1
|
Guo X, Wang J. Kinetic models in environmental biotechnological processes: Origin, derivation and applications. CHEMOSPHERE 2025; 374:144217. [PMID: 39954464 DOI: 10.1016/j.chemosphere.2025.144217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/26/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Environmental biotechnological processes encompass the utilization of microorganisms for various applications, such as wastewater treatment, bioproduct formation, and waste management. Kinetic modeling plays a crucial role in optimizing and designing these processes. This paper provides a comprehensive understanding of the kinetic models used in environmental biotechnological processes, focusing on the kinetics of microbial growth, bioproduct formation, substrate consumption, and pollutant degradation. Firstly, by investigating their origins, derivations, and development, we clarified the theoretical basis and practical implications of key models, such as the Gompertz, Logistic, first-order, Cone, Monod, Andrews, Shepherd, Stover-Kincannon, Grau, and Arrhenius models. Secondly, we highlighted the extension of the models from microbial growth kinetics to bioproduction kinetics, showcasing their versatility and applicability across different domains. In addition, critical parameters within the models were discussed, providing insights into their importance for characterizing and predicting biotechnological processes. Overall, this paper will deepen the understanding of biotechnological kinetic processes and lay the foundation for their practical applications.
Collapse
Affiliation(s)
- Xuan Guo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Tian K, Zhang J, Liu H, Wang R, Zhang Z. Mechanism of carbonized humic acid and magnesium aluminum-layered double hydroxide promoting biohydrogen generation. BIORESOURCE TECHNOLOGY 2024; 413:131563. [PMID: 39362343 DOI: 10.1016/j.biortech.2024.131563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Dark fermentation (DF) is prone to low hydrogen (H2) yield. In this work, magnesium aluminum-layered double hydroxide and carbonized humic acid (MgAl-LDH/CHA) was synthesized by co-precipitation to reveal the mechanism in rising bioH2 generation. The results indicated that MgAl-LDH released Mg and Al ions slowly in DF system, improving the activity of H2-producing microbes (HPM) for more H2. The H2 yield increased from 169.3 mL/g glucose to 244.9 mL/g glucose, which was 44.7 % higher than that for the control yield. MgAl-LDH/CHA increased Proteobacteria content from 30.9 % to 43.7 %, making it form a complex microbial community and participate in DF metabolism with Firmicutes and other microbes together. Besides, MgAl-LDH/CHA could serve as an electron shuttle that likely effectively promotes electron transfer in DF, significantly reduced the energy requirements of HPM, thus raising metabolic activity. It provides direction for the multi-element composite applied in DF system.
Collapse
Affiliation(s)
- Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Hui Liu
- Shandong Institute of Geophysical &Geochemical Exploration, Jinan 250013, China.
| | - Ruixi Wang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zhengyi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
3
|
Padigala CT, Satpati GG, Singhvi M, Goswami L, Kushwaha A, Oraon S, Aleksanyan K, Smykovskaya RS, Rawindran H, Wei LJ, Rajak R, Pandit S, Dikshit PK. Nanotechnological advancement in green hydrogen production from organic waste: Recent developments, techno–economic, and life cycle analyses. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 92:672-693. [DOI: 10.1016/j.ijhydene.2024.10.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
4
|
Ihsanullah I, Bilal M, Tariq Khan M. Harnessing Nanomaterials for Enhanced Biohydrogen Generation from Wastewater. Chem Asian J 2024; 19:e202300618. [PMID: 37642141 DOI: 10.1002/asia.202300618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
Biohydrogen is considered a green fuel due to its eco-friendly nature since it only produces water and energy on combustion. However, their lower yield and production rate is one of the foremost challenges that need an instant sustainable approach. The use of nanotechnology is a potential approach for the enhanced generation of biohydrogen, owing to the significant characteristics of the nanomaterials such as greater specificity, high surface-area-to-volume ratio, better reactivity and dispersibility, enhanced catalytic activity, superb selectivity, greater electron transfer, and better anaerobic microbiota activity. This article explores the recent trends and innovations in the production of biohydrogen from wastewater through the applications of different nanomaterials. The potential of various nanomaterials employed for biohydrogen production from wastewater is evaluated and the impacts of important parameters such as the concentration and size of the nanomaterials, temperature, and pH on the production and yield of biohydrogen are explained in detail. Several pathways involved in the mechanistic approach of biohydrogen generation from wastewater are critically assessed. Lastly, numerous technological challenges are highlighted and recommendations regarding future research are also provided.
Collapse
Affiliation(s)
- I Ihsanullah
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Muhammad Bilal
- Department of Chemical Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Muhammad Tariq Khan
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai po New Territories, Hong Kong
| |
Collapse
|
5
|
Bouchareb EM, Derbal K, Bedri R, Slimani K, Menas S, Lazreg H, Maaref F, Ouabdelkader S, Saheb A, Bouaita R, Bouchareb R, Dizge N. Improving Biohydrogen Production by Dark Fermentation of Milk Processing Wastewater by Physicochemical and Enzymatic Pretreatments. Appl Biochem Biotechnol 2024; 196:2741-2756. [PMID: 37682509 DOI: 10.1007/s12010-023-04619-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 09/09/2023]
Abstract
Biohydrogen is considered an alternative energy reserve. Dark fermentation is one of the important green hydrogen production techniques that utilizes organic waste as raw material. It is a promising bioconversion, easy, not expensive, and cost-effective process. Milk processing wastewater (MPWW) is an organic effluent generated in large volumes on a daily basis and disposed directly into the environment. In this research, the study of biochemical hydrogen potential (BHP) test of MPWW was evaluated and used as substrate (S). A waste sludge was used as an inoculum (I) and source of bacteria. Both substrate and inoculum were analyzed and the study was based mainly on the ratio of volatile solids (VS) of inoculum and substrate subsequently, which was noted as I/S. Different substrate pretreatments were performed: ultrasonic, thermal, chemical, and enzymatic hydrolysis. The I/S ratio impact was investigated and evaluated the hydrogen production improvement. Modified Gompertz and modified Logistic kinetic models were employed for the kinetic modeling of cumulative hydrogen production values. Results show that I/S ratio of 1/4 gVS/gVS resulted from the best hydrogen production of 59.96 mL during 30 days of MPWW fermentation without pretreatment. It was also shown that all the adopted pretreatments enhanced hydrogen production, whereas ultrasonic pretreatment for 5 min increased the production by only 14.84%. Heat pretreatment was more efficient, where the hydrogen production increased from 60 to 162 mL (170% of improvement) using heat shock at 90 °C for 30 min. The impact of chemical pretreatment was different from a reagent to another. Pretreatment using calcium hydroxide resulted in the biggest hydrogen production of 165.3 mL (175.5%) compared to the other chemical pretreatments. However, the best hydrogen production was given by the biological pretreatment using enzymatic hydrolysis (Lactase) resulting in 254 mL of hydrogen production, which is equivalent to 323.62% of production improvement. Modified Gompertz and Logistic kinetic models fitted well with experimental data. Thus, the enzymatic hydrolysis of MPWW proved to be a promising technique for biohydrogen production enhancement.
