1
|
Bijimol BI, Elias L, Sreelekshmy BR, Shibli SMA. Effective Exploitation of Sugarcane Byproducts and Industrial Effluents for Strategic Energy Applications: A Review on Recent Developments and Approaches with Special Reference to Microbial Fuel Cells. ACS APPLIED BIO MATERIALS 2025; 8:3657-3690. [PMID: 40322952 DOI: 10.1021/acsabm.5c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Apart from its role in agriculture, the contribution of the sugarcane industry and its related sectors toward the global economy is seemingly great. Hence, it is imperative to adopt the maximum possible ways to completely recover the stored chemical energy in sugarcane to generate additional revenue and thereby to ensure the sustainability of sugarcane-related industries by surmounting the regional/seasonal limitations associated with sugarcane cultivation. So, the present Review aims to highlight the importance of sugarcane crops in the global economy by comprehensively discussing the energy value of byproducts and industrial waste generated during the processing of sugarcane. The various possible strategies reported so far for the effective recovery of bioenergy from sugarcane components are discussed with a special emphasis on technologies capable of converting the stored chemical energy into electrical energy or fuel. As the fraction of waste components generated during the harvesting or processing of sugarcane is high, the bioenergy recovery strategies standing close to the "waste-to-energy" concept are the most rewarding ones, suitable for complete bioenergy recovery. Hence, the microbial fuel cell (MFC) technology that offers dual benefits in terms of waste management and power generation is receiving much attention. The status of technological developments in MFCs and the possibilities for developing hybrid technologies through their integration with existing sugar industry waste processing strategies, to further enhance the effective exploitation of the energy value of sugarcane byproducts, are discussed rigorously by focusing on their commercialization possibilities.
Collapse
Affiliation(s)
- Babu Indira Bijimol
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Liju Elias
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | | | - Sheik Muhammadhu Aboobakar Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
- Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| |
Collapse
|
2
|
Salman AA. Sugar-based emulsifiers: Sustainable molecules with great potential. Carbohydr Res 2025; 553:109504. [PMID: 40294503 DOI: 10.1016/j.carres.2025.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
The demand for foods, cosmetics, personal hygiene products, cleaning products, and pharmaceutical products is increasing globally. These common products are widely used in homes and workplaces. On the other hand, increasing production has raised global warming and environmental issues, necessitating the finding of new sustainable solutions. As a result, industries are attempting to discover new bioactive ingredients from nature as alternatives to synthetic ones. This review covers some of the main categories of natural sugar-based surfactants (sugar derivatives and alkyl polyglucosides) as prospective emulsifiers, their preparation methods, and potential applications. Various production routes for mono- and polysaccharide-based emulsifiers and their advantages for the industry are highlighted. The readers will be able to approach the synthesis of sugar-based emulsifiers and their use in the food, pharmaceutical, personal care, and cosmetic industries. The synthetic methods use natural ingredients to generate emulsifiers with desired biodegradability and ecotoxicology profiles. In this review, we have compiled and described the present synthetic methodologies for sugar-based emulsifiers and their applications in various fields.
Collapse
Affiliation(s)
- Abbas Abdulameer Salman
- College of Dentistry, Ibn Sina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq; College of Health and Medical Techniques, Al-Bayan University, Baghdad, Iraq; Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Han R, Zhong Q, Yan Y, Wang J, Zhu Y, Li S, Lei P, Wang R, Qiu Y, Luo Z, Xu H. Transcriptomics-guided rational engineering in Bacillus licheniformis for enhancing poly-γ-glutamic acid biosynthesis using untreated molasses. Int J Biol Macromol 2024; 282:137514. [PMID: 39532159 DOI: 10.1016/j.ijbiomac.2024.137514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The utilization of non-food raw materials for microbial synthesis of poly-γ-glutamic acid (γ-PGA) presents a promising alternative to conventional food-based biosynthesis. However, the complex carbon source and composition of molasses, a prevalent non-food raw material, may impose constraints on its conversion and utilization by microorganisms. This study aimed to enhance the capacity of Bacillus licheniformis to convert untreated molasses into γ-PGA through transcriptomic analysis to guide metabolic modifications. Initial results from the transcriptomic analysis indicated that the strain utilizing molasses exhibited decreased expression of genes associated with substrate utilization (Module 1) and by-product synthesis (Module 2), while upregulating genes related to precursor synthesis (Module 3). Furthermore, we performed a knockout of the acetolactate synthase (AlsS) to reduce the synthesis of metabolic by-products and a knockout of the global regulator (CcpA) to alleviate carbon catabolite repression (CCR) and then promote substrate utilization. Ultimately, following the tandem overexpression of precursor supplying key genes, the titer of γ-PGA reached 48.26 g/L with a productivity of 1.15 g/L/h, using untreated molasses as the sole carbon source, which was 3.12-fold of the starting strain. These findings offer significant insights into the cost-effective synthesis of γ-PGA by bioconversion of untreated molasses during fermentation.
Collapse
Affiliation(s)
- Rui Han
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qian Zhong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Yan
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Juan Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
4
|
Phosriran C, Wong N, Jantama K. An efficient production of bio-succinate in a novel metabolically engineered Klebsiella oxytoca by rational metabolic engineering and evolutionary adaptation. BIORESOURCE TECHNOLOGY 2024; 393:130045. [PMID: 38006983 DOI: 10.1016/j.biortech.2023.130045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Klebsiella oxytoca KC004 (ΔadhEΔpta-ackAΔldhAΔbudABΔpflB) was engineered to enhance succinate production. The strain exhibited poor growth without succinate production due to its deficiencies in ATP production and NADH reoxidation. To overcome obstacles, evolutionary adaptation with over 6,000 generations of growth-based selection was conducted. Under anaerobic conditions, enhanced productions of ATP for growth and succinate for NADH reoxidation by the evolved KC004-TF160 strain were coupled to an increased transcript of PEP carboxykinase (pck) while those of genes in the oxidative branch of TCA cycle (gltA, acnAB, and icd), and pyruvate and acetate metabolisms (pykA, acs, poxB and tdcD) were alleviated. The expression of pyruvate dehydrogenase repressor (pdhR) decreased whereas threonine decarboxylase (tdcE) increased. KC004-TF160 produced succinate at 84 g/L (0.84 g/g, 79 % theoretical maximum). KC004-TF160 produced succinate at 0.87 g/g non-pretreated sugarcane molasses without addition of nutrients and buffers. KC004-TF160 may be a microbial platform for commercial production of bio-succinate.
