1
|
Augustine A, Messaabi A, Fantino E, Merindol N, Meddeb-Mouelhi F, Desgagné-Penix I. Multifactorial interaction and influence of culture conditions on yellow fluorescent protein production in Phaeodactylum tricornutum. BIORESOURCE TECHNOLOGY 2025; 425:132336. [PMID: 40044057 DOI: 10.1016/j.biortech.2025.132336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/02/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Phaeodactylum tricornutum is a promising host for light-driven synthesis of heterologous proteins. However, the marine cold-water environment and alkaline-acidic pH shifts in the culture, necessitated by the diatom's growth requirements. In this study, we analyzed the influence of growth condition on maturation and dynamics of the yellow fluorescent protein (YFP) in episomal-transformant P. tricornutum. A mathematical model was developed to detect the parameters that affect biomass and YFP production. Optimized conditions increased YFP mean fluorescence intensity (MFI) per cell by 4.2-fold (3.6 ± 0.6 to 15.4 ± 1.1) and total protein levels in the culture by 1.8-fold (123 ± 4 to 219 ± 9 µg L-1), without affecting biomass. YFP stability studies in P. tricornutum showed that the ubiquitin-proteasome system contributes the degradation of the recombinant protein, whereas newly synthesized YFP remains stable for up to 12 h. This optimization provides insights into the fluorescent protein-based heterologous production in diatoms.
Collapse
Affiliation(s)
- Arun Augustine
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada
| | - Anis Messaabi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada
| | - Elisa Fantino
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada; Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada
| | - Fatma Meddeb-Mouelhi
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada; Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada; Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.
| |
Collapse
|
2
|
Zheng L, Chen Q, Zhou X, Yin R, Yang J, Hu Z, Shen Y, Zhang Y. Plackett-Burman Design Combined With Response Surface Methodology to Recover Polysaccharides With Cardiovascular Protective Potential From Waste Zizania Latifolia Bract. Chem Biodivers 2025; 22:e202402392. [PMID: 39779476 DOI: 10.1002/cbdv.202402392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Zizania latifolia is the second aquatic vegetable in China. The circular valorization of its waste bracts remains an ongoing concern. In this work, the cellulase-microwave-assisted extraction (CMAE) of polysaccharides from waste Z. latifolia bracts (PWZLBs) was explored. Seven parameters were selected via a single-factor test, of which three significant parameters were screened out using the Plackett-Burman design, followed by response surface methodology optimization. The optimal CMAE for PWZLBs were: cellulase addition of 0.5%, microwave time of 7 min, and microwave power of 425 W, resulting in a yield of 0.82 ± 0.08%. Four polysaccharide fractions (PWZLBs-1 ∼ 4) were isolated from PWZLBs, of which PWZLBs-1 accounted for a major proportion and exerted higher scavenging capacities on diphenyl picrylhydrazyl and hydroxyl radicals. More importantly, PWZLBs-1 elicited anticoagulation via prolonging thrombin time and prothrombin time, exhibiting potential for cardiovascular protection. Various characterizations confirmed that PWZLBs-1 is a heteropolysaccharide containing uronic acids and sulfates, with galactose (34.3%) as the predominant monosaccharide, and has a molecular weight of 8061 kDa. This work provides clues for the circular valorization of waste Z. latifolia bracts and offers potential opportunities for the development of new cardiovascular protective drugs.
Collapse
Affiliation(s)
- Lixue Zheng
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Qianfeng Chen
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
- Department of Food Science, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Xin Zhou
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Run Yin
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Jingchun Yang
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Zhenbiao Hu
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yingchao Shen
- Department of Orthopedics and Traumatology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yang Zhang
- Department of Food Science and Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| |
Collapse
|
3
|
Liu X, John Martin JJ, Li X, Zhou L, Li R, Li Q, Zhang J, Fu D, Cao H. Optimization of the fermentation culture conditions of Bacillus amyloliquefaciens ck-05 using response surface methodology. Front Microbiol 2025; 16:1552645. [PMID: 40143875 PMCID: PMC11936965 DOI: 10.3389/fmicb.2025.1552645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Bacillus amyloliquefaciens is widely recognized for its potential as a biofertilizer and biocontrol agent in agriculture due to its plant growth-promoting (PGP) mechanisms. However, the practical application of this bacterium is often limited by suboptimal fermentation conditions, which hinder its growth and efficacy. While numerous studies have optimized growth conditions for various strains of B. amyloliquefaciens, the novelty of this work lies in the systematic optimization of fermentation conditions for B. amyloliquefaciens ck-05, a strain obtained from a culture collection, and its potential application as a biofertilizer. In this study, single-factor experiments were conducted to evaluate the effects of carbon and nitrogen sources, inorganic salts, pH, temperature, culture time, rotation speed, inoculation rate, and liquid volume on the OD600 value of strain ck-05. A Plackett-Burman design was used to identify the significant factors influencing OD600, followed by a Box-Behnken design to determine the optimal growth conditions. The results revealed that soluble starch, peptone, and magnesium sulfate significantly impacted the growth of B. amyloliquefaciens ck-05. The optimized fermentation conditions were determined to be pH 6.6, temperature 30°C, culture time 40 h, rotation speed 150 rpm, inoculum rate 0.8%, and liquid volume 40%. Post-optimization, the OD600 of the fermentation broth increased by 72.79% compared to pre-optimization levels. The culture and fermentation conditions for B. amyloliquefaciens ck-05 were successfully optimized, providing a theoretical foundation for the future development of this strain as a microbial fertilizer.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xinyu Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Rui Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qihong Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianwei Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengqiang Fu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
4
|
Singh S, Mahanty B, Gujjala LKS, Dutta K. Optimized phenol degradation and lipid production by Rhodosporidium toruloides using response surface methodology and genetic algorithm-optimized artificial neural network. CHEMOSPHERE 2024; 363:142971. [PMID: 39106911 DOI: 10.1016/j.chemosphere.2024.142971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Oleaginous yeast can produce lipids while degrading phenol in wastewater treatment. In this study, a Plackett-Burman Design (PBD) was adopted to identify key factors of phenol degradation and lipid production using R toruloides 9564T. While temperature, inoculum size, and agitation were significant for both the processes (p < 0.05), pH and incubation were significant for lipid production, and phenol removal, respectively. Results from four factors (pH, temperature, inoculum size, and incubation period) central composite design (CCD) experiment were used to formulate quadratic and genetic algorithm-optimized ANN models. The reduced quadratic model for phenol degradation (R2: 0.993) and lipid production (R2: 0.958) were marginally inferior to ANN models (R2: 0.999, 0.982, respectively) on training sets. Multi-objective optimization with equal importance suggests phenol degradation between 106.4 and 108.76%, and lipid production of 0.864-0.903 g/L, by polynomial and ANN models. Complete phenol degradation (100%) and 3.35-fold increment (0.918 g/L) in lipid production were obtained at pH 6.07, inoculum size 14.68% v/v, at 29.5 °C in 92.17 h experimentally.
Collapse
Affiliation(s)
- Sangeeta Singh
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Biswanath Mahanty
- Division of Biotechnology, Karunya Institute of Technology and Science, Coimbatore, 641114, India
| | - Lohit Kumar Srinivas Gujjala
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
5
|
Rawindran H, Khoo KS, Ethiraj B, Suparmaniam U, Leong WH, Raksasat R, Liew CS, Sahrin NT, Lam MK, Kiatkittipong W, Lim JW, Zango ZU, Shahid MK, Abdelghani HTM, Ng HS. Fundamental alteration of cellular biochemicals from attached microalgae onto palm kernel expeller waste upon optimizing the growth environment in forming adhesion complex. ENVIRONMENTAL RESEARCH 2023; 233:116533. [PMID: 37394167 DOI: 10.1016/j.envres.2023.116533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Changing the growth environment for microalgae can overall lead to the fundamental alteration in cellular biochemicals whilst attaching onto palm kernel expeller (PKE) waste to form adhesion complex in easing harvesting at stationary growth phase. This study had initially optimized the PKE dosage, light intensity and photoperiod in maximizing the attached microalgal productivity being attained at 0.72 g/g day. Lipid content increased progressively from pH 3 to pH 11, with the highest value observed at pH 11. Meanwhile, in terms of protein and carbohydrate contents, the highest values were obtained by cultivation medium of pH 5 with 9.92 g and 17.72 g, respectively followed by pH 7 with 9.16 g and 16.36 g, respectively. Moreover, the findings also suggested that the low pH mediums utilized polar interactions in the formation of complexes between PKE and microalgae, whereas at higher pH levels, the non-polar interactions became more significant. The work of attachment was thermodynamically favourable towards the attachment formation with values greater than zero which was also aligned with the microscopic surface topography, i.e., revealing a clustering pattern of microalgae colonizing the PKE surface. These findings contribute to comprehensive understanding of optimizing growth condition and harvesting strategy of attached microalgae in attaining the cellular biochemical components, facilitating the development of efficient and sustainable bioresource utilization.