Collapse
Affiliation(s)
- Esma Mahfouf Bouchareb
- Department of Environmental Engineering, Process Engineering Faculty, Saleh Boubnider University, 25000, Constantine, Algeria
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
- Laboratory of Process Engineering for Sustainable Development and Health Products (LGPDDPS), National Polytechnic School of Constantine, 25000, Constantine, Algeria
| | - Kerroum Derbal
- Laboratory of Process Engineering for Sustainable Development and Health Products (LGPDDPS), National Polytechnic School of Constantine, 25000, Constantine, Algeria
- Department of Process Engineering, National High School of Polytechnic, Malek Bennabi, Constantine 3, Algeria
| | - Rayane Bedri
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Khaled Slimani
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Souha Menas
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Halima Lazreg
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Feriel Maaref
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Samir Ouabdelkader
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Aya Saheb
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar, Constantine 3, Algeria
| | - Rokaya Bouaita
- Department of Process Engineering, National High School of Polytechnic, Malek Bennabi, Constantine 3, Algeria
| | - Raouf Bouchareb
- Department of Environmental Engineering, Process Engineering Faculty, Saleh Boubnider University, 25000, Constantine, Algeria
- Laboratory of Process Engineering for Sustainable Development and Health Products (LGPDDPS), National Polytechnic School of Constantine, 25000, Constantine, Algeria
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, 33343, Mersin, Turkey.
| |
Collapse
|
6
|
Jannat FT, Aftab K, Kalsoom U, Baig MA. A bibliometric analysis of the role of nanotechnology in dark fermentative biohydrogen production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24815-24835. [PMID: 38530525 DOI: 10.1007/s11356-024-33005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/16/2024] [Indexed: 03/28/2024]
Abstract
Recently, nanoparticles have drawn a lot of interest as catalysts to enhance the effectiveness and output of biohydrogen generation processes. This review article provides a comprehensive bibliometric analysis of the significance of nanotechnology in dark fermentative biohydrogen production. The study examines the scientific literature from the database of The Web of Science© while the bibliometric investigation utilized VOSviewer© and Bibliometrix software tools to conduct the analysis. The findings revealed that a total of 232 articles focused on studying dark fermentation for hydrogen production throughout the entire duration. The extracted data was used to analyze publication trends, authorship patterns, and geographic distribution along with types and effects of nanoparticles on the microbial community responsible for dark fermentative biohydrogen production. The findings of this bibliometric analysis provide valuable insights into the advancements and achievements in the utilization of nanoparticles in the dark fermentation process used to produce biohydrogen.
Collapse
Affiliation(s)
- Fakiha Tul Jannat
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Kiran Aftab
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Umme Kalsoom
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ali Baig
- Department of Statistics, The Sahara College Narowal, Narowal, Pakistan
| |
Collapse
|
7
|
Bouchareb EM, Derbal K, Bedri R, Menas S, Bouchareb R, Dizge N. Enhanced fermentative hydrogen production from potato waste by enzymatic pretreatment. ENVIRONMENTAL TECHNOLOGY 2024; 45:1801-1809. [PMID: 36449015 DOI: 10.1080/09593330.2022.2154171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Biological pretreatment and enzymatic hydrolysis have a potential role in the economic production of sugars and fuels from starch biomass. In this study, the Inoculum/Substrate (I/S) ratio effect and enzymatic pretreatments of potato peels for biohydrogen production in batch reactors were investigated. Two enzymes, α-Amylase and Cellulase, were tested separately and coexistent. Results showed that enzymatic hydrolysis using α-Amylase in mesophilic conditions enhanced carbohydrate concentration from 24.10 g/L to 53.47 g/L, whereas, the use of Cellulase and equi-volumetric mixture of both tested enzymes resulted in 47.16 and 48.16 g/L, respectively. The maximum biohydrogen cumulative production of 263 mL (equivalent to 430.37 mL H2/gVSadded) was obtained using the optimum I/S ratio of 1/6 gVS/gVS at pH 5.5 and incubation temperature of 55°C after 20 days of dark fermentation of potato waste without enzymatic treatment. Under the same operating conditions of the I/S ratio, pH, temperature and the best enzymatic treatment (3 h of substrate enzymatic hydrolysis by α-Amylase), the maximum yield of biohydrogen was 1088 mL (1780.39 mL H2/gVSadded). The enzymatic hydrolysis method adopted in this study can make overall biohydrogen production an effective process. The modified Gompertz model was found to be an adequate fit for biohydrogen production.
Collapse
Affiliation(s)
- Esma Mahfouf Bouchareb
- Department of Environmental Engineering, Process Engineering Faculty, Saleh Boubnider University, Constantine, Algeria
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar Constantine, Constantine, Algeria
| | - Kerroum Derbal
- Department of Process Engineering, National High School of Polytechnic, Constantine, Algeria
| | - Rayane Bedri
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar Constantine, Constantine, Algeria
| | - Souha Menas
- Department of Engineering, National High School of Biotechnology, Toufik Khaznadar Constantine, Constantine, Algeria
| | - Raouf Bouchareb
- Department of Environmental Engineering, Process Engineering Faculty, Saleh Boubnider University, Constantine, Algeria
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
8
|
Kandagatla N, Kunnoth B, Sridhar P, Tyagi V, Rao PV, Tyagi RD. Rice mill wastewater management in the era of circular economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119248. [PMID: 37839206 DOI: 10.1016/j.jenvman.2023.119248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/14/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Several nations around the world use rice as their primary food staple because of its tremendous nutritional value. India's expanding population has sparked a proliferation of rice mills as a result of the country's growing rice demand. However, small and medium-scale industries lack adequate facilities for processing effluents and other waste generated. Paddy is typically processed by parboiling, which involves soaking it in water, boiling it with steam, and then drying and milling. Around 1-1.5 L of water is necessary to partially cook 1 kg of unhusked rice, with approximately half of this water being discharged as effluent. Disposal of rice mill effluent (RME) in water bodies or on the land causes severe damage to soil and water. An inclusive examination of diverse approaches for the treatment and stabilization of partially cooked rice milling effluents is provided. Moreover, the document provides a concise overview of contemporary and environmentally friendly technologies for treating RME. Adsorption, electrocoagulation, chemical coagulation, and bioremediation using microbes, plants, and microalgae are all included in these methods. This manuscript discusses the concept of a circular economy, which is focused on enhancing environmental sustainability through the recycling and repurposing of generated waste into raw materials for the creation of new products. In addition, this review aims to focus on the impact of RME on soils and water species and the status of sustainable management at the point of circular economy with RME bioenergy production (bioelectricity, biomethane, and bio-hydrogen).
Collapse
Affiliation(s)
- Nagarjuna Kandagatla
- Department of Civil Engineering, National Institute of Technology Warangal, Warangal, 506004, India
| | - Bella Kunnoth
- Department of Civil Engineering, National Institute of Technology Warangal, Warangal, 506004, India
| | - Pilli Sridhar
- Department of Civil Engineering, National Institute of Technology Warangal, Warangal, 506004, India.
| | - Vinay Tyagi
- Environmental Biotechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - P V Rao
- Department of Civil Engineering, National Institute of Technology Warangal, Warangal, 506004, India.
| | - R D Tyagi
- BOSK Bioproducts, Quebec City, QC, Canada
| |
Collapse
|
9
|
Sheikh ZUD, Bajar S, Devi A, Rose PK, Suhag M, Yadav A, Yadav DK, Deswal T, Kaur J, Kothari R, Pathania D, Rani N, Singh A. Nanotechnology based technological development in biofuel production: Current status and future prospects. Enzyme Microb Technol 2023; 171:110304. [PMID: 37639935 DOI: 10.1016/j.enzmictec.2023.110304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/11/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
Depleting fossil fuels and net carbon emissions associated with their burning have driven the need to find alternative energy sources. Biofuels are near-perfect candidates for alternative energy sources as they are renewable and account for no net CO2 emissions. However, biofuel production must overcome various challenges to compete with conventional fuels. Conventional methods for bioconversion of biomass to biofuel include chemical, thermochemical, and biological processes. Substrate selection and processing, low yield, and total cost of production are some of the main issues associated with biofuel generation. Recently, the uses of nanotechnology and nanoparticles have been explored to improve the biofuel production processes because of their high adsorption, high reactivity, and catalytic properties. The role of these nanoscale particles and nanocatalysts in biomass conversion and their effect on biofuel production processes and yield are discussed in the present article. The applicability of nanotechnology in production processes of biobutanol, bioethanol, biodiesel, biohydrogen, and biogas under biorefinery approach are presented. Different types of nanoparticles, and their function in the bioprocess, such as electron transfer, pretreatment, hydrolysis, microalgae cultivation, lipid extraction, dark and photo fermentation, immobilization, and suppression of inhibitory compounds, are also highlighted. Finally, the current and potential applications of nanotechnology in biorefineries are also discussed.