Collapse
Affiliation(s)
- Chutchawan Phosriran
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Nonthaporn Wong
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
5
|
Li Y, Gan S, Luo L, Yang W, Mo L, Shang C. Optimization of Molasses and Soybean Meal Content to Enhance Tetramethylpyrazine Yield by Bacillus sp. TTMP20. Molecules 2023; 28:6515. [PMID: 37764292 PMCID: PMC10535143 DOI: 10.3390/molecules28186515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Microbial fermentation for the production of tetramethylpyrazine (TTMP) is considered to be the most promising method, and the development of a cheap fermentation substrate is of great importance for large-scale TTMP production. In this study, inexpensive by-products from the food industry, i.e., molasses and soybean meal (instead of glucose and tryptone), were used as substrates for TTMP fermentation. The pretreatment of soybean meal was explored in order to achieve a better fermentation effect. The contents of each component in the fermentation medium were optimized by central composite design (CCD). The optimum contents were as follows: 72.5 g/L of molasses, 37.4 g/L of diammonium hydrogen phosphate (DAP), 53.4 g/L of soybean meal, and 5 g/L of yeast powder. The software predicted a maximum TTMP yield of 1469.03 mg/L, and the actual TTMP yield was 1328.95 mg/L for the validation experiment in the optimum medium. Under the optimum conditions (72.5 g/L of molasses, 37.4 g/L of DAP, 53.4 g/L of soybean meal, and 5 g/L of yeast powder), the actual maximum TTMP yield (1328.95 mg/L) in this study was much higher than the TTMP yield (895.13 mg/L) under the conditions (150 g/L of molasses, 30 g/L of DAP, 30 g/L of tryptone, and 10 g/L of yeast powder) of our previous study published in Molecules. In this study, the TTMP yield improved by 48.46%, with decreased molasses (more than half), decreased yeast powder (half) and by-product soybean meal instead of tryptone compared to our previous study. In summary, the cheaper fermentation medium had a higher TTMP yield in this study, which improves the application potential of Bacillus sp. TTMP20.
Collapse
Affiliation(s)
| | | | | | | | | | - Changhua Shang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin 541006, China; (Y.L.); (S.G.); (L.L.); (W.Y.); (L.M.)
| |
Collapse
|
6
|
Ye DY, Moon JH, Jung GY. Recent Progress in Metabolic Engineering of Escherichia coli for the Production of Various C4 and C5-Dicarboxylic Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:10916-10931. [PMID: 37458388 DOI: 10.1021/acs.jafc.3c02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
As an alternative to petrochemical synthesis, well-established industrial microbes, such as Escherichia coli, are employed to produce a wide range of chemicals, including dicarboxylic acids (DCAs), which have significant potential in diverse areas including biodegradable polymers. The demand for biodegradable polymers has been steadily rising, prompting the development of efficient production pathways on four- (C4) and five-carbon (C5) DCAs derived from central carbon metabolism to meet the increased demand via the biosynthesis. In this context, E. coli is utilized to produce these DCAs through various metabolic engineering strategies, including the design or selection of metabolic pathways, pathway optimization, and enhancement of catalytic activity. This review aims to highlight the recent advancements in metabolic engineering techniques for the production of C4 and C5 DCAs in E. coli.
Collapse
Affiliation(s)
- Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jo Hyun Moon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
7
|
Li Y, Luo L, Ding X, Zhang X, Gan S, Shang C. Production of Tetramethylpyrazine from Cane Molasses by Bacillus sp. TTMP20. Molecules 2023; 28:molecules28062640. [PMID: 36985611 PMCID: PMC10054849 DOI: 10.3390/molecules28062640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
2,3,5,6-Tetramethylpyrazine (TTMP) is an active ingredient of Ligusticum wallichii Franch. It can be used in medicine and food fields. In this study, Bacillus sp. TTMP20 was applied to produce TTMP using cane molasses as a carbon source. After pretreatment with phosphoric acid, 170 mL/L treated molasses, combined with 10 g/L yeast powder, 30 g/L tryptone and 30 g/L (NH4)2HPO4 were used for fermentation. After 36 h, TTMP output reached the highest value of 208.8 mg/L. The yield of TTMP using phosphoric acid-treated molasses as carbon source was 145.59% higher than control. Under the sulfuric acid treatment process of molasses (150 g), the maximum yield of TTMP was 895.13 mg/L, which was 183.18% higher than that of untreated molasses (316.1 mg/L). This study demonstrated that molasses is a high-quality and inexpensive carbon source for the manufacture of TTMP, laying the groundwork for the future industrial production of TTMP.
Collapse
|
8
|
Trisrivirat D, Tinikul R, Chaiyen P. Synthetic microbes and biocatalyst designs in Thailand. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:28-40. [PMID: 39416912 PMCID: PMC11446377 DOI: 10.1016/j.biotno.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 10/19/2024]
Abstract
Furthering the development of the field of synthetic biology in Thailand is included in the Thai government's Bio-Circular-Green (BCG) economic policy. The BCG model has increased collaborations between government, academia and private sectors with the specific aim of increasing the value of bioindustries via sustainable approaches. This article provides a critical review of current academic research related to synthetic biology conducted in Thailand during the last decade including genetic manipulation, metabolic engineering, cofactor enhancement to produce valuable chemicals, and analysis of synthetic cells using systems biology. Work was grouped according to a Design-Build-Test-Learn cycle. Technical areas directly supporting development of synthetic biology for BCG in the future such as enzyme catalysis, enzyme engineering and systems biology related to culture conditions are also discussed. Key activities towards development of synthetic biology in Thailand are also discussed.
