1
|
Fan Y, Zhang F, He K, Yu D, Chen H, Tian D, Shi Y, Li Z, Wang X. Functional microorganisms in hydrogen production: Mechanisms and applications. BIORESOURCE TECHNOLOGY 2025; 419:132007. [PMID: 39733810 DOI: 10.1016/j.biortech.2024.132007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
The rapid growth of global energy demand accelerates the development of sustainable, clean, and renewable energy sources. Biohydrogen production, driven by functional microorganisms, offers a promising solution. Multiple species of bacteria, fungi, microalgae, and archaea were able to produce hydrogen. This study reviewed the typical strains, together with their hydrogen-production mechanisms, e.g., bio-photolysis, photo fermentation, and dark fermentation. Bacteria (e.g., purple non-sulfur bacteria) and microalgae (e.g., cyanobacteria) have been widely investigated, with respect to the limited fungi and archaea. It showed that temperature, pH, and substrate availability could all substantially influence the efficiency of biohydrogen production. Meanwhile, photo and dark fermentations are favored for future possible industrial applications. Furthermore, this review summarized practical applications of biohydrogen production, such as applications of bioreactors, waste treatments, and integrated systems for hydrogen production, highlighting the importance of functional microorganisms in advancing biohydrogen technology under global energy crisis.
Collapse
Affiliation(s)
- Yonghong Fan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Feiran Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kun He
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China.
| | - Dan Yu
- North China Power Engineering Co., Ltd of China Power Engineering Consulting Group, Beijing 100120, China
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Da Tian
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yixiao Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Xiaomei Wang
- Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
| |
Collapse
|
2
|
Rojas-Villalta D, Rojas-Rodríguez D, Villanueva-Ilama M, Guillén-Watson R, Murillo-Vega F, Gómez-Espinoza O, Núñez-Montero K. Exploring Extremotolerant and Extremophilic Microalgae: New Frontiers in Sustainable Biotechnological Applications. BIOLOGY 2024; 13:712. [PMID: 39336139 PMCID: PMC11428398 DOI: 10.3390/biology13090712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Exploring extremotolerant and extremophilic microalgae opens new frontiers in sustainable biotechnological applications. These microorganisms thrive in extreme environments and exhibit specialized metabolic pathways, making them valuable for various industries. The study focuses on the ecological adaptation and biotechnological potential of these microalgae, highlighting their ability to produce bioactive compounds under stress conditions. The literature reveals that extremophilic microalgae can significantly enhance biomass production, reduce contamination risks in large-scale systems, and produce valuable biomolecules such as carotenoids, lipids, and proteins. These insights suggest that extremophilic microalgae have promising applications in food, pharmaceutical, cosmetic, and biofuel industries, offering sustainable and efficient alternatives to traditional resources. The review concludes that further exploration and utilization of these unique microorganisms can lead to innovative and environmentally friendly solutions in biotechnology.
Collapse
Affiliation(s)
- Dorian Rojas-Villalta
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - David Rojas-Rodríguez
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Melany Villanueva-Ilama
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Rossy Guillén-Watson
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Francinie Murillo-Vega
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Olman Gómez-Espinoza
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Kattia Núñez-Montero
- Facultad Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile
| |
Collapse
|
3
|
Rady HA, Ali SS, El-Sheekh MM. Strategies to enhance biohydrogen production from microalgae: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120611. [PMID: 38508014 DOI: 10.1016/j.jenvman.2024.120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/30/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Microalgae represent a promising renewable feedstock for the sustainable production of biohydrogen. Their high growth rates and ability to fix carbon utilizing just sunlight, water, and nutrients make them well-suited for this application. Recent advancements have focused on improving microalgal hydrogen yields and cultivation methods. This review aims to summarize recent developments in microalgal cultivation techniques and genetic engineering strategies for enhanced biohydrogen production. Specific areas of focus include novel microalgal species selection, immobilization methods, integrated hybrid systems, and metabolic engineering. Studies related to microalgal strain selection, cultivation methods, metabolic engineering, and genetic manipulations were compiled and analyzed. Promising microalgal species with high hydrogen production capabilities such as Synechocystis sp., Anabaena variabilis, and Chlamydomonas reinhardtii have been identified. Immobilization techniques like encapsulation in alginate and integration with dark fermentation have led to improved hydrogen yields. Metabolic engineering through modulation of hydrogenase activity and photosynthetic pathways shows potential for enhanced biohydrogen productivity. Considerable progress has been made in developing microalgal systems for biohydrogen. However, challenges around process optimization and scale-up remain. Future work involving metabolic modeling, photobioreactor design, and genetic engineering of electron transfer pathways could help realize the full potential of this renewable technology.
Collapse
Affiliation(s)
- Hadeer A Rady
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
4
|
Li Y, Lin R, O'Shea R, Thaore V, Wall D, Murphy JD. A perspective on three sustainable hydrogen production technologies with a focus on technology readiness level, cost of production and life cycle environmental impacts. Heliyon 2024; 10:e26637. [PMID: 38444498 PMCID: PMC10912280 DOI: 10.1016/j.heliyon.2024.e26637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Hydrogen will play an indispensable role as both an energy vector and as a molecule in essential products in the transition to climate neutrality. However, the optimal sustainable hydrogen production system is not definitive due to challenges in energy conversion efficiency, economic cost, and associated marginal abatement cost. This review summarises and contrasts different sustainable hydrogen production technologies including for their development, potential for improvement, barriers to large-scale industrial application, capital and operating cost, and life-cycle environmental impact. Polymer electrolyte membrane water electrolysis technology shows significant potential for large-scale application in the near-term, with a higher technology readiness level (expected to be 9 by 2030) and a levelized cost of hydrogen expected to be 4.15-6 €/kg H2 in 2030; this equates to a 50% decrease as compared to 2020. The four-step copper-chlorine (Cu-Cl) water thermochemical cycle can perform better in terms of life cycle environmental impact than the three- and five-step Cu-Cl cycle, however, due to system complexity and high capital expenditure, the thermochemical cycle is more suitable for long-term application should the technology develop. Biological conversion technologies (such as photo/dark fermentation) are at a lower technology readiness level, and the system efficiency of some of these pathways such as biophotolysis is low (less than 10%). Biomass gasification may be a more mature technology than some biological conversion pathways owing to its higher system efficiency (40%-50%). Biological conversion systems also have higher costs and as such require significant development to be comparable to hydrogen produced via electrolysis.
Collapse
Affiliation(s)
- Yunfei Li
- MaREI Centre for Energy Climate and Marine, Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
- Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, T12 YN60, Ireland
| | - Richen Lin
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
- Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, T12 YN60, Ireland
| | - Richard O'Shea
- MaREI Centre for Energy Climate and Marine, Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
- Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, T12 YN60, Ireland
| | - Vaishali Thaore
- MaREI Centre for Energy Climate and Marine, Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
- Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, T12 YN60, Ireland
| | - David Wall
- MaREI Centre for Energy Climate and Marine, Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
- Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, T12 YN60, Ireland
| | - Jerry D. Murphy
- MaREI Centre for Energy Climate and Marine, Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
- Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, T12 YN60, Ireland
| |
Collapse
|
5
|
Ayub HMU, Nizami M, Qyyum MA, Iqbal N, Al-Muhtaseb AH, Hasan M. Sustainable hydrogen production via microalgae: Technological advancements, economic indicators, environmental aspects, challenges, and policy implications. ENVIRONMENTAL RESEARCH 2024; 244:117815. [PMID: 38048865 DOI: 10.1016/j.envres.2023.117815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Hydrogen has emerged as an alternative energy source to meet the increasing global energy demand, depleting fossil fuels and environmental issues resulting from fossil fuel consumption. Microalgae-based biomass is gaining attention as a potential source of hydrogen production due to its green energy carrier properties, high energy content, and carbon-free combustion. This review examines the hydrogen production process from microalgae, including the microalgae cultivation technological process for biomass production, and the three main routes of biomass-to-hydrogen production: thermochemical conversion, photo biological conversion, and electrochemical conversion. The current progress of technological options in the three main routes is presented, with the various strains of microalgae and operating conditions of the processes. Furthermore, the economic and environmental perspectives of biomass-to-hydrogen from microalgae are evaluated, and critical operational parameters are used to assess the feasibility of scaling up biohydrogen production for commercial industrial-scale applications. The key finding is the thermochemical conversion process is the most feasible process for biohydrogen production, compared to the pyrolysis process. In the photobiological and electrochemical process, pure hydrogen can be achieved, but further process development is required to enhance the production yield. In addition, the high production cost is the main challenge in biohydrogen production. The cost of biohydrogen production for direct bio photolysis it cost around $7.24 kg-1; for indirect bio photolysis it costs around $7.54 kg-1 and for fermentation, it costs around $7.61 kg-1. Therefore, comprehensive studies and efforts are required to make biohydrogen production from microalgae applications more economical in the future.