Collapse
Affiliation(s)
- Zaheer Ud Din Sheikh
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Somvir Bajar
- Department of Environmental Science and Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Arti Devi
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Meenakshi Suhag
- Institute of Environmental Studies, Kurukshetra University, Kurukshetra, India
| | - Arti Yadav
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Deepak Kumar Yadav
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Tanuj Deswal
- Department of Nano Science and Materials, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Japleen Kaur
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Neeta Rani
- Department of National Security Studies, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India
| | - Anita Singh
- Department of Environmental Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir, India; Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 12331, Haryana, India.
| |
Collapse
|
10
|
Popoola LT. Taguchi Parametric Optimization and Cost Analysis of Hexavalent Chromium Sequestration From Aqueous Solution by NaOH-Modified Garcinia kola Hull Particles. ENVIRONMENTAL HEALTH INSIGHTS 2023; 17:11786302231200867. [PMID: 37808961 PMCID: PMC10557423 DOI: 10.1177/11786302231200867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
The presence of chromium in industrial wastewater is unavoidable due to its large usage as part of chemical constituents used in many industries. Its removal from wastewater is imperative because it's toxic in nature. This study investigated the application of NaOH-modified Garcinia kola hull particles (cMGK-HP) for Cr(VI) sequestration from aqueous solution. The optimization of process parameters was executed using Taguchi of Design Expert software for optimum point prediction, analysis of variance, parameters interaction and mathematical model development. A proposed model was used for the adsorption cost analysis. The predicted and experimental percentage of Cr(VI) sequestration were recorded at optimum point to be 99.02% and 98.76% with pH, adsorbent dose, contact time, initial concentration, and temperature of 2, 8 g/L, 20 minutes, 10 mg/L, and 20°C respectively. A correlation coefficient of .9937 between experimental and predicted values of percentage Cr(VI) sequestration affirmed high efficacy of the developed model. ANOVA showed the order of parameter contribution to be pH > adsorbent dose > initial concentration > contact time > temperature. A maximum adsorption capacity of 217.39 mg g-1 was obtained for cMGK-HP. Cost analysis revealed using cMGK-HP to be cost effective for Cr(VI) sequestration with a total operational cost of 0.824 $/mole Cr(VI) ions when compared with commercial activated carbon. Adsorbent characterization revealed the presence of active functional groups enhancing the sequestration process. It could be deduced that cMGK-HP is effective to remove Cr(VI) from solution.
Collapse
Affiliation(s)
- Lekan Taofeek Popoola
- Separation Processes Research Laboratory, Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
11
|
Tian K, Zhang J, Zhou C, Liu H, Pei Y, Zhang X, Yan X. Revealing the roles of carbonized humic acid in biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 386:129506. [PMID: 37468005 DOI: 10.1016/j.biortech.2023.129506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
For low yield in dark fermentation (DF), in this study, the carbonized humic acid (CHA) was produced and added to DF for enhancing biohydrogen (bioH2) yield at mesophilic condition. The highest bioH2 yield was 151.08 mL/g glucose with the addition of CHA at 80 mg/L, which was 35.27% and 16.53% higher than those of 0 mg/L CHA and 80 mg/L mineral humic acid (MHA) groups, respectively. Electrons preferentially conducted via the butyrate pathway due to CHA amendments, which corresponded to the prediction of relevant functional genes. Furthermore, CHA possessed distinctive advantages over MHA, which acted as an electron shuttle to facilitate electron transfer, released metal ions as an essential signal mediator and favored the reduction of ferredoxin, obtaining more H2. The use of CHA in the field of H2-DF depicted the high-value utilization and industrial chain extension of MHA.
Collapse
Affiliation(s)
- Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hui Liu
- Shandong Institute of Geophysical & Geochemical Exploration, Jinan 250013, China
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoying Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiao Yan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
12
|
Tian K, Zhang J, Zhou C, Yang M, Zhang X, Yan X, Zang L. Magnetic nitrogen-doped activated carbon improved biohydrogen production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87215-87227. [PMID: 37420156 DOI: 10.1007/s11356-023-28584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Low biological hydrogen (bioH2) production due to non-optimal metabolic pathways occurs frequently. In this work, magnetic nitrogen-doped activated carbon (MNAC) was prepared and added into the inoculated sludge with glucose as substrate to enhance hydrogen (H2) yield by mesophilic dark fermentation (DF). The highest H2 yield appeared in 400 mg/L AC (252.8 mL/g glucose) and 600 mg/L MNAC group (304.8 mL/g glucose), which were 26.02% and 51.94% higher than that of 0 mg/L MNAC group (200.6 mL/g glucose). The addition of MNAC allowed for efficient enrichment of Firmicutes and Clostridium-sensu-stricto-1, accelerating the metabolic pathway shifted towards butyrate type. The Fe ions released by MNAC facilitated electron transfer and favored the reduction of ferredoxin (Fd), thereby obtaining more bioH2. Finally, the generation of [Fe-Fe] hydrogenase and cellular components of H2-producing microbes (HPM) during homeostasis was discussed to understand on the use of MNAC in DF system.
Collapse
Affiliation(s)
- Kexin Tian
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China.
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Mengchen Yang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Xiaoying Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Xiao Yan
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), No.3501 Daxue Road, Jinan, 250353, China
- Engineering Laboratory of Clean Energy for Light Industrial Wastes of Shandong, Jinan, 250353, China
| |
Collapse
|
13
|
Feng S, Ngo HH, Guo W, Khan MA, Zhang S, Luo G, Liu Y, An D, Zhang X. Fruit peel crude enzymes for enhancement of biohydrogen production from synthetic swine wastewater by improving biohydrogen-formation processes of dark fermentation. BIORESOURCE TECHNOLOGY 2023; 372:128670. [PMID: 36706821 DOI: 10.1016/j.biortech.2023.128670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Biohydrogen is a promising clean fuel but with a low yield. This study aims to enhance biohydrogen production from synthetic swine wastewater by employing crude enzymes obtained from different fruit peels (orange, mandarin, and banana) to improve the biohydrogen-formation processes of dark fermentation. Results indicated that dosing with crude enzymes affected volatile fatty acids (VFAs) and biogas composition insignificantly, while increased biohydrogen yield from 1.62 ± 0.00 (blank) to 1.90 ± 0.08 (orange peel), 2.01 ± 0.00 (mandarin peel), and 1.96 ± 0.01 (banana peel) mol H2/mol glucose, respectively. Banana peel crude enzyme was the most effective additive, with 1 g/L protein improving 97.41 ± 3.72 % of biohydrogen yield. The crude enzymes wielded less influence on acetic acid and butyric acid pathways but enhanced other biohydrogen production pathways. These observations demonstrated that fruit peel-based crude enzymes as additives are advantageous to improving biohydrogen yield towards higher biohydrogen production.
