal treatment method. The heavy metal biosorption capacity rate (qmax) was 98.90% determined by the Langmuir and Freundlich isotherm kinetics model at 10 days of effluent treatment using Tetradesmus obliquus TS03. The microalgae T. obliquus TS03 utilized 98.34% of carbon dioxide (CO2) enhanced by acetyl CoA carboxylase and RuBisCO enzymes. The biodiesel was extracted from microalga and identified 32 fatty acid methyl ester major compounds viz., tetradecanoate methyl ester, hexadecanoic acid methyl ester, tridecanoic acid methyl ester, heptadecatrienoic acid methyl ester, octadecanoic acid methyl ester, eicosanoic acid methyl ester, pentadecanoic acid methyl ester, and cis-methylicosanoate using gas mass chromatography (GCMS). The biodiesel functional groups were identified, viz., amides, phenols, alcohols, alkynes, carboxylic acids, carbonyls, and ketones groups using Fourier transformation infrared (FTIR). The bioethanol was identified using high-performance liquid chromatography (HPLC) and determined the peak presented at RT of 4.35 min (75,693.1046 µV s-1).
Collapse
Affiliation(s)
- Silambarasan Tamil Selvan
- Department of Microbiology, School of Allied Health Sciences, VIMS Hospital Campus, Vinayaka Missions Research Foundation (DU), Salem, 636308, Tamil Nadu, India.
| | - Ravikumar Chandrasekaran
- Department of Basic Engineering Sciences, TPEVR Government Polytechnic College, Vellore, 632002, Tamil Nadu, India
| | - Sanjivkumar Muthusamy
- Department of Microbiology, K.R. College of Arts & Science, K.R. Nagar, Kovilpatti, 628503, Tamil Nadu, India
| | - Dhandapani Ramamurthy
- Department of Microbiology, School of Biosciences, Periyar University, Salem, 636011, Tamil Nadu, India
| |
Collapse
|
6
|
Gómez-De la Torre AE, Ochoa-Alfaro AE, Rocha-Uribe A, Soria-Guerra RE. Effects of sulfur and phosphorus concentration on the lipid accumulation and fatty acid profile in Chlorella vulgaris (Chlorophyta). Folia Microbiol (Praha) 2023; 68:453-463. [PMID: 36607536 DOI: 10.1007/s12223-022-01029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Nutrient deficiency induces a variety of cellular responses, including an increase in lipid accumulation in microalgae. Nitrogen starvation is the most studied deprivation. Here, we determine the effects of phosphorus and sulfur limitation on lipid accumulation in Chlorella vulgaris. A set of 9 experiments were performed, varying the initial concentration of these nutrients (set to 0, 50, and 100% of their original composition in Bold's basal medium). According to our results, the variation of P and S modified the specific growth rate, lag phase, and cell generation time. The ratio of 50%P and 0%S significantly increased the total lipid concentration. The fatty acid profile was dominated by C16:0, C18:0, and C18:1; a considerable increase in C20:5 was observed with 0%P and 50%S and 0%P and 100%S. Regarding neutral lipids, the response surface methodology (RSM) indicates that the maximum was observed when S was between 40 and 60% and P was between 95 and 100%. Therefore, the enhanced production of lipids caused by P and S limitation may contribute to the efficient oil production useful for algal biofuels.
Collapse
Affiliation(s)
- Alma Edith Gómez-De la Torre
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, México
| | - Ana Erika Ochoa-Alfaro
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, México
| | - Alejandro Rocha-Uribe
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, México
| | - Ruth Elena Soria-Guerra
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, México.
| |
Collapse
|
7
|
Trovão M, Schüler LM, Machado A, Bombo G, Navalho S, Barros A, Pereira H, Silva J, Freitas F, Varela J. Random Mutagenesis as a Promising Tool for Microalgal Strain Improvement towards Industrial Production. Mar Drugs 2022; 20:440. [PMID: 35877733 PMCID: PMC9318807 DOI: 10.3390/md20070440] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Microalgae have become a promising novel and sustainable feedstock for meeting the rising demand for food and feed. However, microalgae-based products are currently hindered by high production costs. One major reason for this is that commonly cultivated wildtype strains do not possess the robustness and productivity required for successful industrial production. Several strain improvement technologies have been developed towards creating more stress tolerant and productive strains. While classical methods of forward genetics have been extensively used to determine gene function of randomly generated mutants, reverse genetics has been explored to generate specific mutations and target phenotypes. Site-directed mutagenesis can be accomplished by employing different gene editing tools, which enable the generation of tailor-made genotypes. Nevertheless, strategies promoting the selection of randomly generated mutants avoid the introduction of foreign genetic material. In this paper, we review different microalgal strain improvement approaches and their applications, with a primary focus on random mutagenesis. Current challenges hampering strain improvement, selection, and commercialization will be discussed. The combination of these approaches with high-throughput technologies, such as fluorescence-activated cell sorting, as tools to select the most promising mutants, will also be discussed.
Collapse
Affiliation(s)
- Mafalda Trovão
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Lisa M. Schüler
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Adriana Machado
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Gabriel Bombo
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Sofia Navalho
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Ana Barros
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - João Varela
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
8
|
Cultivation and Biorefinery of Microalgae (Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132313480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae-based carbon dioxide (CO2) biofixation and biorefinery are the most efficient methods of biological CO2 reduction and reutilization. The diversification and high-value byproducts of microalgal biomass, known as microalgae-based biorefinery, are considered the most promising platforms for the sustainable development of energy and the environment, in addition to the improvement and integration of microalgal cultivation, scale-up, harvest, and extraction technologies. In this review, the factors influencing CO2 biofixation by microalgae, including microalgal strains, flue gas, wastewater, light, pH, temperature, and microalgae cultivation systems are summarized. Moreover, the biorefinery of Chlorella biomass for producing biofuels and its byproducts, such as fine chemicals, feed additives, and high-value products, are also discussed. The technical and economic assessments (TEAs) and life cycle assessments (LCAs) are introduced to evaluate the sustainability of microalgae CO2 fixation technology. This review provides detailed insights on the adjusted factors of microalgal cultivation to establish sustainable biological CO2 fixation technology, and the diversified applications of microalgal biomass in biorefinery. The economic and environmental sustainability, and the limitations and needs of microalgal CO2 fixation, are discussed. Finally, future research directions are provided for CO2 reduction by microalgae.