Collapse
Affiliation(s)
- Duangthip Trisrivirat
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| |
Collapse
|
9
|
Sustainable production of 2-phenylethanol from agro-industrial wastes by metabolically engineered Bacillus licheniformis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Narisetty V, Okibe MC, Amulya K, Jokodola EO, Coulon F, Tyagi VK, Lens PNL, Parameswaran B, Kumar V. Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production. BIORESOURCE TECHNOLOGY 2022; 360:127513. [PMID: 35772717 DOI: 10.1016/j.biortech.2022.127513] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Succinic acid (SA) is used as a commodity chemical and as a precursor in chemical industry to produce other derivatives such as 1,4-butaneidol, tetrahydrofuran, fumaric acid, and bio-polyesters. The production of bio-based SA from renewable feedstocks has always been in the limelight owing to the advantages of renewability, abundance and reducing climate change by CO2 capture. Considering this, the current review focuses on various 2G feedstocks such as lignocellulosic biomass, crude glycerol, and food waste for cost-effective SA production. It also highlights the importance of producing SA via separate enzymatic hydrolysis and fermentation, simultaneous saccharification and fermentation, and consolidated bioprocessing. Furthermore, recent advances in genetic engineering, and downstream SA processing are thoroughly discussed. It also elaborates on the techno-economic analysis and life cycle assessment (LCA) studies carried out to understand the economics and environmental effects of bio-based SA synthesis.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | | | - K Amulya
- National University of Ireland Galway, University Road, H91TK33 Galway, Ireland
| | | | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Vinay Kumar Tyagi
- Environmental Hydrology Division, National Institute of Hydrology (NIH), Roorkee 247667, Uttarakhand, India
| | - Piet N L Lens
- National University of Ireland Galway, University Road, H91TK33 Galway, Ireland
| | - Binod Parameswaran
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Trivandrum, Kerala 695019, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
11
|
Barletta M, Aversa C, Ayyoob M, Gisario A, Hamad K, Mehrpouya M, Vahabi H. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Assessment of vine shoots and surplus grape must for succinic acid bioproduction. Appl Microbiol Biotechnol 2022; 106:4977-4994. [PMID: 35821430 DOI: 10.1007/s00253-022-12063-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/02/2022]
Abstract
Vine shoots and surplus grape must were assessed as feedstocks for succinic acid production with Actinobacillus succinogenes and Basfia succiniproducens. After acidic and enzymatic hydrolysis, vine shoots released 35-40 g/L total sugars. Both bacterial species produced 18-21 g/L succinic acid from this hydrolysate in 120 h. Regarding grape must fermentation, A. succinogenes clearly outperformed B. succiniproducens. Yeast extract (a source of organic nitrogen and vitamins) was the only additional nutrient needed by A. succinogenes to grow on grape must. Under mathematically optimized conditions (145.7 g/L initial sugars and 24.9 g/L yeast extract), A. succinogenes generated 88.9 ± 1.4 g/L succinic acid in 96 h, reaching a succinic acid yield of 0.66 ± 0.01 g/g and a sugar consumption of 96.64 ± 0.30%. Substrate inhibition was not observed in grape musts with 125-150 g/L initial sugars, provided that an adequate amount of yeast extract was available for bacteria. Alternative nitrogen sources to yeast extract (red wine lees, white wine lees, urea, NH4Cl, and choline chloride) were not suitable for A. succinogenes in grape must. KEY POINTS: • Vine shoots and surplus grape must were assessed for succinic acid bioproduction. • Succinic acid bioproduction was 21 g/L with vine shoots and 89 g/L with grape must. • Fermentation was efficient at high sugar loads if organic N supply was adequate.
Collapse
|
13
|
Klasson KT, Sturm MP, Cole MR. Acid hydrolysis of sucrose in sweet sorghum syrup followed by succinic acid production using a genetically engineered Escherichia coli. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Chiang YY, Nagarajan D, Lo YC, Chen CY, Ng IS, Chang CH, Lee DJ, Chang JS. Succinic acid fermentation with immobilized Actinobacillus succinogenes using hydrolysate of carbohydrate-rich microalgal biomass. BIORESOURCE TECHNOLOGY 2021; 342:126014. [PMID: 34852448 DOI: 10.1016/j.biortech.2021.126014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
This work aimed to study the efficiency of polyvinyl-alcohol-immobilized Actinobacillus succinogenes ATCC55618 for succinic acid (SA) production. Batch fermentation (pH 7, 45% CO2 gas at 0.04 vvm) using glucose (40 g L-1) resulted in SA titer, 26.7 g L-1; productivity, 3.33 g L-1h-1; yield, 0.621 g g-1. Fed-batch mode with cyclic extrication of SA from the medium markedly enhanced the yield to 0.699 g g-1 and concentration to 59.5 g L-1. Batch fermentation using sugars derived from Chlorella vulgaris ESP-31 without yeast extract gave a SA productivity, concentration, and yield of 1.82 g L-1h-1, 36.1 g L-1, and 0.720 g g-1, respectively. Furthermore, continuous fermentation (at 6 h HRT) with microalgal sugar improved the productivity and yield to 3.53 g L-1h-1 and 0.62 g g-1, respectively, which is comparable to those obtained by using glucose. This study reports the highest productivity for SA fermentation using microalgae-derived sugars.
Collapse
Affiliation(s)
- Ya-Yun Chiang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yung-Chung Lo
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Chun-Yen Chen
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Circular Economy, National Cheng Kung University, Tainan, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
15
|
Li Y, Cheng Z, Zhao C, Gao C, Song W, Liu L, Chen X. Reprogramming Escherichia coli Metabolism for Bioplastics Synthesis from Waste Cooking Oil. ACS Synth Biol 2021; 10:1966-1979. [PMID: 34337931 DOI: 10.1021/acssynbio.1c00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recycle and reutilization of food wastes is a promising alternative for supporting and facilitating circular economy. However, engineering industrially relevant model organisms to use food wastes as their sole carbon source has remained an outstanding challenge so far. Here, we reprogrammed Escherichia coli metabolism using modular pathway engineering followed by laboratory adaptive evolution to establish a strain that can efficiently utilize waste cooking oil (WCO) as the sole carbon source to produce monomers of bioplastics, namely, medium-chain α,ω-dicarboxylic acids (MCDCAs). First, the biosynthetic pathway of MCDCAs was designed and rewired by modifying the β-oxidation pathway and introducing an ω-oxidation pathway. Then, metabolic engineering and laboratory adaptive evolution were applied for improving the pathway efficiency of fatty acids utilization. Finally, the engineered strain E. coli AA0306 was able to produce 15.26 g/L MCDCAs with WCO as the sole carbon source. This study provides an economically attractive strategy for biomanufacturing bioplastics from food wastes, which has a great potentiality to be developed as a wide range of enabling biotechnologies for achieving green revolution.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Zhenzhen Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Chunlei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, China
| | - Wei Song
- School of Pharmaceutical Science, State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122 Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
16
|
Biosynthesis of polyhydroxyalkanoates from sugarcane molasses by recombinant Ralstonia eutropha strains. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0783-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Ibrahim SM, Al‐Hossainy AF, Zoromba MS, El Azab IH. Base‐catalyzed oxidation of sugarcane molasses by potassium ferricyanide in alkaline solutions. INT J CHEM KINET 2021. [DOI: 10.1002/kin.21517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Samia M. Ibrahim
- Chemistry Department Faculty of Science New Valley University El‐Kharga New Valley Egypt
| | - Ahmed F. Al‐Hossainy
- Chemistry Department Faculty of Science New Valley University El‐Kharga New Valley Egypt
- Chemistry Department Faculty of Science Northern border University Arar Saudi Arabia
| | - Mohamed Sh. Zoromba
- Chemistry Department Faculty of Science Port‐Said University Port‐Said Egypt
- Chemical and Materials Engineering Department King Abdulaziz University Rabigh Saudi Arabia
| | | |
Collapse
|
18
|
Rodrigues CIS, Wahl A, Gombert AK. Aerobic growth physiology of Saccharomyces cerevisiae on sucrose is strain-dependent. FEMS Yeast Res 2021; 21:6214418. [PMID: 33826723 DOI: 10.1093/femsyr/foab021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Present knowledge on the quantitative aerobic physiology of the yeast Saccharomyces cerevisiae during growth on sucrose as sole carbon and energy source is limited to either adapted cells or to the model laboratory strain CEN.PK113-7D. To broaden our understanding of this matter and open novel opportunities for sucrose-based biotechnological processes, we characterized three strains, with distinct backgrounds, during aerobic batch bioreactor cultivations. Our results reveal that sucrose metabolism in S. cerevisiae is a strain-specific trait. Each strain displayed distinct extracellular hexose concentrations and invertase activity profiles. Especially, the inferior maximum specific growth rate (0.21 h-1) of the CEN.PK113-7D strain, with respect to that of strains UFMG-CM-Y259 (0.37 h-1) and JP1 (0.32 h-1), could be associated to its low invertase activity (0.04-0.09 U/mgDM). Moreover, comparative experiments with glucose or fructose alone, or in combination, suggest mixed mechanisms of sucrose utilization by the industrial strain JP1, and points out the remarkable ability of the wild isolate UFMG-CM-259 to grow faster on sucrose than on glucose in a well-controlled cultivation system. This work hints to a series of metabolic traits that can be exploited to increase sucrose catabolic rates and bioprocess efficiency.