Collapse
Affiliation(s)
- Siran Feng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | | | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, 2205, Shanghai 200438, China
| | - Gang Luo
- Department of Environmental Science and Engineering, Fudan University, 2205, Shanghai 200438, China
| | - Yi Liu
- Department of Environmental Science and Engineering, Fudan University, 2205, Shanghai 200438, China
| | - Ding An
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, 150090 Harbin, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
14
|
Brindha K, Mohanraj S, Rajaguru P, Pugalenthi V. Simultaneous production of renewable biohydrogen, biobutanol and biopolymer from phytogenic CoNPs-assisted Clostridial fermentation for sustainable energy and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160002. [PMID: 36356773 DOI: 10.1016/j.scitotenv.2022.160002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Considering the environmental impacts, rapid fossil fuel depletion and production costs, sustainable production of clean biofuels from alternative sources is required to meet the increasing demand for energy while avoiding environmental pollution. In this study, phytogenic cobalt nanoparticles (CoNPs)-assisted dark fermentation process was developed for the simultaneous production of biohydrogen, biobutanol and biopolymer from glucose using Clostridium acetobutylicum NCIM 2337. The maximum biohydrogen yield of 2.89 mol H2/mol glucose was achieved at 1.5 mg of CoNPs, which is 1.6 folds higher than that of the control experiment. The high level of soluble metabolites, specifically acetate and butyrate, confirmed the production of biohydrogen through acetate/butyrate pathways. The modified Gompertz model fitted well with experimental results of CoNPs-assisted biohydrogen production. The CoNPs could act as an electron carrier in intracellular metabolism to enhance the activity of ferredoxin and hydrogenase enzymes, thus improving biohydrogen production. Furthermore, biobutanol and biopolymer yields of 975 ± 2.5 mg/L and 1182 ± 1.4 mg/L were achieved, with 2.0 mg and 2.5 mg of CoNP, respectively, which were 1.27 and 1.19 folds higher than the control values. Hence, the inclusion of CoNPs in the fermentation medium seems to be a promising technique for the enhanced simultaneous production of biohydrogen, biobutanol and biopolymer. The environmental perspectives of the obtained renewable biohydrogen, biobutanol and biopolymer are also discussed.
Collapse
Affiliation(s)
- Kothaimanimaran Brindha
- Department of Biotechnology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Sundaresan Mohanraj
- Department of Biochemistry, KMCH research foundation, Coimbatore 641014, Tamil Nadu, India
| | - Palanichamy Rajaguru
- Department of Biotechnology, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Velan Pugalenthi
- Department of Biotechnology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
15
|
Li Z, Li K, Du P, Mehmandoust M, Karimi F, Erk N. Carbon-based photocatalysts for hydrogen production: A review. CHEMOSPHERE 2022; 308:135998. [PMID: 35973496 DOI: 10.1016/j.chemosphere.2022.135998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Future energy crises and environmental deterioration may only be avoided by converting solar energy into sustainable, safe, cost-effective, and environmentally friendly technologies such as water splitting. Many researchers and governments throughout the globe have stressed the imperative need for affordable, environmental benign, resistive to corrosion, and earth-abundant nanostructured photocatalysts. This has led scientists to look for a green and cost-effective way to generate energy. As a result, the significance of photo catalyst engineering and reactor design difficulties connected to the performance of the photocatalytic reactions, as well as the examination and analysis of photocatalyst behaviors for adaptable and cost effective H2 production, is emphasized and summarized. The carbon-based materials have an appealing band structure, strong chemical stability, is plentiful on Earth, and is relatively easy to produce, making them suitable for hydrogen production. As example, graphene oxide (GO) with the oxygenated functional groups and graphene and its counterparts, including Graphene quantum dots (GQDs), GO, reduce graphene oxide (rGO), have been demonstrated to be ideal nanocomposite materials due to their superior properties and distribution in matrix and CNTs with excellent electronic transmission efficiency, low cost, stability, and environmental friendly are a great alternative of electron mediators for photocatalytic devices to boost light absorptivity for efficient hydrogen generation but some of them have limited photocatalytic activity due to their low sunlight usage efficiency, therefore the numerous methods, such as doping ions, constructing heterostructure, and functionalizing carbon-based materials, have recently been proven to promote the photocatalytic activity of them. The pore structure of carbon material functions as an acceptor of photogenerated electrons, improved the photocatalyst's specific surface area. Generally low-dimensional carbon materials demonstrated immense promise as highly efficient, low-cost, and environmentally friendly catalysts for hydrogen generation as an energy source. This article reviews the recent research progress on carbon-based materials for hydrogen evolution for the first time. It commences with a quick overview of the present state of affairs and fundamental concepts of hydrogen production in carbon-based nanomaterials for use in this field. We anticipate that this study will inspire readers to expand the use of carbon-based materials in H2 generation in a more environmentally friendly way.
Collapse
Affiliation(s)
- Zhigang Li
- Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China; Shandong Jianzhu University, Jinan, Shandong, 250101, China.
| | - Kexin Li
- Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Pinru Du
- Shaanxi Transportation Holding Group Co.,Ltd., Xi'an, Shaanxi, 710048, China
| | - Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| |
Collapse
|
16
|
Al-Mur BA, Pugazhendi A. A novel conversion of marine macroalgal biomass to biofuel (biohydrogen) via calcium hypochlorite induced dispersion. CHEMOSPHERE 2022; 308:136355. [PMID: 36087729 DOI: 10.1016/j.chemosphere.2022.136355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution due to the consumption of non-renewable energy lead the search for alternative eco-friendly renewable fuel. The study details the biohydrogen production efficiency by potential macroalgal (Ulva reticulata) biomass improved by a disperser combined with calcium hypochlorite pretreatment technology. Calcium hypochlorite was added to decrease the surface energy of the medium induced by sole disperser pretreatment. Optimum condition for algal disperser treatment was 10,000 rpm with 30 min as dispersion time. The specific energy spent for the disintegration of the macroalgal biomass was 1231.58 kJ/kg TS. COD solubilization rate of 11.79% was attained with mechanical pretreatment whereas increased to 20.23% with combined pretreatment. Combination of disperser with calcium hypochlorite significantly reduced the specific energy input spent to 500 kJ/kg TS. The amount of organic materials such as carbohydrates, proteins and lipids released were 680 mg/L, 283 mg/L and 136 mg/L respectively. Thus, the combinative pretreatment with disperser rotor speed (10,000 rpm) for pretreatment time (12 min) and calcium hypochlorite dosage (0.1 g/g) derived as optimum condition for effective solubilization of macroalgal biomass. Biohydrogen production potential was maximum in the macroalgae pretreated with both disperser and calcium hypochlorite recorded highest yield (54.6 mL H2/g COD) compared to the macroalgae pretreated with disperser alone (31.7 mL H2/g COD) and untreated macroalgae (11.5 mL H2/g COD).