Collapse
|
9
|
Tamil Selvan S, Velramar B, Ramamurthy D, Balasundaram S, Sivamani K. Pilot scale wastewater treatment, CO 2 sequestration and lipid production using microalga, Neochloris aquatica RDS02. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1462-1479. [PMID: 32615792 DOI: 10.1080/15226514.2020.1782828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In present investigation carried out large-scale treatment of tannery effluent by the cultivation of microalgae, Neochloris aquatica RDS02. The tannery effluent treatment revealed that significant reduction heavy metals were chromium-3.59, lead-2.85, nickel-1.9, cadmium-10.68, zinc-4.49, copper-0.95 and cobalt-1.86 mg/L on 15th day of treatment using N. aquatica RDS02. The microalgal biosorption capacity q max rate was Cr-88.66, Pb-75.87, Ni-87.61, Cd-60.44, Co-52.86, Zn-84.90 and Cu-54.39, and isotherm model emphasized that the higher R 2 value 0.99 by Langmuir and Freundlich kinetics model. The microalga utilized highest CO2 (90%) analyzed by CO2 biofixation and utilization kinetics, biomass (3.9 mg/mL), lipid (210 mg mL-1), carbohydrate (102.75 mg mL-1), biodiesel (4.9 mL g-1) and bioethanol (4.1 mL g-1). The microalgal-lipid content was analyzed through Nile red staining. Gas chromatography mass spectrometric (GCMS) analysis confirmed that the presence of a biodiesel and major fatty acid methyl ester (FAME) profiling viz., tridecanoic acid methyl ester, pentadecanoic acid methyl ester, octadecanoic acid methyl ester, myristic acid methyl ester, palmitic acid methyl ester and oleic acid methyl ester. Fourier transform infrared (FTIR) analysis confirmed that the presence of a functional groups viz., phenols, alcohols, alkynes, carboxylic acids, ketones, carbonyl and ester groups. The bioethanol production was confirmed by high-performance liquid chromatography (HPLC) analyze.
Collapse
Affiliation(s)
- Silambarasan Tamil Selvan
- School of Allied Health Sciences, Aarupadi Veedu Medical College and Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry, India
- Department of Microbiology, School of Biosciences, Periyar University, Salem, India
| | | | | | - Sendilkumar Balasundaram
- School of Allied Health Sciences, Aarupadi Veedu Medical College and Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry, India
- School of Allied Health Sciences, VIMS Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, India
| | - Kanimozhi Sivamani
- School of Allied Health Sciences, Aarupadi Veedu Medical College and Hospital Campus, Vinayaka Mission's Research Foundation (Deemed to be University), Puducherry, India
| |
Collapse
|
10
|
Harnessing the Power of Mutagenesis and Adaptive Laboratory Evolution for High Lipid Production by Oleaginous Microalgae and Yeasts. SUSTAINABILITY 2020. [DOI: 10.3390/su12125125] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oleaginous microalgae and yeasts represent promising candidates for large-scale production of lipids, which can be utilized for production of drop-in biofuels, nutraceuticals, pigments, and cosmetics. However, low lipid productivity and costly downstream processing continue to hamper the commercial deployment of oleaginous microorganisms. Strain improvement can play an essential role in the development of such industrial microorganisms by increasing lipid production and hence reducing production costs. The main means of strain improvement are random mutagenesis, adaptive laboratory evolution (ALE), and rational genetic engineering. Among these, random mutagenesis and ALE are straight forward, low-cost, and do not require thorough knowledge of the microorganism’s genetic composition. This paper reviews available mutagenesis and ALE techniques and screening methods to effectively select for oleaginous microalgae and yeasts with enhanced lipid yield and understand the alterations caused to metabolic pathways, which could subsequently serve as the basis for further targeted genetic engineering.
Collapse
|
11
|
Nagappan S, Tsai PC, Devendran S, Alagarsamy V, Ponnusamy VK. Enhancement of biofuel production by microalgae using cement flue gas as substrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17571-17586. [PMID: 31512119 DOI: 10.1007/s11356-019-06425-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The cement industry generates a substantial amount of gaseous pollutants that cannot be treated efficiently and economically using standard techniques. Microalgae, a promising bioremediation and biodegradation agent used as feedstock for biofuel production, can be used for the biotreatment of cement flue gas. In specific, components of cement flue gas such as carbon dioxide, nitrogen, and sulfur oxides are shown to serve as nutrients for microalgae. Microalgae also have the capacity to sequestrate heavy metals present in cement kiln dust, adding further benefits. This work provides an extensive overview of multiple approaches taken in the inclusion of microalgae biofuel production in the cement sector. In addition, factors influencing the production of microalgal biomass are also described in such an integrated plant. In addition, process limitations such as the adverse impact of flue gas on medium pH, exhaust gas toxicity, and efficient delivery of carbon dioxide to media are also discussed. Finally, the article concludes by proposing the future potential for incorporating the microalgae biofuel plant into the cement sector.
Collapse
Affiliation(s)
- Senthil Nagappan
- Department of Biotechnology, Sri Venkateswara College of Engineering (Autonomous - Affiliated to Anna University), Sriperumbudur, Tamil Nadu, 602 117, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Saravanan Devendran
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Vardhini Alagarsamy
- Department of Biotechnology, Sri Venkateswara College of Engineering (Autonomous - Affiliated to Anna University), Sriperumbudur, Tamil Nadu, 602 117, India
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan.
| |
Collapse
|
12
|
Cheng J, Zhu Y, Zhang Z, Yang W. Modification and improvement of microalgae strains for strengthening CO 2 fixation from coal-fired flue gas in power plants. BIORESOURCE TECHNOLOGY 2019; 291:121850. [PMID: 31358426 DOI: 10.1016/j.biortech.2019.121850] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 05/20/2023]
Abstract
Biological CO2 capture using microalgae is a promising new method for reducing CO2 emission of coal-fired flue gas. The strain of microalgae used in this process plays a vital role in determining the rate of CO2 fixation and characteristics of biomass production. High requirements are put forward for algae strains due to high CO2 concentration and diverse pollutants in flue gas. CO2 can directly diffuse into the cytoplasm of cells by extra- and intracellular CO2 osmotic pressure under high CO2 concentrations. The flue gas pollutants, such as SOx, NOx and fly ashes, have negative effects on the growth of microalgae. This work reviewed the state-of-the-art advances on microalgae strains used for CO2 fixation, focusing on the modification and improvement of strains that are used for coal-fired flue gas. Methods such as genetic engineering, random mutagenesis, and adaptive evolution have the potential to facilitate photosynthesis, improve growth rate and reduce CO2 emission.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Yanxia Zhu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Chou HH, Su HY, Song XD, Chow TJ, Chen CY, Chang JS, Lee TM. Isolation and characterization of Chlorella sp. mutants with enhanced thermo- and CO 2 tolerances for CO 2 sequestration and utilization of flue gases. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:251. [PMID: 31641373 PMCID: PMC6800494 DOI: 10.1186/s13068-019-1590-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/11/2019] [Indexed: 06/07/2023]
Abstract
BACKGROUND The increasing emission of flue gas from industrial plants contributes to environmental pollution, global warming, and climate change. Microalgae have been considered excellent biological materials for flue gas removal, particularly CO2 mitigation. However, tolerance to high temperatures is also critical for outdoor microalgal mass cultivation. Therefore, flue gas- and thermo-tolerant mutants of Chlorella vulgaris ESP-31 were generated and characterized for their ability to grow under various conditions. RESULTS In this study, we obtained two CO2- and thermo-tolerant mutants of Chlorella vulgaris ESP-31, namely, 283 and 359, with enhanced CO2 tolerance and thermo-tolerance by using N-methyl-N-nitro-N-nitrosoguanidine (NTG) mutagenesis followed by screening at high temperature and under high CO2 conditions with the w-zipper pouch selection method. The two mutants exhibited higher photosynthetic activity and biomass productivity than that of the ESP-31 wild type. More importantly, the mutants were able to grow at high temperature (40 °C) and a high concentration of simulated flue gas (25% CO2, 80-90 ppm SO2, 90-100 ppm NO) and showed higher carbohydrate and lipid contents than did the ESP-31 wild type. CONCLUSIONS The two thermo- and flue gas-tolerant mutants of Chlorella vulgaris ESP-31 were useful for CO2 mitigation from flue gas under heated conditions and for the production of carbohydrates and biodiesel directly using CO2 from flue gas.