Collapse
Affiliation(s)
| | - Muhammad Nizami
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia
| | - Muhammad Abdul Qyyum
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Noman Iqbal
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ala'a H Al-Muhtaseb
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Mudassir Hasan
- Department of Chemical Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Jin M, Wei X, Mu X, Ren W, Zhang S, Tang C, Cao W. Life-cycle analysis of biohydrogen production via dark-photo fermentation from wheat straw. BIORESOURCE TECHNOLOGY 2024; 396:130429. [PMID: 38336214 DOI: 10.1016/j.biortech.2024.130429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
This study presents a life-cycle analysis using energy conversion characteristics as an evaluation index to assess the feasibility of this production method. The results indicate that for a system processing 1000 kg/h of wheat straw, the addition of 12000 kg/h of 2 wt% H2SO4 and 120 kg/h of CH3COONa yields 340,000 L/h of H2 and 348.6 kW of electricity. The energy conversion efficiency from the feedstock to the product is 21.4 %, while the efficiency from the hydrolysate to the product is 62.2 %. The total CO2 emission is 27.1 kg/h. Variations in the hydrolysate have the most significant impact on energy conversion efficiency. This study explores the feasibility of industrial-scale biohydrogen production via dark-photo fermentation from wheat straw and analyzes the energy characteristic indices and the sensitivity of these indices to key parameters.
Collapse
Affiliation(s)
- Mingjie Jin
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xuan Wei
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xuefang Mu
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Weixi Ren
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Sihu Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Canfang Tang
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Wen Cao
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
7
|
Jiao H, Tsigkou K, Elsamahy T, Pispas K, Sun J, Manthos G, Schagerl M, Sventzouri E, Al-Tohamy R, Kornaros M, Ali SS. Recent advances in sustainable hydrogen production from microalgae: Mechanisms, challenges, and future perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115908. [PMID: 38171102 DOI: 10.1016/j.ecoenv.2023.115908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
The depletion of fossil fuel reserves has resulted from their application in the industrial and energy sectors. As a result, substantial efforts have been dedicated to fostering the shift from fossil fuels to renewable energy sources via technological advancements in industrial processes. Microalgae can be used to produce biofuels such as biodiesel, hydrogen, and bioethanol. Microalgae are particularly suitable for hydrogen production due to their rapid growth rate, ability to thrive in diverse habitats, ability to resolve conflicts between fuel and food production, and capacity to capture and utilize atmospheric carbon dioxide. Therefore, microalgae-based biohydrogen production has attracted significant attention as a clean and sustainable fuel to achieve carbon neutrality and sustainability in nature. To this end, the review paper emphasizes recent information related to microalgae-based biohydrogen production, mechanisms of sustainable hydrogen production, factors affecting biohydrogen production by microalgae, bioreactor design and hydrogen production, advanced strategies to improve efficiency of biohydrogen production by microalgae, along with bottlenecks and perspectives to overcome the challenges. This review aims to collate advances and new knowledge emerged in recent years for microalgae-based biohydrogen production and promote the adoption of biohydrogen as an alternative to conventional hydrocarbon biofuels, thereby expediting the carbon neutrality target that is most advantageous to the environment.
Collapse
Affiliation(s)
- Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Konstantina Tsigkou
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Konstantinos Pispas
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Georgios Manthos
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna A-1030, Austria.
| | - Eirini Sventzouri
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
8
|
Sundaram T, Rajendran S, Gnanasekaran L, Rachmadona N, Jiang JJ, Khoo KS, Show PL. Bioengineering strategies of microalgae biomass for biofuel production: recent advancement and insight. Bioengineered 2023; 14:2252228. [PMID: 37661811 PMCID: PMC10478748 DOI: 10.1080/21655979.2023.2252228] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 09/05/2023] Open
Abstract
Algae-based biofuel developed over the past decade has become a viable substitute for petroleum-based energy sources. Due to their high lipid accumulation rates and low carbon dioxide emissions, microalgal species are considered highly valuable feedstock for biofuel generation. This review article presented the importance of biofuel and the flaws that need to be overcome to ensure algae-based biofuels are effective for future-ready bioenergy sources. Besides, several issues related to the optimization and engineering strategies to be implemented for microalgae-based biofuel derivatives and their production were evaluated. In addition, the fundamental studies on the microalgae technology, experimental cultivation, and engineering processes involved in the development are all measures that are commendably used in the pre-treatment processes. The review article also provides a comprehensive overview of the latest findings about various algae species cultivation and biomass production. It concludes with the most recent data on environmental consequences, their relevance to global efforts to create microalgae-based biomass as effective biofuels, and the most significant threats and future possibilities.
Collapse
Affiliation(s)
- Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Arica, Chile
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Arica, Chile
- Department of Mechanical Engineering, University Centre for Research & Development, Mohali, India
| | - Nova Rachmadona
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, West Java, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN, Universitas Padjadjaran, West Java, Indonesia
| | - Jheng-Jie Jiang
- Advanced Environmental Ultra Research Laboratory (ADVENTURE) & Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Environmental Risk Management (CERM), Chung Yuan Christian University, Taoyuan, Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
9
|
Wang Y, Yang S, Liu J, Wang J, Xiao M, Liang Q, Ren X, Wang Y, Mou H, Sun H. Realization process of microalgal biorefinery: The optional approach toward carbon net-zero emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165546. [PMID: 37454852 DOI: 10.1016/j.scitotenv.2023.165546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Increasing carbon dioxide (CO2) emission has already become a dire threat to the human race and Earth's ecology. Microalgae are recommended to be engineered as CO2 fixers in biorefinery, which play crucial roles in responding climate change and accelerating the transition to a sustainable future. This review sorted through each segment of microalgal biorefinery to explore the potential for its practical implementation and commercialization, offering valuable insights into research trends and identifies challenges that needed to be addressed in the development process. Firstly, the known mechanisms of microalgal photosynthetic CO2 fixation and the approaches for strain improvement were summarized. The significance of process regulation for strengthening fixation efficiency and augmenting competitiveness was emphasized, with a specific focus on CO2 and light optimization strategies. Thereafter, the massive potential of microalgal refineries for various bioresource production was discussed in detail, and the integration with contaminant reclamation was mentioned for economic and ecological benefits. Subsequently, economic and environmental impacts of microalgal biorefinery were evaluated via life cycle assessment (LCA) and techno-economic analysis (TEA) to lit up commercial feasibility. Finally, the current obstacles and future perspectives were discussed objectively to offer an impartial reference for future researchers and investors.
Collapse
Affiliation(s)
- Yuxin Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing 100871, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ying Wang
- Marine Science research Institute of Shandong Province, Qingdao 266003, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
10
|
Chandran EM, Mohan E. Sustainable biohydrogen production from lignocellulosic biomass sources - metabolic pathways, production enhancement, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102129-102157. [PMID: 37684507 DOI: 10.1007/s11356-023-29617-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Hydrogen production from biological processes has been hailed as a promising strategy for generating sustainable energy. Fermentative hydrogen production processes such as dark and photofermentation are considered more sustainable and economical than other biological methods such as biophotolysis. However, these methods have constraints such as low hydrogen yield and conversion efficiency, so practical implementations still need to be made. The present review provides an assessment and feasibility of producing biohydrogen through dark and photofermentation techniques utilizing various lignocellulosic biomass wastes as substrates. Furthermore, this review includes information about the strategies to increase the productivity rate of biohydrogen in an eco-friendly and sustainable manner, like integration of dark and photofermentation techniques, pretreatment of biomass, genetic modification of microorganisms, and application of nanoadditives.
Collapse
Affiliation(s)
- Eniyan Moni Chandran
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India
| | - Edwin Mohan
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India.
| |
Collapse
|
11
|
Garg S, Behera S, Ruiz HA, Kumar S. A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production. Appl Biochem Biotechnol 2023; 195:5497-5540. [PMID: 35579743 DOI: 10.1007/s12010-022-03955-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 12/13/2022]
Abstract
Biofuels are a clean and renewable source of energy that has gained more attention in recent years; however, high energy input and processing cost during the production and recovery process restricted its progress. Membrane technology offers a range of energy-saving separation for product recovery and purification in biorefining along with biofuel production processes. Membrane separation techniques in combination with different biological processes increase cell concentration in the bioreactor, reduce product inhibition, decrease chemical consumption, reduce energy requirements, and further increase product concentration and productivity. Certain membrane bioreactors have evolved with the ability to deal with different biological production and separation processes to make them cost-effective, but there are certain limitations. The present review describes the advantages and limitations of membrane bioreactors to produce different biofuels with the ability to simplify upstream and downstream processes in terms of sustainability and economics.