Collapse
Affiliation(s)
- Bandar A Al-Mur
- Department of Environmental Science, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arulazhagan Pugazhendi
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
17
|
Xin G, Ge C, Gao Q, Zhang J, Nie Y, Yang Y, Zhang D, Li H, Ren Y. Effects of soil ingestion on nutrient digestibility and rumen bacterial diversity of Tibetan sheep. CHEMOSPHERE 2022; 308:136000. [PMID: 35973501 DOI: 10.1016/j.chemosphere.2022.136000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Tibetan sheep (Ovis aries) are the most numerous livestock in Tibet Plateau pasture ecosystem and have strong ecological adaptability. In the natural grazing system, soil as a natural nutrient carrier and involuntarily or intentionally ingested by Tibetan sheep contribute as an important feed approach. However, quantifying the dosages of soil ingestion for the Tibetan sheep still needs to be clarified. This study aims to characterize nutrient digestibility and rumen bacterial communities by Tibetan sheep in response to different levels of soil ingestion. Thirty sheep were selected and divided into five treatments with soil ingestion (0%, 5%, 10%, 15%, and 20%). The conclusion demonstrated that soil ingestion improved the dry matter digestibility (59.3-62.97%), ether extract (59.79-67.87%) and crude protein (59.81-66.47%) digestibility, particularly 10% soil ingestion has highest nutrient digestibility. The rumen fermentation environment adjusted after soil ingestion by improvement of pH, ammonia nitrogen and volatile fatty acids. Appropriate soil ingestion reduced the bacterial diversity ranged from 946 to 1000 OUTs as compared control (1012), and the rumen bacterial community dominant by typical fiber digestion associated Firmicutes (47.48-53.56%), Bacteroidetes (34.93-40.02%) and Fibrobacteres (4.36-9.27%). Especially, the highest digestible feed capacity and stronger environment adaptability present in 10% soil ingestion Tibetan sheep. Overall, soil ingestion stimulates rumen metabolism by creating a favorable environment for microbial fermentation, improved bacterial community abundance associated with cellulose and saccharide degradation, contribute nutrient digestibility and growth performance of Tibetan sheep.
Collapse
Affiliation(s)
- Guosheng Xin
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Life Science, Ningxia University, Yinchuan, 750021, China; School of Life Science, Lanzhou University, Yinchuan, 750021, China.
| | - Cuicui Ge
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Qiaoxian Gao
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Juan Zhang
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Yumin Nie
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Economics and Management, Ningxia University, Yinchuan, 750021, China
| | - Yi Yang
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Dongtao Zhang
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Hao Li
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Yali Ren
- Ningxia Hiby Analysis & Test Institute, Yinchuan, 750021, China
| |
Collapse
|
18
|
Li Z, Wang J, Tian K, Zhou C, Pei Y, Zhang J, Zang L. Nickel-Cobalt Oxide Nanoparticle-Induced Biohydrogen Production. ACS OMEGA 2022; 7:41594-41605. [PMID: 36406540 PMCID: PMC9670286 DOI: 10.1021/acsomega.2c05580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The positive effects of metal oxide nanoparticles (NPs) on dark fermentation (DF) for biohydrogen synthesis have been increased, and the mechanism still needs to be further revealed. In this study, nickel-cobalt oxide (NiCo2O4) NPs were prepared to increase H2 yield via DF. The highest (259.67 mL/g glucose) and the lowest (188.14 mL/g glucose) yields were achieved at 400 and 800 mg/L NiCo2O4 NPs added, respectively, with their corresponding 33.97% increase and 2.93% decrease compared with the control yield (193.82 mL/g glucose). Meanwhile, the microbial community further confirmed that NiCo2O4 NPs increased the abundance of the dominant H2-producing Clostridium sensu stricto 1 by 23.05%. The gene prediction also showed that NiCo2O4 NPs increased the abundance of genes encoding the rate-limiting enzyme pyruvate kinase in glycolysis, thus increasing the substrate conversion. Moreover, the gene abundance of key enzymes directly related to H2 evolution was also increased at different levels.
Collapse
Affiliation(s)
- Zhenmin Li
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| | - Jiangmei Wang
- Shandong
Weifang Ecological Environment Monitoring Center, Weifang261041, China
| | - Kexin Tian
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| | - Chen Zhou
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| | - Yong Pei
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| | - Jishi Zhang
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| | - Lihua Zang
- College
of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| |
Collapse
|
19
|
Haque S, Singh R, Pal DB, Faidah H, Ashgar SS, Areeshi MY, Almalki AH, Verma B, Srivastava N, Gupta VK. Thermophilic biohydrogen production strategy using agro industrial wastes: Current update, challenges, and sustainable solutions. CHEMOSPHERE 2022; 307:136120. [PMID: 35995181 DOI: 10.1016/j.chemosphere.2022.136120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Continuously increasing wastes management issues and the high demand of fuels to fulfill the current societal requirements is not satisfactory. In addition, severe environmental pollution caused by generated wastes and the massive consumption of fossil fuels are the main causes of global warming. In this scenario, production of hydrogen from organic wastes is a potential and one of the most feasible alternatives to resolve these issues. However, sensitivity of H2 production at higher temperature and lack of potential substrates are the main issues which are strongly associated with such kinds of biofuels. Therefore, the present review is targeted towards the evaluation and enhancement of thermophilic biohydrogen production using organic, cellulosic wastes as promising bioresources. This review discusses about the current status, development in the area of thermophilic biohydrogen production wherein organic wastes as key substrate are being employed. The combinations of suitable organic and cellulose rich substrates, thermo-tolerant microbes, high enzymes stability may support to enhance the biohydrogen production, significantly. Further, various factors which may significantly contribute to enhance biohydrogen production have been discussed thoroughly in reference to the thermophilic biohydrogen production technology. Additionally, existing obstacles such as unfavorable thermophilic biohydrogen pathways, inefficiency of thermophilic microbiomes, genetic modifications, enzymes stability have been discussed in context to the possible limitations of thermophilic biohydrogen production strategy. Structural and functional microbiome analysis, fermentation pathway modifications via genetic engineering and the application of nanotechnology to enhance the thermophilic biohydrogen production have been discussed as the future prospective.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra Ranchi, 835215, Jharkhand, India; Department of Chemical Engineering, Harcourt Butler Technical University, Nawabganj, Kanpur, 208002, Uttar Pradesh, India
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami S Ashgar
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Y Areeshi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia; Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif, 21944, Saudi Arabia
| | - Bhawna Verma
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi Varanasi, 221005, Uttar Pradesh, India
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi Varanasi, 221005, Uttar Pradesh, India.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
20
|
Buranaprasopchai J, Boonvitthya N, Glinwong C, Chulalaksananukul W. Butanol production from Thai traditional beverage (Sato) factory wastewater using newly isolated Clostridium beijerinckii CUEA02. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
21
|
Chuah LF, Chew KW, Bokhari A, Mubashir M, Show PL. Biodegradation of crude oil in seawater by using a consortium of symbiotic bacteria. ENVIRONMENTAL RESEARCH 2022; 213:113721. [PMID: 35738420 DOI: 10.1016/j.envres.2022.113721] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
This work presents the enhancement of oil biodegradation in seawater using a mixture of oil and microorganisms. Retardation of crude oil biodegradation in seawater is hypothetically due to the inhibiting of metabolites produced by the oil bacterium which inhibit its enzymes. For this purpose, the bacteria consortium consisting of an active oil-oxidizing bacterium (AR3-Pseudomonas pseudoalcaligenes) and two oil-resistant and active heterotrophic bacteria (OG1 and OG2-Erythrobacter citreus) were formed. The heterotrophic bacteria, OG1 and OG2 were able to remove metabolites produced during oil degradation. It was found that AR3 was retarded by metabolites, while OG1 and OG2 were able to grow in the metabolites. OG1 and OG2 were applied together to enhance growth and removal of the metabolites. About 59.9% of crude oil degradation was degraded by AR3 pure culture, while 68.6% was degraded by the bacteria consortium. About 31.4% of the crude oil was found to remain in seawater due to the presence of asphaltenes and resin hydrocarbons. The bacteria consortium was able to degrade 84.1% of total hydrocarbons while 67.0% was degraded by AR3. A total of 99.8% of the aliphatic content and 38.4% of the total aromatic hydrocarbons were degraded by the bacteria consortium, while a lower 79.4% of total aliphatic and 31.0% of total aromatic were degraded by AR3 under the same experimental conditions. The results which were obtained from this study support the hypothesis that the retardation of oil degradation by AR3 is due to the inhibition of metabolites on the growth.
