1
|
Samavati Z, Goh PS, Fauzi Ismail A, Lau WJ, Samavati A, Ng BC, Sohaimi Abdullah M. Advancements in membrane technology for efficient POME treatment: A comprehensive review and future perspectives. J Environ Sci (China) 2025; 155:730-761. [PMID: 40246505 DOI: 10.1016/j.jes.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 04/19/2025]
Abstract
The treatment of POME related contamination is complicated due to its high organic contents and complex composition. Membrane technology is a prominent method for removing POME contaminants on account of its efficiency in removing suspended particles, organic substances, and contaminants from wastewater, leading to the production of high-quality treated effluent. It is crucial to achieve efficient POME treatment with minimum fouling through membrane advancement to ensure the sustainability for large-scale applications. This article comprehensively analyses the latest advancements in membrane technology for the treatment of POME. A wide range of membrane types including forward osmosis, microfiltration, ultrafiltration, nanofiltration, reverse osmosis, membrane bioreactor, photocatalytic membrane reactor, and their combinations is discussed in terms of the innovative design, treatment efficiencies and antifouling properties. The strategies for antifouling membranes such as self-healing and self-cleaning membranes are discussed. In addition to discussing the obstacles that impede the broad implementation of novel membrane technologies in POME treatment, the article concludes by delineating potential avenues for future research and policy considerations. The understanding and insights are expected to enhance the application of membrane-based methods in order to treat POME more efficiently; this will be instrumental in the reduction of environmental pollution.
Collapse
Affiliation(s)
- Zahra Samavati
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia.
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Alireza Samavati
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| |
Collapse
|
2
|
Jiang Y, Wang S, Li C, Cai YA, Xiong X, Tang Y, Shao S, Wang C, Ng HY. Unraveling the mechanism of fouling mitigation in AGS-MBR system: From AGS properties to foulant interactions. WATER RESEARCH 2025; 279:123403. [PMID: 40068289 DOI: 10.1016/j.watres.2025.123403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 05/06/2025]
Abstract
Aerobic granular sludge (AGS) has demonstrated a lower fouling propensity than floc sludge in membrane bioreactors (MBRs) due to various hypotheses, including differences in particle size and the efficacy of physical scouring. However, controversy exists regarding the dominant cause of this lower fouling. Therefore, in this work, we systematically investigated the contribution of four potential mechanisms of AGS on membrane fouling alleviation in MBRs: 1) loosening cake layer; 2) scouring of the membrane surface; 3) regulating soluble microbial product (SMP) secretion; and 4) changing the rheology of the bulk solution. Our results showed that, regardless of granular size range, AGS hardly caused cake fouling due to its low hydraulic resistances (<0.8 × 1012 m-1) and limited accumulation on the membrane surface. Scouring by AGS was ineffective in reducing the thickness and hydraulic resistance of the fouling layer compared with granular activated carbon, a commonly used scouring material for MBRs. Furthermore, liquid chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND) results indicated that the lower fouling was related to reduced SMP secretion by AGS, with an optimal particle size (800-1000 μm) at which SMP secretion was minimized. AGS with this optimal particle size secreted over 54 % less high-molecular-weight SMP compared to floc sludge. As granule size further increased, SMP secretion increased due to biomass decay and cell lysis resulting from substrate transfer limitations in granules. Moreover, compared to floc sludge, granular sludge bulk solution exhibited lower viscosity, particularly in the 450-1000 μm size range. This enhanced rheological behavior could potentially improve shear stress induced by aeration, thereby mitigating membrane fouling. These findings emphasize that the indirect effects of AGS, including reduced SMP secretion and improved rheological properties, played a crucial role in the lower membrane fouling in AGS-MBRs, while direct effects such as loosening cake layer and the scouring effect played minor roles.
Collapse
Affiliation(s)
- Yu Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Si Wang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Chaoyu Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Yu-Ang Cai
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Xiuquan Xiong
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Yinghao Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Chuansheng Wang
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - How Yong Ng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
3
|
Zhang L, Bai R, Zhang J, Chen Z, Guo J. Fe 3+ addition as a promising strategy to enhance the pollutant removal performance and mitigate the membrane fouling of a laboratory-scale membrane bioreactor treating sulfamethoxazole wastewater. ENVIRONMENTAL RESEARCH 2025; 274:121284. [PMID: 40049348 DOI: 10.1016/j.envres.2025.121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
Membrane bioreactor (MBR) is a water treatment process combining membrane technologies with activated sludge, which is beneficial to the removal of antibiotics. However, with the extension of the operation cycle, its efficiency in treating antibiotic wastewater decreases and the membrane fouling intensifies. As the presence of Fe3+ could improve pollutants removal, microbial activity and sludge properties, it was anticipated that the addition of Fe3+ in MBR might promote the removal of antibiotics and reduce membrane fouling. The effects of Fe3+ concentration on the removal of sulfamethoxazole (SMX) and membrane fouling were investigated in this work. The results revealed that the removal efficiencies of COD, TN, and SMX was 98%, 86%, and 70%, respectively, when 40 mg/L Fe3+ was introduced into MBR with the influent SMX concentration of 1 mg/L. This performance was superior to that observed in the absence of Fe3+, which was 93%, 74%, and 53% for COD, TN, and SMX removal, respectively. Correspondingly, the membrane fouling rate decreased from 2.52 kPa/d to 1.03 kPa/d, demonstrating that Fe3+ could mitigate membrane fouling. The exploration into membrane fouling mechanism demonstrated that the flocculation of activated sludge was enhanced and the protein (PN) content in the cake layer was significantly reduced. Concurrently, the repulsive energy barrier (XDLVO) between foulants and membrane surface was markedly increased. The study identified four SMX degradation pathways, i.e., N-S bond breaking, C-S bond breaking, N-O bond breaking, and benzene ring deamination. The toxicity levels of the degradation intermediates were determined to span from harmless to toxic as compared with SMX itself. This study offers new insights into the enhanced elimination of SMX through the MBR-Fe process and elucidates the mechanisms involved in mitigating membrane fouling, highlighting the potential of this process in degrading antibiotic wastewater.
Collapse
Affiliation(s)
- Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China.
| | - Rumeng Bai
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Jian Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Zicheng Chen
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Jingbo Guo
- School of Civil and Architecture Engineering, Northeast Electric Power University, Jilin, 132012, China.
| |
Collapse
|
4
|
You Y, Guo J, Jiang J. Insight into the performance and fouling characteristics of submerged ceramic membrane bioreactor in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123900. [PMID: 39740463 DOI: 10.1016/j.jenvman.2024.123900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Submerged membrane bioreactor (SMBR) is a promising technology in municipal wastewater treatment, but the membrane fouling has restricted its development. In this study, an integrated submerged ceramic membrane bioreactor (C-SMBR) was constructed to treat domestic wastewater, and the characteristics of membrane fouling and the microbial community structure were investigated. The results showed that the average removal efficiencies of COD, TN, NH4+-N reached 94.97%, 61.69% and 71.61% respectively, under different ammonia nitrogen loading rate (NLR). The increase of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in the suspension jointly accelerated the membrane fouling process, resulting in an increase in the trans-membrane pressure (TMP), which led to membrane fouling. Microbial community structure analysis showed that the dominant phylum bacteria were Patescibacteria, Proteobacteria, Actinobacteria, Bacteroidota and Chloroflexi, and the dominant class bacteria were Saccharimonadia, γ-proteobacteria, Actinobacteria, Bacteroidia, Anaerolineae, α-proteobacteria, etc. In summary, the conditions, microbial information and membrane fouling characteristics of wastewater treated by C-SMBR obtained in this study can provide reference and data support for further promotion and improvement of the application of C-SMBR and membrane fouling control.
Collapse
Affiliation(s)
- Yujing You
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China.
| | - Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China.
| | - Jianying Jiang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| |
Collapse
|
5
|
Yang Y, Guo W, Hao Ngo H, Zhang X, Ye Y, Peng L, Wei C, Zhang H. Mini critical review: Membrane fouling control in membrane bioreactors by microalgae. BIORESOURCE TECHNOLOGY 2024; 406:131022. [PMID: 38914234 DOI: 10.1016/j.biortech.2024.131022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Membrane bioreactors (MBRs) hold significant promise for wastewater treatment, yet the persistent challenge of membrane fouling impedes their practical application. One promising solution lies in the synergy between microalgae and bacteria, offering efficient nutrient removal, reduced energy consumption, and potential mitigation of extracellular polymeric substances (EPS) concentrations. Inoculating microalgae presents a promising avenue to address membrane fouling in MBRs. This review marks the first exploration of utilizing microalgae for membrane fouling control in MBR systems. The review begins with a comprehensive overview of the evolution and distinctive traits of microalgae-MBRs. It goes further insight into the performance and underlying mechanisms facilitating the reduction of membrane fouling through microalgae intervention. Moreover, the review not only identifies the challenges inherent in employing microalgae for membrane fouling control in MBRs but also illuminates prospective pathways for future advancement in this burgeoning field.