Collapse
Affiliation(s)
- Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103 Tamil Nadu, India
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Uganeeswary Suparmaniam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Wai Hong Leong
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Algal Bio Co. Ltd, Todai-Kashiwa Venture Plaza, 5-4-19 Kashiwanoha, Kashiwa, Chiba, 277-0082, Japan
| | - Ratchaprapa Raksasat
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Chin Seng Liew
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Nurul Tasnim Sahrin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Man Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Yuseonggu, Daejeon 34134, Republic of Korea
| | - Heba Taha M Abdelghani
- Department of Physiology of Physical Activity, College of Sport Sciences and Physical Activity, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia
| |
Collapse
|
6
|
Guo J, Guo X, Yang H, Zhang D, Jiang X. Construction of Bio-TiO 2/Algae Complex and Synergetic Mechanism of the Acceleration of Phenol Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103882. [PMID: 37241509 DOI: 10.3390/ma16103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Microalgae have been widely employed in water pollution treatment since they are eco-friendly and economical. However, the relatively slow treatment rate and low toxic tolerance have seriously limited their utilization in numerous conditions. In light of the problems above, a novel biosynthetic titanium dioxide (bio-TiO2 NPs)-microalgae synergetic system (Bio-TiO2/Algae complex) has been established and adopted for phenol degradation in the study. The great biocompatibility of bio-TiO2 NPs ensured the collaboration with microalgae, improving the phenol degradation rate by 2.27 times compared to that with single microalgae. Remarkably, this system increased the toxicity tolerance of microalgae, represented as promoted extracellular polymeric substances EPS secretion (5.79 times than single algae), and significantly reduced the levels of malondialdehyde and superoxide dismutase. The boosted phenol biodegradation with Bio-TiO2/Algae complex may be attributed to the synergetic interaction of bio-TiO2 NPs and microalgae, which led to the decreased bandgap, suppressed recombination rate, and accelerated electron transfer (showed as low electron transfer resistance, larger capacitance, and higher exchange current density), resulting in increased light energy utilization rate and photocatalytic rate. The results of the work provide a new understanding of the low-carbon treatment of toxic organic wastewater and lay a foundation for further remediation application.
Collapse
Affiliation(s)
- Jinxin Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xiaoman Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Haiyan Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Daohong Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xiaogeng Jiang
- School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
7
|
da Costa BRB, da Silva RR, Bigão VLCP, Peria FM, De Martinis BS. Hybrid volatilomics in cancer diagnosis by HS-GC-FID fingerprinting. J Breath Res 2023; 17. [PMID: 36634358 DOI: 10.1088/1752-7163/acb284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Assessing volatile organic compounds (VOCs) as cancer signatures is one of the most promising techniques toward developing non-invasive, simple, and affordable diagnosis. Here, we have evaluated the feasibility of employing static headspace extraction (HS) followed by gas chromatography with flame ionization detector (GC-FID) as a screening tool to discriminate between cancer patients (head and neck-HNC,n= 15; and gastrointestinal cancer-GIC,n= 19) and healthy controls (n= 37) on the basis of a non-target (fingerprinting) analysis of oral fluid and urine. We evaluated the discrimination considering a single bodily fluid and adopting the hybrid approach, in which the oral fluid and urinary VOCs profiles were combined through data fusion. We used supervised orthogonal partial least squares discriminant analysis for classification, and we assessed the prediction power of the models by analyzing the values of goodness of prediction (Q2Y), area under the curve (AUC), sensitivity, and specificity. The individual models HNC urine, HNC oral fluid, and GIC oral fluid successfully discriminated between healthy controls and positive samples (Q2Y = 0.560, 0.525, and 0.559; AUC = 0.814, 0.850, and 0.926; sensitivity = 84.8, 70.2, and 78.6%; and specificity = 82.3; 81.5; 87.5%, respectively), whereas GIC urine was not adequate (Q2Y = 0.292, AUC = 0.694, sensitivity = 66.1%, and specificity = 77.0%). Compared to the respective individual models, Q2Y for the hybrid models increased (0.623 for hybrid HNC and 0.562 for hybrid GIC). However, sensitivity was higher for HNC urine and GIC oral fluid than for hybrid HNC (75.6%) and hybrid GIC (69.8%), respectively. These results suggested that HS-GC-FID fingerprinting is suitable and holds great potential for cancer screening. Additionally, the hybrid approach tends to increase the predictive power if the individual models present suitable quality parameter values. Otherwise, it is more advantageous to use a single body fluid for analysis.
Collapse
Affiliation(s)
- Bruno Ruiz Brandão da Costa
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical, Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-903, Brazil
| | - Ricardo Roberto da Silva
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-903, Brazil
| | - Vítor Luiz Caleffo Piva Bigão
- Department of Clinical, Toxicological and Food Sciences, School of Pharmaceutical, Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-903, Brazil
| | - Fernanda Maris Peria
- Division of Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto CEP 14049-900, Brazil
| | - Bruno Spinosa De Martinis
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-901, Brazil
| |
Collapse
|
8
|
Liu HN, Jiang XX, Naeem A, Chen FC, Wang L, Liu YX, Li Z, Ming LS. Fabrication and Characterization of β-Cyclodextrin/ Mosla Chinensis Essential Oil Inclusion Complexes: Experimental Design and Molecular Modeling. Molecules 2022; 28:37. [PMID: 36615232 PMCID: PMC9822264 DOI: 10.3390/molecules28010037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Essential oils (EOs) are primarily isolated from medicinal plants and possess various biological properties. However, their low water solubility and volatility substantially limit their application potential. Therefore, the aim of the current study was to improve the solubility and stability of the Mosla Chinensis (M. Chinensis) EO by forming an inclusion complex (IC) with β-cyclodextrin (β-CD). Furthermore, the IC formation process was investigated using experimental techniques and molecular modeling. The major components of M. Chinensis 'Jiangxiangru' EOs were carvacrol, thymol, o-cymene, and terpinene, and its IC with β-CD were prepared using the ultrasonication method. Multivariable optimization was studied using a Plackett-Burman design (step 1, identifying key parameters) followed by a central composite design for optimization of the parameters (step 2, optimizing the key parameters). SEM, FT-IR, TGA, and dissolution experiments were performed to analyze the physicochemical properties of the ICs. In addition, the interaction between EO and β-CD was further investigated using phase solubility, molecular docking, and molecular simulation studies. The results showed that the optimal encapsulation efficiency and loading capacity of EO in the ICs were 86.17% and 8.92%, respectively. Results of physicochemical properties were different after being encapsulated, indicating that the ICs had been successfully fabricated. Additionally, molecular docking and dynamics simulation showed that β-CD could encapsulate the EO component (carvacrol) via noncovalent interactions. In conclusion, a comprehensive methodology was developed for determining key parameters under multivariate conditions by utilizing two-step optimization experiments to obtain ICs of EO with β-CD. Furthermore, molecular modeling was used to study the mechanisms involved in molecular inclusion complexation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Liang-Shan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
9
|
The efficiency of adsorption modelling and Plackett-Burman design for remediation of crystal violet by Sargassum latifolium. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Wu P, Zhang Z, Luo Y, Bai Y, Fan J. Bioremediation of phenolic pollutants by algae - current status and challenges. BIORESOURCE TECHNOLOGY 2022; 350:126930. [PMID: 35247559 DOI: 10.1016/j.biortech.2022.126930] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Industrial production processes, especially petroleum processing, will produce high concentration phenolic wastewater. Traditional wastewater treatment technology is costly and may lead to secondary pollution. In order to avoid the adverse effects of incompletely treated phenolics, more advanced methods are required. Algae bioremediate phenolics through green pathways such as adsorption, bioaccumulation, biodegradation, and photodegradation. At the same time, the natural carbon fixation capacity of algae and its potential to produce high-value products make algal wastewater treatment technology economically feasible. This paper reviews the environmental impact of several types of phenolic pollutants in wastewater and different strategies to improve bioremediation efficiency. This paper focuses on the progress of algae removing phenols by different mechanisms and the potential of algae biomass for further biofuel production. This technology holds great promise, but more research on practical wastewater treatment at an industrial scale is needed in the future.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhaofei Zhang
- Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yeling Luo
- Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
11
|
Tawfik A, Hasanan K, Abdullah M, Badr OA, Awad HM, Elsamadony M, El-Dissouky A, Qyyum MA, Nizami AS. Graphene enhanced detoxification of wastewater rich 4-nitrophenol in multistage anaerobic reactor followed by baffled high-rate algal pond. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127395. [PMID: 34879583 DOI: 10.1016/j.jhazmat.2021.127395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The presence of 4-nitrophenol (4-NP) in the wastewater industry causes toxicity and inhibition of the anaerobic degrading bacteria. The anaerobes in the multistage anaerobic reactor were loaded by 30.0 mg/gVS Graphene nanoparticles (MAR-Gn) as an electron acceptor to detoxify wastewater industry. The half maximal inhibitory concentration (IC50) was reduced from 455 ± 22.5 to 135 ± 12.7 μg Gallic acid equivalent/mL at 4-NP loading rate of 47.9 g/m3d. Furthermore, 4-NP was decreased by a value of 83.7 ± 4.9% in MAR-Gn compared to 65.6 ± 4.8% in control MAR. The 4-aminophenol (4-AP) recovery was accounted for 44.8% in the MAR-Gn at an average oxidation-reduction potential (ORP) of - 167.3 ± 21.2 mV. The remaining portions of 4-NP and 4-AP in the MAR-Gn effluent were efficiently removed by baffled high rate algal pond (BHRAP), resulting in overall removal efficiency of 91.6 ± 6.3 and 92.3 ± 4.6%, respectively. The Methanosaeta (52.9%) and Methanosphaerula (10.9%) were dominant species in MAR-Gn for reduction of 4-NP into 4-AP. Moreover, Chlorophyta cells (Chlorella vulgaris, Scenedesmus obliquus, Scenedesmus quadricauda and Ulothrix subtilissima were abundant in the BHRAP for complete degradation of 4-NP and 4-AP.