Collapse
Affiliation(s)
- Lai Fatt Chuah
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, Terengganu, Malaysia.
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Awais Bokhari
- Chemical Engineering Department, COMSATS Institute of Information Technology, Lahore, Pakistan
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
22
|
Zhang J, Zhang H, Zhang J, Zhou C, Pei Y, Zang L. Improved biohydrogen evolution through calcium ferrite nanoparticles assisted dark fermentation. BIORESOURCE TECHNOLOGY 2022; 361:127676. [PMID: 35872267 DOI: 10.1016/j.biortech.2022.127676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Dark fermentation (DF) is a green hydrogen (H2) production process, but it is far below the theoretical H2 yield. In this study, calcium ferrite nanoparticles (CaFe2O4 NPs) were produced to augment H2 yield via DF. The highest H2 yield of 250.1 ± 6.5 mL/g glucose was achieved at 100 mg/L CaFe2O4 NPs. Furtherincreasein CaFe2O4 NPs above 100 mg/L, such as 600 mg/L, would slightly lower H2 yield to 208.6 ± 2.6 mL/g glucose. The CaFe2O4 NPs in DF system released calcium and iron ions, promoting granular sludge formation andDF microbial activity. Soluble metabolites revealed that butyric acid was raised by CaFe2O4 NPs, which indicated the improved metabolic pathway for more H2. Microbial structure composition further illustrated that CaFe2O4 NPs could increase the abundance of dominant microbial populations, with the supremacy of Firmicutes up to 71.22 % in the bioH2 evolution group augmented with 100 mg/L CaFe2O4 NPs.
Collapse
Affiliation(s)
- Junchu Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huiwen Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chen Zhou
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yong Pei
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
23
|
Bhatt P, Bhandari G, Turco RF, Aminikhoei Z, Bhatt K, Simsek H. Algae in wastewater treatment, mechanism, and application of biomass for production of value-added product. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119688. [PMID: 35793713 DOI: 10.1016/j.envpol.2022.119688] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/21/2022] [Accepted: 06/24/2022] [Indexed: 05/16/2023]
Abstract
The pollutants can enter water bodies at various point and non-point sources, and wastewater discharge remains a major pathway. Wastewater treatment effectively reduces contaminants, it is expensive and requires an eco-friendly and sustainable alternative approach to reduce treatment costs. Algae have recently emerged as a potentially cost-effective method to remediate toxic pollutants through the mechanism of biosorption, bioaccumulation, and intracellular degradation. Hence, before discharging the wastewater into the natural environment better solutions for environmental resource recovery and sustainable developments can be applied. More importantly, algae are a potential feedstock material for various industrial applications such as biofuel production. Currently, researchers are developing algae as a source for pharmaceuticals, biofuels, food additives, and bio-fertilizers. This review mainly focused on the potential of algae and their specific mechanisms involved in wastewater treatment and energy recovery systems leading to important industrial precursors. The review is highly beneficial for scientists, wastewater treatment plant operators, freshwater managers, and industrial communities to support the sustainable development of natural resources.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| | - Geeta Bhandari
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, 248016, Uttarakhand, India
| | - Ronald F Turco
- Department of Agronomy, Purdue University, West Lafayette, IN, 47906, USA
| | - Zahra Aminikhoei
- Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute (IFSRI), Offshore Fisheries Research Center, Chabahar, Iran
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
24
|
Qu X, Zeng H, Gao Y, Mo T, Li Y. Bio-hydrogen production by dark anaerobic fermentation of organic wastewater. Front Chem 2022; 10:978907. [PMID: 36147249 PMCID: PMC9485808 DOI: 10.3389/fchem.2022.978907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Using organic wastewater to produce hydrogen by fermentation can generate clean energy while treating wastewater. At present, there are many inhibitory factors in the hydrogen production process, resulting in unsatisfactory hydrogen yield and hydrogen concentration during the fermentation process, and there are still great obstacles to the industrial promotion and commercial application of organic wastewater fermentation hydrogen production. This paper summarizes the hydrogen production of organic wastewater dark anaerobic fermentation technology. The current anaerobic fermentation hydrogen production systems and technologies are summarized and compared, and the factors and potential conditions that affect the performance of hydrogen production are discussed. The further requirements and research priorities for the market application of fermentation biohydrogen production technology in wastewater utilization are prospected.
Collapse
Affiliation(s)
- Xinghong Qu
- Zhejiang Tongji Vocational College of Science and Technology, Hangzhou, China
| | - Hongxue Zeng
- Zhejiang Tongji Vocational College of Science and Technology, Hangzhou, China
- *Correspondence: Hongxue Zeng, ; Yongsheng Gao,
| | - Yongsheng Gao
- Zhejiang Tongji Vocational College of Science and Technology, Hangzhou, China
- *Correspondence: Hongxue Zeng, ; Yongsheng Gao,
| | - Tiande Mo
- Smart City Division, Hong Kong Productivity Council (HKPC), Hong Kong, China
| | - Yu Li
- Smart City Division, Hong Kong Productivity Council (HKPC), Hong Kong, China
| |
Collapse
|
25
|
Dzulkarnain ELN, Audu JO, Wan Dagang WRZ, Abdul-Wahab MF. Microbiomes of biohydrogen production from dark fermentation of industrial wastes: current trends, advanced tools and future outlook. BIORESOUR BIOPROCESS 2022; 9:16. [PMID: 38647867 PMCID: PMC10991117 DOI: 10.1186/s40643-022-00504-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/14/2022] [Indexed: 01/02/2023] Open
Abstract
Biohydrogen production through dark fermentation is very attractive as a solution to help mitigate the effects of climate change, via cleaner bioenergy production. Dark fermentation is a process where organic substrates are converted into bioenergy, driven by a complex community of microorganisms of different functional guilds. Understanding of the microbiomes underpinning the fermentation of organic matter and conversion to hydrogen, and the interactions among various distinct trophic groups during the process, is critical in order to assist in the process optimisations. Research in biohydrogen production via dark fermentation is currently advancing rapidly, and various microbiology and molecular biology tools have been used to investigate the microbiomes. We reviewed here the different systems used and the production capacity, together with the diversity of the microbiomes used in the dark fermentation of industrial wastes, with a special emphasis on palm oil mill effluent (POME). The current challenges associated with biohydrogen production were also included. Then, we summarised and discussed the different molecular biology tools employed to investigate the intricacy of the microbial ecology associated with biohydrogen production. Finally, we included a section on the future outlook of how microbiome-based technologies and knowledge can be used effectively in biohydrogen production systems, in order to maximise the production output.