Collapse
Affiliation(s)
- Shruti Garg
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India
- Department of Microbiology, Guru Nanak Dev University, Grand Trunk Road, Amritsar, Punjab, 143040, India
| | - Shuvashish Behera
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
- Department of Alcohol Technology and Biofuels, Vasantdada Sugar Institute, Manjari (Bk.), Pune, 412307, India.
| | - Hector A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280, Saltillo, Coahuila, Mexico
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
| |
Collapse
|
12
|
Mahmood T, Hussain N, Shahbaz A, Mulla SI, Iqbal HMN, Bilal M. Sustainable production of biofuels from the algae-derived biomass. Bioprocess Biosyst Eng 2023; 46:1077-1097. [PMID: 36331626 PMCID: PMC10345032 DOI: 10.1007/s00449-022-02796-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
The worldwide fossil fuel reserves are rapidly and continually being depleted as a result of the rapid increase in global population and rising energy sector needs. Fossil fuels should not be used carelessly since they produce greenhouse gases, air pollution, and global warming, which leads to ecological imbalance and health risks. The study aims to discuss the alternative renewable energy source that is necessary to meet the needs of the global energy industry in the future. Both microalgae and macroalgae have great potential for several industrial applications. Algae-based biofuels can surmount the inadequacies presented by conventional fuels, thereby reducing the 'food versus fuel' debate. Cultivation of algae can be performed in all three systems; closed, open, and hybrid frameworks from which algal biomass is harvested, treated and converted into the desired biofuels. Among these, closed photobioreactors are considered the most efficient system for the cultivation of algae. Different types of closed systems can be employed for the cultivation of algae such as stirred tank photobioreactor, flat panel photobioreactor, vertical column photobioreactor, bubble column photobioreactor, and horizontal tubular photobioreactor. The type of cultivation system along with various factors, such as light, temperature, nutrients, carbon dioxide, and pH affect the yield of algal biomass and hence the biofuel production. Algae-based biofuels present numerous benefits in terms of economic growth. Developing a biofuel industry based on algal cultivation can provide us with a lot of socio-economic advantages contributing to a publicly maintainable result. This article outlines the third-generation biofuels, how they are cultivated in different systems, different influencing factors, and the technologies for the conversion of biomass. The benefits provided by these new generation biofuels are also discussed. The development of algae-based biofuel would not only change environmental pollution control but also benefit producers' economic and social advancement.
Collapse
Affiliation(s)
- Tehreem Mahmood
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Areej Shahbaz
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, 560064, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| | - Muhammad Bilal
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60695, Poznan, Poland.
| |
Collapse
|
13
|
Woon JM, Khoo KS, Al-Zahrani AA, Alanazi MM, Lim JW, Cheng CK, Sahrin NT, Ardo FM, Yi-Ming S, Lin KS, Lan JCW, Hossain MS, Kiatkittipong W. Epitomizing biohydrogen production from microbes: Critical challenges vs opportunities. ENVIRONMENTAL RESEARCH 2023; 227:115780. [PMID: 36990197 DOI: 10.1016/j.envres.2023.115780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
Hydrogen is a clean and green biofuel choice for the future because it is carbon-free, non-toxic, and has high energy conversion efficiency. In exploiting hydrogen as the main energy, guidelines for implementing the hydrogen economy and roadmaps for the developments of hydrogen technology have been released by several countries. Besides, this review also unveils various hydrogen storage methods and applications of hydrogen in transportation industry. Biohydrogen productions from microbes, namely, fermentative bacteria, photosynthetic bacteria, cyanobacteria, and green microalgae, via biological metabolisms have received significant interests off late due to its sustainability and environmentally friendly potentials. Accordingly, the review is as well outlining the biohydrogen production processes by various microbes. Furthermore, several factors such as light intensity, pH, temperature and addition of supplementary nutrients to enhance the microbial biohydrogen production are highlighted at their respective optimum conditions. Despite the advantages, the amounts of biohydrogen being produced by microbes are still insufficient to be a competitive energy source in the market. In addition, several major obstacles have also directly hampered the commercialization effors of biohydrogen. Thus, this review uncovers the constraints of biohydrogen production from microbes such as microalgae and offers solutions associated with recent strategies to overcome the setbacks via genetic engineering, pretreatments of biomass, and introduction of nanoparticles as well as oxygen scavengers. The opportunities of exploiting microalgae as a suastainable source of biohydrogen production and the plausibility to produce biohydrogen from biowastes are accentuated. Lastly, this review addresses the future perspectives of biological methods to ensure the sustainability and economy viability of biohydrogen production.
Collapse
Affiliation(s)
- Jia Min Woon
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Asla A Al-Zahrani
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia; Basic and Applied Scientific Research Center- College of Science -Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Meznah M Alanazi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, P. O. Box 127788, United Arab Emirates
| | - Nurul Tasnim Sahrin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fatima Musa Ardo
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Sun Yi-Ming
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science/Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan; Environmental Technology Research Center, Yuan Ze University, Chung-Li District, Taoyuan City, 32003, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Md Sohrab Hossain
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
14
|
Suresh G, Kumari P, Venkata Mohan S. Light-dependent biohydrogen production: Progress and perspectives. BIORESOURCE TECHNOLOGY 2023; 380:129007. [PMID: 37061171 DOI: 10.1016/j.biortech.2023.129007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
The fourth industrial revolution anticipates energy to be sustainable, renewable and green. Hydrogen (H2) is one of the green forms of energy and is deemed a possible solution to climate change. Light-dependent H2 production is a promising method derived from nature's most copious resources: solar energy, water and biomass. Reduced environmental impacts, absorption of carbon dioxide, relative efficiency, and cost economics made it an eye-catching approach. However, low light conversion efficiency, limited ability to utilize complex carbohydrates, and the O2 sensitivity of enzymes result in low yield. Isolation of efficient H2 producers, development of microbial consortia having a synergistic impact, genetically improved strains, regulating bidirectional hydrogenase activity, physiological parameters, immobilization, novel photobioreactors, and additive strategies are summarized for their possibilities to augment the processes of bio-photolysis and photo-fermentation. The challenges and future perspectives have been addressed to explore a sustainable way forward in a bio-refinery approach.
Collapse
Affiliation(s)
- G Suresh
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Poonam Kumari
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
15
|
Xu Z, Qi J, Wang S, Liu X, Li M, Mann S, Huang X. Algal cell bionics as a step towards photosynthesis-independent hydrogen production. Nat Commun 2023; 14:1872. [PMID: 37015914 PMCID: PMC10073198 DOI: 10.1038/s41467-023-37608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
The engineering and modulation of living micro-organisms is a key challenge in green bio-manufacturing for the development of sustainable and carbon-neutral energy technologies. Here, we develop a cellular bionic approach in which living algal cells are interfaced with an ultra-thin shell of a conductive polymer along with a calcium carbonate exoskeleton to produce a discrete cellular micro-niche capable of sustained photosynthetic and photosynthetic-independent hydrogen production. The surface-augmented algal cells induce oxygen depletion, conduct photo-induced extracellular electrons, and provide structural and chemical stability that collectively give rise to localized hypoxic conditions and concomitant hydrogenase activity under daylight in air. We show that assembly of the living cellular micro-niche opens a direct extracellular photoelectron pathway to hydrogenase resulting in photosynthesis-independent hydrogen evolution for 200 d. In addition, surface-conductive dead algal cells continue to produce hydrogen for up to 8 d due to their structural stability and retention of functional hydrogenases. Overall, the integration of artificial biological hydrogen production pathways and natural photosynthesis in surface-augmented algal cells provides a cellular bionic approach to enhanced green hydrogen production under environmentally benign conditions and could pave the way to new opportunities in sustainable energy production.
Collapse
Affiliation(s)
- Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Jiarui Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Shengliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Mei Li
- Max Planck Bristol Centre for Minimal Biology, Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Stephen Mann
- Max Planck Bristol Centre for Minimal Biology, Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, 201203, Shanghai, People's Republic of China.