Collapse
Affiliation(s)
- Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki, Giza 12622, Egypt
| | - Khaled Hasanan
- National Research Centre, Water Pollution Research Department, Dokki, Giza 12622, Egypt
| | - Mahmoud Abdullah
- National Research Centre, Water Pollution Research Department, Dokki, Giza 12622, Egypt
| | - Omnia A Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalyubia, Egypt
| | - Hanem M Awad
- National Research Centre, Department of Tanning Materials and Leather Technology & Regulatory Toxicology Lab, Centre of Excellence, El-Behouth St., Dokki 12622, Egypt
| | - Mohamed Elsamadony
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, 31521 Tanta, Egypt
| | - Ali El-Dissouky
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt
| | - Muhammad Abdul Qyyum
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman; School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea.
| | - Abdul-Sattar Nizami
- Sustainable Development Study Center, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
12
|
Zmirli Z, Driouich A, El harfaoui S, Mohssine A, Mountacer H, Sallek B, Chaair H. Assessment of the principal factors influencing the silver cyanidation process by using Plackett-Burman experimental design. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
13
|
Liu A, Jing H, Du X, Ma C, Wang H. Efficient Ultrasonic-assisted Aqueous Enzymatic Method for Pecan Nut Kernel Oil Extraction with Quality Analysis. J Oleo Sci 2022; 71:1749-1760. [DOI: 10.5650/jos.ess22119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Anning Liu
- The State Key Laboratory of Food Science & Technology, Jiangnan University
| | - Huijuan Jing
- School of Food Science & Technology, Jiangnan University
| | - Xiaojing Du
- The State Key Laboratory of Food Science & Technology, Jiangnan University
| | - Chaoyang Ma
- The State Key Laboratory of Food Science & Technology, Jiangnan University
| | - Hongxin Wang
- The State Key Laboratory of Food Science & Technology, Jiangnan University
| |
Collapse
|
14
|
Radziff SBM, Ahmad SA, Shaharuddin NA, Merican F, Kok YY, Zulkharnain A, Gomez-Fuentes C, Wong CY. Potential Application of Algae in Biodegradation of Phenol: A Review and Bibliometric Study. PLANTS (BASEL, SWITZERLAND) 2021; 10:2677. [PMID: 34961148 PMCID: PMC8709323 DOI: 10.3390/plants10122677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
One of the most severe environmental issues affecting the sustainable growth of human society is water pollution. Phenolic compounds are toxic, hazardous and carcinogenic to humans and animals even at low concentrations. Thus, it is compulsory to remove the compounds from polluted wastewater before being discharged into the ecosystem. Biotechnology has been coping with environmental problems using a broad spectrum of microorganisms and biocatalysts to establish innovative techniques for biodegradation. Biological treatment is preferable as it is cost-effective in removing organic pollutants, including phenol. The advantages and the enzymes involved in the metabolic degradation of phenol render the efficiency of microalgae in the degradation process. The focus of this review is to explore the trends in publication (within the year of 2000-2020) through bibliometric analysis and the mechanisms involved in algae phenol degradation. Current studies and publications on the use of algae in bioremediation have been observed to expand due to environmental problems and the versatility of microalgae. VOSviewer and SciMAT software were used in this review to further analyse the links and interaction of the selected keywords. It was noted that publication is advancing, with China, Spain and the United States dominating the studies with total publications of 36, 28 and 22, respectively. Hence, this review will provide an insight into the trends and potential use of algae in degradation.
Collapse
Affiliation(s)
- Syahirah Batrisyia Mohamed Radziff
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Gelugor 11800, Penang, Malaysia;
| | - Yih-Yih Kok
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama-shi 337-8570, Saitama, Japan;
| | - Claudio Gomez-Fuentes
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
- Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile
| | - Chiew-Yen Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia;
| |
Collapse
|
15
|
Dayana Priyadharshini S, Suresh Babu P, Manikandan S, Subbaiya R, Govarthanan M, Karmegam N. Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117989. [PMID: 34433126 DOI: 10.1016/j.envpol.2021.117989] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Surface and water bodies in many parts of the world are affected due to eutrophication, contamination and depletion. The approach of wastewater treatment using algae for eliminating nutrients and other pollutants from domestic wastewater is growing interest among the researchers. However, sustainable treatment of the wastewater is considered to be important in establishing more effective nutrient and pollutant reduction using algal systems. In comparison to the conventional method of remediation, there are opportunities to commercially viable businesses interest with phycoremediation, thus by achieving cost reductions and renewable bioenergy options. Phycoremediation is an intriguing stage for treating wastewater since it provides tertiary bio-treatment while producing potentially valuable biomass that may be used for a variety of applications. Furthermore, the phycoremediation provides the ability to remove heavy metals as well as harmful organic substances, without producing secondary contamination. In this review, the role of microalgae in treating different wastewaters and the process parameters affecting the treatment and future scope of research have been discussed. Though several algae are employed for wastewater treatment, species of the genera Chlamydomonas, Chlorella, and Scenedesmus are extensively utilized. Interestingly, there is a vast scope for employing algal species with high flocculation capacity and adsorption mechanisms for the elimination of microplastics. In addition, the algal biomass generated during phycoremediation has been found to possess high protein and lipid contents, promising their exploitation in biofuel, food and animal feed industries.
Collapse
Affiliation(s)
| | - Palanisamy Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| |
Collapse
|
16
|
Prakash Shyam K, Rajkumar P, Ramya V, Sivabalan S, Kings AJ, Miriam LM. Exopolysaccharide production by optimized medium using novel marine Enterobacter cloacae MBB8 isolate and its antioxidant potential. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Huang X, Zhang X, Huang Y, Xu X. Optimization of media composition for enhancing tetracycline degradation by Trichosporon mycotoxinivorans XPY-10 using response surface methodology. ENVIRONMENTAL TECHNOLOGY 2021; 42:4279-4285. [PMID: 32270748 DOI: 10.1080/09593330.2020.1754472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
The objective of the study was to improve tetracycline degradation efficiency by Trichosporon mycotoxinivorans XPY-10 using statistical experimental designs. Different culture conditions (FeSO4, pH and glucose) were optimized for tetracycline biodegradation and the mutual interactions between these three variables were analysed using Box-Behnken design (BBD) and response surface methodology (RSM). The results showed that the empirical model was suitable for experimental data, and the maximum tetracycline degradation efficiency by XPY-10 was 95.18% under the optimum conditions of 0.02% of FeSO4, pH 7.83 and 0.28% of glucose, which was further verified by experiments. This study indicated the excellent ability of XPY-10 in degrading tetracycline and theoretical support for the follow-up practice to remediate tetracycline contaminated environment.
Collapse
Affiliation(s)
- Xiaochen Huang
- College of Life Sciences, Fujian Normal University, Fuzhou, People's Republic of China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People's Republic of China
| | - Xinyang Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, People's Republic of China
| | - Yanyan Huang
- College of Life Sciences, Fujian Normal University, Fuzhou, People's Republic of China
| | - Xuping Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, People's Republic of China
| |
Collapse
|
18
|
Javaheri Safa Z, Olya A, Zamani M, Motalebi M, Khalili R, Haghbeen K, Aminzadeh S. Biodegradation of cyanide to ammonia and carbon dioxide by an industrially valuable enzyme from the newly isolated Enterobacter zs. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1131-1137. [PMID: 34521302 DOI: 10.1080/10934529.2021.1967653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The biodetoxification of cyanide-rich wastewater has been suggested as an appropriate technique due to its environmental friendliness and cost effectiveness. In this research, Enterobacter zs that was newly isolated from cyanide-polluted wastewater was selected to catalyze cyanide via an enzymatic mechanism. Enzyme was purified and its activity was also determined by ammonia assay. Subsequently, the operational procedure was optimized to enhance cyanide biodegradation at variable pH values, temperatures and cyanide concentrations using response surface methodology (RSM). The results revealed that the interactions between pH and temperature, as well as those between pH and cyanide concentration, were significant, and the concentration of cyanide in a 650 mg.L-1 solution was decreased by 73%. According to this study, it can be proposed that due to its higher activity level compared with those of similar enzymes, this enzyme can prove useful in enzymatic biodegradation of cyanide which is a promising approach in the treatment of industrial effluent.