Collapse
Affiliation(s)
- Yuanying Yang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chunhai Wei
- Department of Municipal Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huiying Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Ni L, Wang P, Westerhoff P, Luo J, Wang K, Wang Y. Mechanisms and Strategies of Advanced Oxidation Processes for Membrane Fouling Control in MBRs: Membrane-Foulant Removal versus Mixed-Liquor Improvement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11213-11235. [PMID: 38885125 DOI: 10.1021/acs.est.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
7
|
Han J, Jia J, Hu X, Sun L, Ulbricht M, Lv L, Ren Z. Effect of magnetic field coupled magnetic biochar on membrane bioreactor efficiency, membrane fouling mitigation and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172549. [PMID: 38643881 DOI: 10.1016/j.scitotenv.2024.172549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The excitation by magnetic field was established to mitigate the membrane fouling of magnetic biochar (MB)-supplemented membrane bioreactor (MBR) in this study. The results showed that the transmembrane pressure (TMP) increase rates decreased by about 8 % after introducing the magnetic field compared with the magnetic biochar-MBR (MB-MBR). Membrane characterization suggested that the flocs in the magnetic field-magnetic biochar-MBR (MF-MB-MBR) formed a highly permeable developed cake layer, and a fluffier and more porous deposited layer on membrane surface, which minimized fouling clogging of the membrane pores. Further mechanistic investigation revealed that the decrease in contact angle of fouled membrane surface in MF-MB-MBR, i.e. an enhanced membrane hydrophilicity, is considered important for forming highly permeable layers. Additionally, the magnetic field was demonstrated to have a positive effect on the improvement of the magneto-biological effect, the enhancement of charge neutralization and adsorption bridging between sludge and magnetic biochar, and the reduction of formation of extracellular polymeric substances (EPSs), which all yielded sludge flocs with a large pore structure conducive to form a fluffy and porous deposited layer in the membrane surface. Furthermore, high-throughput sequencing analysis revealed that the magnetic field also led to a reduction in microbial diversity, and that it promoted the enrichment of specific functional microbial communities (e.g. Bacteroidetes and Firmicutes) playing an important role in mitigating membrane fouling. Taken together, this study of magnetic field-enhanced magnetic biochar for MBR membrane fouling mitigation provides insights important new ideas for more effective and sustainable operation strategies.
Collapse
Affiliation(s)
- Jinlong Han
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jianna Jia
- Tianjin Research Institute for Water Transport Engineering, M.O.T., China
| | - Xiangjia Hu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; Wuqing District Environmental Protection Bureau, Tianjin, 301700, China
| | - Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Longyi Lv
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
8
|
Garieri T, Allen DG, Gao W, Liao B. A review of emerging membrane-based microalgal-bacterial processes for wastewater treatment: Process configurations, biological and membrane performance, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172141. [PMID: 38580119 DOI: 10.1016/j.scitotenv.2024.172141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Microalgal-bacterial (MB) consortia create an excellent eco-system for simultaneous COD/BOD and nutrients (N and P) removals in a single step with significant reduction in or complete elimination of aeration and carbonation in the biological wastewater treatment processes. The integration of membrane separation technology with the MB processes has created a new paradigm for research and development. This paper focuses on a comprehensive and critical literature review of recent advances in these emerging processes. Novel membrane process configurations and process conditions affecting the biological performance of these novel systems have been systematically reviewed and discussed. Membrane fouling issues and control of MB biofilm formation and thickness associated with these emerging suspended growth or immobilized biofilm processes are addressed and discussed. The research gaps, challenges, outlooks of these emerging processes are identified and discussed in-depth. The findings from the literature suggest that the membrane-based MB processes are advanced biotechnologies with a significant reduction in energy consumption and process simplification and high process efficiency that are not achievable with current technologies in wastewater treatment. There are endless opportunities for research and development of these novel and emerging membrane-based MB processes.
Collapse
Affiliation(s)
- Teralyn Garieri
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - D Grant Allen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Wa Gao
- Department of Civil Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
9
|
Huang R, Geng M, Gao S, Yin X, Tian J. In-depth insight into improvement of simultaneous nitrification and denitrification/biofouling control by increasing sludge concentration in membrane reactor: performance, microbial assembly and metagenomic analysis. BIORESOURCE TECHNOLOGY 2024; 393:130013. [PMID: 37956947 DOI: 10.1016/j.biortech.2023.130013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Currently, severe membrane fouling and inefficient nitrogen removal were two main issues that hindered the sustainable operation and further application of membrane bioreactor (MBR). This study aimed to simultaneously alleviate membrane fouling and improve nitrogen removal by applying high sludge concentration in MBR. Results showed that high sludge concentration (12000 mg/L) enhanced total nitrogen removal efficiency (78 %) and reduced transmembrane pressure development rate. Microbial community analysis revealed that high sludge concentration enriched functional bacteria associated with nitrogen removal, increased filamentous bacteria fraction in bio-cake and inhibited Thiothrix overgrowth in bulk sludge. From molecular level, the key genes involved in nitrogen metabolism, electron donor/adenosine triphosphate production and amino acid degradation were up-regulated under high sludge concentration. Overall, high sludge concentration improved microbial assembly and functional gene abundance, which not only enhanced nitrogen removal but also alleviated membrane fouling. This study provided an effective strategy for sustainable operation of MBR.
Collapse
Affiliation(s)
- Rui Huang
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; Guangdong GDH Water Co. Ltd, Shenzhen 518021, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mingyue Geng
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Shanshan Gao
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xing Yin
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
10
|
Rose J, Chung S, Islam ZU, Azhar B, Oh H. Optimum quorum quenching bacteria concentration in the better-quality cell entrapping beads to control biofouling in membrane bioreactor. BIOFOULING 2024; 40:153-164. [PMID: 38450621 DOI: 10.1080/08927014.2024.2321964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/17/2024] [Indexed: 03/08/2024]
Abstract
Quorum quenching (QQ) by cell entrapping beads (CEBs) is known to inhibit biofouling by its biological and physical cleaning effect. Although there are better QQ media reported, due to the ease of fabrication of QQ-CEBs, this study focused on improving the quality of CEBs by comparing two distinct bead-making methods - polyvinyl alcohol-alginate (PVA-alginate) and phase inversion - and on finding the optimum concentration of QQ bacteria in the CEBs. The evaluation of PVA-alginate bead showed better uniformity, and higher mechanical and chemical strength in comparison with the phase inversion bead. Through the operations of two control membrane bioreactors (MBRs) (no bead, vacant bead) and four QQ-MBRs with different Rhodococcus sp. BH4 concentrations (2.5-15 mg cell ml-1) in PVA-alginate CEBs, the maximum QQ effect was observed by 5 mg ml-1 BH4 concentration beads. This implies that an optimum cell concentration of QQ-CEBs is crucial to economically improve MBR performance using QQ.