Collapse
Affiliation(s)
- Hsiang-Hui Chou
- Department of Biotechnology, Fooyin University, Kaohsiung, 83102 Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan
| | - Hsiang-Yen Su
- China-Latin America Joint Laboratory for Clean Energy and Climate Change, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, 523808 China
| | - Xiang-Di Song
- Department of Biotechnology, Fooyin University, Kaohsiung, 83102 Taiwan
| | - Te-Jin Chow
- Department of Biotechnology, Fooyin University, Kaohsiung, 83102 Taiwan
| | - Chun-Yen Chen
- University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70146 Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, 70146 Taiwan
- Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, 70146 Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan
| |
Collapse
|
14
|
Gupta S, Pawar SB, Pandey RA. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1107-1126. [PMID: 31412448 DOI: 10.1016/j.scitotenv.2019.06.115] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 05/20/2023]
Abstract
Considerable research activities are underway involving microalgae species in order to treat industrial wastewater to address the waste-to-bioenergy economy. Several studies of wastewater treatment using microalgae have been primarily focused on removal of key nutrients such as nitrogen and phosphorus. Although the use of wastewater would provide nutrients and water for microalgae growth, the whole process is even more complex than the conventional microalgae cultivation on freshwater media. The former one adds several gridlocks to the system. These gridlocks are surplus organic and inorganic nutrients concentration, pH of wastewater, wastewater color, total dissolved solids (TDS), microbial contaminants, the scale of photobioreactor, batch versus continuous system, harvesting of microalgae biomass etc. The present review discusses, analyses, and summarizes key aspects involved in the treatment of wastewaters from distillery, food/snacks product processing, and dairy processing industry using microalgae along with sustainable production of its biomass. This review further evaluates the bottlenecks for individual steps involved in the process such as pretreatment of wastewater for contaminants removal, concentration tolerance/dilutions, harvesting of microalgae biomass, and outdoor scale-up. The review also describes various strategies to optimize algal biomass and lipid productivities for various wastewater and photobioreactor type. Moreover, the review emphasizes the potential of co-cultivation of microorganism such as yeast and bacteria along with microalgae in the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Suvidha Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Sanjay B Pawar
- Environmental Biotechnology and Genomics Division (EBGD), CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India.
| | - R A Pandey
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| |
Collapse
|
15
|
Bench-Scale Cultivation of Microalgae Scenedesmus almeriensis for CO2 Capture and Lutein Production. ENERGIES 2019. [DOI: 10.3390/en12142806] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, Scenedesmus almeriensis as green microalga was cultivated on bench-scale for carbon dioxide (CO2) capture and lutein production. The autotrophic cultivation of S. almeriensis was carried out by using a vertical bubble column photo-bioreactor (VBC-PBR) with a continuous flow of a gaseous mixture of oxygen (O2), nitrogen (N2), and CO2, the latter in content of 0.0–3.0 %v/v. The liquid phase was batch. S. almeriensis growth was optimized. In addition, lutein extraction was carried out by using accelerated solvent extraction with ethanol as Generally Recognized as Safe (GRAS) solvent at 67 °C and 10 MPa. Upon optimization of CO2 concentration, the maximum biomass productivity, equal to 129.24 mg·L−1·d−1, was achieved during the cultivation by using a content of CO2 equal to 3.0 %v/v and it allowed to obtain a lutein content of 8.54 mg·g−1, which was 5.6-fold higher in comparison to the analogous process carried out without CO2 addition. The ion chemical analysis in the growth medium showed that by gradually increasing CO2 content, the nutrient consumption during the growth phase also increased. This study may be of potential interest for lutein extraction at industrial scale, since it is focused on pigment production from a natural source with a concomitantly CO2 capture.
Collapse
|
16
|
Patel A, Matsakas L, Rova U, Christakopoulos P. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. BIORESOURCE TECHNOLOGY 2019; 278:424-434. [PMID: 30685131 DOI: 10.1016/j.biortech.2019.01.063] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 05/18/2023]
Abstract
The importance of expanding our knowledge on microorganisms derived from extreme environments stems from the development of novel and sustainable technologies for our health, food, and environment. Microalgae and cyanobacteria represent a group of diverse microorganisms that inhabit a wide range of environments, are capable of oxygenic photosynthesis, and form a thick microbial mat even at extreme environments. Studies of thermophilic microorganisms have shown a considerable biotechnological potential due to their optimum growth and metabolisms at high temperatures (≥50 °C), which is supported by their thermostable enzymes. Microalgal and cyanobacterial communities present in high-temperature ecosystems account for a large part of the total ecosystem biomass and productivity, and can be exploited to generate several value-added products of agricultural, pharmaceutical, nutraceutical, and industrial relevance. This review provides an overview on the current status of biotechnological applications of thermophilic microalgae and cyanobacteria, with an outlook on the challenges and future prospects.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
17
|
Biomass and lipid production of a novel freshwater thermo-tolerant mutant strain of Chlorella pyrenoidosa NCIM 2738 in seawater salinity recycled medium. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Gupta S, Pawar SB, Pandey RA, Kanade GS, Lokhande SK. Outdoor microalgae cultivation in airlift photobioreactor at high irradiance and temperature conditions: effect of batch and fed-batch strategies, photoinhibition, and temperature stress. Bioprocess Biosyst Eng 2018; 42:331-344. [PMID: 30446818 DOI: 10.1007/s00449-018-2037-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/02/2018] [Indexed: 01/13/2023]
Abstract
The microalgae Scenedesmus abundans cultivated in five identical airlift photobioreactors (PBRs) in batch and fed-batch modes at the outdoor tropical condition. The microalgae strain S. abundans was found to tolerate high temperature (35-45 °C) and high light intensity (770-1690 µmol m- 2 s- 1). The highest biomass productivities were 152.5-162.5 mg L- 1 day- 1 for fed-batch strategy. The biomass productivity was drastically reduced due to photoinhibition effect at a culture temperature of > 45 °C. The lipid compositions showed fatty acids mainly in the form of saturated and monounsaturated fatty acids (> 80%) in all PBRs with Cetane number more than 51. The fed-batch strategies efficiently produced higher biomass and lipid productivities at harsh outdoor conditions. Furthermore, the microalgae also accumulated omega-3 fatty acid (C18:3) up to 14% (w/w) of total fatty acid at given outdoor condition.