Collapse
Affiliation(s)
- Zohre Javaheri Safa
- Bioprocess Engineering Group, Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Cellular and Molecular Biology, Nourdanesh University, Isfahan, Iran
| | - Arta Olya
- Bioprocess Engineering Group, Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammadreza Zamani
- Institute of Agricultural Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mostafa Motalebi
- Institute of Agricultural Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Rahimeh Khalili
- Bioprocess Engineering Group, Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Cellular and Molecular Biology, Nourdanesh University, Isfahan, Iran
| | - Kamahldin Haghbeen
- Institute of Agricultural Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
19
|
Zou SP, Zhao K, Wang ZJ, Zhang B, Liu ZQ, Zheng YG. Overproduction of D-pantothenic acid via fermentation conditions optimization and isoleucine feeding from recombinant Escherichia coli W3110. 3 Biotech 2021; 11:295. [PMID: 34136332 DOI: 10.1007/s13205-021-02773-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
D-pantothenic acid (D-PA), as a crucial vitamin, is widely used in food, animal feed, cosmetics, and pharmaceutical industries. In our previous work, recombinant Escherichia coli W3110 for production of D-PA was constructed through metabolic pathway modification. In this study, to enhance D-PA production, statistical optimization techniques including Plackett-Burman (PB) design and Box-Behnken design (BBD) first were adopted to optimize the culture condition. The results showed that the glucose, β-alanine and (NH4)2SO4 have the most significant effects on D-PA biosynthesis. The response surface model based on BBD predicted that the optimal concentration is glucose 56.0 g/L, β-alanine 2.25 g/L and (NH4)2SO4 11.8 g/L, the D-PA titer increases from 3.2 g/L to 6.73 g/L shake flask fermentation. For the fed-batch fermentation in 5 L fermenter, the isoleucine feeding strategy greatly increased the titer and productivity of D-PA. As a result, titer (31.6 g/L) and productivity (13.2 g/L·d) of D-PA were achieved, they increased by 4.66 times and 2.65 times, respectively, compared with batch culture. At the same time, the accumulation of acetate reduced from 29.79 g/L to 8.55 g/L in the fed-batch fermentation. These results demonstrated that the optimization of medium composition and the cell growth rate are important to increase the concentration of D-PA for microbial fermentation. This work laid the foundation for further research on the application of D-PA microbial synthesis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02773-0.
Collapse
Affiliation(s)
- Shu-Ping Zou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Kuo Zhao
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Zhi-Jian Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People's Republic of China
| |
Collapse
|
20
|
Muchahary S, Deka SC. Impact of supercritical fluid extraction, ultrasound‐assisted extraction, and conventional method on the phytochemicals and antioxidant activity of bhimkol (
Musa balbisiana
) banana blossom. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sangita Muchahary
- Department of Food Engineering and Technology Tezpur University Tezpur India
| | - Sankar Chandra Deka
- Department of Food Engineering and Technology Tezpur University Tezpur India
| |
Collapse
|
21
|
Integrated Utilization of Dairy Whey in Probiotic β-Galactosidase Production and Enzymatic Synthesis of Galacto-Oligosaccharides. Catalysts 2021. [DOI: 10.3390/catal11060658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This work established an integrated utilization of dairy whey in β-galactosidase production from Lactobacillus bulgaricus and prebiotics synthesis by the probiotic enzyme. A cost-effective whey-based medium was newly developed for culturing Lactobacillus bulgaricus to produce β-galactosidase. The medium was optimized through response surface methodology (RSM) involving a series of statistical designs, such as the Plackett–Burman design, steepest ascent experiment, and central composite design. Under the optimized medium, the β-galactosidase activity of L. bulgaricus reached 2034 U/L, which was twice that produced from the traditional MRS medium. The cells of L. bulgaricus harvested from the whey-based medium were subsequently treated with lysozyme. The resulting crude enzyme was used as an efficient catalyst, which catalyzed the synthesis of the prebiotic galacto-oligosaccharides (GOS) in a high yield of 44.7% by using whey (200 g/L) as the substrate. The sugar mixture was further purified by activated charcoal adsorption, thereby yielding a high-purity level of 77.6% GOS.
Collapse
|
22
|
Dar RA, Gupta RK, Phutela UG. Enhancement of euryhaline Asterarcys quadricellulare biomass production for improving biogas generation through anaerobic co-digestion with carbon rich substrate. 3 Biotech 2021; 11:251. [PMID: 33968594 DOI: 10.1007/s13205-021-02792-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
The microalga was isolated from Muktsar, the southwestern zone of Indian Punjab and identified as Asterarcys quadricellulare BGLR5 (MF661929) by 18S rRNA sequence analysis. The optimization of various cultural factors by the Plackett-Burman and central composite (CCD) designs helped in discerning the significant cultural factors for the increased production of biomass and other functional components (chlorophyll, carbohydrate, lipid and protein). The optimal cultural conditions as per the model were pH 9.9, 81 μmol m-2 s-1 light intensity, 22 °C temperature, growth period of 25 days, NaNO3 12 mM, 15 mM NH4Cl, and 7 mM K2HPO4. In comparison to the basal condition biomass (0.886 g L-1), a 0.42-fold increase in biomass yield was attained. Further, the highest yield of biogas (P: 361.81 mL g-1 VS) with enhanced biogas production rate (R m: 8.19 mL g-1 day-1) was achieved in co-digesting paddy straw with Asterarcys quadricellulare biomass in 1:1 ratio compared to their digestion individually. Further, the co-digestion resulted in the positive synergistic effect which increased the observed biogas yield compared to the estimated yield by 11-58% depending upon the amount of algal biomass and paddy straw used. Hence, the present study signifies that the biomass of Asterarcys quadricellulare BGLR5 can be utilized as a co-substrate with paddy straw to enhance the biogas yield. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02792-x.
Collapse
Affiliation(s)
- Rouf Ahmad Dar
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Rajeev Kumar Gupta
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Urmila Gupta Phutela
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
23
|
Liu W, Xiang H, Zhang T, Pang X, Su J, Liu H, Ma B, Yu L. Development of a New Bioprocess for Clean Diosgenin Production through Submerged Fermentation of an Endophytic Fungus. ACS OMEGA 2021; 6:9537-9548. [PMID: 33869934 PMCID: PMC8047649 DOI: 10.1021/acsomega.1c00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Diosgenin is used widely to synthesize steroidal hormone drugs in the pharmaceutical industry. The conventional diosgenin production process, direct acid hydrolysis of the root of Dioscorea zingiberensis C. H. Wright (DZW), causes large amounts of wastewater and severe environmental pollution. To develop a clean and effective method, the endophytic fungus Fusarium sp. CPCC 400226 was screened for the first time for the microbial biotransformation of DZW in submerged fermentation (SmF). Statistical design and response surface methodology (RSM) were implemented to develop the diosgenin production process using the Fusarium strains. The environmental variables that significantly affected diosgenin yield were determined by the two-level Plackett-Burman design (PBD) with nine factors. PBD indicates that the fermentation period, culture temperature, and antifoam reagent addition are the most influential variables. These three variables were further optimized using the response surface design (RSD). A quadratic model was then built by the central composite design (CCD) to study the impact of interaction and quadratic effect on diosgenin yield. The values of the coefficient of determination for the PBD and CCD models were all over 0.95. P-values for both models were 0.0024 and <0.001, with F-values of ∼414 and ∼2215, respectively. The predicted results showed that a maximum diosgenin yield of 2.22% could be obtained with a fermentation period of 11.89 days, a culture temperature of 30.17 °C, and an antifoam reagent addition of 0.20%. The experimental value was 2.24%, which was in great agreement with predicted value. As a result, over 80% of the steroidal saponins in DZW were converted into diosgenin, presenting a ∼3-fold increase in diosgenin yield. For the first time, we report the SmF of a Fusarium strain used to produce diosgenin through the microbial biotransformation of DZW. A practical diosgenin production process was established for the first time for Fusarium strains. This bioprocess is acid-free and wastewater-free, providing a promising environmentally friendly alternative to diosgenin production in industrial applications. The information provided in the current study may be applicable to produce diosgenin in SmF by other endophytic fungi and lays a solid foundation for endophytic fungi to produce natural products.
Collapse
Affiliation(s)
- Wancang Liu
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Haibo Xiang
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life
Sciences, Hubei University, 368 You Yi Road, Wuhan, Hubei 430062, P. R. China
| | - Tao Zhang
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Xu Pang
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Jing Su
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Hongyu Liu
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Baiping Ma
- Institute
of Radiation Medicine, 27 Tai Ping Road, Beijing 100850, P. R. China
| | - Liyan Yu
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| |
Collapse
|
24
|
Zaveri P, Iyer AR, Patel R, Munshi NS. Uncovering Competitive and Restorative Effects of Macro- and Micronutrients on Sodium Benzoate Biodegradation. Front Microbiol 2021; 12:634753. [PMID: 33815319 PMCID: PMC8009979 DOI: 10.3389/fmicb.2021.634753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
A model aromatic compound, sodium benzoate, is generally used for simulating aromatic pollutants present in textile effluents. Bioremediation of sodium benzoate was studied using the most abundant bacteria, Pseudomonas citronellolis, isolated from the effluent treatment plants of South Gujarat, India. Multiple nutrients constituting the effluent in actual conditions are proposed to have interactive effects on biodegradation which needs to be analyzed strategically for successful field application of developed bioremediation process. Two explicitly different sets of fractional factorial designs were used to investigate the interactive influence of alternative carbon, nitrogen sources, and inorganic micronutrients on sodium benzoate degradation. The process was negatively influenced by the co-existence of other carbon sources and higher concentration of KH2PO4 whereas NH4Cl and MgSO4 exhibited positive effects. Optimized concentrations of NH4Cl, MgSO4, and KH2PO4 were found to be 0.35, 1.056, and 0.3 mg L–1 respectively by central composite designing. The negative effect of high amount of KH2PO4 could be ameliorated by increasing the amount of NH4Cl in the biodegradation milieu indicating the possibility of restoration of the degradation capability for sodium benzoate degradation in the presence of higher phosphate concentration.