Collapse
Affiliation(s)
- Jennifer Rose
- Department of Environmental Science, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Shinho Chung
- Department of Environmental Science, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Zia Ul Islam
- Department of Environmental Science, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Bushra Azhar
- Department of Environmental Science, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Heekyong Oh
- School of Environmental Engineering, University of Seoul, Seoul, Korea
| |
Collapse
|
11
|
Wang Y, Xu Y, Zhang S, Li Y, Liu W. Effects of powdered activated carbon dosage on the performance of membrane bioreactors treating biochemical tail water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162429. [PMID: 36842604 DOI: 10.1016/j.scitotenv.2023.162429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/05/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
As a promising treatment technology for wastewater, the promotion of membrane bioreactors (MBR) is restricted by biological fouling. Among the measures used to mitigate membrane fouling, the addition of powdered activated carbon (PAC) to MBRs has been recognized as an effective practice. However, the effects of PAC dosage on the performance of MBRs that treat highly biochemical influent from wastewater treatment plants remain unclear. In this study, by investigating the treatment of biochemical tailwater by PAC-MBRs, we thoroughly analyzed the effects of PAC dosage on the contamination removal efficiency, membrane operation cycles, sludge mixture properties, and microorganism distributions. The results indicated that the addition of PAC enhanced the removal efficiency of MBRs depending on the contaminant of interest. For example, the removal efficiency of total nitrogen can be boosted from 30 % to 60 % with PAC addition, while the removal efficiencies of total phosphorus were comparable with or without PAC addition. Furthermore, the application of PAC in MBRs can prolong the duration of membranes by suppressing biological fouling. This was supported by the decreased microbial products, reduced smaller solid particles, and stronger stability of sludge particles. PAC addition also boosts the proportion of Proteus and decreases the proportion of Bacteroides, which helps to improve the removal efficiencies of contaminants. Finally, among the PAC dosages tested in our study, 1.5 g/L PAC was proposed as the optimal candidate for treating highly biochemical influents. For example, the corresponding time for transmembrane pressure to reach 0.03 MPa was 19 d at 1.5 g/L PAC, while these periods were 7 and 14 d at dosages of 0 and 0.5 g/L, respectively. Overall, the findings of this study will aid in the selection of optimal dosages for other systems with different types of influents.
Collapse
Affiliation(s)
- Yajun Wang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yanchao Xu
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Siyong Zhang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yanjuan Li
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Wenlong Liu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Olives P, Sanchez L, Lesage G, Héran M, Rodriguez-Roda I, Blandin G. Impact of Integration of FO Membranes into a Granular Biomass AnMBR for Water Reuse. MEMBRANES 2023; 13:265. [PMID: 36984652 PMCID: PMC10053063 DOI: 10.3390/membranes13030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The granular sludge based anaerobic membrane bioreactor (G-AnMBR) has gained emphasis in the last decade by combining AnMBR advantages (high quality permeate and biogas production towards energy positive treatment) and benefits of granular biomass (boosted biological activity and reduced membrane fouling). With the aim to further reduce energy costs, produce higher quality effluent for water reuse applications and improve system efficiency, a forward osmosis (FO) system was integrated into a 17 L G-AnMBR pilot. Plate and frame microfiltration modules were step by step replaced by submerged FO ones, synthetic wastewater was used as feed (chemical oxygen demand (COD) content 500 mg/L), with hydraulic retention time of 10 h and operated at 25 °C. The system was fed with granular biomass and after the acclimation period, operated neither with gas sparging nor relaxation at around 5 L.m-2.h-1 permeation flux during at least 10 days for each tested configuration. Process stability, impact of salinity on biomass, the produced water quality and organic matter removal efficiency were assessed and compared for the system working with 100% microfiltration (MF), 70% MF/30% FO, 50% MF/50% FO and 10% MF/90% FO, respectively. Increasing the FO share in the reactor led to salinity increase and to enhanced fouling propensity probably due to salinity shock on the active biomass, releasing extracellular polymeric substances (EPS) in the mixed liquor. However, above 90% COD degradation was observed for all configurations with a remaining COD content below 50 mg/L and below the detection limit for MF and FO permeates, respectively. FO membranes also proved to be less prone to fouling in comparison with MF ones. Complete salt mass balance demonstrated that major salinity increase in the reactor was due to reverse salt passage from the draw solution but also that salts from the feed solution could migrate to the draw solution. While FO membranes allow for full rejection and very high permeate purity, operation of G-AnMBR with FO membranes only is not recommended since MF presence acts as a purge and allows for reactor salinity stabilization.
Collapse
Affiliation(s)
- Pere Olives
- LEQUIA, Institute of the Environment, University of Girona, 17003 Girona, Spainmailto:
| | - Lucie Sanchez
- Institut Européen des Membranes (IEM), Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Geoffroy Lesage
- Institut Européen des Membranes (IEM), Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Marc Héran
- Institut Européen des Membranes (IEM), Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Ignasi Rodriguez-Roda
- LEQUIA, Institute of the Environment, University of Girona, 17003 Girona, Spainmailto:
| | - Gaetan Blandin
- LEQUIA, Institute of the Environment, University of Girona, 17003 Girona, Spainmailto:
| |
Collapse
|
13
|
Siagian UWR, Friatnasary DL, Khoiruddin K, Reynard R, Qiu G, Ting YP, Wenten IG. Membrane-aerated biofilm reactor (MABR): recent advances and challenges. REV CHEM ENG 2023. [DOI: 10.1515/revce-2021-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Membrane-aerated biofilm reactor (MABR) has been considered as an innovative technology to solve aeration issues in conventional bioreactors. MABR uses a membrane to supply oxygen to biofilm grown on the membrane surface. MABR can perform bubbleless aeration with high oxygen transfer rates, which can reduce energy requirements and expenses. In addition, a unique feature of counter-diffusion creates a stratified biofilm structure, allowing the simultaneous nitrification–denitrification process to take place in a single MABR. Controlling the biofilm is crucial in MABR operation, since its thickness significantly affects MABR performance. Several approaches have been proposed to control biofilm growth, such as increasing shear stress, adding chemical agents (e.g., surfactant), using biological predators to suppress microorganism growth, and introducing ultrasound cavitation to detach biofilm. Several studies also showed the important role of membrane properties and configuration in biofilm development. In addition, MABR demonstrates high removal rates of pollutants in various wastewater treatments, including in full-scale plants. This review presents the basic principles of MABR and the effect of operational conditions on its performance. Biofilm formation, methods to control its thickness, and membrane materials are also discussed. In addition, MABR performance in various applications, full-scale MBRs, and challenges is summarized.
Collapse
Affiliation(s)
- Utjok W. R. Siagian
- Department of Petroleum Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Dwi L. Friatnasary
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Khoiruddin Khoiruddin
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Reynard Reynard
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology , B4-405, Daxuecheng, 510006 Guangzhou , China
| | - Yen-Peng Ting
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4, 117576 Singapore , Singapore
| | - I Gede Wenten
- Department of Chemical Engineering , Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
- Research Center for Bioscience and Biotechnology, Institut Teknologi Bandung , Jl. Ganesha 10, 40132 Bandung , Indonesia
| |
Collapse
|
14
|
Sutaoney P, Pandya S, Gajarlwar D, Joshi V, Ghosh P. Feasibility and potential of laccase-based enzyme in wastewater treatment through sustainable approach: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86499-86527. [PMID: 35771325 DOI: 10.1007/s11356-022-21565-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The worldwide increase in metropolitan cities and rise in industrialization have resulted in the assimilation of hazardous pollutants into the ecosystems. Different physical, chemical and biological techniques have been employed to remove these toxins from water bodies. Several bioprocess applications using microbes and their enzymes are utilized to achieve the goal. Biocatalysts, such as laccases, are employed explicitly to deplete a variety of organic pollutants. However, the degradation of contaminants using biocatalysts has many disadvantages concerning the stability and activity of the enzyme. Hence, they are immobilized on different supports to improve the enzyme kinetics and recyclability. Furthermore, standard wastewater treatment methods are not effective in eliminating all the contaminants. As a result, membrane separation technologies have emerged to overcome the limitations of traditional wastewater treatment methods. Moreover, enzymes immobilized onto these membranes have generated new avenues in wastewater purification technology. This review provides the latest information on laccases from diverse sources, their molecular framework and their mode of action. This report also gives information about various immobilization techniques and the application of membrane bioreactors to eliminate and biotransform hazardous contaminants. In a nutshell, laccases appear to be the most promising biocatalysts for green and cost-efficient wastewater treatment technologies.