Collapse
Affiliation(s)
- Suvidha Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India
| | - Sanjay B Pawar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, India.
| | - R A Pandey
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Gajanan S Kanade
- Analytical Instruments Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Satish K Lokhande
- Analytical Instruments Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| |
Collapse
|
19
|
Wang W, Wei T, Fan J, Yi J, Li Y, Wan M, Wang J, Bai W. Repeated mutagenic effects of 60Co-γ irradiation coupled with high-throughput screening improves lipid accumulation in mutant strains of the microalgae Chlorella pyrenoidosa as a feedstock for bioenergy. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.04.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Methods for enhancing cyanobacterial stress tolerance to enable improved production of biofuels and industrially relevant chemicals. Appl Microbiol Biotechnol 2018; 102:1617-1628. [DOI: 10.1007/s00253-018-8755-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
|
21
|
Tanadul OUM, Noochanong W, Jirakranwong P, Chanprame S. EMS-induced mutation followed by quizalofop-screening increased lipid productivity in Chlorella sp. Bioprocess Biosyst Eng 2018; 41:613-619. [PMID: 29350295 DOI: 10.1007/s00449-018-1896-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
The objective of this study was to enhance biomass and lipid productivity in Chlorella sp. isolate 6-4 by inducing mutagenesis with two growth inhibitors: the herbicide quizalofop-P-ethyl, a known inhibitor of acetyl-CoA carboxylase (ACCase) activity, and chemical mutagen, ethyl methanesulfonate (EMS), at different concentrations and length of times. The induced-mutagenized microalgae were screened on selective medium containing 10-100 µM quizalofop. The biomass yield, biomass productivity, lipid content, and lipid productivity of mutagenized microalgae were determined. The result showed that 100-200 mM EMS concentrations and 30 min incubation time were the most effective. Biomass yield and biomass productivity of the mutagenized microalgae E50-30-40, E100-60-40, and E100-30-60 were statistically significant higher than those of the wild type. The mutagenized microalgae E100-30-60 showed that the highest biomass yield and biomass productivity were 111 and 110% higher than the wild type, respectively (p < 0.01). Lipid content and lipid productivity of the mutagenized microalgae E200-30-40 were 59 and 53% significantly higher than the wild type, respectively. It should be noted that biomass productivity of the mutagenized microalgae E200-30-40 was not significantly different from E100-30-60, meaning that this microalga strain exhibited highest both biomass and lipid productivity. These results indicated that inducing mutagenesis by EMS subsequently screening by herbicide could lead to enhance biomass and lipid accumulation. Therefore, this methodology could be used for improvement microalgae for biofuel production.
Collapse
Affiliation(s)
- Orn-U-Ma Tanadul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand. .,Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand. .,Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand.
| | - Wilawan Noochanong
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Patiruj Jirakranwong
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand
| | - Sontichai Chanprame
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.,Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand
| |
Collapse
|
22
|
Sadeghizadeh A, Farhad Dad F, Moghaddasi L, Rahimi R. CO 2 capture from air by Chlorella vulgaris microalgae in an airlift photobioreactor. BIORESOURCE TECHNOLOGY 2017; 243:441-447. [PMID: 28688327 DOI: 10.1016/j.biortech.2017.06.147] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/24/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
In this work, hydrodynamics and CO2 biofixation study was conducted in an airlift bioreactor at the temperature of 30±2°C. The main objective of this work was to investigate the effect of high gas superficial velocity on CO2 biofixation using Chlorella vulgaris microalgae and its growth. The study showed that Chlorella vulgaris in high input gas superficial velocity also had the ability to grow and remove the CO2 by less than 80% efficiency.
Collapse
Affiliation(s)
- Aziz Sadeghizadeh
- Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, P.O.Box.98164-161, Iran
| | - Farid Farhad Dad
- Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, P.O.Box.98164-161, Iran
| | - Leila Moghaddasi
- Natural Resources Department, Islamic Azad University, Bandar Abbas, P.O. Box.79158-93144, Iran
| | - Rahbar Rahimi
- Department of Chemical Engineering, University of Sistan and Baluchestan, Zahedan, P.O.Box.98164-161, Iran.
| |
Collapse
|
23
|
Kuo CM, Lin TH, Yang YC, Zhang WX, Lai JT, Wu HT, Chang JS, Lin CS. Ability of an alkali-tolerant mutant strain of the microalga Chlorella sp. AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency. BIORESOURCE TECHNOLOGY 2017; 244:243-251. [PMID: 28780257 DOI: 10.1016/j.biortech.2017.07.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
An alkali-tolerant Chlorella sp. AT1 mutant strain was screened by NTG mutagenesis. The strain grew well in pH 6-11 media, and the optimal pH for growth was 10. The CO2 utilization efficiencies of Chlorella sp. AT1 cultured with intermittent 10% CO2 aeration for 10, 20 and 30min at 3-h intervals were approximately 80, 42 and 30%, respectively. In alkaline medium (pH=11) with intermittent 10% CO2 aeration for 30min at 3-, 6- and 12-h intervals, the medium pH gradually changed to 10, and the biomass productivities of Chlorella sp. AT1 were 0.987, 0.848 and 0.710gL-1d-1, respectively. When Chlorella sp. AT1 was aerated with 10% CO2 intermittently for 30min at 3-h intervals in semi-continuous cultivation for 21days, the biomass concentration and biomass productivity were 4.35gL-1 and 0.726gL-1d-1, respectively. Our results show that CO2 utilization efficiency can be markedly increased by intermittent CO2 aeration and alkaline media as a CO2-capturing strategy for alkali-tolerant microalga cultivation.
Collapse
Affiliation(s)
- Chiu-Mei Kuo
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Tsung-Hsien Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Chun Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Wen-Xin Zhang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jinn-Tsyy Lai
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan
| | - Hsi-Tien Wu
- Department of BioAgricultural Science, National Chia Yi University, Chiayi City, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
24
|
Xia L, Huang R, Li Y, Song S. The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231). PLoS One 2017; 12:e0186434. [PMID: 29045481 PMCID: PMC5646804 DOI: 10.1371/journal.pone.0186434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/29/2017] [Indexed: 11/25/2022] Open
Abstract
The effects of growth phase on the lipid content and surface properties of oleaginous microalgae Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231 were investigated in this study. The results showed that throughout the growth phases, the lipid content of microalgae increased. The surface properties like particle size, the degree of hydrophobicity, and the total concentration of functional groups increased while net surface zeta potential decreased. The results suggested that the growth stage had significant influence not only on the lipid content but also on the surface characteristics. Moreover, the lipid content was significantly positively related to the concentration of hydroxyl functional groups in spite of algal strains or growth phases. These results provided a basis for further studies on the refinery process using oleaginous microalgae for biofuel production.
Collapse
Affiliation(s)
- Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan, Hubei, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, China
| | - Rong Huang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei, China
| | - Yinta Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan, Hubei, China
- Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autonoma de San Luis Potosi, San Luis Potosi, C.P., Mexico
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan, Hubei, China
- Doctorado Institucional de Ingeniería y Ciencia de Materiales, Universidad Autonoma de San Luis Potosi, San Luis Potosi, C.P., Mexico
- * E-mail:
| |
Collapse
|
25
|
Mehtani J, Arora N, Patel A, Jain P, Pruthi PA, Poluri KM, Pruthi V. Augmented lipid accumulation in ethyl methyl sulphonate mutants of oleaginous microalga for biodiesel production. BIORESOURCE TECHNOLOGY 2017; 242:121-127. [PMID: 28366694 DOI: 10.1016/j.biortech.2017.03.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to generate high lipid accumulating mutants of Chlorella minutissima (CM) using ethyl methyl sulphonate (EMS) as a random chemical mutagen. Amid the 5% surviving cells after exposure to EMS (2M), three fast growing mutants (CM2, CM5, CM7) were selected and compared with wild type for lipid productivity and biochemical composition. Among these mutants, CM7 showed the maximum biomass (2.4g/L) and lipid content (42%) as compared to wild type (1.5g/L; 27%). Further, the mutant showed high photosynthetic pigments with low starch content signifying the re-allocation of carbon flux to lipid. The obtained mutant showed no visible morphological changes in comparison to its WT. The fatty acid profile showed increase in monounsaturated fatty acids while decreased saturated and polyunsaturated fatty acids signifying good quality biodiesel. The mutant strain thus obtained can be optimized further and applied for enhanced biodiesel production.