Collapse
Affiliation(s)
- Purvi Zaveri
- Institute of Science, Nirma University, Ahmedabad, India
| | | | - Rushika Patel
- Institute of Science, Nirma University, Ahmedabad, India
| | | |
Collapse
|
25
|
An X, Zhong B, Chen G, An W, Xia X, Li H, Lai F, Zhang Q. Evaluation of bioremediation and detoxification potentiality for papermaking black liquor by a new isolated thermophilic and alkali-tolerant Serratia sp. AXJ-M. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124285. [PMID: 33189463 DOI: 10.1016/j.jhazmat.2020.124285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
There is a great need for efficiently treating papermaking black liquor because it can seriously pollute both soil and water ecosystems. In this study, the Plackett-Burman (PB) experimental design combined with response surface methodology (RSM) was used for improving the biodegradation efficiency of lignin by a new isolated thermophilic and alkali-tolerant strain Serratia sp. AXJ-M, and the results showed that a biodegradation efficiency of 70.5% was achieved under optimal culture conditions. The bacterium with ligninolytic activities significantly decreased target the parameters (color 80%, lignin 60%, phenol 95%, BOD 80% and COD 80%). The control and treated samples were analyzed by gas chromatography-mass spectrometer (GC-MS), which showed that the concentrations of a majority of low-molecular-weight compounds were decreased after biological treatment. Furthermore, toxicological, genotoxicity and phytotoxicity studies have supported the detoxification by the bacterium of black liquor. Finally, the genome sequence of the thermophilic, alkali-tolerant and lignin-degrading bacterium AXJ-M was completed, and the genetic basis of the thermophilic and alkali-resistant properties of AXJ-M was preliminarily revealed. The dyp-type peroxidase was first reported to have the potential to catalyze lignin degradation structurally. These findings suggest that Serratia sp. AXJ-M may be potentially useful for bioremediation applications for papermaking black liquor.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Bin Zhong
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guotao Chen
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Weijuan An
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiang Xia
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Hanguang Li
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Fenju Lai
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
26
|
Kumar M, Dahuja A, Tiwari S, Punia S, Tak Y, Amarowicz R, Bhoite AG, Singh S, Joshi S, Panesar PS, Prakash Saini R, Pihlanto A, Tomar M, Sharifi-Rad J, Kaur C. Recent trends in extraction of plant bioactives using green technologies: A review. Food Chem 2021; 353:129431. [PMID: 33714109 DOI: 10.1016/j.foodchem.2021.129431] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Phenolic compounds from plant sources have significant health-promoting properties and are known to be an integral part of folk and herbal medicines. Consumption of phenolics is known to alleviate the risk of various lifestyle diseases including cancer, cardiovascular, diabetes, and Alzheimer's. In this context, numerous plant crops have been explored and characterized based on phenolic compounds for their use as supplements, nutraceutical, and pharmaceuticals. The present review highlights some important source of bioactive phenolic compounds and novel technologies for their efficient extraction. These techniques include the use of microwave, ultrasound, and supercritical methods. Besides, the review will also highlight the use of response surface methodology (RSM) as a statistical tool for optimizing the recoveries of the phenolic bioactives from plant-based matrices.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India; Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Anil Dahuja
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Sudha Tiwari
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India
| | - Sneh Punia
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, India; Department of Food, Nutrition, & Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - Yamini Tak
- Department of Biochemistry, Agriculture University, Kota 324001, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anilkumar G Bhoite
- Department of Agricultural Botany, RCSM College of Agriculture, Kolhapur 416004, Maharashtra, India
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Shourabh Joshi
- Department of Basic Sciences, College of Agriculture, Nagaur, Agricultural University, Jodhpur 341001, Rajasthan, India
| | - Parmjit S Panesar
- Department of Food Engg. & Technology, S.L. Institute of Engg. & Technology, Longowal 148 106, Punjab, India
| | - Ravi Prakash Saini
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 28400, India
| | - Anne Pihlanto
- Natural Resources Institute Finland, Myllytie, Finland
| | - Maharishi Tomar
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 28400, India
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Charanjit Kaur
- Division of Food Science and Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
27
|
El-Gendy NS, Nassar HN. Phycoremediation of phenol-polluted petro-industrial effluents and its techno-economic values as a win-win process for a green environment, sustainable energy and bioproducts. J Appl Microbiol 2021; 131:1621-1638. [PMID: 33386652 DOI: 10.1111/jam.14989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
The discharge of the toxic phenol-polluted petro-industrial effluents (PPPIE) has severe environmental negative impacts, thus it is mandatory to be treated before its discharge. The objective of this review was to discuss the sustainable application of microalgae in phenols degradation, with a special emphasis on the enzymes involved in this bioprocess and the factors affecting the success of PPPIE phycoremediation. Moreover, it confers the microalgae bioenergetic strategies to degrade different forms of phenols in PPPIE. It also points out the advantages of the latest application of bacteria, fungi and microalgae as microbial consortia in phenols biodegradation. Briefly, phycoremediation of PPPIE consumes carbon dioxide emitted from petro-industries for; valorization of the polluted water to be reused and production of algal biomass which can act as a source of energy for such integrated bioprocess. Besides, the harvested algal biomass can feasibly produce; third-generation biofuels, biorefineries, bioplastics, fish and animal feed, food supplements, natural dyes, antioxidants and many other valuable products. Consequently, this review precisely confirms that the phycoremediation of PPPIE is a win-win process for a green environment and a sustainable future. Thus, to achieve the three pillars of sustainability; social, environmental and economic; it is recommendable to integrate PPPIE treatment with algal cultivation. This integrated process would overcome the problem of greenhouse gas emissions, global warming and climate change, solve the problem of water-scarce, and protect the environment from the harmful negative impacts of PPPIE.
Collapse
Affiliation(s)
- N Sh El-Gendy
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt.,Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt
| | - H N Nassar
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt.,Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt
| |
Collapse
|
28
|
Gholipoor O, Hosseini SA. Phenol removal from wastewater by CWPO process over the Cu-MOF nanocatalyst: process modeling by response surface methodology (RSM) and kinetic and isothermal studies. NEW J CHEM 2021. [DOI: 10.1039/d0nj04128a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Water-stable metal–organic frameworks (MOFs), which possess unique porous structures, have attracted attention from scientists exploring novel and efficient methods for the elimination of phenol compounds from aqueous media.
Collapse
Affiliation(s)
- Ozra Gholipoor
- Department of Applied Chemistry
- Faculty of Chemistry
- Urmia University
- Urmia
- Iran
| | - Seyed Ali Hosseini
- Department of Applied Chemistry
- Faculty of Chemistry
- Urmia University
- Urmia
- Iran
| |
Collapse
|
29
|
Chaudhari SR, Shirkhedkar AA. Application of Plackett-Burman and central composite designs for screening and optimization of factor influencing the chromatographic conditions of HPTLC method for quantification of efonidipine hydrochloride. J Anal Sci Technol 2020. [DOI: 10.1186/s40543-020-00246-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
We report here an analytical method for expeditious estimation of efonidipine hydrochloride in tablet formulation with statistical screening and optimization designs using NP-HPTLC. TLC silica gel 60 F254 aluminum plates and ethyl acetate to dichloromethane to triethylamine (3:2:0.5 v/v) were chosen for chromatographic separation of efonidipine hydrochloride. The Rf value for efonidipine hydrochloride turned out to be 0.35 ± 0.25 and quantitative evaluation was done at 251 nm. Plackett-Burman and face-centered central composite design (CCD) were used to obtain the most peak area and well-resolved compact band with an adequate retention factor of efonidipine hydrochloride. Plackett-Burman design at two-level with six independent variables has been employed for screening of prominent factors that affect the responses. The prominent factors have been selected and are optimized through face-centered CCD. The results obtained from face-centered CCD showed that most peak area can be obtained with development distance 8.50 cm and chamber saturation 17 min. Furthermore, the current NP-HPTLC investigation has been validated according to the ICH guidelines for accuracy, precision, sensitivity, robustness, ruggedness, and specificity. The detection and quantification limit was found that 10.41 ng and 31.57 ng, suggesting that the analysis could be accurately and precisely detected the analyte up to nanogram quantity. The current NP-HPTLC investigation is rugged, accurate, and highly sensitive and could be used for routine analysis of efonidipine hydrochloride.
Collapse
|
30
|
Statistical optimization of textile dye effluent adsorption by Gracilaria edulis using Plackett-Burman design and response surface methodology. Heliyon 2020; 6:e05219. [PMID: 33088969 PMCID: PMC7566099 DOI: 10.1016/j.heliyon.2020.e05219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/28/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Statistical optimization models were employed to optimize the adsorption of textile dye effluent onto Gracilaria edulis. Significant factors responsible for adsorption were determined using Plackett-Burman design (PBD) and were time, pH, and dye concentration. Box-Behnken (BB) design was used for further optimization. The predicted and the experimental values were found to be in good agreement, the coefficient of determination value 0.9935 and adjusted coefficient of determination value 0.9818 indicated that the model was significant. The results of predicted response optimization showed that maximum decolorization could be attained with time 131.51 min, pH 7.48, and dye concentration 23.13%. The model was validated experimentally with 92.65% decolorization efficiency. The experiment was confirmed using Fourier transform infrared spectroscopy (FTIR), high-resolution scanning electron microscope coupled with energy dispersive X-ray analysis (HR-SEM-EDX), X-ray diffraction spectrometry (XRD) and Brunauer-Emmett-Teller (BET) surface area and pore size analysis techniques. Desorption studies at various pH (2–14) were performed and a maximum of 23% of the dye was recovered from the adsorbed biomass.