Collapse
Affiliation(s)
- Priya Sutaoney
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Srishti Pandya
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Devashri Gajarlwar
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Veenu Joshi
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Prabir Ghosh
- Department of Chemical Engineering, NIT Raipur, Raipur, Chhattisgarh, India.
| |
Collapse
|
15
|
Qiao Z, Guo Y, Wang Z. A multi-functional rinsing model based on cake properties for predicting rinsing efficiency and calculating energy consumption in MBR. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Dynamic scouring of multifunctional granular material enhances filtration performance in membrane bioreactor: Mechanism and modeling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Ge S, Zhao Y, Liu D, Dong X, Zhang Y, Yang H, Li Y. Characterization of a N-acylhomoserine lactonase from Serratia sp. and its biofouling mitigation in a membrane bioreactor. Microbiol Res 2022; 264:127175. [DOI: 10.1016/j.micres.2022.127175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/14/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
|
18
|
Performance of Newly Developed Intermittent Aerator for Flat-Sheet Ceramic Membrane in Industrial MBR System. WATER 2022. [DOI: 10.3390/w14152286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An intermittent aerator was newly developed to reduce energy costs in a flat-sheet ceramic membrane bioreactor (MBR) for industrial wastewater treatment. Large air bubbles were supplied over a short time interval by the improved aerator technology at the bottom of the flat-sheet membrane. Performance tests for the intermittent aerator were carried out in a pilot system with two cassettes immersed in a membrane tank of the 1-MGD demonstration plant at Jurong Water Reclamation Plant (JWRP) in Singapore. Stable operation was achieved at an average flow of 19–22 LMH with every-2-days MC and peak flow of 27 to 33 LMH with daily MC with reduced air flow for membrane aeration. This indicates that energy costs for membrane aeration can be reduced by using the intermittent aerator. Stable MBR operation with a projected 43% reduction in the overall operating costs could be achieved with an improved aerator together with improved MC regime and membrane cassette.
Collapse
|
19
|
Chen Y, Sheng Q, Wei J, Wen Q, Ma D, Li J, Xie Y, Shen J, Sun X. Novel strategy for membrane biofouling control in MBR with nano-MnO 2 modified PVDF membrane by in-situ ozonation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151996. [PMID: 34856278 DOI: 10.1016/j.scitotenv.2021.151996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
In this study, ozonation catalyst nano-MnO2 blended polyvinylidene fluoride (PVDF) membrane was fabricated via phase inversion method and applied to membrane bioreactors (MBR), and then coupled with in-situ ozonation to study the anti-biofouling performance and reveal its mechanism. Results showed that, compared with pristine PVDF membrane (MBR_M0), 0.75 wt% and 1.00 wt% nano-MnO2 modified PVDF membrane (MBR_M0.75 and MBR_M1.00) could mitigate the membrane biofouling rate. Meanwhile MBR_M1.00 coupled with in-situ ozonation could increase the membrane cleaning cycle to 1.5 and 2.7 times, compared with MBR_M0 and MBR_M0.75 without in-situ ozonation. The possible mechanisms included that the nano-MnO2 modification coupled with in-situ ozonation directly removed the biofouling on the membrane surface, improved the hydrophilicity of the membrane surface and enhanced the chemical oxidation and biodegradation of membrane biofouling contaminants in the sludge mixture. The results of this work provide a new strategy for the control of membrane biofouling in MBR to treat industrial wastewater.
Collapse
Affiliation(s)
- Yili Chen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Qian Sheng
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianjian Wei
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Qinghe Wen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Dehua Ma
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yawei Xie
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jinyou Shen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
20
|
Deng L, Guo W, Ngo HH, Zhang X, Chen C, Chen Z, Cheng D, Ni SQ, Wang Q. Recent advances in attached growth membrane bioreactor systems for wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152123. [PMID: 34864031 DOI: 10.1016/j.scitotenv.2021.152123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
To tackle membrane fouling and limited removals of pollutants (nutrients and emerging pollutants) that hinder the wide applications of membrane bioreactor (MBR), attached growth MBR (AGMBR) combining MBR and attached growth process has been developed. This review comprehensively presents the up-to-date developments of media used in both aerobic and anaerobic AGMBRs for treating wastewaters containing conventional and emerging pollutants. It also elaborates the properties of different media, characteristics of attached biomass, and their contributions to AGMBR performance. Conventional media, such as biological activated carbon and polymeric carriers, induce formation of aerobic, anoxic and/or anaerobic microenvironment, increase specific surface area or porous space for biomass retention, improve microbial activities, and enrich diverse microorganisms, thereby enhancing pollutants removal. Meanwhile, new media (i.e. biochar, bioaugmented carriers with selected strain/mixed cultures) do not only eliminate conventional pollutants (i.e. high concentration of nitrogen, etc.), but also effectively remove emerging pollutants (i.e. micropollutants, nonylphenol, adsorbable organic halogens, etc.) by forming thick and dense biofilm, creating anoxic/anaerobic microenvironments inside the media, enriching special functional microorganisms and increasing activity of microorganisms. Additionally, media can improve sludge characteristics (i.e. less extracellular polymeric substances and soluble microbial products, larger floc size, better sludge settleability, etc.), alleviating membrane fouling. Future studies need to focus on the development and applications of more new functional media in removing wider spectrum of emerging pollutants and enhancing biogas generation, as well as scale-up of lab-scale AGMBRs to pilot or full-scale AGMBRs.
Collapse
Affiliation(s)
- Lijuan Deng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,.
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, University of Technology Sydney and Tianjin Chengjian University,; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Cheng Chen
- Infinite Water Holdings Pty Ltd., Unit 17/809 Botany Road, Rosebery, Sydney, NSW 2018, Australia
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dongle Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Quan Wang
- Department of Environment Science & Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
21
|
He H, Xin X, Qiu W, Li D, Liu Z, Ma J. Role of nano-Fe 3O 4 particle on improving membrane bioreactor (MBR) performance: Alleviating membrane fouling and microbial mechanism. WATER RESEARCH 2022; 209:117897. [PMID: 34861438 DOI: 10.1016/j.watres.2021.117897] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
This study would investigate the effect of nano-Fe3O4 particles on the performance of membrane bioreactor (MBR), including membrane fouling, membrane rejection and microbial community. It can effectively alleviate membrane fouling and improve the effluent quality in MBR by bio-effect rather than nanoparticle adsorption. The lowest membrane fouling resistance was achieved at R4-MBR (sludge and membrane surface with nano-Fe3O4), which decreased by 46.08%. Meanwhile, R3-MBR (sludge with nano-Fe3O4) had the lowest concentration of COD in effluent which was below 20 mg/L in the stable phase of MBR operation. After applying nano-Fe3O4, the content of extracellular polymeric substances (EPS) and soluble microbial products (SMP) were both reduced with a lower molecular weight. From the microbial community analysis, the abundance of Proteobacteria increased from 25.06 to 45.11% at the phylum level in R3-MBR. It contributed to removing organic substances in MBRs. Moreover, the nano-Fe3O4 restricted Bacteroidetes growth, especially in R4-MBR, leading to a more excellent performance of membrane flux. Besides, the applied nano-Fe3O4 promoted the abundance of Quorum Quenching (QQ) microorganism, and declined the percentage of Quorum Sensing (QS) bacteria. Then, a lower content of N-Acyl-l-Homoserine Lactones (AHLs) in containing nano-Fe3O4 sludge. That was also prone to control membrane fouling. Overall, this study indicates the nano-Fe3O4 particle is appropriate for elevating MBR performance, such as membrane fouling and effluent quality, by bio-effect.
Collapse
Affiliation(s)
- Haiyang He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodong Xin
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Dong Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhicen Liu
- School of Geosciences, The University of Edinburgh, Edinburgh EH8 9JU, UK
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
22
|
Kim A, Hak Kim J, Patel R. Modification strategies of membranes with enhanced Anti-biofouling properties for wastewater Treatment: A review. BIORESOURCE TECHNOLOGY 2022; 345:126501. [PMID: 34890816 DOI: 10.1016/j.biortech.2021.126501] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 05/26/2023]
Abstract
This review addresses composite membranes used for wastewater treatment, focusing heavily on the anti-biofouling properties of such membranes. Biofouling caused by the development of a thick biofilm on the membrane surface is a major issue that reduces water permeance and reduces its lifetime. Biofilm formation and adhesion are mitigated by modifying membranes with two-dimensional or zero-dimensional carbon-based nanomaterials or their modified substituents. In particular, nanomaterials based on graphene, including graphene oxide and carbon quantum dots, are mainly used as nanofillers in the membrane. Functionalization of the nanofillers with various organic ligands or compositing the nanofiller with other materials, such as silver nanoparticles, enhances the bactericidal ability of composite membranes. Moreover, such membrane modifications reduce biofilm adhesion while increasing water permeance and salt/dye rejection. This review discusses the recent literature on developing graphene oxide-based and carbon quantum dot-based composite membranes for biofouling-resistant wastewater treatment.