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China.
| |
Collapse
|
16
|
Dias F, Vargas J, Martins L, Rosa M, Balmant W, Mariano A, Parise J, Ordonez J, Kava V. Modeling, simulation, and optimization of hydrogen production from microalgae in compact photobioreactors. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Microalgal Feedstock for Biofuel Production: Recent Advances, Challenges, and Future Perspective. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Globally, nations are trying to address environmental issues such as global warming and climate change, along with the burden of declining fossil fuel reserves. Furthermore, countries aim to reach zero carbon emissions within the existing and rising global energy crisis. Therefore, bio-based alternative sustainable feedstocks are being explored for producing bioenergy. One such renewable energy resource is microalgae; these are photosynthetic microorganisms that grow on non-arable land, in extreme climatic conditions, and have the ability to thrive even in sea and wastewater. Microalgae have high photosynthetic efficiencies and biomass productivity compared to other terrestrial plants. Whole microalgae biomass or their extracted metabolites can be converted to various biofuels such as bioethanol, biodiesel, biocrude oil, pyrolytic bio-oil, biomethane, biohydrogen, and bio jet fuel. However, several challenges still exist before faster and broader commercial application of microalgae as a sustainable bioenergy feedstock for biofuel production. Selection of appropriate microalgal strains, development of biomass pre-concentrating techniques, and utilization of wet microalgal biomass for biofuel production, coupled with an integrated biorefinery approach for producing value-added products, could improve the environmental sustainability and economic viability of microalgal biofuel. This article will review the current status of research on microalgal biofuels and their future perspective.
Collapse
|
18
|
Pretreatment and catalytic conversion of lignocellulosic and algal biomass into biofuels by metal organic frameworks. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
19
|
Santos-Merino M, Yun L, Ducat DC. Cyanobacteria as cell factories for the photosynthetic production of sucrose. Front Microbiol 2023; 14:1126032. [PMID: 36865782 PMCID: PMC9971976 DOI: 10.3389/fmicb.2023.1126032] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Biofuels and other biologically manufactured sustainable goods are growing in popularity and demand. Carbohydrate feedstocks required for industrial fermentation processes have traditionally been supplied by plant biomass, but the large quantities required to produce replacement commodity products may prevent the long-term feasibility of this approach without alternative strategies to produce sugar feedstocks. Cyanobacteria are under consideration as potential candidates for sustainable production of carbohydrate feedstocks, with potentially lower land and water requirements relative to plants. Several cyanobacterial strains have been genetically engineered to export significant quantities of sugars, especially sucrose. Sucrose is not only naturally synthesized and accumulated by cyanobacteria as a compatible solute to tolerate high salt environments, but also an easily fermentable disaccharide used by many heterotrophic bacteria as a carbon source. In this review, we provide a comprehensive summary of the current knowledge of the endogenous cyanobacterial sucrose synthesis and degradation pathways. We also summarize genetic modifications that have been found to increase sucrose production and secretion. Finally, we consider the current state of synthetic microbial consortia that rely on sugar-secreting cyanobacterial strains, which are co-cultivated alongside heterotrophic microbes able to directly convert the sugars into higher-value compounds (e.g., polyhydroxybutyrates, 3-hydroxypropionic acid, or dyes) in a single-pot reaction. We summarize recent advances reported in such cyanobacteria/heterotroph co-cultivation strategies and provide a perspective on future developments that are likely required to realize their bioindustrial potential.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Lisa Yun
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
20
|
Khetkorn W, Raksajit W, Maneeruttanarungroj C, Lindblad P. Photobiohydrogen Production and Strategies for H 2 Yield Improvements in Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:253-279. [PMID: 37009974 DOI: 10.1007/10_2023_216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Hydrogen gas (H2) is one of the potential future sustainable and clean energy carriers that may substitute the use of fossil resources including fuels since it has a high energy content (heating value of 141.65 MJ/kg) when compared to traditional hydrocarbon fuels [1]. Water is a primary product of combustion being a most significant advantage of H2 being environmentally friendly with the capacity to reduce global greenhouse gas emissions. H2 is used in various applications. It generates electricity in fuel cells, including applications in transportation, and can be applied as fuel in rocket engines [2]. Moreover, H2 is an important gas and raw material in many industrial applications. However, the high cost of the H2 production processes requiring the use of other energy sources is a significant disadvantage. At present, H2 can be prepared in many conventional ways, such as steam reforming, electrolysis, and biohydrogen production processes. Steam reforming uses high-temperature steam to produce hydrogen gas from fossil resources including natural gas. Electrolysis is an electrolytic process to decompose water molecules into O2 and H2. However, both these two methods are energy-intensive and producing hydrogen from natural gas, which is mostly methane (CH4) and in steam reforming generates CO2 and pollutants as by-products. On the other hand, biological hydrogen production is more environmentally sustainable and less energy intensive than thermochemical and electrochemical processes [3], but most concepts are not yet developed to production scale.
Collapse
Affiliation(s)
- Wanthanee Khetkorn
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathum Thani, Thailand
| | - Wuttinun Raksajit
- Faculty of Veterinary Technology, Program of Animal Health Technology, Kasetsart University, Bangkok, Thailand
| | - Cherdsak Maneeruttanarungroj
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
- Bioenergy Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
Olabi AG, Shehata N, Sayed ET, Rodriguez C, Anyanwu RC, Russell C, Abdelkareem MA. Role of microalgae in achieving sustainable development goals and circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158689. [PMID: 36108848 DOI: 10.1016/j.scitotenv.2022.158689] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
In 2015, the United Nations General Assembly (UNGA) set out 17 Sustainable Development Goals (SDGs) to be achieved by 2030. These goals highlight key objectives that must be addressed. Each target focuses on a unique perspective crucial to meeting these goals. Social, political, and economic issues are addressed to comprehensively review the main issues combating climate change and creating sustainable and environmentally friendly industries, jobs, and communities. Several mechanisms that involve judicious use of biological entities are among instruments that are being explored to achieve the targets of SDGs. Microalgae have an increasing interest in various sectors, including; renewable energy, food, environmental management, water purification, and the production of chemicals such as biofertilizers, cosmetics, and healthcare products. The significance of microalgae also arises from their tendency to consume CO2, which is the main greenhouse gas and the major contributor to the climate change. This work discusses the roles of microalgae in achieving the various SDGs. Moreover, this work elaborates on the contribution of microalgae to the circular economy. It was found that the microalgae contribute to all the 17th SDGs, where they directly contribute to 9th of the SDGs and indirectly contribute to the rest. The major contribution of the Microalgae is clear in SDG-6 "Clean water and sanitation", SDG-7 "Affordable and clean energy", and SDG-13 "Climate action". Furthermore, it was found that Microalgae have a significant contribution to the circular economy.
Collapse
Affiliation(s)
- A G Olabi
- Dept. of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham B4 7ET, UK.
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt.
| | - Enas Taha Sayed
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Faculty of Engineering, Minia University, Elminia, Egypt.
| | - Cristina Rodriguez
- School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Ruth Chinyere Anyanwu
- School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Callum Russell
- School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Mohammad Ali Abdelkareem
- Dept. of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Engineering, Minia University, Elminia, Egypt.
| |
Collapse
|
22
|
Feng S, Ngo HH, Guo W, Chang SW, Nguyen DD, Liu Y, Zhang X, Bui XT, Varjani S, Hoang BN. Wastewater-derived biohydrogen: Critical analysis of related enzymatic processes at the research and large scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158112. [PMID: 35985587 DOI: 10.1016/j.scitotenv.2022.158112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Organic-rich wastewater is a feasible feedstock for biohydrogen production. Numerous review on the performance of microorganisms and the diversity of their communities during a biohydrogen process were published. However, there is still no in-depth overview of enzymes for biohydrogen production from wastewater and their scale-up applications. This review aims at providing an insightful exploration of critical discussion in terms of: (i) the roles and applications of enzymes in wastewater-based biohydrogen fermentation; (ii) systematical introduction to the enzymatic processes of photo fermentation and dark fermentation; (iii) parameters that affect enzymatic performances and measures for enzyme activity/ability enhancement; (iv) biohydrogen production bioreactors; as well as (v) enzymatic biohydrogen production systems and their larger scales application. Furthermore, to assess the best applications of enzymes in biohydrogen production from wastewater, existing problems and feasible future studies on the development of low-cost enzyme production methods and immobilized enzymes, the construction of multiple enzyme cooperation systems, the study of biohydrogen production mechanisms, more effective bioreactor exploration, larger scales enzymatic biohydrogen production, and the enhancement of enzyme activity or ability are also addressed.