Collapse
Affiliation(s)
| | - Jemilatu Omuwa Audu
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Department of Science Laboratory Technology, Modibbo Adama University, PMB 2076, Yola, Adamawa, Nigeria
| | - Wan Rosmiza Zana Wan Dagang
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Firdaus Abdul-Wahab
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
- Taiwan-Malaysia Innovation Centre for Clean Water and Sustainable Energy (WISE Centre), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
26
|
Cao X, Zhao L, Dong W, Mo H, Ba T, Li T, Guan D, Zhao W, Wang N, Ma Z, Zang L. Revealing the mechanisms of alkali-based magnetic nanosheets enhanced hydrogen production from dark fermentation: Comparison between mesophilic and thermophilic conditions. BIORESOURCE TECHNOLOGY 2022; 343:126141. [PMID: 34655780 DOI: 10.1016/j.biortech.2021.126141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 05/25/2023]
Abstract
In the present study, a dark fermentation system inoculated with mixed culture bacteria (MCB) was developed using prepared alkali-based magnetic nanosheets (AMNSs) to facilitate biohydrogen (BioH2) production. The highest BioH2 yields of 232.8 ± 8.5 and 150.3 ± 4.8 mL/g glucose were observed at 100 (mesophilic condition) and 400 (thermophilic condition) mg/L AMNSs groups, which were 65.4% and 43.3%, respectively, above the 0 mg/L AMNSs group. The fermentation pathway revealed that AMNSs enhanced the butyrate-type metabolic pathway and the corresponding nicotinamide adenine dinucleotides (NADHand NAD+) ratio, and hydrogenase activity was enhanced in mesophilic fermentation. The interaction of AMNSs and MCB suggested that AMNSs could assist in electron transfer and that the released metal elements might be responsible for elevated hydrogenase activity. AMNSs also promoted the evolution of the dominant microbial community and altered the content of extracellular polymers, leading to increased production of BioH2.
Collapse
Affiliation(s)
- Xianyuan Cao
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353 China
| | - Lei Zhao
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Weifang Dong
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353 China
| | - Haoe Mo
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353 China
| | - Teer Ba
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353 China
| | - Tianpeng Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353 China
| | - Dan Guan
- China Biotech Fermentation Industry Association, Beijing 100833, China
| | - Wenqian Zhao
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353 China
| | - Na Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353 China
| | - Zhongmin Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353 China
| | - Lihua Zang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353 China.
| |
Collapse
|
27
|
Chia SR, Nomanbhay SBHM, Chew KW, Munawaroh HSH, Shamsuddin AH, Show PL. Algae as potential feedstock for various bioenergy production. CHEMOSPHERE 2022; 287:131944. [PMID: 34438210 DOI: 10.1016/j.chemosphere.2021.131944] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Depletion of non-renewable feedstock and severe wastewater pollution due to human activities have created negative impact to living organisms. The potential solution is to implement wastewater treatment and bioelectricity production through algae-based microbial fuel cell. The algae biomass produced from microbial fuel cell could be further processed to generate biofuels through their unique compositions. The consumption of nutrients in wastewater through algae cultivation and biomass produced to be utilized for energy supply have showed the potential of algae to solve the issues faced nowadays. This review introduces the background of algae and mitigation of wastewater using algae as well as the bioenergy status in Malaysia. The mechanisms of nutrient assimilation such as nitrogen, phosphorus, carbon, and heavy metals are included, followed by the application of algae in microbial fuel cell's chambers. Lastly, the status of algae for bioenergy production are covered.
Collapse
Affiliation(s)
- Shir Reen Chia
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Saifuddin Bin Hj M Nomanbhay
- Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia.
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Abd Halim Shamsuddin
- AAIBE Chair of Renewable Energy, Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000, Kajang, Selangor, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
28
|
Khan NA, Bokhari A, Mubashir M, Klemeš JJ, El Morabet R, Khan RA, Alsubih M, Azam M, Saqib S, Mukhtar A, Koyande A, Show PL. Treatment of Hospital wastewater with submerged aerobic fixed film reactor coupled with tube-settler. CHEMOSPHERE 2022; 286:131838. [PMID: 34399260 DOI: 10.1016/j.chemosphere.2021.131838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, Hospital wastewater was treated using a submerged aerobic fixed film (SAFF) reactor coupled with tubesettler in series. SAFF consisted of a column with an up-flow biofilter. The biological oxygen demand (BOD)5, chemical oxygen demand (COD), nitrate and phosphate were the chosen pollutants for evaluation. The pollutants removal efficiency was determined at varying organic loading rates and hydraulic retention time. The organic loading rate was varied between 0.25 and 1.25 kg COD m-3 d-1. The removal efficiency of SAFF and tubesettler combined was 75 % COD, 67 % BOD and 67 % phosphate, respectively. However, nitrate saw an increase in concentration by 25 %. SAFF contribution in the removal of COD, BOD5 and Phosphate was 48 %, 46 % and 29 %, respectively. While for accumulation of nitrate, it was responsible for 56%, respectively. Tubesettler performed better than SAFF with 52 %, 54 % and 69 % reduction of COD, BOD5 and phosphate, respectively. But in terms of nitrate, tubesettler was responsible for 44 % accumulation. The nutrient reduction decreased with an increase in the organic loading rate. Nitrification was observed in the SAFF and tubesettler, which indicated a well-aerated system. An anaerobic unit is required for completing the denitrification process and removing nitrogen from the effluent. The better performance of tubesettler over SAFF calls for necessitates extended retention time over design criteria. Further studies are beneficial to investigate the impact of pharmaceutical compounds on the efficiency of SAFF.
Collapse
Affiliation(s)
- Nadeem A Khan
- Department of Civil Engineering, Jamia Millia Islamia, Jamia Millia Islamia, Okhla, New Delhi, Delhi, 110025, India
| | - Awais Bokhari
- Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab, 54000, Pakistan; Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic.
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Rachida El Morabet
- Department of Geography, LADES, FLSH-M, Hassan II University of Casablanca, Mohammedia, 28810, Morocco
| | - Roohul Abad Khan
- Department of Civil Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mudassar Azam
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology (TU Wien), Getreidemarkt 9/166, Wien, 1060, Austria
| | - Sidra Saqib
- Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab, 54000, Pakistan
| | - Ahmad Mukhtar
- Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research Faisalabad, Pakistan
| | - Apurav Koyande
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
29
|
Li W, Zhang J, Yang J, Zhang J, Li Z, Yang Y, Zang L. Comparison of copper and aluminum doped cobalt ferrate nanoparticles for improving biohydrogen production. BIORESOURCE TECHNOLOGY 2022; 343:126078. [PMID: 34606925 DOI: 10.1016/j.biortech.2021.126078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Two various materials, copper and aluminum doped cobalt ferrite nanoparticles (NPs) were fabricated for investigating their effects of addition amounts on hydrogen (H2) synthesis and process stability. CoCu0.2Fe1.8O4NPs enhanced H2 production more than CoAl0.2Fe1.8O4 NPs under same condition. The highest H2 yield of 212.25 ml/g glucose was found at optimal dosage of 300 mg/L CoCu0.2Fe1.8O4 NPs, revealing the increases of 43.17% and 6.67% compared with the control without NPs and 300 mg/L CoAl0.2Fe1.8O4 NPs groups, respectively. NPs level of more than 400 mg/L inhibited H2 generation. Further investigations illustrated that CoCu0.2Fe1.8O4 NPs were mainly distributed on extracellular polymer substance while CoAl0.2Fe1.8O4 NPs were mostly enriched on cell membrane, which facilitated electron transfer behavior. Community structure composition demonstrated that CoCu0.2Fe1.8O4 and CoAl0.2Fe1.8O4 separately caused a 9.67% and 9.03% increase in Clostridium sensu stricto 1 compared with the control reactor without NPs exposure.