Collapse
Affiliation(s)
- Andrew Kim
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York City, NY 10003, USA
| | - Jong Hak Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon 21983, South Korea.
| |
Collapse
|
23
|
Gutiérrez M, Grillini V, Mutavdžić Pavlović D, Verlicchi P. Activated carbon coupled with advanced biological wastewater treatment: A review of the enhancement in micropollutant removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148050. [PMID: 34091341 DOI: 10.1016/j.scitotenv.2021.148050] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 05/27/2023]
Abstract
This study consists of a review on the removal efficiencies of a wide spectrum of micropollutants (MPs) in biological treatment (mainly membrane bioreactor) coupled with activated carbon (AC) (AC added in the bioreactor or followed by an AC unit, acting as a post treatment). It focuses on how the presence of AC may promote the removal of MPs and the effects of dissolved organic matter (DOM) in wastewater. Removal data collected of MPs are analysed versus AC dose if powdered AC is added in the bioreactor, and as a function of the empty bed contact time in the case of a granular activated carbon (GAC) column acting as a post treatment. Moreover, the enhancement in macropollutant (organic matter, nitrogen and phosphorus compounds) removal is analysed as well as the AC mitigation effect towards membrane fouling and, finally, how sludge properties may change in the presence of AC. To sum up, it was found that AC improves the removal of most MPs, favouring their sorption on the AC surface, promoted by the presence of different functional groups and then enhancing their degradation processes. DOM is a strong competitor in sorption on the AC surface, but it may promote the transformation of GAC in a biologically activated carbon thus enhancing all the degradation processes. Finally, AC in the bioreactor increases sludge floc strength and improves its settling characteristics and sorption potential.
Collapse
Affiliation(s)
- Marina Gutiérrez
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| | - Vittoria Grillini
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia.
| | - Paola Verlicchi
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| |
Collapse
|
24
|
Bera SP, Godhaniya M, Kothari C. Emerging and advanced membrane technology for wastewater treatment: A review. J Basic Microbiol 2021; 62:245-259. [PMID: 34496068 DOI: 10.1002/jobm.202100259] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/07/2021] [Accepted: 08/21/2021] [Indexed: 02/01/2023]
Abstract
Over the years, conventional wastewater treatment processes have achieved to some extent in treating effluents for discharge pints. Development in wastewater treatment processes is essential to make treated wastewater reusable for industrial, agricultural, and domestic purposes. Membrane technology has emerged as an ideal technology for treating wastewater from different wastewater streams. Membrane technology is one of the most up-to-date advancements discovered to be successful in fundamentally lessening impurities to desired levels. In spite of having certain impediments, membrane bioreactors (MBRs) for biological wastewater treatment provide many advantages over conventional treatment. This review article covers all the aspects of membrane technology that are widely used in wastewater treatment process such as the principle of membrane technology, the classification of membrane technology processes in accordance to pressure, concentration, electrical and thermal-driven processes, its application in different industries, advantages, disadvantages and the future prospective.
Collapse
Affiliation(s)
| | - Manoj Godhaniya
- Department of Biosciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Charmy Kothari
- Department of Biotechnology, Christ Campus, Rajkot, Gujarat, India
| |
Collapse
|
25
|
Wu X, Han H, Qiao J. Data-Driven Intelligent Warning Method for Membrane Fouling. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3318-3329. [PMID: 33417565 DOI: 10.1109/tnnls.2020.3041293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membrane fouling has become a serious issue in membrane bioreactor (MBR) and may destroy the operation of the wastewater treatment process (WWTP). The goal of this article is to design a data-driven intelligent warning method for warning the future events of membrane fouling in MBR. The main novelties of the proposed method are threefold. First, a soft-computing model, based on the recurrent fuzzy neural network (RFNN), was proposed to identify the real-time values of membrane permeability. Second, a multistep prediction strategy was designed to predict the multiple outputs of membrane permeability accurately by decreasing the error accumulation over the predictive horizon. Third, a warning detection algorithm, using the state comprehensive evaluation (SCE) method, was developed to evaluate the pollution levels of MBR. Finally, the proposed method was inserted into a warning system to complete the predicting and warning missions and further tested in the real plants to evaluate its efficiency and effectiveness. Experimental results have verified the benefits of the proposed method.
Collapse
|
26
|
Ji J, Chen Y, Hu Y, Ohtsu A, Ni J, Li Y, Sakuma S, Hojo T, Chen R, Li YY. One-year operation of a 20-L submerged anaerobic membrane bioreactor for real domestic wastewater treatment at room temperature: Pursuing the optimal HRT and sustainable flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145799. [PMID: 33621884 DOI: 10.1016/j.scitotenv.2021.145799] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/24/2021] [Accepted: 02/07/2021] [Indexed: 05/27/2023]
Abstract
A 20 L hollow-fiber submerged anaerobic membrane bioreactor (SAnMBR) was used to treat real domestic wastewater at 25 °C with hydraulic retention times (HRTs) ranging from 4 to 12 h. The process performance was evaluated by organic removal efficiency, biogas production, sludge yield, and filtration behaviors during one-year's operation. For HRTs ranging between 6 and 12 h, the AnMBR showed good organic removal efficiency with chemical oxygen demand (COD) and biochemical oxygen demand (BOD) removal efficiencies of about 89% and 93%, respectively. The biogas yield was 0.26 L-gas/g-CODfed, with approximately 80% methane content, and the sludge yield was 0.07-0.11 g-VSS/g-CODrem. While at an HRT of 4 h, with the higher wastewater treatment capacity and organic loading rate (OLR), the biogas production was lower (0.17 L-gas/g-CODfed), and the sludge production was higher (0.22 g-VSS/g-CODrem). The organic removal performance (COD 84% and BOD 89%) at HRT of 4 h was acceptable due to the effective separation effect of the membrane filtration process. According to COD balance analysis, the low biogas yield and high sludge yield at HRT of 4 h were due to insufficient biodegradation under an OLR of 2.05 g-COD/L-reactor/d. Theoretical calculations based on Henry's law indicate that the ideal methane content in the biogas should be 82-85% when the operational temperature was 25 °C. To achieve a high flux and sustainable AnMBR operation, the impact of mixed liquor suspended solid (MLSS) and gas sparging velocity (GSV) on the filtration performance was analyzed. The critical flux increased with increase in the GSV from 24.2 to 174.3 m/h, but decreased with increase in the MLSS concentration from 8.2 to 20.2 g/L. Therefore, decreasing fouling rate to 0.8-1.2 kPa/d by efficiently controlling GSV and MLSS, sustainable operation could be achieved at a flux of 0.34 m/d.
Collapse
Affiliation(s)
- Jiayuan Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yisong Hu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Akito Ohtsu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Jialing Ni
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yemei Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Satoshi Sakuma
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Toshimasa Hojo
- Department of Civil Engineering and Management, Tohoku Institute of Technology, 35-1, Yagiyamakasumi-cho, Taihaku-ku, Sendai 982-8577, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
27
|
Cui Y, Gao H, Yu R, Gao L, Zhan M. Biological-based control strategies for MBR membrane biofouling: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2597-2614. [PMID: 34115616 DOI: 10.2166/wst.2021.168] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Membrane bioreactor (MBR) technology has been paid extensive attention for wastewater treatment because of its advantages of high effluent quality and minimized occupation space and sludge production. However, the membrane fouling is always an inevitable problem, which causes high operation and maintenance costs and prevents the wide use of MBR technology. The membrane biofouling is the most complicated and has relatively slow progress among all types of fouling. In recent years, many membrane biofouling control methods have been developed. Different from the physical or chemical methods, the biological-based strategies are not only more effective for membrane biofouling control, but also milder and more environment-friendly and, therefore, have been increasingly employed. This paper mainly focuses on the mechanism, unique advantages and development of biological-based control strategies for MBR membrane biofouling such as quorum quenching, uncoupling, flocculants and so on. The paper summarizes the up-to-date development of membrane biofouling control strategies, emphasizes the advantages and promising potential of biological-based ones, and points out the direction for future studies.
Collapse
Affiliation(s)
- Yin Cui
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China E-mail:
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China E-mail:
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China E-mail:
| | - Lei Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China and Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China E-mail:
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu 210013, China
| |
Collapse
|
28
|
Nitrogen Removal Using a Membrane Bioreactor with Rubber Particles as the Fouling Reducer. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of granule activated carbon (GAC) and rubber particles as the bio-fouling reducer in a membrane bioreactor (MBR) was evaluated in this study. The addition of GAC tends to temporarily reduce Transmembrane Pressure (TMP). Then, after the initial reduction, TMP gradually increased back up to 0.7 bar, indicating significant fouling on the membrane. Low TMP values were observed after adding 0.5% (V/V) rubber particles to the same MBR. The organic compound and nitrogen removal efficiencies of the MBR under intermittent aeration were over 94% and 93.3%, respectively. The results showed that Dysgonomonas, Acidobacteria, and Pantoea sp. contributed to the nitrification process while Lactobacillus, Erythrobacter, Phytobacter, and Mycobacterium contributed to the denitrification process.