Collapse
Affiliation(s)
- Carla Inês Soares Rodrigues
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, 13083-862, Campinas, SP, Brazil.,Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Aljoscha Wahl
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Andreas K Gombert
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
19
|
Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food Chem 2020; 346:128860. [PMID: 33385915 DOI: 10.1016/j.foodchem.2020.128860] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Molasses is a major by-product of sugar industry and contains 40-60% (w/w) of sugars. The world's annual yield of molasses reaches 55 million tons. Traditionally, molasses is simply discharged or applied to feed production. Additionally, some low-cost and environmentally friendly bioprocesses have been established for microbial production of value-added bioproducts from molasses. Over the last decade and more, increasing numbers of biofuels, polysaccharides, oligosaccharides, organic acids, and enzymes have been produced from the molasses through microbial conversion that possess an array of important applications in the industries of food, energy, and pharmaceutical. For better application, it is necessary to comprehensively understand the research status of bioconversion of molasses that has not been elaborated in detail so far. In this review, these value-added bioproducts and enzymes obtained through bioconversion of molasses, their potential applications in food and other industries, as well as the future research focus were generalized and discussed.
Collapse
|
20
|
Zhao C, Zhang Y, Li Y. Production of fuels and chemicals from renewable resources using engineered Escherichia coli. Biotechnol Adv 2019; 37:107402. [DOI: 10.1016/j.biotechadv.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
|
21
|
Erian AM, Gibisch M, Pflügl S. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis. Microb Cell Fact 2018; 17:190. [PMID: 30501633 PMCID: PMC6267845 DOI: 10.1186/s12934-018-1038-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/23/2018] [Indexed: 12/03/2022] Open
Abstract
Background Efficient microbial production of chemicals is often hindered by the cytotoxicity of the products or by the pathogenicity of the host strains. Hence 2,3-butanediol, an important drop-in chemical, is an interesting alternative target molecule for microbial synthesis since it is non-cytotoxic. Metabolic engineering of non-pathogenic and industrially relevant microorganisms, such as Escherichia coli, have already yielded in promising 2,3-butanediol titers showing the potential of microbial synthesis of 2,3-butanediol. However, current microbial 2,3-butanediol production processes often rely on yeast extract as expensive additive, rendering these processes infeasible for industrial production. Results The aim of this study was to develop an efficient 2,3-butanediol production process with E. coli operating on the premise of using cost-effective medium without complex supplements, considering second generation feedstocks. Different gene donors and promoter fine-tuning allowed for construction of a potent E. coli strain for the production of 2,3-butanediol as important drop-in chemical. Pulsed fed-batch cultivations of E. coli W using microaerobic conditions showed high diol productivity of 4.5 g l−1 h−1. Optimizing oxygen supply and elimination of acetoin and by-product formation improved the 2,3-butanediol titer to 68 g l−1, 76% of the theoretical maximum yield, however, at the expense of productivity. Sugar beet molasses was tested as a potential substrate for industrial production of chemicals. Pulsed fed-batch cultivations produced 56 g l−1 2,3-butanediol, underlining the great potential of E. coli W as production organism for high value-added chemicals. Conclusion A potent 2,3-butanediol producing E. coli strain was generated by considering promoter fine-tuning to balance cell fitness and production capacity. For the first time, 2,3-butanediol production was achieved with promising titer, rate and yield and no acetoin formation from glucose in pulsed fed-batch cultivations using chemically defined medium without complex hydrolysates. Furthermore, versatility of E. coli W as production host was demonstrated by efficiently converting sucrose from sugar beet molasses into 2,3-butanediol. Electronic supplementary material The online version of this article (10.1186/s12934-018-1038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Maria Erian
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Martin Gibisch
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
22
|
Ike M, Tokuyasu K. Cellulase Production of Trichoderma reesei ( Hypocrea jecorina) by Continuously Fed Cultivation Using Sucrose as Primary Carbon Source. J Appl Glycosci (1999) 2018; 65:51-56. [PMID: 34354513 PMCID: PMC8056898 DOI: 10.5458/jag.jag.jag-2018_0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/29/2018] [Indexed: 10/31/2022] Open
Abstract
To expand the range of soluble carbon sources for our enzyme production system, we investigated the properties of sucrose utilization and its effect on cellulase production by Trichoderma reesei M2-1. We performed batch cultivation of T. reesei M2-1 on sucrose and related sugars along with cellobiose, which was used as a cellulase inducer. The results clearly revealed that the hydrolysis products of sucrose, i.e. glucose and fructose, but not sucrose, can be used as a carbon source for enzyme production. In a 10-day continuous feeding experiment using invertase-treated sucrose/cellobiose, the fungal strain produced cellulases with a filter paper-degrading activity of 20.3 U/mL and production efficiency of 254 U/g-carbon sources. These values were comparable with those of glucose/cellobiose feeding (21.2 U/mL and 265 U/g-carbon sources, respectively). Furthermore, the comparison of the specific activities clearly indicated that the compositions of both produced enzymes were similar. Therefore, enzymatically hydrolyzed sucrose can be utilized as an alternative carbon source to glucose in our enzyme production system with T. reesei M2-1.