Collapse
Affiliation(s)
- Juhi Mehtani
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Neha Arora
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Alok Patel
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Priyanka Jain
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Parul A Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | | | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, India.
| |
Collapse
|
26
|
Abstract
Zeaxanthin is a xanthophyll pigment that is regarded as one of the best carotenoids for the prevention and treatment of degenerative diseases. In the worldwide natural products market, consumers prefer pigments that have been produced from biological sources. In this study, a Dunaliella tertiolecta strain that has 10–15% higher cellular zeaxanthin content than the parent strain (zea1), was obtained by random mutagenesis using ethyl methanesulfonate (EMS) as a mutagen. This mutant, mp3, was grown under various salinities and light intensities to optimize culture conditions for zeaxanthin production. The highest cellular zeaxanthin content was observed at 1.5 M NaCl and 65–85 μmol photons·m−2·s−1, and the highest daily zeaxanthin productivity was observed at 0.6 M NaCl and 140–160 μmol photons·m−2·s−1. The maximal yield of zeaxanthin from mp3 in fed-batch culture was 8 mg·L−1, which was obtained at 0.6 M NaCl and 140–160 μmol photons·m−2·s−1. These results suggest that random mutagenesis with EMS is useful for generating D. tertiolecta strains with increased zeaxanthin content, and also suggest optimal culture conditions for the enhancement of biomass and zeaxanthin production by the zeaxanthin accumulating mutant strains.
Collapse
|
27
|
Sachdeva N, Gupta RP, Mathur AS, Tuli DK. Enhanced lipid production in thermo-tolerant mutants of Chlorella pyrenoidosa NCIM 2738. BIORESOURCE TECHNOLOGY 2016; 221:576-587. [PMID: 27689351 DOI: 10.1016/j.biortech.2016.09.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/07/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
The present study aimed to develop thermo-tolerant mutants of Chlorella pyrenoidosa NCIM 2738 for high lipids production. For this, ethyl methane sulfonate was used, which generated two effective thermo-tolerant mutants, M18 and M24 of Chlorella pyrenoidosa NCIM 2738, capable of surviving at temperature up to 47°C and showing improved lipid and biomass yields. They showed 59.62% and 50.75% increase, respectively in lipid content compared to wild type at 30°C, which could not grow at temperature above 35°C. The novelty of this study lied in incorporation of PAM Flurometry with mutagenesis to generate thermo-tolerant mutants of C. pyrenoidosa and investigating the reasons for increased yields of mutants at cellular and photosynthetic levels with the aim to use them for commercial biodiesel production.
Collapse
Affiliation(s)
- Neha Sachdeva
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| | | | | | - Deepak Kumar Tuli
- DBT-IOC Centre for Advanced Bioenergy Research, Research & Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad 121007, India
| |
Collapse
|
28
|
Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review. Appl Biochem Biotechnol 2015; 178:1220-38. [DOI: 10.1007/s12010-015-1940-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/26/2015] [Indexed: 10/22/2022]
|
29
|
Hlavova M, Turoczy Z, Bisova K. Improving microalgae for biotechnology — From genetics to synthetic biology. Biotechnol Adv 2015; 33:1194-203. [DOI: 10.1016/j.biotechadv.2015.01.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/11/2015] [Accepted: 01/17/2015] [Indexed: 01/01/2023]
|
30
|
Choi HJ, Lee SM. Heavy metal removal from acid mine drainage by calcined eggshell and microalgae hybrid system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13404-13411. [PMID: 25940497 DOI: 10.1007/s11356-015-4623-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
This study investigates the use of calcined eggshells and microalgae for the removal of heavy metals from acid mine drainage (AMD) and the simultaneous enhancement of biomass productivity. The experiment was conducted over a period of 6 days in a hybrid system containing calcined eggshells and the microalgae Chlorella vulgaris. The results show that the biomass productivity increased to ~8.04 times its initial concentration of 0.367 g/L as measured by an optical panel photobioreactor (OPPBR) and had a light transmittance of 95 % at a depth of 305 mm. On the other hand, the simultaneous percent removal of Fe, Cu, Zn, Mn, As, and Cd from the AMD effluent was found to be 99.47 to 100 %. These results indicate that the hybrid system with calcined eggshells and microalgae was highly effective for heavy metal removal in the AMD.
Collapse
Affiliation(s)
- Hee-Jeong Choi
- Department of Environmental Engineering, Catholic Kwandong University, Beomil-ro 579, Gangneung, 210-701, Korea,
| | | |
Collapse
|
31
|
Duong VT, Ahmed F, Thomas-Hall SR, Quigley S, Nowak E, Schenk PM. High protein- and high lipid-producing microalgae from northern australia as potential feedstock for animal feed and biodiesel. Front Bioeng Biotechnol 2015; 3:53. [PMID: 26042215 PMCID: PMC4435038 DOI: 10.3389/fbioe.2015.00053] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/03/2015] [Indexed: 12/02/2022] Open
Abstract
Microalgal biomass can be used for biodiesel, feed, and food production. Collection and identification of local microalgal strains in the Northern Territory, Australia was conducted to identify strains with high protein and lipid contents as potential feedstock for animal feed and biodiesel production, respectively. A total of 36 strains were isolated from 13 samples collected from a variety of freshwater locations, such as dams, ponds, and streams and subsequently classified by 18S rDNA sequencing. All of the strains were green microalgae and predominantly belong to Chlorella sp., Scenedesmus sp., Desmodesmus sp., Chlamydomonas sp., Pseudomuriella sp., Tetraedron caudatum, Graesiella emersonii, and Mychonastes timauensis. Among the fastest growing strains, Scenedesmus sp. NT1d possessed the highest content of protein; reaching up to 33% of its dry weight. In terms of lipid production, Chlorella sp. NT8a and Scenedesmus dimorphus NT8e produced the highest triglyceride contents of 116.9 and 99.13 μg mL(-1) culture, respectively, as measured by gas chromatography-mass spectroscopy of fatty acid methyl esters. These strains may present suitable candidates for biodiesel production after further optimization of culturing conditions, while their protein-rich biomass could be used for animal feed.