Collapse
Affiliation(s)
- Siran Feng
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia; Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Xinbo Zhang
- Joint Research Center for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xuan Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh city 70000, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10A, Gandhinagar 382 010, Gujarat, India
| | - Bich Ngoc Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
23
|
Murugesan P, Raja V, Dutta S, Moses JA, Anandharamakrishnan C. Food waste valorisation via gasification - A review on emerging concepts, prospects and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157955. [PMID: 35964752 DOI: 10.1016/j.scitotenv.2022.157955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Disposing of the enormous amounts of food waste (FW) produced worldwide remains a great challenge, promoting worldwide research on the utilization of FW for the generation of value-added products. Gasification is a significant approach for decomposing and converting organic waste materials into biochar, bio-oil, and syngas, which could be adapted for energy (hydrogen (H2) and heat) generation and environmental (removal of pollutants and improving the soil quality) applications. Employment of FW matrices for syngas production through gasification is one of the effective methods of energy recovery. This review explains different gasification processes (catalytic and non-catalytic) used for the decomposition of unutilized food wastes and the effect of operating parameters on H2-rich syngas generation. Also, potential applications of gasification byproducts such as biochar and bio-oil for effective valorization have been discussed. Besides, the scope of simulation to optimize the gasification conditions for the effective valorization of FW is elaborated, along with the current progress and challenges in the research to identify the feasibility of gasification technology for FW. Overall, this review concludes the sustainable route for conversion of unutilized food into hydrogen-enriched syngas production.
Collapse
Affiliation(s)
- Pramila Murugesan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Vijayakumar Raja
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India.
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur 613005, Tamil Nadu, India.
| |
Collapse
|
24
|
Morya R, Raj T, Lee Y, Kumar Pandey A, Kumar D, Rani Singhania R, Singh S, Prakash Verma J, Kim SH. Recent updates in biohydrogen production strategies and life-cycle assessment for sustainable future. BIORESOURCE TECHNOLOGY 2022; 366:128159. [PMID: 36272681 DOI: 10.1016/j.biortech.2022.128159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Biohydrogen (bio-H2) is regarded as a clean, non-toxic, energy carrier and has enormous potential for transforming fossil fuel-based economy. The development of a continuous high-rate H2 production with low-cost economics following an environmentally friendly approach should be admired for technology demonstration. Thus, the current review discusses the biotechnological and thermochemical pathways for H2 production. Thermochemical conversion involves pyrolysis and gasification routes, while biotechnological involves light-dependent processes (e.g., direct and indirect photolysis, photo/ dark fermentation strategies). Moreover, environmentally friendly technologies can be created while utilizing renewable energy sources including lignocellulosic, wastewater, sludge, microalgae, and others, which are still being developed. Lifecycle assessment (LCA) evaluates and integrates the economic, environmental, and social performance of H2 production from biomass, microalgae, and biochar. Moreover, system boundaries evaluation, i.e., global warming potential, acidification, eutrophication, and sensitivity analysis could lead in development of sustainable bioenergy transition with high economic and environmental benefits.
Collapse
Affiliation(s)
- Raj Morya
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Youngkyu Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Saurabh Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
25
|
Karishma S, Saravanan A, Senthil Kumar P, Rangasamy G. Sustainable production of biohydrogen from algae biomass: Critical review on pretreatment methods, mechanism and challenges. BIORESOURCE TECHNOLOGY 2022; 366:128187. [PMID: 36309177 DOI: 10.1016/j.biortech.2022.128187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The production of chemicals and energy from sustainable biomass with an important objective decreasing carbon impressions has recently become one of the key areas of attention. Algae biomass have been recognized and researched as a potential renewable biomass of biohydrogen production attributed to their limited multiplying time, fast growing qualities and ability of lipid accumulation. This review additionally envelops various key perspectives such as composition and properties of algae biomass and pretreatment strategies such as physical, chemical and biological methods adopted for the algae biomass. This review is mainly focused on pretreatment strategies which have been developed to enhance biohydrogen production. The present review deals with methods and mechanism, enzymes involved and factors influencing on biohydrogen production which help to grasp various bottlenecks, challenges and constraints. Finally, the significant progressions and economical perspective on improving biohydrogen yield because of the expansion of co-substrates and the current trends are examined.
Collapse
Affiliation(s)
- S Karishma
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
26
|
Kumar Sharma A, Kumar Ghodke P, Goyal N, Nethaji S, Chen WH. Machine learning technology in biohydrogen production from agriculture waste: Recent advances and future perspectives. BIORESOURCE TECHNOLOGY 2022; 364:128076. [PMID: 36216286 DOI: 10.1016/j.biortech.2022.128076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Agricultural waste biomass has shown great potential to deliver green energy produced by biochemical and thermochemical conversion processes to mitigate future energy crises. Biohydrogen has become more interested in carbon-free and high-energy dense fuels among different biofuels. However, it is challenging to develop models based on experience or theory for precise predictions due to the complexity of biohydrogen production systems and the limitations of human perception. Recent advancements in machine learning (ML) may open up new possibilities. For this reason, this critical study offers a thorough understanding of ML's use in biohydrogen production. The most recent developments in ML-assisted biohydrogen technologies, including biochemical and thermochemical processes, are examined in depth. This review paper also discusses the prediction of biohydrogen production from agricultural waste. Finally, the techno-economic and scientific obstacles to ML application in agriculture waste biomass-based biohydrogen production are summarized.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemistry, Applied Sciences Cluster, Centre for Alternate and Renewable Energy Research, R&D, University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres Building, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Praveen Kumar Ghodke
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Nishu Goyal
- School of Health Sciences, University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres Building, Bidholi, Dehradun 248007, Uttarakhand, India
| | - S Nethaji
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Karnataka, 576104 l, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
27
|
Tasnim Sahrin N, Shiong Khoo K, Wei Lim J, Shamsuddin R, Musa Ardo F, Rawindran H, Hassan M, Kiatkittipong W, Alaaeldin Abdelfattah E, Da Oh W, Kui Cheng C. Current perspectives, future challenges and key technologies of biohydrogen production for building a carbon-neutral future: A review. BIORESOURCE TECHNOLOGY 2022; 364:128088. [PMID: 36216282 DOI: 10.1016/j.biortech.2022.128088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The ever-increasing quantity of greenhouse gases in the atmosphere can be attributed to the rapid increase in the world population as well as the expansion of globalization. Hence, achieving carbon neutrality by 2050 stands as a challenging task to accomplish. Global industrialization had necessitated the need to enhance the current production systems to reduce greenhouse gases emission, whilst promoting the capture of carbon dioxide from atmosphere. Hydrogen is often touted as the fuel of future via substituting fossil-based fuels. In this regard, renewable hydrogen happens to be a niche sector of novel technologies in achieving carbon neutrality. Microalgae-based biohydrogen technologies could be a sustainable and economical approach to produce hydrogen from a renewable source, while simultaneously promoting the absorption of carbon dioxide. This review highlights the current perspectives of biohydrogen production as an alternate source of energy. In addition, future challenges associated with biohydrogen production at large-scale application, storage and transportation are included. Key technologies in producing biohydrogen are finally described in building a carbon-neutral future.
Collapse
Affiliation(s)
- Nurul Tasnim Sahrin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Rashid Shamsuddin
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Fatima Musa Ardo
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Muzamil Hassan
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Eman Alaaeldin Abdelfattah
- Lecturer of Biochemistry and Molecular Science, Entomology Department, Faculty of Science, Cairo University, Egypt
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
28
|
Oliveira CYB, Jacob A, Nader C, Oliveira CDL, Matos ÂP, Araújo ES, Shabnam N, Ashok B, Gálvez AO. An overview on microalgae as renewable resources for meeting sustainable development goals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115897. [PMID: 35947909 DOI: 10.1016/j.jenvman.2022.115897] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 05/27/2023]
Abstract
The increased demands and dependence on depleted oil reserves, accompanied by global warming and climate change have driven the world to explore and develop new strategies for global sustainable development. Among sustainable biomass sources, microalgae represent a promising alternative to fossil fuel and can contribute to the achievement of important Sustainable Development Goals (SDGs). This article has reviewed the various applications of microalgal biomass that includes (i) the use in aquaculture and its sustainability; (ii) commercial value and emerging extraction strategies of carotenoids; (iii) biofuels from microalgae and their application in internal combustion engines; (iv) the use and reuse of water in microalgae cultivation; and (v) microalgae biotechnology as a key factor to assist SDGs. The future prospects and challenges on the microalgae circular bio economy, issues with regard to the scale-up and water demand in microalgae cultivation are also highlighted.