Collapse
|
29
|
Campo R, Lubello C, Lotti T, Di Bella G. Aerobic Granular Sludge-Membrane BioReactor (AGS-MBR) as a Novel Configuration for Wastewater Treatment and Fouling Mitigation: A Mini-Review. MEMBRANES 2021; 11:membranes11040261. [PMID: 33916529 PMCID: PMC8065546 DOI: 10.3390/membranes11040261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022]
Abstract
This mini-review reports the effect of aerobic granular sludge (AGS) on performance and membrane-fouling in combined aerobic granular sludge-membrane bioreactor (AGS-MBR) systems. Membrane-fouling represents a major drawback hampering the wider application of membrane bioreactor (MBR) technology. Fouling can be mitigated by applying aerobic granular sludge technology, a novel kind of biofilm technology characterized by high settleability, strong microbial structure, high resilience to toxic/recalcitrant compounds of industrial wastewater, and the possibility to simultaneously remove organic matter and nutrients. Different schemes can be foreseen for the AGS-MBR process. However, an updated literature review reveals that in the AGS-MBR process, granule breakage represents a critical problem in all configurations, which often causes an increase of pore-blocking. Therefore, to date, the objective of research in this sector has been to develop a stable AGS-MBR through multiple operational strategies, including the cultivation of AGS directly in an AGS-MBR reactor, the occurrence of an anaerobic-feast/aerobic-famine regime in continuous-flow reactors, maintenance of average granule dimensions far from critical values, and proper management of AGS scouring, which has been recently recognized as a crucial factor in membrane-fouling mitigation.
Collapse
Affiliation(s)
- Riccardo Campo
- Department of Civil and Environmental Engineering—(DICEA), University of Florence, 50100 Florence, Italy; (R.C.); (C.L.); (T.L.)
| | - Claudio Lubello
- Department of Civil and Environmental Engineering—(DICEA), University of Florence, 50100 Florence, Italy; (R.C.); (C.L.); (T.L.)
| | - Tommaso Lotti
- Department of Civil and Environmental Engineering—(DICEA), University of Florence, 50100 Florence, Italy; (R.C.); (C.L.); (T.L.)
| | - Gaetano Di Bella
- Faculty of Engineering and Architecture, University of Enna “Kore”, 94100 Enna, Italy
- Correspondence: ; Tel.: +39-0935 536536
| |
Collapse
|
30
|
Comparison of fouling behaviors between activated sludge suspension in MBR and EPS model solutions: A new combined model. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Zhang W, Liang W, Zhang Z, Hao T. Aerobic granular sludge (AGS) scouring to mitigate membrane fouling: Performance, hydrodynamic mechanism and contribution quantification model. WATER RESEARCH 2021; 188:116518. [PMID: 33137525 DOI: 10.1016/j.watres.2020.116518] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Aerobic granular sludge (AGS) has been proven to have a low fouling potential in membrane bioreactor (MBR). Nevertheless, AGS scouring effect on mitigating membrane fouling remains poorly investigated. The main objective of this study is to examine AGS-MBR performance, to reveal the AGS scouring mechanism and quantify its contribution rate to membrane fouling mitigation, from the views of theory and experiment. Above all, AGS-MBR exhibited a low fouling rate ((transmembrane pressure (TMP) kept below 20 kPa) without membrane cleaning and a higher removal of organics and nutrients than conventional MBR during 80 days' sludge granulation process. Then, flocculent sludge (FS) with various AGS ratios was applied to simulate the sludge granulation phase. When AGS ratio increased from 0% to 100%, the permeate flux gradually elevated from 40.0 L m-2h-1 to 92.9 L m-2h-1, and fouling resistance decreased from 9.0 × 10-12m-1 to 3.9 × 10-12m-1 benefiting from the loose structure and high porosity of AGS fouling layer. Meanwhile, the scouring effect produced by AGS on the membrane fouling mitigation was investigated. Based on the momentum conservation, a new hydrodynamic model was developed to explain the scouring mechanism of AGS. The scouring stress, proportional to the total amount of AGS depositing on the membrane surface, effectively reinforced the collision between AGS and FS, and reduced their deposition on the membrane surface by friction with the membrane; thus it was further conducive to membrane fouling mitigation. Moreover, a novel contribution quantification model was proposed for analyzing the contribution rate of AGS scouring effect to mitigate membrane fouling. AGS scouring possessed a significant contribution rate (39.9%) for fouling mitigation, compared with AGS structure (50.3%) and hydraulic stress (9.7%). In final, this study provides an in-depth understanding to mitigate the MBR membrane fouling by the unique advantages of sludge granulation.
Collapse
Affiliation(s)
- Wenxiang Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Wenzhong Liang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Zhien Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| |
Collapse
|
32
|
Mustafa Aslan. Effect of Biogas Sparging Flow on Fouling Control in Anaerobic Membrane Bioreactors. J WATER CHEM TECHNO+ 2020. [DOI: 10.3103/s1063455x20050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Sun ZK, Zhou Y, Jiao Y, Cheng XQ, Zhang Y, Wang P, Liang H, Yang X, Drioli E, Figoli A, Ma J, Shao L. Multi-hydrophilic functional network enables porous membranes excellent anti-fouling performance for highly efficient water remediation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Zhou L, Zhang W, De Costa YG, Zhuang WQ, Yi S. Assessing inorganic components of cake layer in A/O membrane bioreactor for physical-chemical treated tannery effluent. CHEMOSPHERE 2020; 250:126220. [PMID: 32120146 DOI: 10.1016/j.chemosphere.2020.126220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
In this study, an anoxic-oxic membrane bioreactor (A/O-MBR), was used to treat effluent tannery wastewater pretreated by physicochemical processes. The A/O-MBR performed well during the experimental period and was able to produce a high-quality effluent containing 90 ± 10 mg-CODcr/L and 0.5 ± 0.1 mg-NH4+-N/L. However, it was observed that at rates of approximately 1.02 kPa/day and 1.2 μm/day, both transmembrane pressure (TMP) and thickness of cake layer increased during wastewater treatment. The eventual thickness of the cake layer was between 47.8 and 51.5 μm. Furthermore, an Inductively Coupled Plasma-Optical Emission Spectrometer, used to analyze inorganic components of the cake layer, revealed that four inorganic elements, Cr, Ca, Mg and Al were predominant (weight percentage rate 4:13:10:72). Due to low solubility (Cr(OH)3: Ksp 6.3 × 10-31; Al(OH)3: Ksp 6.3 × 10-19), the elements of Cr and Al mainly existed in the forms of Cr(OH)3 and Al(OH)3, respectively. Other minerals in the cake layer included Al2O3, CaCO3, and MgCO3. Additionally, using an SEM-EDX (Scanning electron microscopy-energy dispersive X-ray analyzer), we discovered that inorganic particles that formed within the activated sludge of the A/O-MBR steadily accumulating on the membrane surface, resulted in an evenly distributed inorganic layer which could be observed along the cross-sections of the cake layer.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yashika G De Costa
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, 1142, New Zealand
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, 1142, New Zealand
| | - Shan Yi
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
35
|
Zhao B, Chen H, Gao D, Xu L, Zhang Y. Cleaning decision model of MBR membrane based on Bandelet neural network optimized by improved Bat algorithm. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Song HL, Lu YX, Yang XL, Xu H, Singh RP, Du KX, Yang YL. Degradation of sulfamethoxazole in low-C/N ratio wastewater by a novel membrane bioelectrochemical reactor. BIORESOURCE TECHNOLOGY 2020; 305:123029. [PMID: 32109730 DOI: 10.1016/j.biortech.2020.123029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Sulfamethoxazole (SMX) pollution in wastewater threatens public health. A novel membrane bioelectrochemical reactor (MBER) with loop operation was developed for SMX degradation in low-C/N ratio wastewater. A gas-permeable silicone membrane module was used to precisely control the dissolved oxygen in the catholyte and save energy. Compared with a traditional membrane bioreactor (i.e., open-circuit reactor), the removal of SMX was increased from 49.91% to 71.10% in the proposed MBER (i.e., closed-circuit reactor). Sequencing analyses revealed that SMX was removed via cometabolism with NH4+-N and COD removal in both the anode and cathode chambers. Six intermediates were detected as degradation products in the cathodic effluent; these intermediates pose a similar potential threat to the environment as SMX. Two possible degradation pathways, deduced from the sequencing analyses and degradation products, were proposed. These results provide a new technology for improving SMX removal through the integration/coupling of bioelectrochemical technology into a membrane bioreactor.