Collapse
Affiliation(s)
- Van Thang Duong
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Faruq Ahmed
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Skye R. Thomas-Hall
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Simon Quigley
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ekaterina Nowak
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Peer M. Schenk
- Algae Biotechnology Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
32
|
Raeesossadati MJ, Ahmadzadeh H, McHenry MP, Moheimani NR. CO2 Environmental Bioremediation by Microalgae. BIOFUEL AND BIOREFINERY TECHNOLOGIES 2015. [DOI: 10.1007/978-3-319-16640-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Choi H. Intensified Production of Microalgae and Removal of Nutrient Using a Microalgae Membrane Bioreactor (MMBR). Appl Biochem Biotechnol 2014; 175:2195-205. [DOI: 10.1007/s12010-014-1365-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
|
34
|
Isolation and Characterization of New Temperature Tolerant Microalgal Strains for Biomass Production. ENERGIES 2014. [DOI: 10.3390/en7127847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Onay M, Sonmez C, Oktem HA, Yucel AM. Thermo-resistant green microalgae for effective biodiesel production: isolation and characterization of unialgal species from geothermal flora of Central Anatolia. BIORESOURCE TECHNOLOGY 2014; 169:62-71. [PMID: 25033325 DOI: 10.1016/j.biortech.2014.06.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/20/2014] [Accepted: 06/22/2014] [Indexed: 06/03/2023]
Abstract
Oil content and composition, biomass productivity and adaptability to different growth conditions are important parameters in selecting a suitable microalgal strain for biodiesel production. Here, we describe isolation and characterization of three green microalgal species from geothermal flora of Central Anatolia. All three isolates, namely, Scenedesmus sp. METUNERGY1402 (Scenedesmus sp. ME02), Hindakia tetrachotoma METUNERGY1403 (H. tetrachotoma ME03) and Micractinium sp. METUNERGY1405 (Micractinium sp. ME05) are adaptable to growth at a wide temperature range (25-50 °C). Micractinium sp. ME05, particularly has superior properties for biodiesel production. Biomass productivity, lipid content and lipid productivity of this isolate are 0.17 g L(-1) d(-1), 22.7% and 0.04 g L(-1) d(-1), respectively. In addition, Micractinium sp. ME05 and Scenedesmus sp. ME03 mainly contain desirable fatty acid methyl esters (i.e. 16:0, 16:1, 18:0 and 18:1) for biodiesel production. All isolates can further be improved via genetic and metabolic engineering strategies.
Collapse
Affiliation(s)
- Melih Onay
- Department of Biochemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Cagla Sonmez
- Department of Biology, Middle East Technical University, 06800 Ankara, Turkey
| | - Huseyin Avni Oktem
- Department of Biochemistry, Middle East Technical University, 06800 Ankara, Turkey; Department of Biology, Middle East Technical University, 06800 Ankara, Turkey; Department of Biotechnology, Middle East Technical University, 06800 Ankara, Turkey
| | - Ayse Meral Yucel
- Department of Biochemistry, Middle East Technical University, 06800 Ankara, Turkey; Department of Biology, Middle East Technical University, 06800 Ankara, Turkey; Department of Biotechnology, Middle East Technical University, 06800 Ankara, Turkey.
| |
Collapse
|
36
|
Raeesossadati M, Ahmadzadeh H, McHenry M, Moheimani N. CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. ALGAL RES 2014. [DOI: 10.1016/j.algal.2014.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Kao CY, Chen TY, Chang YB, Chiu TW, Lin HY, Chen CD, Chang JS, Lin CS. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. BIORESOURCE TECHNOLOGY 2014; 166:485-493. [PMID: 24950094 DOI: 10.1016/j.biortech.2014.05.094] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/21/2014] [Accepted: 05/24/2014] [Indexed: 06/03/2023]
Abstract
The biomass and lipid productivity of Chlorella sp. MTF-15 cultivated using aeration with flue gases from a coke oven, hot stove or power plant in a steel plant of the China Steel Corporation in Taiwan were investigated. Using the flue gas from the coke oven, hot stove or power plant for cultivation, the microalgal strain obtained a maximum specific growth rate and lipid production of (0.827 d(-1), 0.688 g L(-1)), (0.762 d(-1), 0.961 g L(-1)), and (0.728 d(-1), 0.792 g L(-1)), respectively. This study demonstrated that Chlorella sp. MTF-15 could efficiently utilize the CO₂, NOX and SO₂ present in the different flue gases. The results also showed that the growth potential, lipid production and fatty acid composition of the microalgal strain were dependent on the composition of the flue gas and on the operating strategy deployed.
Collapse
Affiliation(s)
- Chien-Ya Kao
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Tsai-Yu Chen
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Bin Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Tzai-Wen Chiu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hsiun-Yu Lin
- Energy Development and Application Section, New Materials Research and Development Department, China Steel Corporation, Kaohsiung, Taiwan
| | - Chun-Da Chen
- Energy Development and Application Section, New Materials Research and Development Department, China Steel Corporation, Kaohsiung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
38
|
Guccione A, Biondi N, Sampietro G, Rodolfi L, Bassi N, Tredici MR. Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:84. [PMID: 24932216 PMCID: PMC4057815 DOI: 10.1186/1754-6834-7-84] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/06/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Chlorella is one of the few microalgae employed for human consumption. It typically has a high protein content, but it can also accumulate high amounts of lipids or carbohydrates under stress conditions and, for this reason, it is of interest in the production of biofuels. High production costs and energy consumption are associated with its cultivation. This work describes a strategy to reduce costs and environmental impact of Chlorella biomass production for food, biofuels and other applications. RESULTS The growth of four Chlorella strains, selected after a laboratory screening, was investigated outdoors in a low-cost 0.25 m(2) GWP-II photobioreactor. The capacity of the selected strains to grow at high temperature was tested. On the basis of these results, in the nitrogen starvation trials the culture was cooled only when the temperature exceeded 40°C to allow for significant energy savings, and performed in a seawater-based medium to reduce the freshwater footprint. Under nutrient sufficiency, strain CH2 was the most productive. In all the strains, nitrogen starvation strongly reduced productivity, depressed protein and induced accumulation of carbohydrate (about 50%) in strains F&M-M49 and IAM C-212, and lipid (40 - 45%) in strains PROD1 and CH2. Starved cultures achieved high storage product productivities: 0.12 g L(-1) d(-1) of lipids for CH2 and 0.19 g L(-1) d(-1) of carbohydrates for F&M-M49. When extrapolated to large-scale in central Italy, CH2 showed a potential productivity of 41 t ha(-1) y(-1) for biomass, 16 t ha(-1) y(-1) for protein and 11 t ha(-1) y(-1) for lipid under nutrient sufficiency, and 8 t ha(-1) y(-1) for lipid under nitrogen starvation. CONCLUSIONS The environmental and economic sustainability of Chlorella production was enhanced by growing the organisms in a seawater-based medium, so as not to compete with crops for freshwater, and at high temperatures, so as to reduce energy consumption for cooling. All the four selected strains are good candidates for food or biofuels production in lands unsuitable for conventional agriculture. Chlorella strain CH2 has the potential for more than 80 tonnes of biomass, 32 tonnes of protein and 22 tonnes of lipid per year under favourable climates.