Collapse
Affiliation(s)
- Carlos Yure B Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil.
| | - Ashwin Jacob
- School of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai, India
| | - Camila Nader
- Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Cicero Diogo L Oliveira
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Ângelo P Matos
- Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Evando S Araújo
- Grupo de Pesquisa em Aplicações de Eletrofiação e Nanotecnologia (GPEA-Nano), Universidade Federal do Vale do São Francisco, Juazeiro, Brazil
| | - Nisha Shabnam
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Czech Republic
| | - Bragadeshwaran Ashok
- Division of Thermal and Automotive, Vellore Institute of Technology, Vellore, India
| | - Alfredo O Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Brazil
| |
Collapse
|
29
|
Bhatt P, Bhandari G, Turco RF, Aminikhoei Z, Bhatt K, Simsek H. Algae in wastewater treatment, mechanism, and application of biomass for production of value-added product. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119688. [PMID: 35793713 DOI: 10.1016/j.envpol.2022.119688] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/21/2022] [Accepted: 06/24/2022] [Indexed: 05/16/2023]
Abstract
The pollutants can enter water bodies at various point and non-point sources, and wastewater discharge remains a major pathway. Wastewater treatment effectively reduces contaminants, it is expensive and requires an eco-friendly and sustainable alternative approach to reduce treatment costs. Algae have recently emerged as a potentially cost-effective method to remediate toxic pollutants through the mechanism of biosorption, bioaccumulation, and intracellular degradation. Hence, before discharging the wastewater into the natural environment better solutions for environmental resource recovery and sustainable developments can be applied. More importantly, algae are a potential feedstock material for various industrial applications such as biofuel production. Currently, researchers are developing algae as a source for pharmaceuticals, biofuels, food additives, and bio-fertilizers. This review mainly focused on the potential of algae and their specific mechanisms involved in wastewater treatment and energy recovery systems leading to important industrial precursors. The review is highly beneficial for scientists, wastewater treatment plant operators, freshwater managers, and industrial communities to support the sustainable development of natural resources.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, 248016, Uttarakhand, India
| | - Ronald F Turco
- Department of Agronomy, Purdue University, West Lafayette, IN, 47906, USA
| | - Zahra Aminikhoei
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Offshore Fisheries Research Center, Chabahar, Iran
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
30
|
Enhancement of Metabolite Production in High-Altitude Microalgal Strains by Optimized C/N/P Ratio. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study evaluated the role of C/N/P in the increase in the synthesis of carbohydrates, proteins, and lipids in two high-mountain strains of algae (Chlorella sp. UFPS019 and Desmodesmus sp. UFPS021). Three carbon sources (sodium acetate, sodium carbonate, and sodium bicarbonate), and the sources of nitrogen (NaNO3) and phosphate (KH2PO4 and K2HPO4) were analyzed using a surface response (3 factors, 2 levels). In Chlorella sp. UFPS019, the optimal conditions to enhance the synthesis of carbohydrates were high sodium carbonate content (3.53 g/L), high KH2PO4 and K2HPO4 content (0.06 and 0.14 g/L, respectively), and medium-high NaNO3 (0.1875 g/L). In the case of lipids, a high concentration of sodium acetate (1.19 g/L) coupled with high KH2PO4 and K2HPO4 content (0.056 and 0.131 g/L, respectively) and a low concentration of NaNO3 (0.075 g/L) drastically induced the synthesis of lipids. In the case of Desmodesmus sp. UFPS021, the protein content was increased using high sodium acetate (2 g/L), high KH2PO4 and K2HPO4 content (0.056 and 0.131 g/L, respectively), and high NaNO3 concentration (0.25 g/L). These results demonstrate that the correct adjustment of the C/N/P ratio can enhance the capacity of high-mountain strains of algae to produce high concentrations of carbohydrates, proteins, and lipids.
Collapse
|
31
|
Iqbal K, Saxena A, Pande P, Tiwari A, Chandra Joshi N, Varma A, Mishra A. Microalgae-bacterial granular consortium: Striding towards sustainable production of biohydrogen coupled with wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 354:127203. [PMID: 35462016 DOI: 10.1016/j.biortech.2022.127203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Anthropogenic activities have drastically affected the environment, leading to increased waste accumulation in atmospheric bodies, including water. Wastewater treatment is an energy-consuming process and typically requires thousands of kilowatt hours of energy. This enormous energy demand can be fulfilled by utilizing the microbial electrolysis route to breakdown organic pollutants in wastewater which produces clean water and biohydrogen as a by-product of the reaction. Microalgae are the promising microorganism for the biohydrogen production, and it has been investigated that the interaction between microalgae and bacteria can be used to boost the yield of biohydrogen. Consortium of algae and bacteria resulting around 50-60% more biohydrogen production compared to the biohydrogen production of algae and bacteria separately. This review summarises the recent development in different microalgae-bacteria granular consortium systems successfully employed for biohydrogen generation. We also discuss the limitations in biohydrogen production and factors affecting its production from wastewater.
Collapse
Affiliation(s)
- Khushboo Iqbal
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Priyanshi Pande
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Arti Mishra
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida 201301, India.
| |
Collapse
|
32
|
Effect of hydrodynamic parameters on hydrogen production by Anabaena sp. in an internal-loop airlift photobioreactor. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
33
|
Abstract
Sustainable biofuel production is the most effective way to mitigate greenhouse gas emissions associated with fossil fuels while preserving food security and land use. In addition to producing bioenergy, waste biorefineries can be incorporated into the waste management system to solve the future challenges of waste disposal. Biomass waste, on the other hand, is regarded as a low-quality biorefinery feedstock with a wide range of compositions and seasonal variability. In light of these factors, biomass waste presents limitations on the conversion technologies available for value addition, and therefore more research is needed to enhance the profitability of waste biorefineries. Perhaps, to keep waste biorefineries economically and environmentally sustainable, bioprocesses need to be integrated to process a wide range of biomass resources and yield a diverse range of bioenergy products. To achieve optimal integration, the classification of biomass wastes to match the available bioprocesses is vital, as it minimizes unnecessary processes that may increase the production costs of the biorefinery. Based on biomass classification, this study discusses the suitability of the commonly used waste-to-energy conversion methods and the creation of integrated biorefineries. In this study, the integration of waste biorefineries is discussed through the integration of feedstocks, processes, platforms, and the symbiosis of wastes and byproducts. This review seeks to conceptualize a framework for identifying and integrating waste-to-energy technologies for the varioussets of biomass wastes.
Collapse
|
34
|
Microalgal Biorefinery Concepts’ Developments for Biofuel and Bioproducts: Current Perspective and Bottlenecks. Int J Mol Sci 2022; 23:ijms23052623. [PMID: 35269768 PMCID: PMC8910654 DOI: 10.3390/ijms23052623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Microalgae have received much interest as a biofuel feedstock. However, the economic feasibility of biofuel production from microalgae does not satisfy capital investors. Apart from the biofuels, it is necessary to produce high-value co-products from microalgae fraction to satisfy the economic aspects of microalgae biorefinery. In addition, microalgae-based wastewater treatment is considered as an alternative for the conventional wastewater treatment in terms of energy consumption, which is suitable for microalgae biorefinery approaches. The energy consumption of a microalgae wastewater treatment system (0.2 kW/h/m3) was reduced 10 times when compared to the conventional wastewater treatment system (to 2 kW/h/m3). Microalgae are rich in various biomolecules such as carbohydrates, proteins, lipids, pigments, vitamins, and antioxidants; all these valuable products can be utilized by nutritional, pharmaceutical, and cosmetic industries. There are several bottlenecks associated with microalgae biorefinery. Hence, it is essential to promote the sustainability of microalgal biorefinery with innovative ideas to produce biofuel with high-value products. This review attempted to bring out the trends and promising solutions to realize microalgal production of multiple products at an industrial scale. New perspectives and current challenges are discussed for the development of algal biorefinery concepts.
Collapse
|
35
|
Ahmad A, Banat F, Alsafar H, Hasan SW. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150585. [PMID: 34597562 DOI: 10.1016/j.scitotenv.2021.150585] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
A growing world population is causing hazardous compounds to form at an increasingly rapid rate, calling for ecological action. Wastewater management and treatment is an expensive process that requires appropriate integration technology to make it more feasible and cost-effective. Algae are of great interest as potential feedstocks for various applications, including environmental sustainability, biofuel production, and the manufacture of high-value bioproducts. Bioremediation with microalgae is a potential approach to reduce wastewater pollution. The need for effective nutrient recovery, greenhouse gas reduction, wastewater treatment, and biomass reuse has led to a wide interest in the use of microalgae for wastewater treatment. Furthermore, algae biomass can be used to produce bioenergy and high-value bioproducts. The use of microalgae as medicine (production of bioactive and medicinal compounds), biofuels, biofertilizers, and food additives has been explored by researchers around the world. Technological and economic barriers currently prevent the commercial use of algae, and optimal downstream processes are needed to reduce production costs. Therefore, the simultaneous use of microalgae for wastewater treatment and biofuel production could be an economical approach to address these issues. This article provides an overview of algae and their application in bioremediation, bioenergy production, and bioactive compound production. It also highlights the current problems and opportunities in the algae-based sector, which has recently become quite promising.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Habiba Alsafar
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
36
|
Zhou Y, Liu L, Li M, Hu C. Algal biomass valorisation to high-value chemicals and bioproducts: Recent advances, opportunities and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126371. [PMID: 34838628 DOI: 10.1016/j.biortech.2021.126371] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Algae are considered promising biomass resources for biofuel production. However, some arguments doubt the economical and energetical feasibility of algal cultivation, harvesting, and conversion processes. Beyond biofuel, value-added bioproducts can be generated via algae conversion, which would enhance the economic feasibility of algal biorefineries. This review primarily focuses on valuable chemical and bioproduct production from algae. The methods for effective recovery of valuable algae components, and their applications are summarized. The potential routes for the conversion of lipids, carbohydrates, and proteins to valuable chemicals and bioproducts are assessed from recent studies. In addition, this review proposes the following challenges for future algal biorefineries: (1) utilization of naturally grown algae instead of cultivated algae; (2) fractionation of algae to individual components towards high-selectivity products; (3) avoidance of humin formation from algal carbohydrate conversion; (4) development of strategies for algal protein utilisation; and (5) development of efficient processes for commercialization and industrialization.