Collapse
|
31
|
Yang J, Ma C, Tao J, Li J, Du K, Wei Z, Chen C, Wang Z, Zhao C, Ma M. Optimization of polyvinylamine-modified nanocellulose for chlorpyrifos adsorption by central composite design. Carbohydr Polym 2020; 245:116542. [DOI: 10.1016/j.carbpol.2020.116542] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/29/2022]
|
32
|
Nazos TT, Mavroudakis L, Pergantis SA, Ghanotakis DF. Biodegradation of phenol by Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2020; 144:383-395. [PMID: 32358649 DOI: 10.1007/s11120-020-00756-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The data presented in this particular study demonstrate that the biodegradation of phenol by Chlamydomonas reinhardtii is a dynamic bioenergetic process mainly affected by the production of catechol and the presence of a growth-promoting substrate in the culture medium. The study focused on the regulation of the bioenergetic equilibrium resulting from production of catechol after phenol oxidation. Catechol was identified by HPLC-UV and HPLC-ESI-MS/MS. Growth measurements revealed that phenol is a growth-limiting substrate for microalgal cultures. The Chlamydomonas cells proceed to phenol biodegradation because they require carbon reserves for maintenance of homeostasis. In the presence of acetic acid (a growth-promoting carbon source), the amount of catechol detected in the culture medium was negligible; apparently, acetic acid provides microalgae with sufficient energy reserves to further biodegrade catechol. It has been shown that when microalgae do not have sufficient energy reserves, a significant amount of catechol is released into the culture medium. Chlamydomonas reinhardtii acts as a versatile bioenergetic machine by regulating its metabolism under each particular set of growth conditions, in order to achieve an optimal balance between growth, homeostasis maintenance and biodegradation of phenol. The novel findings of this study reveal a paradigm showing how microalgal metabolic versatility can be used in the bioremediation of the environment and in potential large-scale applications.
Collapse
Affiliation(s)
- Theocharis T Nazos
- Department of Chemistry, University of Crete, Vasilika Voutes, Heraklion, Crete, 70013, Greece
| | - Leonidas Mavroudakis
- Department of Chemistry, University of Crete, Vasilika Voutes, Heraklion, Crete, 70013, Greece
| | - Spiros A Pergantis
- Department of Chemistry, University of Crete, Vasilika Voutes, Heraklion, Crete, 70013, Greece
| | - Demetrios F Ghanotakis
- Department of Chemistry, University of Crete, Vasilika Voutes, Heraklion, Crete, 70013, Greece.
| |
Collapse
|
33
|
Mayr JC, Rosa LFM, Klinger N, Grosch J, Harnisch F, Spiess AC. Response-Surface-Optimized and Scaled-Up Microbial Electrosynthesis of Chiral Alcohols. CHEMSUSCHEM 2020; 13:1808-1816. [PMID: 31951080 PMCID: PMC7187473 DOI: 10.1002/cssc.201903428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/17/2020] [Indexed: 06/10/2023]
Abstract
A variety of enzymes can be easily incorporated and overexpressed within Escherichia coli cells by plasmids, making it an ideal chassis for bioelectrosynthesis. It has recently been demonstrated that microbial electrosynthesis (MES) of chiral alcohols is possible by using genetically modified E. coli with plasmid-incorporated and overexpressed enzymes and methyl viologen as mediator for electron transfer. This model system, using NADPH-dependent alcohol dehydrogenase from Lactobacillus brevis to convert acetophenone into (R)-1-phenylethanol, is assessed by using a design of experiment (DoE) approach. Process optimization is achieved with a 2.4-fold increased yield of 94±7 %, a 3.9-fold increased reaction rate of 324±67 μm h-1 , and a coulombic efficiency of up to 68±7 %, while maintaining an excellent enantioselectivity of >99 %. Subsequent scale-up to 1 L by using electrobioreactors under batch and fed-batch conditions increases the titer of (R)-1-phenylethanol to 12.8±2.0 mm and paves the way to further develop E. coli into a universal chassis for MES in a standard biotechnological process environment.
Collapse
Affiliation(s)
- Jeannine C. Mayr
- Institute of Biochemical EngineeringTechnische Universität BraunschweigRebenring 5638106BraunschweigGermany
- Braunschweig Integrated Centre of Systems Biology (BRICS)Technische Universität BraunschweigRebenring 5638106BraunschweigGermany
| | - Luis F. M. Rosa
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research (UFZ)Permoserstrasse 1504318LeipzigGermany
| | - Natalia Klinger
- Institute of Biochemical EngineeringTechnische Universität BraunschweigRebenring 5638106BraunschweigGermany
| | - Jan‐Hendrik Grosch
- Institute of Biochemical EngineeringTechnische Universität BraunschweigRebenring 5638106BraunschweigGermany
- Braunschweig Integrated Centre of Systems Biology (BRICS)Technische Universität BraunschweigRebenring 5638106BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigFranz-Liszt-Strasse 35a38106BraunschweigGermany
| | - Falk Harnisch
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research (UFZ)Permoserstrasse 1504318LeipzigGermany
| | - Antje C. Spiess
- Institute of Biochemical EngineeringTechnische Universität BraunschweigRebenring 5638106BraunschweigGermany
- Braunschweig Integrated Centre of Systems Biology (BRICS)Technische Universität BraunschweigRebenring 5638106BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technische Universität BraunschweigFranz-Liszt-Strasse 35a38106BraunschweigGermany
| |
Collapse
|
34
|
Başaran Kankılıç G, Metin AÜ, Aluç Y. Investigation on phenol degradation capability of Scenedesmus regularis: influence of process parameters. ENVIRONMENTAL TECHNOLOGY 2020; 41:1065-1073. [PMID: 30205744 DOI: 10.1080/09593330.2018.1521471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Phenol removal from environmental solutions has attracted much attention due to phenol's high toxicity, even at low concentrations. This study aims to reveal the phenol biodegradation capacity of Scenedesmus regularis. Batch system parameters (pH, amount of algal cell, phenol concentration) on biodegradation were examined. After 24 h of treatment, 92.16, 94.50, 96.20, 80.53, 65.32, 52 and 40% of phenol were removed by Scenedesmus regularis in aqueous solutions containing 5, 10, 15, 20, 30, 40 and 50 mg/L of phenol, respectively. To describe the correlation between degradation rate and phenol concentration, the Michaelis-Menten kinetic equation was used where Vmax and Km are 0.82 mg phenol g algea-1 h-1 and 24.97 ppm, respectively. Phenol remediation ability of S.regularis can enable the usage of the spent biomass as biofuel feedstock and animal feed makes it a 'green' environmental sustainable process.
Collapse
Affiliation(s)
| | | | - Yaşar Aluç
- Environmental Analysis Laboratory, Kırıkkale University Scientific and Technological Research Application and Research Center, Kırıkkale, Turkey
| |
Collapse
|
35
|
Zhang S, Lin F, Yuan Q, Liu J, Li Y, Liang H. Robust magnetic laccase-mimicking nanozyme for oxidizing o-phenylenediamine and removing phenolic pollutants. J Environ Sci (China) 2020; 88:103-111. [PMID: 31862051 DOI: 10.1016/j.jes.2019.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 05/15/2023]
Abstract
In this study, we report a novel magnetic biomimetic nanozyme (Fe3O4@Cu/GMP (guanosine 5'-monophosphate)) with high laccase-like activity, which could oxidize toxic o-phenylenediamine (OPD) and remove phenolic compounds. The magnetic laccase-like nanozyme was readily obtained via complexed Cu2+ and GMP that grew on the surface of magnetic Fe3O4 nanoparticles. The prepared Fe3O4@Cu/GMP catalyst could be magnetically recycled for at least five cycles while still retaining above 70% activity. As a laccase mimic, Fe3O4@Cu/GMP had more activity and robust stability than natural laccase for the oxidization of OPD. Fe3O4@Cu/GMP retained about 90% residual activity at 90°C and showed little change at pH 3-9, and the nanozyme kept its excellent activity after long-term storage. Meanwhile, Fe3O4@Cu/GMP had better activity for removing phenolic compounds, and the removal of naphthol was more than 95%. Consequently, the proposed Fe3O4@Cu/GMP nanozyme shows potential for use as a robust catalyst for applications in environmental remediation.