Collapse
Affiliation(s)
- Alessia Guccione
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente - Sezione di Microbiologia Agraria, Università degli Studi di Firenze, Piazzale delle Cascine 24, Firenze 50144, Italy
| | - Natascia Biondi
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente - Sezione di Microbiologia Agraria, Università degli Studi di Firenze, Piazzale delle Cascine 24, Firenze 50144, Italy
| | - Giacomo Sampietro
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente - Sezione di Microbiologia Agraria, Università degli Studi di Firenze, Piazzale delle Cascine 24, Firenze 50144, Italy
| | - Liliana Rodolfi
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente - Sezione di Microbiologia Agraria, Università degli Studi di Firenze, Piazzale delle Cascine 24, Firenze 50144, Italy
- Fotosintetica & Microbiologica S.r.l., Via dei Della Robbia 54, Firenze 50132, Italy
| | - Niccolò Bassi
- Fotosintetica & Microbiologica S.r.l., Via dei Della Robbia 54, Firenze 50132, Italy
| | - Mario R Tredici
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente - Sezione di Microbiologia Agraria, Università degli Studi di Firenze, Piazzale delle Cascine 24, Firenze 50144, Italy
| |
Collapse
|
39
|
Ruffing AM. Improved Free Fatty Acid Production in Cyanobacteria with Synechococcus sp. PCC 7002 as Host. Front Bioeng Biotechnol 2014; 2:17. [PMID: 25152890 PMCID: PMC4126656 DOI: 10.3389/fbioe.2014.00017] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/11/2014] [Indexed: 12/17/2022] Open
Abstract
Microbial free fatty acids (FFAs) have been proposed as a potential feedstock for renewable energy. The ability to directly convert carbon dioxide into FFAs makes cyanobacteria ideal hosts for renewable FFA production. Previous metabolic engineering efforts using the cyanobacterial hosts Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 have demonstrated this direct conversion of carbon dioxide into FFAs; however, FFA yields in these hosts are limited by the negative impact of FFA production on the host cell physiology. This work investigates the use of Synechococcus sp. PCC 7002 as a cyanobacterial host for FFA production. In comparison to S. elongatus PCC 7942, Synechococcus sp. PCC 7002 strains produced and excreted FFAs at similar concentrations but without the detrimental effects on host physiology. The enhanced tolerance to FFA production with Synechococcus sp. PCC 7002 was found to be temperature-dependent, with physiological effects such as reduced photosynthetic yield and decreased photosynthetic pigments observed at higher temperatures. Additional genetic manipulations were targeted for increased FFA production, including thioesterases and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Overexpression of non-native RuBisCO subunits (rbcLS) from a psbAI promoter resulted in more than a threefold increase in FFA production, with excreted FFA concentrations reaching >130 mg/L. This work illustrates the importance of host strain selection for cyanobacterial biofuel production and demonstrates that the FFA tolerance of Synechococcus sp. PCC 7002 can allow for high yields of excreted FFA.
Collapse
Affiliation(s)
- Anne M Ruffing
- Department of Bioenergy and Defense Technologies, Sandia National Laboratories , Albuquerque, NM , USA
| |
Collapse
|
40
|
Drexler ILC, Joustra C, Prieto A, Bair R, Yeh DH. AlgaeSim: a model for integrated algal biofuel production and wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2014; 86:163-176. [PMID: 24645547 DOI: 10.2175/106143013x13807328849215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
AlgaeSim, a dynamic multiple-systems (C, N, P) mass balance model, was developed to explore the potential for algae biomass production from wastewater by coupling two photobioreactors into the main treatment train at a municipal wastewater resource recovery facility (WRRF) in Tampa, Florida. The scoping model examined the synergy between algae cultivation and wastewater treatment through algal growth and substrate removal kinetics, as well as through macroeconomic analyses of biomass conversion to bioproducts. Sensitivity analyses showed that biomass production is strongly dependent on Monod variables and harvesting regime, with sensitivity changing with growth phase. Profitability was sensitive to processing costs and market prices of products. Under scenarios based on current market conditions and typical algae production, AlgaeSim shows that a WRRF can potentially generate significant profit if algae are processed for biodiesel, biogas, or fertilizer. Wastewater resource recovery facilities could similarly save on operating costs resulting from the reduction in aeration (for nitrification) and chemicals (for denitrification).
Collapse
|
41
|
Liu J, Chen F. Biology and Industrial Applications of Chlorella: Advances and Prospects. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 153:1-35. [PMID: 25537445 DOI: 10.1007/10_2014_286] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chlorella represents a group of eukaryotic green microalgae that has been receiving increasing scientific and commercial interest. It possesses high photosynthetic ability and is capable of growing robustly under mixotrophic and heterotrophic conditions as well. Chlorella has long been considered as a source of protein and is now industrially produced for human food and animal feed. Chlorella is also rich in oil, an ideal feedstock for biofuels. The exploration of biofuel production by Chlorella is underway. Chlorella has the ability to fix carbon dioxide efficiently and to remove nutrients of nitrogen and phosphorous, making it a good candidate for greenhouse gas biomitigation and wastewater bioremediation. In addition, Chlorella shows potential as an alternative expression host for recombinant protein production, though challenges remain to be addressed. Currently, omics analyses of certain Chlorella strains are being performed, which will help to unravel the biological implications of Chlorella and facilitate the future exploration of industrial applications.
Collapse
Affiliation(s)
- Jin Liu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China. .,Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA. .,Singapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore, Singapore.
| | - Feng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China. .,Singapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore, Singapore.
| |
Collapse
|
42
|
Prajapati SK, Kaushik P, Malik A, Vijay VK. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: Possibilities and challenges. Biotechnol Adv 2013; 31:1408-25. [DOI: 10.1016/j.biotechadv.2013.06.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/13/2013] [Accepted: 06/22/2013] [Indexed: 10/26/2022]
|
43
|
CHIA MATHIASA, LOMBARDI ANAT, MELAO MARIADAGRACAG. Growth and biochemical composition of Chlorella vulgaris in different growth media. AN ACAD BRAS CIENC 2013; 85:1427-38. [DOI: 10.1590/0001-3765201393312] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/03/2013] [Indexed: 01/24/2023] Open
Abstract
The need for clean and low-cost algae production demands for investigations on algal physiological response under different growth conditions. In this research, we investigated the growth, biomass production and biochemical composition of Chlorella vulgaris using semi-continuous cultures employing three growth media (LC Oligo, Chu 10 and WC media). The highest cell density was obtained in LC Oligo, while the lowest in Chu medium. Chlorophyll a, carbohydrate and protein concentrations and yield were highest in Chu and LC Oligo media. Lipid class analysis showed that hydrocarbons (HC), sterol esthers (SE), free fatty acids (FFA), aliphatic alcohols (ALC), acetone mobile polar lipids (AMPL) and phospholipids (PL) concentrations and yields were highest in the Chu medium. Triglyceride (TAG) and sterol (ST) concentrations were highest in the LC Oligo medium. The results suggested that for cost effective cultivation, LC Oligo medium is the best choice among those studied, as it saved the cost of buying vitamins and EDTA associated with the other growth media, while at the same time resulted in the best growth performance and biomass production.
Collapse
|
44
|
Chen C, Lu Z, Ma X, Long J, Peng Y, Hu L, Lu Q. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. BIORESOURCE TECHNOLOGY 2013; 144:563-571. [PMID: 23890976 DOI: 10.1016/j.biortech.2013.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/29/2013] [Accepted: 07/03/2013] [Indexed: 06/02/2023]
Abstract
Oxy-fuel or O2/CO2 combustion technology was used to investigate the combustion of Chlorella vulgaris by thermogravimetric analysis (TGA). Oxy-fuel combustion occurs in an O2/CO2 atmosphere instead of an O2/N2 atmosphere and offers an alternative method of C. vulgaris preparation for biofuels processing. Our results show that three stages were observed during C. vulgaris combustion and the main combustion process occurred at the second stage. Compared with a 20%O2/80%N2 atmosphere, the mass loss rate at the DTG peaks (Rp) and the average reaction rate (Rv) in a 20%O2/80%CO2 atmosphere was lower, while the ignition temperature (TI) was higher. As oxygen concentration increases in an O2/CO2 atmosphere, Rp, Rv and the apparent activation energy (E) increases, while TI, the final temperature detected as mass stabilization (Tf) and the residue mass (Mr) decreases; As the heating rate (β) increases, TI, Tf and Rp increase, while Mr decreases.