Collapse
Affiliation(s)
- Masakazu Ike
- 1 Food Biotechnology Division, Food Research Institute, National Agriculture and Food Research Organization (NARO)
| | - Ken Tokuyasu
- 1 Food Biotechnology Division, Food Research Institute, National Agriculture and Food Research Organization (NARO)
| |
Collapse
|
23
|
Enhanced production of succinic acid from methanol-organosolv pretreated Strophanthus preussii by recombinant Escherichia coli. Bioprocess Biosyst Eng 2018; 41:1497-1508. [PMID: 30006798 DOI: 10.1007/s00449-018-1977-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/29/2018] [Indexed: 01/06/2023]
Abstract
A biorefinery process for high yield production of succinic acid from biomass sugars was investigated using recombinant Escherichia coli. The major problem been addressed is utilization of waste biomass for the production of succinic acid using metabolic engineering strategy. Here, methanol extract of Strophanthus preussii was used for fermentation. The process parameters were optimized. Glucose (9 g/L), galactose (4 g/L), xylose (6 g/L) and arabinose (0.5 g/L) were the major sugars present in the methanol extract of S. preussii. E. coli K3OS with overexpression of soluble nucleotide pyridine transhydrogenase sthA and mutation of lactate dehydrogenase A (ldhA), phosphotransacetylase acetate kinase A (pta-ackA), pyruvate formate lyase B (pflB), pyruvate oxidase B (poxB), produced a final succinic acid concentration of 14.40 g/L and yield of 1.10 mol/mol total sugars after 72 h dual-phase fermentation in M9 medium. Here, we show that the maximum theoretical yield using methanol extracts of S. preussii was 64%. Hence, methanol extract of S. preussii could be used for the production of biochemicals such as succinate, malate and pyruvate.
Collapse
|
24
|
Feng J, Yang J, Yang W, Chen J, Jiang M, Zou X. Metabolome- and genome-scale model analyses for engineering of Aureobasidium pullulans to enhance polymalic acid and malic acid production from sugarcane molasses. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:94. [PMID: 29632554 PMCID: PMC5883625 DOI: 10.1186/s13068-018-1099-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/26/2018] [Indexed: 06/05/2023]
Abstract
BACKGROUND Polymalic acid (PMA) is a water-soluble biopolymer with many attractive properties for food and pharmaceutical applications mainly produced by the yeast-like fungus Aureobasidium pullulans. Acid hydrolysis of PMA, resulting in release of the monomer l-malic acid (MA), which is widely used in the food and chemical industry, is a competitive process for producing bio-based platform chemicals. RESULTS In this study, the production of PMA and MA from sucrose and sugarcane molasses by A. pullulans was studied in shake flasks and bioreactors. Comparative metabolome analysis of sucrose- and glucose-based fermentation identified 81 intracellular metabolites and demonstrated that pyruvate from the glycolysis pathway may be a key metabolite affecting PMA synthesis. In silico simulation of a genome-scale metabolic model (iZX637) further verified that pyruvate carboxylase (pyc) via the reductive tricarboxylic acid cycle strengthened carbon flux for PMA synthesis. Therefore, an engineered strain, FJ-PYC, was constructed by overexpressing the pyc gene, which increased the PMA titer by 15.1% compared with that from the wild-type strain in a 5-L stirred-tank fermentor. Sugarcane molasses can be used as an economical substrate without any pretreatment or nutrient supplementation. Using fed-batch fermentation of FJ-PYC, we obtained the highest PMA titers (81.5, 94.2 g/L of MA after hydrolysis) in 140 h with a corresponding MA yield of 0.62 g/g and productivity of 0.67 g/L h. CONCLUSIONS We showed that integrated metabolome- and genome-scale model analyses were an effective approach for engineering the metabolic node for PMA synthesis, and also developed an economical and green process for PMA and MA production from renewable biomass feedstocks.
Collapse
Affiliation(s)
- Jun Feng
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715 People’s Republic of China
| | - Jing Yang
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715 People’s Republic of China
| | - Wenwen Yang
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715 People’s Republic of China
| | - Jie Chen
- Wuhan Sunhy Biology Co., Ltd, Wuhan, 430074 People’s Republic of China
- School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205 People’s Republic of China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Xiang Zou
- College of Pharmaceutical Sciences, Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Southwest University, 2 Tian Sheng Road, Beibei, Chongqing, 400715 People’s Republic of China
| |
Collapse
|
25
|
Current advances of succinate biosynthesis in metabolically engineered Escherichia coli. Biotechnol Adv 2017; 35:1040-1048. [DOI: 10.1016/j.biotechadv.2017.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/19/2023]
|
26
|
Khunnonkwao P, Jantama SS, Kanchanatawee S, Jantama K. Re-engineering Escherichia coli KJ122 to enhance the utilization of xylose and xylose/glucose mixture for efficient succinate production in mineral salt medium. Appl Microbiol Biotechnol 2017; 102:127-141. [PMID: 29079860 DOI: 10.1007/s00253-017-8580-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022]
Abstract
Escherichia coli KJ122 was previously engineered to produce high concentration and yield of succinate in mineral salt medium containing glucose and sucrose under anaerobic conditions. However, this strain does not efficiently utilize xylose. To improve the xylose uptake and utilization in the strain KJ122, xylFGH and xylE genes were individually and simultaneously deleted. E. coli KJ12201 (KJ122::ΔxylFGH) exhibited superior abilities in growth, xylose consumption, and succinate production compared to those of the parental strain KJ122. However, E. coli KJ12202 (KJ122::ΔxylE) lessened xylose consumption due to an ATP deficit for metabolizing xylose thus making succinate production from xylose not preferable. Moreover, E. coli KJ12203 (KJ122::ΔxylFGHΔxylE) exhibited an impaired growth on xylose due to lacking of xylose transporters. After performing metabolic evolution, the evolved KJ12201-14T strain exhibited a great improvement in succinate production from pure xylose with higher concentration and productivity about 18 and 21%, respectively, compared to KJ12201 strain. During fed-batch fermentation, KJ12201-14T also produced succinate from xylose at a concentration, yield, and overall productivity of 84.6 ± 0.7 g/L, 0.86 ± 0.01 g/g and 1.01 ± 0.01 g/L/h, respectively. KJ12201 and KJ12201-14T strains co-utilized glucose/xylose mixture without catabolite repression. Both strains produced succinate from glucose/xylose mixture at concentration, yield, and overall and specific productivities of about 85 g/L, 0.85 g/g, 0.70 g/L/h, and 0.44 g/gCDW/h, respectively. Based on our results, KJ12201 and KJ12201-14T strains exhibited a greater performance in succinate production from xylose containing medium than those of other published works. They would be potential strains for the economic bio-based succinate production from xylose.