Collapse
Affiliation(s)
- Siqi Zhang
- State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feifei Lin
- State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qipeng Yuan
- State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Ye Li
- Department of Biotechnology, Beijing Polytechnic, Yi Zhuang Economic and Technological Development Zone, Beijing 100176, China
| | - Hao Liang
- State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
36
|
A Statistical Tool for the Optimization of Parameters for the Degradation of Mono-aromatic Pollutants by A Formulated Microbial Consortium. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Kim HS, Park WK, Lee B, Seon G, Suh WI, Moon M, Chang YK. Optimization of heterotrophic cultivation of Chlorella sp. HS2 using screening, statistical assessment, and validation. Sci Rep 2019; 9:19383. [PMID: 31852948 PMCID: PMC6920485 DOI: 10.1038/s41598-019-55854-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022] Open
Abstract
The heterotrophic cultivation of microalgae has a number of notable advantages, which include allowing high culture density levels as well as enabling the production of biomass in consistent and predictable quantities. In this study, the full potential of Chlorella sp. HS2 is explored through optimization of the parameters for its heterotrophic cultivation. First, carbon and nitrogen sources were screened in PhotobioBox. Initial screening using the Plackett-Burman design (PBD) was then adopted and the concentrations of the major nutrients (glucose, sodium nitrate, and dipotassium phosphate) were optimized via response surface methodology (RSM) with a central composite design (CCD). Upon validation of the model via flask-scale cultivation, the optimized BG11 medium was found to result in a three-fold improvement in biomass amounts, from 5.85 to 18.13 g/L, in comparison to a non-optimized BG11 medium containing 72 g/L glucose. Scaling up the cultivation to a 5-L fermenter resulted in a greatly improved biomass concentration of 35.3 g/L owing to more efficient oxygenation of the culture. In addition, phosphorus feeding fermentation was employed in an effort to address early depletion of phosphate, and a maximum biomass concentration of 42.95 g/L was achieved, with biomass productivity of 5.37 g/L/D.
Collapse
Affiliation(s)
- Hee Su Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Won-Kun Park
- Department of Chemistry and Energy Engineering, Sangmyung University, 20 Hongimun 2-gil, Jongno-gu, Seoul, 03016, Republic of Korea
| | - Bongsoo Lee
- Department of Microbial and Nano Materials, College of Science and Technology, Mokwon University, 88 Doanbuk-ro, Seo-gu, Daejeon, 35349, Republic of Korea
| | - Gyeongho Seon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - William I Suh
- Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Buk-gu, Gwangju, 61003, Republic of Korea.
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Advanced Biomass R&D Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
38
|
Gong Z, He Q, Che C, Liu J, Yang G. Optimization and scale-up of the production of rhamnolipid by Pseudomonas aeruginosa in solid-state fermentation using high-density polyurethane foam as an inert support. Bioprocess Biosyst Eng 2019; 43:385-392. [DOI: 10.1007/s00449-019-02234-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/15/2019] [Indexed: 11/24/2022]
|
39
|
Ning J, Yue S. Optimization of preparation conditions of eucalyptus essential oil microcapsules by response surface methodology. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingxian Ning
- College of Food Science South China Agricultural University Guangzhou China
| | - Shuli Yue
- College of Food Science South China Agricultural University Guangzhou China
| |
Collapse
|
40
|
Chen Y, Wang L, Dai F, Tao M, Li X, Tan Z. Biostimulants application for bacterial metabolic activity promotion and sodium dodecyl sulfate degradation under copper stress. CHEMOSPHERE 2019; 226:736-743. [PMID: 30965244 DOI: 10.1016/j.chemosphere.2019.03.180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 02/13/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
In this study, the metabolic activity (adenosine triphosphate, ATP; electron transfer system, ETS; and dehydrogenase activity, DHA) response of a sodium dodecyl sulfate (SDS) degrading bacterium Pseudomonas sp. SDS-N2 to copper stress conditions were investigated. Results showed that the ATP content, ETS activity, and DHA activity of strain SDS-N2 were significantly correlated with substrate removal efficiency and bacterial growth under copper stress conditions. Based on the metabolic response patterns of strain SDS-N2, biostimulants citric acid, proline as well as FeSO4 were used to promote the metabolic activity of strain SDS-N2 at 0.8 mg L-1 copper stress condition. Plackett-Burman design and analysis proved that citric acid and FeSO4 were significant factors for enhanced SDS removal; and the optimum biostimulation conditions (FeSO4 72 mg L-1 and citric acid 100 mg L-1) for SDS removal were obtained by using steepest ascent experiment and central composite design. Under the optimum biostimulation conditions, ATP, ETS, DHA activity as well as bacterial growth were 14.1, 45.5, 0.5 and 2.3-fold higher than that of the control (without FeSO4 and citric acid addition) after 12.5 h biodegradation, and the substrate removal efficiency was increase by 37.6%.
Collapse
Affiliation(s)
- Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; University of Chinese Academy of Sciences, 100049, Beijing, PR China
| | - Le Wang
- BYD (Shangluo) Co., Ltd, 726000, Shangluo, PR China
| | - Fazhi Dai
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Mei Tao
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, PR China.
| |
Collapse
|
41
|
Pan C, Qian J, Fan J, Guo H, Gou L, Yang H, Liang C. Preparation nanoparticle by ionic cross-linked emulsified chitosan and its antibacterial activity. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Bavandi R, Emtyazjoo M, Saravi HN, Yazdian F, Sheikhpour M. Study of capability of nanostructured zero-valent iron and graphene oxide for bioremoval of trinitrophenol from wastewater in a bubble column bioreactor. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
Lei-Xiong, Hu WB, Yang ZW, Hui-Chen, Wang-Ning, Liu-Xin, Wang WJ. Enzymolysis-ultrasonic assisted extraction of flavanoid from Cyclocarya paliurus (Batal) Iljinskaja:HPLC profile, antimicrobial and antioxidant activity. INDUSTRIAL CROPS AND PRODUCTS 2019; 130:615-626. [DOI: 10.1016/j.indcrop.2019.01.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Malvis A, Hodaifa G, Halioui M, Seyedsalehi M, Sánchez S. Integrated process for olive oil mill wastewater treatment and its revalorization through the generation of high added value algal biomass. WATER RESEARCH 2019; 151:332-342. [PMID: 30616045 DOI: 10.1016/j.watres.2018.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
The two-phase continuous centrifugation process for olive oil extraction generates high amounts of olive oil mill wastewater (OMW), characterized by containing large concentrations of numerous contaminant compounds for the environment. An integral process based on physico-chemical (flocculation, photolysis and microfiltration) and microalgal growth stages was proposed for its treatment. Chemical oxygen demand (COD) removal percentages were 57.5%, 88.8% and 20.5% for flocculation, photolysis and microfiltration, respectively. The global removal percentages of organic load in the primary treatment were 96.2% for COD, 80.3% for total organic carbon (TOC) and 96.6% for total phenolic compounds (TPCs). In secondary treatment, different experiments using the microalgae Chlorella pyrenoidosa were performed on a laboratory scale in stirred batch tank reactors. The OMW concentrations in each culture medium were: 5%, 10%, 25%, 50%, 75% and 100% (v/v). The common experimental conditions were: pH = 7, temperature = 25 °C, agitation speed = 200 rpm, aeration rate = 0.5 (v/v) and illumination intensity = 359 μE m-2 s-1. The highest maximum specific growth rate (0.07 h-1) and volumetric biomass production (1.25 mg/(L h)) values were achieved in the culture with 50% of OMW (v/v). The final biomass obtained had a high percentage of carbohydrates, whose content ranged from 30.3% to 89.2% and the highest lipid content (34.2%) was determined in the culture with 25% of OMW (v/v). The final treated water is suitable for its use in irrigation, discharge to receiving waters or for being reused in the same process.
Collapse
Affiliation(s)
- Ana Malvis
- Molecular Biology and Biochemical Engineering Department, Chemical Engineering Area, University of Pablo de Olavide, ES-41013, Seville, Spain
| | - Gassan Hodaifa
- Molecular Biology and Biochemical Engineering Department, Chemical Engineering Area, University of Pablo de Olavide, ES-41013, Seville, Spain; Chemical, Environmental and Materials Department, University of Jaén, Centre of Advanced Studies in Olives and Olive-Oil, ES-23071, Jaén, Spain.
| | - Mansour Halioui
- Chemical, Environmental and Materials Department, University of Jaén, Centre of Advanced Studies in Olives and Olive-Oil, ES-23071, Jaén, Spain
| | | | - Sebastián Sánchez
- Chemical, Environmental and Materials Department, University of Jaén, Centre of Advanced Studies in Olives and Olive-Oil, ES-23071, Jaén, Spain
| |
Collapse
|
45
|
Enhanced L-methionine production by genetically engineered Escherichia coli through fermentation optimization. 3 Biotech 2019; 9:96. [PMID: 30800607 DOI: 10.1007/s13205-019-1609-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial fermentation for L-methionine (L-Met) production based on natural renewable resources is attractive and challenging. In this work, the effects of medium composition and fermentation conditions were investigated to improve L-Met production by genetically engineered Escherichia coli MET-3. Statistical optimization techniques including Plackett-Burman (PB) design and Box-Behnken design (BBD) were adopted first to optimize the culture medium. Results of PB-designed experiments indicated that the culture medium components including glucose, yeast extract, KH2PO4, and MgSO4.7H2O had significant effects on L-Met biosynthesis. With their best-predicted concentration established by BBD (glucose 37.43 g/L, yeast extract 0.95 g/L, KH2PO4 1.82 g/L, and MgSO4.7H2O 4.51 g/L), L-Met titer was increased to 3.04 g/L from less than 2.0 g/L. For further enhancement of L-Met biosynthesis, the fermentation conditions of batch cultivation carried out in a 5-L fermentor were optimized, and the optimum results were obtained at an agitation rate of 300 rpm, medium pH of 7.0, and induction temperature of 28 °C. Based on the optimization parameters, fed-batch fermentation with the modified medium was conducted. As a result, great improvement of L-Met titer (12.80 g/L) and yield (0.13 mol/mol) were achieved, with an increase of 38.53% and 30.0% compared with those of the basal medium, respectively. Furthermore, higher L-Met productivity of 0.261 g/L/h was obtained, representing 2.13-fold higher in comparison to the original medium. The results may provide a helpful reference for further study on strain improvement and fermentation control.