Collapse
Affiliation(s)
- Chunxiang Chen
- College of Electrical Engineering, Guangxi University, Xixiangtang District, Nanning City, PR China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Han F, Wang W, Li Y, Shen G, Wan M, Wang J. Changes of biomass, lipid content and fatty acids composition under a light-dark cyclic culture of Chlorella pyrenoidosa in response to different temperature. BIORESOURCE TECHNOLOGY 2013; 132:182-189. [PMID: 23411446 DOI: 10.1016/j.biortech.2012.12.175] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/22/2012] [Accepted: 12/26/2012] [Indexed: 06/01/2023]
Abstract
For outdoor culture with light-dark cycle, the biomass and lipid losing at night resulted in lowering the biomass and lipid productivity. Previous studies focused on the contents of carbohydrate and protein in response to temperature for production of animal feed and nutritional supplements. In this study, the effects of temperature on the variations of biomass concentration, lipid content and fatty acids composition for production of biofuels were investigated under a light-dark cyclic culture. The results showed that 30 °C was the optimal daytime temperature for achieving high biomass and lipid; raising daytime temperature can lessen night biomass loss and stimulate lipid accumulation. Subsequently, outdoor culture strategy has been improved: keeping culture broth no less than 30 °C during the daytime. Consequently, the net biomass and lipid productivity were increased by 37.8% and 44.9% when compared to the former culture process in the same outdoor climatic conditions.
Collapse
Affiliation(s)
- Feifei Han
- Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | | | | | | | | | | |
Collapse
|
46
|
Tillich UM, Lehmann S, Schulze K, Dühring U, Frohme M. The optimal mutagen dosage to induce point-mutations in Synechocystis sp. PCC6803 and its application to promote temperature tolerance. PLoS One 2012; 7:e49467. [PMID: 23185339 PMCID: PMC3504032 DOI: 10.1371/journal.pone.0049467] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/09/2012] [Indexed: 01/18/2023] Open
Abstract
Random mutagenesis is a useful tool to genetically modify organisms for various purposes, such as adaptation to cultivation conditions, the induction of tolerances, or increased yield of valuable substances. This is especially attractive for systems where it is not obvious which genes require modifications. Random mutagenesis has been extensively used to modify crop plants, but even with the renewed interest in microalgae and cyanobacteria for biofuel applications, there is relatively limited current research available on the application of random mutagenesis for these organisms, especially for cyanobacteria. In the presented work we characterized the lethality and rate of non-lethal point mutations for ultraviolet radiation and methyl methanesulphonate on the model cyanobacteria Synechocystis sp. PCC6803. Based on these results an optimal dosage of 10-50 J/m(2) for UV and either 0.1 or 1 v% for MMS was determined. A Synechocystis wildtype culture was then mutagenized and selected for increased temperature tolerance in vivo. During the second round of mutagenesis the viability of the culture was monitored on a cell by cell level from the treatment of the cells up to the growth at an increased temperature. After four distinct rounds of treatment (two with each mutagen) the temperature tolerance of the strain was effectively raised by about 2°C. Coupled with an appropriate in vivo screening, the described methods should be applicable to induce a variety of desirable characteristics in various strains. Coupling random mutagenesis with high-throughput screening methods would additionally allow to select for important characteristics for biofuel production, which do not yield a higher fitness and can not be selected for in vivo, such as fatty acid concentration. In a combined approach with full genome sequencing random mutagenesis could be used to determine suitable target-genes for more focused methods.
Collapse
Affiliation(s)
- Ulrich M. Tillich
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
- Institute of Biology, Humboldt-University Berlin, Berlin, Germany
| | - Sandra Lehmann
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Katja Schulze
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | | | - Marcus Frohme
- Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| |
Collapse
|
47
|
Huang C, Chen X, Liu T, Yang Z, Xiao Y, Zeng G, Sun X. Harvesting of Chlorella sp. using hollow fiber ultrafiltration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:1416-1421. [PMID: 22354358 DOI: 10.1007/s11356-012-0812-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/03/2012] [Indexed: 05/31/2023]
Abstract
INTRODUCTION The suitability of the application of ultrafiltration (UF) to harvest Chlorella sp. from the culture medium was examined. We investigated the effects of two improved UF system, forward air-water flushing and backwash with permeate, on the concentration process. MATERIALS AND METHODS Backwash with permeate was selected as an optimization of the improved UF system, which was more effective for permeate flux recovery. Moreover, the hollow fiber UF system by adding periodical backwash with permeate was examined for Chlorella sp. harvesting. RESULTS AND DISCUSSION It was found that Chlorella sp. could be concentrated with high recovery in a lab-scale experiment. An overall algal biomass recovery of above 90% was achieved when the volume concentration factor was 10. For an original biomass of 1.3 ± 0.05 g/L, 1 min backwash followed by 20 min forward concentrating was more effective, which resulted in a recovery of 94% and a high average flux of 30.3 L/m(2)/h. In addition, the algal recovery was highly correlated to the volume concentration factor and the initial biomass. A high concentration factor or a high initial biomass resulted in a low biomass recovery.
Collapse
Affiliation(s)
- Cui Huang
- Key Laboratory of Biofuels, Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Chiu SY, Kao CY, Huang TT, Lin CJ, Ong SC, Chen CD, Chang JS, Lin CS. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. BIORESOURCE TECHNOLOGY 2011; 102:9135-42. [PMID: 21802285 DOI: 10.1016/j.biortech.2011.06.091] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 06/25/2011] [Indexed: 05/12/2023]
Abstract
The growth and on-site bioremediation potential of an isolated thermal- and CO₂-tolerant mutant strain, Chlorella sp. MTF-7, were investigated. The Chlorella sp. MTF-7 cultures were directly aerated with the flue gas generated from coke oven of a steel plant. The biomass concentration, growth rate and lipid content of Chlorella sp. MTF-7 cultured in an outdoor 50-L photobioreactor for 6 days was 2.87 g L⁻¹ (with an initial culture biomass concentration of 0.75 g L⁻¹), 0.52 g L⁻¹ d⁻¹ and 25.2%, respectively. By the operation with intermittent flue gas aeration in a double-set photobioreactor system, average efficiency of CO₂ removal from the flue gas could reach to 60%, and NO and SO₂ removal efficiency was maintained at approximately 70% and 50%, respectively. Our results demonstrate that flue gas from coke oven could be directly introduced into Chlorella sp. MTF-7 cultures to potentially produce algal biomass and efficiently capture CO₂, NO and SO₂ from flue gas.
Collapse
Affiliation(s)
- Sheng-Yi Chiu
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. BIORESOURCE TECHNOLOGY 2011; 102:71-81. [PMID: 20674344 DOI: 10.1016/j.biortech.2010.06.159] [Citation(s) in RCA: 695] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/13/2010] [Accepted: 06/24/2010] [Indexed: 05/18/2023]
Abstract
Microalgae have the ability to mitigate CO(2) emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production. The effects of different microalgal metabolisms (i.e., phototrophic, heterotrophic, mixotrophic, and photoheterotrophic growth), cultivation systems (emphasizing the effect of light sources), and biomass harvesting methods (chemical/physical methods) on microalgal biomass and oil production are compared and critically discussed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production.
Collapse
Affiliation(s)
- Chun-Yen Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|