Collapse
Affiliation(s)
- Panwana Khunnonkwao
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Sirima Suvarnakuta Jantama
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani, 34190, Thailand
| | - Sunthorn Kanchanatawee
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
27
|
Arikawa H, Matsumoto K, Fujiki T. Polyhydroxyalkanoate production from sucrose by Cupriavidus necator strains harboring csc genes from Escherichia coli W. Appl Microbiol Biotechnol 2017; 101:7497-7507. [PMID: 28889198 DOI: 10.1007/s00253-017-8470-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/26/2017] [Accepted: 07/30/2017] [Indexed: 01/05/2023]
Abstract
Cupriavidus necator H16 is the most promising bacterium for industrial production of polyhydroxyalkanoates (PHAs) because of their remarkable ability to accumulate them in the cells. With genetic modifications, this bacterium can produce poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), which has better physical properties, as well as poly(3-hydroxybutyrate) (PHB) using plant oils and sugars as a carbon source. Considering production cost, sucrose is a very attractive raw material because it is inexpensive; however, this bacterium cannot assimilate sucrose. Here, we used the sucrose utilization (csc) genes of Escherichia coli W to generate C. necator strains that can assimilate sucrose. Especially, glucose-utilizing recombinant C. necator strains harboring the sucrose hydrolase gene (cscA) and sucrose permease gene (cscB) of E. coli W grew well on sucrose as a sole carbon source and accumulated PHB. In addition, strains introduced with a crotonyl-CoA reductase gene (ccr), ethylmalonyl-CoA decarboxylase gene (emd), and some other genetic modifications besides the csc genes and the glucose-utilizing mutations produced PHBHHx with a 3-hydroxyhexanoate (3HHx) content of maximum approximately 27 mol% from sucrose. Furthermore, when one of the PHBHHx-producing strains was cultured with sucrose solution in a fed-batch fermentation, PHBHHx with a 3HHx content of approximately 4 mol% was produced and reached 113 g/L for 65 h, which is approximately 1.5-fold higher than that produced using glucose solution.
Collapse
Affiliation(s)
- Hisashi Arikawa
- Bioproducts Research Group, Biotechnology Development Laboratories, KANEKA CORPORATION, 1-8 Miyamae-Cho, Takasago-Cho, Takasago, Hyogo, 676-8688, Japan.
| | - Keiji Matsumoto
- Bioproducts Research Group, Biotechnology Development Laboratories, KANEKA CORPORATION, 1-8 Miyamae-Cho, Takasago-Cho, Takasago, Hyogo, 676-8688, Japan
| | - Tetsuya Fujiki
- Bioproducts Research Group, Biotechnology Development Laboratories, KANEKA CORPORATION, 1-8 Miyamae-Cho, Takasago-Cho, Takasago, Hyogo, 676-8688, Japan
| |
Collapse
|
28
|
Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources. Appl Microbiol Biotechnol 2017; 101:3055-3075. [PMID: 28280869 DOI: 10.1007/s00253-017-8210-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.
Collapse
|
29
|
Carvalho M, Roca C, Reis MAM. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods. BIORESOURCE TECHNOLOGY 2016; 218:491-497. [PMID: 27394995 DOI: 10.1016/j.biortech.2016.06.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production.
Collapse
Affiliation(s)
- Margarida Carvalho
- REQUIMTE, DQ/FCT, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Christophe Roca
- REQUIMTE, DQ/FCT, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | - Maria A M Reis
- REQUIMTE, DQ/FCT, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
30
|
Pateraki C, Patsalou M, Vlysidis A, Kopsahelis N, Webb C, Koutinas AA, Koutinas M. Actinobacillus succinogenes : Advances on succinic acid production and prospects for development of integrated biorefineries. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Engineered biosynthesis of biodegradable polymers. ACTA ACUST UNITED AC 2016; 43:1037-58. [DOI: 10.1007/s10295-016-1785-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
Abstract
Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.
Collapse
|
32
|
Gao X, Jiang L, Zhu L, Xu Q, Xu X, Huang H. Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pHs. J Biotechnol 2016; 224:55-63. [PMID: 26971973 DOI: 10.1016/j.jbiotec.2016.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 11/17/2022]
Abstract
Bioconversion processes of organic acid or acid hydrolysis of raw material for microbial metabolism often suffer limitations as a result of microbial sensitivity in low-pH conditions. We adopted a three-step method called RAndom Insertional-deletional Strand Exchange mutagenesis (RAISE) to engineer the components of global regulator Sigma D factor (RpoD) of Escherichia coli to improve its acid tolerance. The best strain Mutant VII was identified from random mutagenesis libraries based on the growth performance, which exhibited much higher growth rate than the control (0.22h(-1) vs. 0.15h(-1)) at pH as low as 3.17. Combined transcriptome and phenome analysis of E. coli was carried out to better understand the global effects of RpoD on the regulatory networks. Our analysis showed that 95 (2.1%) of all E. coli genes were induced and 178 (4.0%) genes were repressed, including those for trehalose biosynthesis, nucleotides biosynthesis, carbon metabolism, amino acid utilization, except for acid resistance. Also regulated were the master regulators (ArcA, EvgA, H-NS and RpoS) and gene/operon-specific transcription factors (GadX, GadW, AppY, YdeO, KdgR). These results demonstrated that RpoD acts as global regulator in the growth phase of E. coli and consequently improves acid tolerances.
Collapse
Affiliation(s)
- Xi Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, PR China.
| | - Liying Zhu
- College of Sciences, Nanjing Tech University, Nanjing 210009, PR China.
| | - Qing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Xian Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
33
|
Enhancing L-Lysine Production of Beet Molasses by Engineered Escherichia coli Using an In Situ Pretreatment Method. Appl Biochem Biotechnol 2016; 179:986-96. [PMID: 26961187 DOI: 10.1007/s12010-016-2045-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/03/2016] [Indexed: 10/22/2022]
Abstract
Reducing the viscosity of molasses environmentally and selectively removing the harmful ingredients for microbes are the keys to promoting the bioavailability of molasses. A simple and environmental in situ pretreatment method integrating surfactants and alkali was developed to reduce the viscosity of molasses prior to L-lysine production using Escherichia coli ZY0217. Adding activated carbon and modified orange peel based on the in situ pretreatment process effectively removed pigments and excessive zinc in the molasses and also significantly increased the cell growth and L-lysine yield from E. coli ZY0217. The experimental results showed that a mixture of secondary alkane sulfonate, an anionic surfactant, and HodagCB-6, a non-ionic surfactant, effectively reduced the viscosity of the molasses more so than any single surfactant. When the surfactant mixture was added at a concentration of 0.04 g/L to the molasses, the ω value was 0.4, and when ammonia was added at 0.6 %, the lowest viscosity of 705 mPa · s was obtained. Further, 91.5 % of the color and 86.68 % of the original levels of zinc were removed using an activated carbon and modified orange peel treatment on the molasses with the lowest viscosity, which further promoted cell growth and L-lysine production. In the fed-batch cultivation process, the L-lysine concentration achieved using a constant-speed feeding strategy was 45.89 g/L, with an L-lysine yield of 27.18 %, whereas the L-lysine yield from untreated molasses was only 10.13 %. The increase in L-lysine yield was related to the reduced viscosity and the detoxification of the molasses. Lastly, the pretreatment was found to significantly enhance the conversion of sugars in the molasses to L-lysine.