Collapse
Affiliation(s)
- Yingdong Zhou
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Li Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Mingyu Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
37
|
Zhang Q, Jin P, Li Y, Zhang Z, Zhang H, Ru G, Jiang D, Jing Y, Zhang X. Analysis of the characteristics of paulownia lignocellulose and hydrogen production potential via photo fermentation. BIORESOURCE TECHNOLOGY 2022; 344:126361. [PMID: 34801718 DOI: 10.1016/j.biortech.2021.126361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Paulownia biomass is rich in carbohydrates, making which a potential feedstock for biohydrogen production. In the study, different parts and varieties of Paulownia were chose as substrates to evaluate hydrogen production potential of paulownia lignocellulose via biohydrogen production by photo fermentation (BHPPF) and energy conversion efficiency (ECE). Results showed the highest cumulative hydrogen yield (CHY) of 67.11 mL/g total solids (TS) and ECE of 4.74% were obtained from leaves of Paulownia, which were 121.06% and 115.45% higher than those of the branches. Moreover, Paulownia jianshiensis leaves were found to be the best variety for BHPPF, with the maximum CHY of 98.83 mL/g TS and ECE of 7.18%. Using Paulownia waste as the substrate to produce hydrogen helps broaden the range of raw materials for BHPPF and improve the economic utilization of forestry waste.
Collapse
Affiliation(s)
- Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Peng Jin
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guangming Ru
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy(MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Xueting Zhang
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| |
Collapse
|
38
|
Saravanan A, Senthil Kumar P, Khoo KS, Show PL, Femina Carolin C, Fetcia Jackulin C, Jeevanantham S, Karishma S, Show KY, Lee DJ, Chang JS. Biohydrogen from organic wastes as a clean and environment-friendly energy source: Production pathways, feedstock types, and future prospects. BIORESOURCE TECHNOLOGY 2021; 342:126021. [PMID: 34600315 DOI: 10.1016/j.biortech.2021.126021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Microbial fermentation of organic matter under anaerobic conditions is currently the prominent pathway for biohydrogen production. Organic matter present in waste residues is regarded as an economic feedstock for biohydrogen production by dark and photo fermentative bacteria. Agricultural residues, fruit wastes, vegetable wastes, industrial wastewaters, and other livestock residues are some of the organic wastes most commonly used for biohydrogen production due to their higher organic content and biodegradability. Appropriate pretreatments are required to enhance the performance of biohydrogen from complex organic wastes. Biohydrogen production could also be enhanced by optimizing operation conditions and the addition of essential nutrients and nanoparticles. This review describes the pathways of biohydrogen production, discusses the effect of organic waste sources used and microbes involved on biohydrogen production, along with addressing the key parameters, advantages, and difficulties in each biohydrogen production pathway.
Collapse
Affiliation(s)
- A Saravanan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau-Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - C Femina Carolin
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - C Fetcia Jackulin
- Department of Chemical Engineering, Adhiyamaan College of Engineering (Autonomous), Hosur 635130, Tamil Nadu, India
| | - S Jeevanantham
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - Kuan-Yeow Show
- Puritek Research Institute, Puritec Co., Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
39
|
Kumar Sharma A, Kumar Ghodke P, Manna S, Chen WH. Emerging technologies for sustainable production of biohydrogen production from microalgae: A state-of-the-art review of upstream and downstream processes. BIORESOURCE TECHNOLOGY 2021; 342:126057. [PMID: 34597808 DOI: 10.1016/j.biortech.2021.126057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Biohydrogen (BioH2) is considered as one of the most environmentally friendly fuels and a strong candidate to meet the future demand for a sustainable source of energy. Presently, the production of BioH2 from photosynthetic organisms has raised a lot of hopes in the fuel industry. Moreover, microalgal-based BioH2 synthesis not only helps to combat current global warming by capturing greenhouse gases but also plays a key role in wastewater treatment. Hence, this manuscript provides a state-of-the-art review of the upstream and downstream BioH2 production processes. Different metabolic routes such as direct and indirect photolysis, dark fermentation, photofermentation, and microbial electrolysis are covered in detail. Upstream processes (e.g. growth techniques, growth media) also have a great impact on BioH2 productivity and economics, which is also explored. Technical and scientific obstacles of microalgae BioH2 systems are finally addressed, allowing the technology to become more innovative and commercial.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemistry, Centre for Alternate and Renewable Energy Research, R&D, University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres Building, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Praveen Kumar Ghodke
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode 673601, Kerala, India
| | - Suvendu Manna
- Department of Health Safety, Environment and Civil Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
40
|
Zhang C, Li S, Ho SH. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: A critical review. BIORESOURCE TECHNOLOGY 2021; 342:126056. [PMID: 34601027 DOI: 10.1016/j.biortech.2021.126056] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Conventional wastewater treatment using activated sludge cannot efficiently eliminate nitrogen and phosphorus, thus engendering the risk of water eutrophication and ecosystem disruption. Fortunately, a new wastewater treatment process applying microalgae-bacteria consortia has attracted considerable interests due to its excellent performance of nutrients removal. Moreover, some bacteria facilitate the harvest of microalgal biomass through bio-flocculation. Additionally, while stimulating the functional bacteria, the improved biomass and enriched components also brighten bioenergy production from the perspective of practical applications. Thus, this review first summarizes the current development of nutrients removal and mutualistic interaction using microalgae-bacteria consortia. Then, advancements in bio-flocculation are completely described and the corresponding mechanisms are thoroughly revealed. Eventually, the recent advances of bioenergy production (i.e., biodiesel, biohydrogen, bioethanol, and bioelectricity) using microalgae-bacteria consortia are comprehensively discussed. Together, this review will provide the ongoing challenges and future developmental directions for better converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
41
|
Singh H, Paritosh K, Vivekanand V. Microorganism assisted biohydrogen production and bioreactors: an overview. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Himanshi Singh
- Centre for converging technology University of Rajasthan Jaipur Rajasthan India
| | - Kunwar Paritosh
- Centre for Energy and Environment Malaviya National Institute of Technology Jaipur Rajasthan India
| | - Vivekanand Vivekanand
- Centre for Energy and Environment Malaviya National Institute of Technology Jaipur Rajasthan India
| |
Collapse
|
42
|
Liu H, Ru G, Zhang Z, Li Y, Xia C, Lu C, Zhang Q. Experimental study on optimization of initial pH for photo-fermentation bio-hydrogen under different enzymatic hydrolysis of chlorella vulgaris. BIORESOURCE TECHNOLOGY 2021; 338:125571. [PMID: 34303143 DOI: 10.1016/j.biortech.2021.125571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
In the paper, Use Chlorella as raw material, HAU-M1 Photosynthetic bacteria (PSB) as hydrogen-producing bacteria, the influence of initial pH on bio-hydrogen by photosynthetic organisms from Chlorella vulgaris with diverse enzyme addition was studied. The results showed that when using cellulase as hydrolase, the optimum initial pH was 7.0 and highest bio-hydrogen was 25.99 mL/g dry cell weight. Using neutral protease as hydrolase, the optimum initial pH was 8.0 and highest bio-hydrogen was 16.47 mL/g dry cell weight. Using mixed enzyme of cellulase and protease as hydrolase, the optimal initial pH was 7.0 and highest bio-hydrogen was 27.43 mL/g dry cell weight. The bio-hydrogen from Chlorella after mixed enzymatic hydrolysis is better than that of single enzymatic hydrolysis, we think the mixed enzymatic hydrolysis of cellulase and protease was superior to the single enzymatic hydrolysis of the two enzymes, which provides a scientific reference and low-cost bio-hydrogen technology by microalgae.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy,(MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Guangming Ru
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy,(MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy,(MOA of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Chenxi Xia
- Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy,(MOA of China), Henan Agricultural University, Zhengzhou 450002, China; Institute of Agricultural Engineering, Huanghe S & T University, Zhengzhou 450006, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy,(MOA of China), Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
43
|
Gao Y, Guo L, Liao Q, Zhang Z, Zhao Y, Gao M, Jin C, She Z, Wang G. Mariculture wastewater treatment with Bacterial-Algal Coupling System (BACS): Effect of light intensity on microalgal biomass production and nutrient removal. ENVIRONMENTAL RESEARCH 2021; 201:111578. [PMID: 34228951 DOI: 10.1016/j.envres.2021.111578] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/03/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Mariculture wastewater generated from the mariculture industry has increased public concern due to its impact on the sustainability of aquatic environments and aquaculture practices. Herein, the Bacterial-Algal Coupling System was applied for mariculture wastewater treatment. Microalgae growth in heterotrophy and mixotrophy (2000-8000 lux) was first compared. The best microalgal growth and nutrient removal were obtained at 5000 lux, where biomass productivity of microalgae was 0.465 g L-1 d-1, and 98.1% of chemical oxygen demand, 70.7% of ammonia-nitrogen, and 90.0% of total phosphorus were removed. To further understand the nutrient removal through microalgae cultivation, the enzyme activities involved in the Calvin cycle and the Tricarboxylic Acid cycle at different light intensities were determined. Under mixotrophic cultivation, there was a coordination between photosynthesis and heterotrophic metabolism in the agal cell, which resulted in a high algal biomass production and removal efficiency of nutrients. This study provided a novel insight into the bioremediation of mariculture wastewater and microalgae cultivation.