Collapse
|
46
|
Biodegradation of Pyrethroids by a Hydrolyzing Carboxylesterase EstA from Bacillus cereus BCC01. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial degradation has been considered as a rapid, green, and cost-effective technique to reduce insecticide pollutions in a contaminated environment. However, the instability and low efficacy of non-indigenous microorganisms hampers their further exploitation when being introduced into a real environmental matrix. In order to overcome the restriction that these functional microorganisms are under, we investigated the optimal conditions to improve the pyrethroid-degrading ability of one previously isolated bacterium Bacillus cereus BCC01, where 9.6% of the culture suspension (with cell density adjusted to OD600 = 0.6) was inoculated into 50 mL media and cultivated at pH 8 and 30 °C, and its metabolic pathway was illuminated by analyzing the main metabolites via gas chromatography mass spectrometry (GC-MS). Most importantly, a key pyrethroid-hydrolyzing carboxylesterase gene estA was identified from the genomic library of strain BCC01, and then expressed in Escherichia coli BL21 (DE3). After purification, the recombinant protein EstA remained soluble, displaying high degrading activity against different pyrethroids and favorable stability over a wide range of temperatures (from 15 °C to 50 °C) and pH values (6.5–9). Therefore, the EstA-associated biodegradation of pyrethroids was determined, which could provide novel insights to facilitate the practical application of B. cereus BCC01 in the microbial detoxification of pyrethroid contamination.
Collapse
|
47
|
Hu B, Wang H, He L, Li Y, Li C, Zhang Z, Liu Y, Zhou K, Zhang Q, Liu A, Liu S, Zhu Y, Luo Q. A method for extracting oil from cherry seed by ultrasonic-microwave assisted aqueous enzymatic process and evaluation of its quality. J Chromatogr A 2018; 1587:50-60. [PMID: 30578025 DOI: 10.1016/j.chroma.2018.12.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 02/02/2023]
Abstract
In order to increase the utilization of cherry seeds, ultrasonic-microwave assisted aqueous enzymatic extraction (UMAAEE) was used to extract cherry seed oil. Parameters of UMAAEE were optimized by Plackett-Burman design followed by Box-Behnken design. The oil recovery of 83.85 ± 0.78% was obtained under optimum extraction conditions of a 2.7% concentration of enzyme cocktail comprising cellulase, hemicellulase and pectinase (1/1/1, w/w/w), ultrasonic power of 560 W, microwave power of 323 W, extraction time of 38 min, extraction temperature of 40 °C, enzymolysis temperature of 40 °C, pH of 3.5, liquid to solid ratio of 12 mL/g, enzymolysis time of 240 min and particle size less than 0.425 mm. There were no significant differences in the fatty acid compositions of cheery seed oil by UMAAEE and Soxhlet extraction, and oil by UMAAEE possessed superior physicochemical properties and higher content of bioactive constituents. Scanning electron microscopy illustrated that enzyme hydrolysis and ultrasonic-microwave treatment causing the structural degradation of cherry seed was the main driving force for extraction. In this study, all results suggest that UMAAEE is an effective method to extract cherry seed oil.
Collapse
Affiliation(s)
- Bin Hu
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China.
| | - Haoyuan Wang
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Linfeng He
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Yi Li
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Cheng Li
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Zhiqing Zhang
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Yuntao Liu
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Kang Zhou
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Qing Zhang
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Aiping Liu
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Shuxiang Liu
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Yadong Zhu
- College of Literature, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| | - Qingying Luo
- College of Food, Sichuan Agricultural University, Ya'an 625000, Sichuan, China
| |
Collapse
|
48
|
Surkatti R, Al-Zuhair S. Microalgae cultivation for phenolic compounds removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33936-33956. [PMID: 30353440 DOI: 10.1007/s11356-018-3450-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Microalgae are promising sustainable and renewable sources of oils that can be used for biodiesel production. In addition, they contain important compounds, such as proteins and pigments, which have large applications in the food and pharmaceutical industries. Combining the production of these valuable products with wastewater treatment renders the cultivation of microalgae very attractive and economically feasible. This review paper presents and discusses the current applications of microalgae cultivation for wastewater treatment, particularly for the removal of phenolic compounds. The effects of cultivation conditions on the rate of contaminants removal and biomass productivity, as well as the chemical composition of microalgae cells are also discussed.
Collapse
Affiliation(s)
- Riham Surkatti
- Chemical Engineering Department, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates
| | - Sulaiman Al-Zuhair
- Chemical Engineering Department, United Arab Emirates University, 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
49
|
Shahryari S, Zahiri HS, Haghbeen K, Adrian L, Noghabi KA. High phenol degradation capacity of a newly characterized Acinetobacter sp. SA01: Bacterial cell viability and membrane impairment in respect to the phenol toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:455-466. [PMID: 30144706 DOI: 10.1016/j.ecoenv.2018.08.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
An efficient phenol-degrading bacterial strain, belonging to Acinetobacter genus, was isolated and selected to study the impact of different environmentally relevant phenol concentrations on the degradation process. The bacterial isolate, labeled as Acinetobacter sp. SA01 was able to degrade the maximum phenol concentration of 1 g/l during 60 h at optimum condition of pH 7, 30 °C and 180 rpm. Aeration and initial cell density, the two important factors, were carefully examined in the optimal growth conditions. The results showed that these two variables related proportionally with phenol degradation rate. Further investigations showed no effect of inoculum size on the enhancement of degradation of phenol at over 1 g/l. Flow cytometry (FCM) study was performed to find out the relationship between phenol-induced damages and phenol degradation process. Single staining using propidium iodide (PI) showed increased cell membrane permeability with an increase of phenol concentration, while single staining with carboxyfluorescein diacetate (cFDA) demonstrated a considerable reduction in esterase activity of the cells treated with phenol at more than 1 g/l. A detailed investigation of cellular viability using concurrent double staining of cFDA/PI revealed that the cell death increases in cells exposed to phenol at more than 1 g/l. The rate of cell death was low but noticeable in the presence of phenol concentration of 2 g/l, over time. Phenol at concentrations of 3 and 4 g/l caused strong toxicity in living cells of Acinetobacter sp. SA01. The plate count method and microscopy analysis of the cells treated with phenol at 1.5 and 2 g/l confirmed an apparent reduction in cell number over time. It was assumed that the phenol concentrations higher than 1 g/l have destructive effects on membrane integrity of Acinetobacter sp. SA01. Our results also revealed that the toxicity did not reduce by increasing initial cell density. Scanning electron microscopy (SEM) examination of bacterial cells revealed the surface morphological changes following exposure to phenol. The bacterial cells, with wizened appearance and wrinkled surface, were observed by exposing to phenol (1 g/l) at lag phase. A morphological change occurred in the mid-logarithmic phase as the bacterial cells demonstrated coccobacilli form as well as elongated filamentous shape. The wrinkled cell surface were totally disappeared in mid-stationary phase, suggesting that the complete degradation of phenol relieve the stress and direct bacterial cells toward possessing smoother cell membrane.
Collapse
Affiliation(s)
- Shahab Shahryari
- Division of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. Box 14155-6343, Tehran, Iran
| | - Hossein Shahbani Zahiri
- Division of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. Box 14155-6343, Tehran, Iran
| | - Kamahldin Haghbeen
- Division of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. Box 14155-6343, Tehran, Iran
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Kambiz Akbari Noghabi
- Division of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. Box 14155-6343, Tehran, Iran.
| |
Collapse
|
50
|
Li F, Zhao L, Jinxu Y, Shi W, Zhou S, Yuan K, Sheng GD. Removal of dichlorophenol by Chlorella pyrenoidosa through self-regulating mechanism in air-tight test environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:109-117. [PMID: 30099171 DOI: 10.1016/j.ecoenv.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Microalgae are surprisingly efficient to remove pollutants in a hermetically closed environment, though its growth is inhibited in the absence of pollutants. The final pH, algal density, Chl-a content, and the removal efficiency of 2,4-dichlorophenol (2,4-DCP) by Chlorellar pyrenoidosa in a closed system were observed under different initial pH, lighting regimes, and various carbon sources. The optimal condition for 2,4-DCP removal was obtained, and adopted to observe the evolution of above items by domesticated and origin strains. The results showed that both respiration and photosynthesis participated in the degradation of 2,4-DCP, and caused the changes of pH. The photosynthesis seemed to increase the solution pH, while the respiration and the biodegradation of 2,4-DCP to decrease the solution pH. The domesticated strain achieved nearly 100% removal when initial concentrations of 2,4-DCP lower than 200 μg L-1, due to providing a appropriate but narrow pH evolution range, mostly falling between 6.5 and 7.9. The research helps to understand the mechanism of biodegradation of chlorophenol compounds by green algae.
Collapse
Affiliation(s)
- Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Liyuan Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yifei Jinxu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wen Shi
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Siqi Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Kai Yuan
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - G Daniel Sheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|