Collapse
Affiliation(s)
- Wenqing Li
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Jishi Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Junwei Yang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Junchu Zhang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Zhenmin Li
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Yunjun Yang
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| | - Lihua Zang
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, PR China
| |
Collapse
|
30
|
Optimization of fermentation conditions for higher cellulase production using marine Bacillus licheniformis KY962963: An epiphyte of Chlorococcum sp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Kim SH, Kumar G, Chen WH, Khanal SK. Renewable hydrogen production from biomass and wastes (ReBioH 2-2020). BIORESOURCE TECHNOLOGY 2021; 331:125024. [PMID: 33814292 DOI: 10.1016/j.biortech.2021.125024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Growing consumption of fossil reserves to meet the rising demand of energy has led to climate deterioration and simultaneous waste generation, urging modern society to find sustainable energy resource that can meet the growing energy demands and reduce greenhouse gas emissions and carbon footprints. In this aspect, hydrogen (H2) is one of the most promising sustainable clean fuels that has gained significant interest in recent years. This article highlights the major research progress on biohydrogen production from renewable bioresources such as organic wastes, lignocellulosic biomass, algal biomass, and industrial wastewaters. It summarizes the research highlights of manuscripts published in the special issue (VSI: ReBioH2-2020), which contains twenty-two articles, including seven critical reviews and fifteen research articles, focusing on biotechnological and thermochemical routes for biohydrogen production from renewable feedstocks. The major findings of the research works in this special issue can be used as a road-map for sustainable renewable hydrogen production from bioresources.
Collapse
Affiliation(s)
- Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
32
|
Food Waste Biorefinery: Pathway towards Circular Bioeconomy. Foods 2021; 10:foods10061174. [PMID: 34073698 PMCID: PMC8225055 DOI: 10.3390/foods10061174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Food waste biorefineries for the production of biofuels, platform chemicals and other bio-based materials can significantly reduce a huge environmental burden and provide sustainable resources for the production of chemicals and materials. This will significantly contribute to the transition of the linear based economy to a more circular economy. A variety of chemicals, biofuels and materials can be produced from food waste by the integrated biorefinery approach. This enhances the bioeconomy and helps toward the design of more green, ecofriendly, and sustainable methods of material productions that contribute to sustainable development goals. The waste biorefinery is a tool to achieve a value-added product that can provide a better utilization of materials and resources while minimizing and/or eliminating environmental impacts. Recently, food waste biorefineries have gained momentum for the production of biofuels, chemicals, and bio-based materials due to the shifting of regulations and policies towards sustainable development. This review attempts to explore the state of the art of food waste biorefinery and the products associated with it.
Collapse
|
33
|
Abstract
Due to its characteristics, hydrogen is considered the energy carrier of the future. Its use as a fuel generates reduced pollution, as if burned it almost exclusively produces water vapor. Hydrogen can be produced from numerous sources, both of fossil and renewable origin, and with as many production processes, which can use renewable or non-renewable energy sources. To achieve carbon neutrality, the sources must necessarily be renewable, and the production processes themselves must use renewable energy sources. In this review article the main characteristics of the most used hydrogen production methods are summarized, mainly focusing on renewable feedstocks, furthermore a series of relevant articles published in the last year, are reviewed. The production methods are grouped according to the type of energy they use; and at the end of each section the strengths and limitations of the processes are highlighted. The conclusions compare the main characteristics of the production processes studied and contextualize their possible use.
Collapse
|
34
|
Bio-Hydrogen Production from Wastewater: A Comparative Study of Low Energy Intensive Production Processes. CLEAN TECHNOLOGIES 2021. [DOI: 10.3390/cleantechnol3010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Billions of litres of wastewater are produced daily from domestic and industrial areas, and whilst wastewater is often perceived as a problem, it has the potential to be viewed as a rich source for resources and energy. Wastewater contains between four and five times more energy than is required to treat it, and is a potential source of bio-hydrogen—a clean energy vector, a feedstock chemical and a fuel, widely recognised to have a role in the decarbonisation of the future energy system. This paper investigates sustainable, low-energy intensive routes for hydrogen production from wastewater, critically analysing five technologies, namely photo-fermentation, dark fermentation, photocatalysis, microbial photo electrochemical processes and microbial electrolysis cells (MECs). The paper compares key parameters influencing H2 production yield, such as pH, temperature and reactor design, summarises the state of the art in each area, and highlights the scale-up technical challenges. In addition to H2 production, these processes can be used for partial wastewater remediation, providing at least 45% reduction in chemical oxygen demand (COD), and are suitable for integration into existing wastewater treatment plants. Key advancements in lab-based research are included, highlighting the potential for each technology to contribute to the development of clean energy. Whilst there have been efforts to scale dark fermentation, electro and photo chemical technologies are still at the early stages of development (Technology Readiness Levels below 4); therefore, pilot plants and demonstrators sited at wastewater treatment facilities are needed to assess commercial viability. As such, a multidisciplinary approach is needed to overcome the current barriers to implementation, integrating expertise in engineering, chemistry and microbiology with the commercial experience of both water and energy sectors. The review concludes by highlighting MECs as a promising technology, due to excellent system modularity, good hydrogen yield (3.6–7.9 L/L/d from synthetic wastewater) and the potential to remove up to 80% COD from influent streams.
Collapse
|
35
|
Das N, Kumar A, Rayavarapu RG. The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:924-938. [PMID: 34497740 PMCID: PMC8381852 DOI: 10.3762/bjnano.12.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/27/2021] [Indexed: 05/14/2023]
Abstract
Plasmonic metal nanoparticles are widely used for many applications due to their unique optical and chemical properties. Over the past decade, anisotropic metal nanoparticles have been explored for imaging, sensing, and diagnostic applications. The variations and flexibility of tuning the size and shape of the metal nanoparticles at the nanoscale made them promising candidates for biomedical applications such as therapeutics, diagnostics, and drug delivery. However, safety and risk assessment of the nanomaterials for clinical purposes are yet to be made owing to their cytotoxicity. The toxicity concern is primarily due to the conventional synthesis route that involves surfactants as a structure-directing agent and as a capping agent for nanoparticles. Wet chemical methods employ toxic auxiliary chemicals. However, the approach yields monodispersed nanoparticles, an essential criterion for their intended application and a limitation of the green synthesis of nanoparticles using plant extracts. Several biocompatible counterparts such as polymers, lipids, and chitosan-based nanoparticles have been successfully used in the synthesis of safe nanomaterials, but there were issues regarding reproducibility and yield. Enzymatic degradation was one of the factors responsible for limiting the efficacy. Hence, it is necessary to develop a safer and nontoxic route towards synthesizing biocompatible nanomaterials while retaining morphology, high yield, and monodispersity. In this regard, deep eutectic solvents (DESs) and carrageenan as capping agent for nanoparticles can ensure the safety. Carrageenan has the potential to act as antibacterial and antiviral agent, and adds enhanced stability to the nanoparticles. This leads to a multidimensional approach for utilizing safe nanomaterials for advanced biomedical and clinical applications.
Collapse
Affiliation(s)
- Nabojit Das
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akash Kumar
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raja Gopal Rayavarapu
- Nanomaterial Toxicology Laboratory, Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|