Collapse
|
34
|
|
35
|
Xu S, Hao N, Xu L, Liu Z, Yan M, Li Y, Ouyang P. Series fermentation production of ornithine and succinic acid from cane molasses by Corynebacterium glutamicum. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Shen N, Qin Y, Wang Q, Liao S, Zhu J, Zhu Q, Mi H, Adhikari B, Wei Y, Huang R. Production of succinic acid from sugarcane molasses supplemented with a mixture of corn steep liquor powder and peanut meal as nitrogen sources by Actinobacillus succinogenes. Lett Appl Microbiol 2015; 60:544-51. [PMID: 25647487 DOI: 10.1111/lam.12399] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 12/16/2023]
Abstract
The potential of using corn steep liquor powder (CSLP), peanut meal (PM), soybean meal (SM), cotton meal (CM) and urea as the substitute of yeast extract (YE) as the nitrogen source was investigated for producing succinic acid (SA). Actinobacillus succinogenes GXAS137 was used as the fermenting bacterium and sugarcane molasses was used as the main substrate. None of these materials were able to produce SA as high as YE did. The CSLP could still be considered as a feasible and inexpensive alternate for YE as the yield of SA produced using CSLP was second only to the yield of SA obtained by YE. The use of CSLP-PM mixed formulation (CSLP to PM ratio = 2·6) as nitrogen source produced SA up to 59·2 g l(-1) with a productivity of 1·2 g l(-1) h(-1). A batch fermentation using a stirred bioreactor produced up to 60·7 g l(-1) of SA at the same formulation. Fed-batch fermentation that minimized the substrate inhibition produced 64·7 g l(-1) SA. These results suggest that sugarcane molasses supplemented with a mixture of CSLP and PM as the nitrogen source could be used to produce SA more economically using A. succinogenes. Significance and impact of the study: Succinic acid (SA) is commonly used as a platform chemical to produce a number of high value derivatives. Yeast extract (YE) is used as a nitrogen source to produce SA. The high cost of YE is currently the limiting factor for industrial production of SA. This study reports the use of a mixture of corn steep liquor powder (CSLP) and peanut meal (PM) as an inexpensive nitrogen source to substitute YE. The results showed that this CSLP-PM mixed formulation can be used as an effective and economic nitrogen source for the production of SA.
Collapse
Affiliation(s)
- N Shen
- Guangxi Key Laboratory of Subtropical Bio-resource Conservation and Utilization, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Y Qin
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Q Wang
- Guangxi Key Laboratory of Subtropical Bio-resource Conservation and Utilization, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - S Liao
- Guangxi Key Laboratory of Subtropical Bio-resource Conservation and Utilization, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - J Zhu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Q Zhu
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - H Mi
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - B Adhikari
- School of Applied Sciences, RMIT University, City Campus, Melbourne, Australia
| | - Y Wei
- Guangxi Key Laboratory of Subtropical Bio-resource Conservation and Utilization, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - R Huang
- Guangxi Key Laboratory of Subtropical Bio-resource Conservation and Utilization, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
37
|
Bai B, Zhou JM, Yang MH, Liu YL, Xu XH, Xing JM. Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2015; 185:56-61. [PMID: 25747879 DOI: 10.1016/j.biortech.2015.02.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
In this study, microbial production of succinic acid from macroalgae (i.e., Laminaria japonica) was investigated for the first time. The engineered Escherichia coli BS002 exhibited higher molar yield of succinic acid on mannitol (1.39±0.01mol/mol) than glucose (1.01±0.05mol/mol). After pretreatment and enzymatic hydrolysis, L. japonica hydrolysate was mainly glucose (10.31±0.32g/L) and mannitol (10.12±0.17g/L), which was used as the substrate for succinic acid fermentation with the recombinant BS002. A final 17.44±0.54g/L succinic acid was obtained from the hydrolysate after 72h dual-phase fermentation. The yield was as high as 1.24±0.08mol/mol total sugar, which reached 73% of the maximum theoretical yield. The results demonstrate that macroalgae biomass represents a novelty and economical alternative feedstock for biochemicals production.
Collapse
Affiliation(s)
- Bing Bai
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jie-min Zhou
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mao-hua Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yi-lan Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao-hui Xu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jian-min Xing
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
38
|
He X, Chen K, Li Y, Wang Z, Zhang H, Qian J, Ouyang P. Enhanced l-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation. Bioprocess Biosyst Eng 2015; 38:1615-22. [DOI: 10.1007/s00449-015-1403-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/14/2015] [Indexed: 12/17/2022]
|
39
|
Dai JY, Zhao P, Cheng XL, Xiu ZL. Enhanced production of 2,3-butanediol from sugarcane molasses. Appl Biochem Biotechnol 2015; 175:3014-24. [PMID: 25586489 DOI: 10.1007/s12010-015-1481-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/01/2015] [Indexed: 11/29/2022]
Abstract
2,3-Butanediol has been known as a platform green chemical, and the production cost is the key problem for its large-scale production in which the carbon source occupies a major part. Sugarcane molasses is a by-product of sugar industry and considered as a cheap carbon source for biorefinery. In this paper, the fermentation of 2,3-butanediol with sugarcane molasses was studied by reducing the medium ingredients and operation steps. The fermentation medium was optimized by response surface methodology, and 2,3-butanediol production was explored under the deficiency of sterilization, molasses acidification, and organic nitrogen source. Based on these experiments, the fermentation medium with sugarcane molasses as carbon source was simplified to five ingredients, and the steps of molasses acidification and medium sterilization were reduced; thus, the cost was reduced and the production of 2,3-butanediol was enhanced. Under fed-batch fermentation, 99.5 g/L of 2,3-butanediol and acetoin was obtained at 60 h with a yield of 0.39 g/g sugar.
Collapse
Affiliation(s)
- Jian-Ying Dai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China,
| | | | | | | |
Collapse
|
40
|
Tan JP, Md. Jahim J, Wu TY, Harun S, Kim BH, Mohammad AW. Insight into Biomass as a Renewable Carbon Source for the Production of Succinic Acid and the Factors Affecting the Metabolic Flux toward Higher Succinate Yield. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502178j] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Ta Yeong Wu
- Chemical
Engineering Discipline, School of Engineering, Monash University, Jalan
Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia
| | | | | | | |
Collapse
|
41
|
Carvalho M, Roca C, Reis MAM. Carob pod water extracts as feedstock for succinic acid production by Actinobacillus succinogenes 130Z. BIORESOURCE TECHNOLOGY 2014; 170:491-498. [PMID: 25164341 DOI: 10.1016/j.biortech.2014.07.117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 06/03/2023]
Abstract
Carob pods are a by-product of locust bean gum industry containing more than 50% (w/w) sucrose, glucose and fructose. In this work, carob pod water extracts were used, for the first time, for succinic acid production by Actinobacillus succinogenes 130Z. Kinetic studies of glucose, fructose and sucrose consumption as individual carbon sources till 30g/L showed no inhibition on cell growth, sugar consumption and SA production rates. Sugar extraction from carob pods was optimized varying solid/liquid ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Batch fermentations containing 10-15g/L total sugars resulted in a maximum specific SA production rate of 0.61Cmol/Cmol X.h, with a yield of 0.55Cmol SA/Cmol sugar and a volumetric productivity of 1.61g SA/L.h. Results demonstrate that carob pods can be a promising low cost feedstock for bio-based SA production.