Collapse
Affiliation(s)
- Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Yu-Xiang Lu
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China
| | - Xiao-Li Yang
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Han Xu
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | | | - Kai-Xing Du
- School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Yu-Li Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, China.
| |
Collapse
|
37
|
|
38
|
Tay MF, Lee S, Xu H, Jeong K, Liu C, Cornelissen ER, Wu B, Chong TH. Impact of salt accumulation in the bioreactor on the performance of nanofiltration membrane bioreactor (NF-MBR)+Reverse osmosis (RO) process for water reclamation. WATER RESEARCH 2020; 170:115352. [PMID: 31812816 DOI: 10.1016/j.watres.2019.115352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
The impacts of salt accumulation, through adjusting the solid retention time (SRT), in the bioreactor on the bioprocess as well as membrane performance of a high retention nanofiltration membrane bioreactor (NF-MBR) and subsequent reverse osmosis (RO) process for water reclamation are addressed in this study. The build-up of salts (i.e., Ca, Mg, PO4) is a function of SRT, hydraulic retention time (HRT) and membrane rejection. Despite the accumulation of salts, both NF-MBRs at SRT of 30 and 60 days, achieved (i) similar biodegradation efficiency; (ii) excellent organic removal (> 97%); and (iii) excellent ammonia removal (> 98%). Extending the SRT could improve the microbial bio-flocculation capability, but did not influence the microbial activity, viability, and community structure. However, more severe membrane fouling was observed in the NF-MBR with elevated salt levels, which was attributed to the greater formation of calcium phosphate scale and Ca-polysaccharides complex (i.e., irreversible fouling layer) as well as the cake-enhanced-osmotic-pressure (CEOP) effect. Although both NF-MBRs produced comparable quality of permeate, a higher RO membrane fouling rate was observed when the permeate of NF-MBR with SRT at 60 days was fed to the RO system, implying organic compositions in NF-MBR permeate may influence RO performance.
Collapse
Affiliation(s)
- Ming Feng Tay
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Seonki Lee
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Huijuan Xu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Kwanho Jeong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Chang Liu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore; School of Environment and Resource, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Emile R Cornelissen
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore; KWR Watercycle Research Institute, 3433 PE, Nieuwegein, Netherlands; Particle and Interfacial Technology Group, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Bing Wu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore; Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| | - Tzyy Haur Chong
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore.
| |
Collapse
|
39
|
A Review on the Mechanism, Impacts and Control Methods of Membrane Fouling in MBR System. MEMBRANES 2020; 10:membranes10020024. [PMID: 32033001 PMCID: PMC7073750 DOI: 10.3390/membranes10020024] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/26/2022]
Abstract
Compared with the traditional activated sludge process, a membrane bioreactor (MBR) has many advantages, such as good effluent quality, small floor space, low residual sludge yield and easy automatic control. It has a promising prospect in wastewater treatment and reuse. However, membrane fouling is the biggest obstacle to the wide application of MBR. This paper aims at summarizing the new research progress of membrane fouling mechanism, control, prediction and detection in the MBR systems. Classification, mechanism, influencing factors and control of membrane fouling, membrane life prediction and online monitoring of membrane fouling are discussed. The research trends of relevant research areas in MBR membrane fouling are prospected.
Collapse
|
40
|
Insights into membrane fouling implicated by physical adsorption of soluble microbial products onto D3520 resin. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Wang Z, Du X, Zhang H, Wang X, Song P, Natsagdorj K, Khan B, Khurram R. The application of error function for normalized flux prediction in dead-end microfiltration (MF) process. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1706572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Zhan Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P.R. China
| | - Xinpei Du
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P.R. China
| | - Hu Zhang
- Beijing Fluid Filtration and Separation Technology Research Center, Beijing, China
| | - Xu Wang
- Weather Modification Office, Xingjiang Uygur Autonomous Region of China, Urumqi, P. R. China
| | - Peng Song
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P.R. China
| | - Khaliunaa Natsagdorj
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P.R. China
| | - Bushra Khan
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P.R. China
| | - Rooha Khurram
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, P.R. China
| |
Collapse
|
42
|
Zhou L, Ye B, Xia S. Assessment of membrane bioreactor fouling with the addition of suspended aluminum nitride nanoparticles. CHEMOSPHERE 2019; 237:124473. [PMID: 31376697 DOI: 10.1016/j.chemosphere.2019.124473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
In this study, we assessed fouling in a membrane bioreactor (MBR) with the addition of suspended aluminum nitride (AlN) nanoparticles (NPs). Three parallel laboratory-scale submerged MBRs were operated with 0, 10, and 50 mg AlN NPs/L for over 70 days. The results showed that the addition of suspended AlN NPs did not significantly affect pollutant biodegradation; there was only a slight decrease in NH4+-N removal. Furthermore, the membrane's permeability was increased with effective fouling mitigation by the addition of a high amount of suspended AlN NPs. This was because the suspended AlN NPs decreased the content of polysaccharides in both the extracellular polymeric substances and soluble microbial products, and decreased the sludge floc size. However, the AlN NPs also promoted pore-blocking, particularly standard blocking, which enhanced irreversible fouling. Additionally, owing to the larger ionic radius and higher electronegativity, the AlN NPs inhibited the accumulation of framework components (SiO2). Therefore, suspended AlN NPs resulted in a thinner cake layer.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Biao Ye
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Pudong Architectural Design & Research Institute, Shanghai, 201204, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
43
|
Travnickova E, Mikula P, Oprsal J, Bohacova M, Kubac L, Kimmer D, Soukupova J, Bittner M. Resazurin assay for assessment of antimicrobial properties of electrospun nanofiber filtration membranes. AMB Express 2019; 9:183. [PMID: 31720875 PMCID: PMC6854189 DOI: 10.1186/s13568-019-0909-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
We developed a simple and fast microplate assay for evaluation of the antimicrobial activity of electrospun nanofiber filtration membranes or similar porous materials for water treatment technologies. Resazurin (alamarBlue®) was used as an indicator of the amount of viable experimental microorganisms Gram-negative Escherichia coli, Gram-positive Enterococcus faecalis, and natural wastewater treatment plant effluent bacteria. A bacterial inoculum of concentration 1-3 × 105 CFU mL-1 was pipetted onto the surface of assessed both functionalized and respective control membranes and incubated in 12-well plates for 4 h at 37 °C. Kinetics of resazurin metabolization, i.e. its reduction to fluorescent resorufin, was evaluated fluorimetrically (λex520/λem590 nm). A number of viable bacteria on the membranes expressed as CFU mL-1 was calculated from the kinetic curves by using calibration curves that were constructed for both experimental bacterial species. Antimicrobial activities of the membranes were evaluated by either resazurin assay or modified ISO 20743 plate count assay. Results of both assays showed the significant antimicrobial activity of membranes functionalized with silver nanoparticles for both bacterial species and wastewater treatment plant effluent bacteria as well (log CFU reduction compared to control membrane > 4), while membranes containing specific quaternary ammonium salts were inefficient (log CFU reduction < 1). The suitability of resazurin microplate assay for testing nanofiber filtration membranes and analogous matrices has proven to be a faster and less demanding alternative to the traditionally used approach providing comparable results.