Collapse
Affiliation(s)
- Yedong Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Qianru Liao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zengshuai Zhang
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Guangce Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
44
|
Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 2021; 11:296. [PMID: 34136333 DOI: 10.1007/s13205-021-02825-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
Algae have gained substantial importance as the most promising potential green fuel source across the globe and is on growing demand due to their antioxidant, anticancer, antiviral, antihypertensive, cholesterol reducing and thickening properties. Therefore, it has vast range of application in medicines, pharmaceutical, cosmetics, paper and nutraceutical industries. In this work, the remarkable ability of algae to convert CO2 and other toxic compounds in atmosphere to potential biofuels, foods, feeds and high-value bioactive compounds is reviewed. Algae produce approximately 50% of the earth's oxygen using its photosynthetic activity, thus acting as a potent tool to mitigate the effects of air pollution. Further, the applicability of algae as a desirable energy source has also been discussed, as they have the potential to serve as an effective alternative to intermittent renewable energy; and also, to combustion-based fossil fuel energy, making them effective for advanced biofuel conversions. This work also evaluates the current applications of algae and the implications of it as a potential substrate for bioplastic, natural alternative to inks and for making paper besides high-value products. In addition, the scope for integrated biorefinery approach is also briefly explored in terms of economic aspects at the industrial scale, as such energy conversion mechanisms are directly linked with sustainability, thus providing a positive overall energy outlook.
Collapse
|
45
|
Srivastava N, Srivastava M, Abd Allah EF, Singh R, Hashem A, Gupta VK. Biohydrogen production using kitchen waste as the potential substrate: A sustainable approach. CHEMOSPHERE 2021; 271:129537. [PMID: 33450424 DOI: 10.1016/j.chemosphere.2021.129537] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
This review explores the sustainable feasibility of kitchen wastes to implement as an effective substrate for biohydrogen production through dark fermentation. Being organic in nature, kitchen wastes are enomerous source of nutrients and carbohydrate, which are produced in huge quantity in our daily life, and therefore can be potentially used for biohydrogen production through microbial technique. The review discussed in detail about the impact of kitchen waste, its availability and sustainability on the biohydrogen production process along with future scope at industrial scale for the production of sustainable and renewable energy. In addition, recent advances, and their possibility to enhance the fermentative biohydrogen production using kitchen waste have been covered. Emphasis is also made on the application of nanomaterials to increase the yield of biohydrogen production and to make the entire process more economical and sustainable while using kitchen wastes as substrate for the microbial fermentation. Finally, advantages, limitations and future prospects of the process of biohydrogen production using kitchen wastes as potential substrate have been discussed.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology, (BHU), Varanasi, 221005, India.
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology, (BHU), Varanasi, 221005, India
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia; Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, 12511, Egypt
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
46
|
Nagarajan D, Dong CD, Chen CY, Lee DJ, Chang JS. Biohydrogen production from microalgae-Major bottlenecks and future research perspectives. Biotechnol J 2021; 16:e2000124. [PMID: 33249754 DOI: 10.1002/biot.202000124] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/25/2020] [Indexed: 12/11/2022]
Abstract
The imprudent use of fossil fuels has resulted in high greenhouse gas (GHG) emissions, leading to climate change and global warming. Reduction in GHG emissions and energy insecurity imposed by the depleting fossil fuel reserves led to the search for alternative sustainable fuels. Hydrogen is a potential alternative energy carrier and is of particular interest because hydrogen combustion releases only water. Hydrogen is also an important industrial feedstock. As an alternative energy carrier, hydrogen can be used in fuel cells for power generation. Current hydrogen production mainly relies on fossil fuels and is usually energy and CO2 -emission intensive, thus the use of fossil fuel-derived hydrogen as a carbon-free fuel source is fallacious. Biohydrogen production can be achieved via microbial methods, and the use of microalgae for hydrogen production is outstanding due to the carbon mitigating effects and the utilization of solar energy as an energy source by microalgae. This review provides comprehensive information on the mechanisms of hydrogen production by microalgae and the enzymes involved. The major challenges in the commercialization of microalgae-based photobiological hydrogen production are critically analyzed and future research perspectives are discussed. Life cycle analysis and economic assessment of hydrogen production by microalgae are also presented.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.,Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Nanzih District, Kaohsiung, Taiwan
| | - Chun-Yen Chen
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.,Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan.,Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| |
Collapse
|
47
|
Isolation of Industrial Important Bioactive Compounds from Microalgae. Molecules 2021; 26:molecules26040943. [PMID: 33579001 PMCID: PMC7916812 DOI: 10.3390/molecules26040943] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Microalgae are known as a rich source of bioactive compounds which exhibit different biological activities. Increased demand for sustainable biomass for production of important bioactive components with various potential especially therapeutic applications has resulted in noticeable interest in algae. Utilisation of microalgae in multiple scopes has been growing in various industries ranging from harnessing renewable energy to exploitation of high-value products. The focuses of this review are on production and the use of value-added components obtained from microalgae with current and potential application in the pharmaceutical, nutraceutical, cosmeceutical, energy and agri-food industries, as well as for bioremediation. Moreover, this work discusses the advantage, potential new beneficial strains, applications, limitations, research gaps and future prospect of microalgae in industry.
Collapse
|
48
|
Salakkam A, Sittijunda S, Mamimin C, Phanduang O, Reungsang A. Valorization of microalgal biomass for biohydrogen generation: A review. BIORESOURCE TECHNOLOGY 2021; 322:124533. [PMID: 33348113 DOI: 10.1016/j.biortech.2020.124533] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 05/16/2023]
Abstract
Third generation biomass, i.e. microalgae, has emerged as a promising alternative to first and second generation biomass for biohydrogen production. However, its utilization is still low at present, due to several reasons including the strong and rigidity of the microalgal cell wall that limit the hydrolysis efficiency during dark fermentation (DF) and photofermentation (PF) processes. To improve the utilization efficiency of microalgal biomass, it is crucial that important aspects related to the production of the biomass and the following processes are elaborated. Thus, this article provides detailed overview of algal strains, cultivation, and harvesting. It also presents recent research and detailed information on microalgal biomass pretreatment, and biohydrogen production through DF, PF, and co-digestion of microalgal biomass with organic materials. Furthermore, factors affecting fermentation processes performance and the use of molecular techniques in biohydrogen production are presented. This review also discusses challenges and future prospects towards biohydrogen production from microalgal biomass.
Collapse
Affiliation(s)
- Apilak Salakkam
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sureewan Sittijunda
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chonticha Mamimin
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Orawan Phanduang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand.
| |
Collapse
|
49
|
Kumar A. Current and Future Perspective of Microalgae for Simultaneous Wastewater Treatment and Feedstock for Biofuels Production. CHEMISTRY AFRICA 2021. [DOI: 10.1007/s42250-020-00221-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Elshobary ME, Zabed HM, Yun J, Zhang G, Qi X. Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2021; 46:3135-3159. [DOI: 10.1016/j.ijhydene.2020.06.251] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|