Collapse
Affiliation(s)
- Margarida Carvalho
- REQUIMTE, DQ/FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Christophe Roca
- REQUIMTE, DQ/FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Maria A M Reis
- REQUIMTE, DQ/FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
42
|
Ma J, Li F, Liu R, Liang L, Ji Y, Wei C, Jiang M, Jia H, Ouyang P. Succinic acid production from sucrose and molasses by metabolically engineered E. coli using a cell surface display system. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Statistical optimization of molasses based exopolysaccharide and biomass production by Aureobasidium pullulans MTCC 2195. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Guan Y, Tang Q, Fu X, Yu S, Wu S, Chen M. Preparation of antioxidants from sugarcane molasses. Food Chem 2014; 152:552-7. [DOI: 10.1016/j.foodchem.2013.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/22/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
|
45
|
Alonso S, Rendueles M, Díaz M. Microbial production of specialty organic acids from renewable and waste materials. Crit Rev Biotechnol 2014; 35:497-513. [DOI: 10.3109/07388551.2014.904269] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Jiang M, Dai W, Xi Y, Wu M, Kong X, Ma J, Zhang M, Chen K, Wei P. Succinic acid production from sucrose by Actinobacillus succinogenes NJ113. BIORESOURCE TECHNOLOGY 2014; 153:327-332. [PMID: 24393713 DOI: 10.1016/j.biortech.2013.11.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/20/2013] [Accepted: 11/23/2013] [Indexed: 06/03/2023]
Abstract
In this study, sucrose, a reproducible disaccharide extracted from plants, was used as the carbon source for the production of succinic acid by Actinobacillus succinogenes NJ113. During serum bottle fermentation, the succinic acid concentration reached 57.1g/L with a yield of 71.5%. Further analysis of the sucrose utilization pathways revealed that sucrose was transported and utilized via a sucrose phosphotransferase system, sucrose-6-phosphate hydrolase, and a fructose PTS. Compared to glucose utilization in single pathway, more pathways of A. succinogenes NJ113 are dependent on sucrose utilization. By changing the control strategy in a fed-batch culture to alleviate sucrose inhibition, 60.5g/L of succinic acid was accumulated with a yield of 82.9%, and the productivity increased by 35.2%, reaching 2.16g/L/h. Thus utilization of sucrose has considerable potential economics and environmental meaning.
Collapse
Affiliation(s)
- Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Wenyu Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Yonglan Xi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Mingke Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Xiangping Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China.
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road 30#, Nanjing 211816, PR China
| |
Collapse
|
47
|
Chen T, Zhu N, Xia H. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. BIORESOURCE TECHNOLOGY 2014; 151:411-4. [PMID: 24169202 DOI: 10.1016/j.biortech.2013.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/02/2013] [Accepted: 10/07/2013] [Indexed: 05/25/2023]
Abstract
Arabinose is considered as an ideal feedstock for the microbial production of value-added chemicals due to its abundance in hemicellulosic wastes. In this study, the araBAD operon from Escherichia coli was introduced into succinate-producing Corynebacterium glutamicum, which enabled aerobic production of succinate using arabinose as sole carbon source. The engineered strain ZX1 (pXaraBAD, pEacsAgltA) produced 74.4 mM succinate with a yield of 0.58 mol (mol arabinose)(-1), which represented 69.9% of the theoretically maximal yield. Moreover, this strain produced 110.2 mM succinate using combined substrates of glucose and arabinose. To date, this is the highest succinate production under aerobic conditions in minimal medium.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China; Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China.
| | | | | |
Collapse
|
48
|
Asikin Y, Takahashi M, Mishima T, Mizu M, Takara K, Wada K. Antioxidant activity of sugarcane molasses against 2,2′-azobis(2-amidinopropane) dihydrochloride-induced peroxyl radicals. Food Chem 2013; 141:466-72. [DOI: 10.1016/j.foodchem.2013.03.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/11/2013] [Accepted: 03/13/2013] [Indexed: 01/05/2023]
|
49
|
Rawat G, Tripathi P, Yadav S, Saxena RK. An interactive study of influential parameters for shikimic acid production using statistical approach, scale up and its inhibitory action on different lipases. BIORESOURCE TECHNOLOGY 2013; 144:675-679. [PMID: 23871288 DOI: 10.1016/j.biortech.2013.06.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
Shikimic acid is the promising candidate as a building block for the industrial synthesis of drug Tamiflu used for the treatment of Swine flu. The fermentative production process using microbes present an excellent and even more sustainable alternative to the traditional plants based extraction methods. In the present study, the fermentative production of shikimic acid by Citrobacter freundii GR-21 (KC466031) was optimized by process engineering using a statistical modeling approach and a maximum amount of 16.78 g L(-1) was achieved. The process was also scaled up to 14L bioreactor to validate the production of shikimic acid. Further, the potential of anti-enzymatic nature of purified shikimic acid was evaluated for different lipases wherein, shikimic acid inhibited the hydrolysis of triglycerides by 55-60%. Shikimic acid also profoundly inhibited pancreatic lipase activity by 66%, thus providing another valuable therapeutic aspect for treating diet induced obesity in humans.
Collapse
Affiliation(s)
- Garima Rawat
- Department of Microbiology, University of Delhi South Campus, New Delhi, India.
| | | | | | | |
Collapse
|
50
|
Jung MY, Park BS, Lee J, Oh MK. Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production. BIORESOURCE TECHNOLOGY 2013; 139:21-7. [PMID: 23644066 DOI: 10.1016/j.biortech.2013.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 05/03/2023]
Abstract
Sugarcane molasses is considered to be a good carbon source for biorefinery due to its high sugar content and low price. Sucrose occupies more than half of the sugar in the molasses. Enterobacter aerogenes is a good host strain for 2,3-butanediol production, but its utilization of sucrose is not very efficient. To improve sucrose utilization in E. aerogenes, a sucrose regulator (ScrR) was disrupted from the genomic DNA. The deletion mutation increased the sucrose consumption rate significantly when sucrose or sugarcane molasses was used as a carbon source. The 2,3-butanediol production from sugarcane molasses by the mutant was enhanced by 60% in batch fermentation compared to that by the wild type strain. In fed-batch fermentation, 98.69 g/L of 2,3-butanediol production was achieved at 36 h.
Collapse
Affiliation(s)
- Moo-Young Jung
- Dept. of Chemical & Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | | | | | | |
Collapse
|