Collapse
Affiliation(s)
- Eva Travnickova
- RECETOX Centre, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czechia
| | - Premysl Mikula
- RECETOX Centre, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czechia
- Department of Veterinary Public Health and Forensic Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42, Brno, Czechia
| | - Jakub Oprsal
- SYNPO a. s., Pardubice, S. K. Neumanna 1316, 532 07, Pardubice, Czechia
| | - Marie Bohacova
- SYNPO a. s., Pardubice, S. K. Neumanna 1316, 532 07, Pardubice, Czechia
| | - Lubomir Kubac
- Centre for Organic Chemistry Ltd., Rybitvi 296, 533 54, Rybitvi, Czechia
| | - Dusan Kimmer
- Centre of Polymer Systems, University Institute, Tomas Bata University, Trida Tomase Bati 5678, 760 01, Zlin, Czechia
| | - Jana Soukupova
- Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czechia
| | - Michal Bittner
- RECETOX Centre, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czechia.
| |
Collapse
|
44
|
Kim SH, Min CS. Fouling reduction using the resonance vibration in membrane separation of whole milk. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Zhang W, Jiang F. Membrane fouling in aerobic granular sludge (AGS)-membrane bioreactor (MBR): Effect of AGS size. WATER RESEARCH 2019; 157:445-453. [PMID: 30981119 DOI: 10.1016/j.watres.2018.07.069] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 06/09/2023]
Abstract
The main goal of the current study was to investigate the membrane fouling mechanism of aerobic granular sludge (AGS) with various AGS sizes. In this regard, AGSs were sieved into 6 levels: 0∼0.5, 0.5∼0.7, 0.7∼1, 1∼1.2, 1.2∼1.7 mm and larger than 1.7 mm, then filtrated by a small dead-end filtration cell. Interestingly, there appeared a critical AGS size (1∼1.2 mm) for membrane fouling. Above 1.2 mm, flux increased and fouling reduced with size, due to the loose cake layer and high permeability caused by larger AGS. Below 1 mm, for smaller AGS, higher flux and lower fouling appeared, because less extracellular polymeric substance (EPS) formed and adhered onto AGS foulants. In the critical size, membrane fouling was serious to the most extent, on account of the dual role of the compact structure of cake fouling layer and the adhesion of EPS. Moreover, this critical AGS size also possessed the highest cake layer, pore blocking and irreversible fouling, which generally existed in various operational conditions. Besides, the results of SEM, AFM, hydrophilicity and ATR-FTIR also proved that the existence of the maximum membrane fouling at the critical AGS size. This study provides a deep understanding of the membrane fouling mechanisms of AGS in membrane filtration and is beneficial for developing a new membrane fouling mitigation strategy by terms of regulating AGS size.
Collapse
Affiliation(s)
- Wenxiang Zhang
- School of Environmental Science and Engineering, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; School of Chemistry & Environment, South China Normal University, Guangzhou, China.
| | - Feng Jiang
- School of Chemistry & Environment, South China Normal University, Guangzhou, China
| |
Collapse
|
46
|
Huang J, Yang Y, Zeng G, Gu Y, Shi Y, Yi K, Ouyang Y, Hu J, Shi L. Membrane layers intensifying quorum quenching alginate cores and its potential for membrane biofouling control. BIORESOURCE TECHNOLOGY 2019; 279:195-201. [PMID: 30735928 DOI: 10.1016/j.biortech.2019.01.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Quorum quenching (QQ) has been proved to be an efficient method to mitigate biofouling in membrane bioreactors (MBRs). In this paper, in order to enhance practicability of QQ microcapsules, we prepared three types microcapsules with same alginate cores (SAs). The microcapsules with polyacrylonitrile (PAN) layer showed excellent performance in preventing cell leakage from the microcapsules, increasing service life and improving mechanical strength. And confocal laser scanning microscopy images demonstrated that there were very little dead bacteria in the microcapsules with both chitosan and PAN layer than microcapsules with only PAN layer because chitosan layer can protect bacteria entrapped in cores from the hurt caused by poisonous PAN solution. At the same time, the microcapsules with PAN layer presented more efficient anti-biofouling ability in the physical washing test. At last, the bacterial microcapsules coated with both chitosan and PAN layer showed an obvious biofouling mitigation during the MBRs operation.
Collapse
Affiliation(s)
- Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China.
| | - Ying Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Yahui Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Kaixin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Yichen Ouyang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Jianglin Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Lixiu Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
47
|
Zhang S, Zuo X, Xiong J, Ma C, Hu B. Effect of powdered activated carbon dosage on sludge properties and membrane bioreactor performance in a hybrid MBR-PAC system. ENVIRONMENTAL TECHNOLOGY 2019; 40:1156-1165. [PMID: 29235926 DOI: 10.1080/09593330.2017.1417493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/10/2017] [Indexed: 05/27/2023]
Abstract
An improved insight into the effect of powdered activated carbon (PAC) on membrane fouling is crucial to the MBR performance. Sludge key property, soluble microbial products (SMP) and transmembrane pressure (TMP) were monitored. The membrane fouling rate in the MBRs was also analyzed based on TMP profile and resistance-in-series model. PAC reduced the membrane filtration resistance and significantly decreased the fouling rate. The sludge filterability was improved by extending the filtration time by almost twofold. PAC affected the SMP release and protein/polysaccharide (carbohydrate) was in a lower ratio. Fourier transform infrared (FTIR) analysis indicated that PAC decreased the impact of organic carbon, and reduced the proteins' and polysaccharides' absorption and deposition on the membrane surface and in the pores. The degree of reversible and irreversible fouling was related to the PAC content added into the MBRs. At the optimum dosage of 2 g/L, the results signified the PAC potential as a mitigation strategy of membrane fouling.
Collapse
Affiliation(s)
- Shi Zhang
- a College of Resources and Environment, Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Xingtao Zuo
- a College of Resources and Environment, Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Juan Xiong
- b College of Science, Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Cong Ma
- c Department of Chemical and Biomolecular Engineering , University of Connecticut , Storrs , CT , USA
| | - Bo Hu
- a College of Resources and Environment, Huazhong Agricultural University , Wuhan , People's Republic of China
| |
Collapse
|
48
|
Hamedi H, Ehteshami M, Mirbagheri SA, Zendehboudi S. New deterministic tools to systematically investigate fouling occurrence in membrane bioreactors. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Hou B, Kuang Y, Han H, Liu Y, Ren B, Deng R, Hursthouse AS. Enhanced performance and hindered membrane fouling for the treatment of coal chemical industry wastewater using a novel membrane electro-bioreactor with intermittent direct current. BIORESOURCE TECHNOLOGY 2019; 271:332-339. [PMID: 30292132 DOI: 10.1016/j.biortech.2018.09.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
A membrane electro-bioreactor (MEBR) embracing biological treatment, electrokinetic phenomena and membrane filtration was established by applying intermittent direct current (DC) to MBR. MEBR exhibited significant improvement of treatment performance and reduction of membrane fouling. COD and total phenols removal efficiencies increased to 83.53% and 93.28% at an exposure mode of 24'-OFF/6'-ON, compared to 71.24% and 82.43% in MBR. Trans-membrane pressure increment rate declined dramatically in MEBR, which was mainly attributed to the increase of sludge floc size and decrease of zeta potential, soluble microbial products and specific resistance to filtration, resulted from electrokinetic effects such as electrocoagulation, electrophoresis, electroosmosis and electromigration of ions. It was notable that DC exposure exerted distinct evolution on microbial community, with the improvement of microbial community richness and diversity. The relative abundances of functional genera were promoted noticeably in MEBR. An interactive relevance existed among microbial community structure, mixed liquor properties and operational parameters.
Collapse
Affiliation(s)
- Baolin Hou
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Yu Kuang
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ye Liu
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bozhi Ren
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Renjian Deng
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Andrew S Hursthouse
- Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; School of Science & Sport, University of the West of Scotland, Paisley PA1 2BE, UK
| |
Collapse
|
50
|
Hu H, Ren H. Removal of bioavailable dissolved organic nitrogen in wastewater by membrane bioreactors as posttreatment: Implications for eutrophication control. BIORESOURCE TECHNOLOGY 2019; 271:496-499. [PMID: 30206031 DOI: 10.1016/j.biortech.2018.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 05/14/2023]
Abstract
Bioavailable dissolved organic nitrogen (ABDON) is the component of dissolved organic nitrogen (DON) which supports the growth of algae. Previous research indicates that a membrane bioreactor (MBR) is effective in reducing DON, however, its ability to remove ABDON remains unknown. The present study investigated three full-scale MBRs (membrane type: hydrophilic polyvinylidene fluoride and membrane pore size: 0.04-0.1 µm) as posttreatment for the removal of ABDON. Results showed that the concentrations of ABDON were not significantly different between influent and effluent at each MBR (p = 0.067-0.614, t-test). Analysis of DON molecular composition via ultrahigh resolution mass spectrometry provides supporting evidence that bacterial biomass produced/released ABDON during the biological processes, which would be one of the possible reasons for the low removal efficiency of ABDON (<0%-14.0%) occurred in the MBR process. Overall, MBRs as posttreatments would have a smaller-than expected impact on primary productivity in receiving waters since a substantial fraction of DON stimulating algal growth cannot be removed by this treatment.
Collapse
Affiliation(s)
- Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|