1
|
Zhang SQ, Yuan HZ, Ma X, Wei DX. Carbon cycle of polyhydroxyalkanoates (CCP): Biosynthesis and biodegradation. ENVIRONMENTAL RESEARCH 2025; 269:120904. [PMID: 39842755 DOI: 10.1016/j.envres.2025.120904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Carbon neutrality of bioactive materials is vital in promoting sustainable development for human society. Polyhydroxyalkanoates (PHAs) is a class of typical carbon-cycle bio-polyesters synthesized by microorganisms using sugars, organic acids, and even carbon dioxide. PHAs first degrade into 3-hydroxybutyrate (3HB) before further breaking down into carbon dioxide and water, aligning with carbon-neutral goals. Due to their diverse molecular structures and material properties, excellent biocompatibility, and controlled biodegradability, PHAs have found widespread applications in environmental protection and biomedicine. However, challenges persist in achieving cost-effective PHA production and reusing degradation products. Additionally, understanding the carbon pathways in PHA synthesis and degradation remains limited. In this review, we first introduce the concept of the Carbon Cycle of Polyhydroxyalkanoates (CCP) and describe the biosynthetic pathways of aromatic monomers, carbon conversion processes, and PHA degradation in compost, soil, and marine environments. This will help us fully understand the sustainable utilization value of PHA as a biomaterial. Future trends point to integrating synthetic biology with emerging technologies to produce low-cost, high-value PHAs, supporting global green and low-carbon development.
Collapse
Affiliation(s)
- Si-Qin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
| | - Hao-Zhe Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China; Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081 China.
| |
Collapse
|
2
|
Deng Z, Wang J, Yan Y, Wang J, Shao W, Wu Z. Biochar-based Bacillus subtilis inoculants promote plant growth: Regulating microbial community to improve soil properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123534. [PMID: 39626400 DOI: 10.1016/j.jenvman.2024.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/26/2024] [Accepted: 11/28/2024] [Indexed: 01/15/2025]
Abstract
Numerous studies support the synergistic use of biochar (BC) and plant growth-promoting rhizobacteria to enhance plant growth. Despite this, the complex and dynamic nature of soil environments necessitates further exploration of the interactions between soil microorganisms and soil properties under BC-based inoculants. This study investigated their combined effects using a BC-based inoculant, Bacillus subtilis SL-44 (BC@SL), to explore the relationship between microorganisms and soil properties. Additionally, differentiating the effects of exogenous auxiliaries BC, SL-44, and BC@SL, which can promote plant growth, enhance plant and soil enzyme activities, regulate microbial communities, and increase soil nutrient content. Compared to BC alone, SL-44 enhances plant superoxide dismutase, peroxidase, and catalase enzyme activities, while BC increases soil cellulase and urease activities. SL-44 elevates Bacillus content, whereas BC boosts overall microbial abundance. Although initial values of most soil properties remain stable under exogenous auxiliaries, by the fourth week, soil pH and organic matter decrease, while electrical conductivity, available phosphorus, and ammonium nitrogen increase significantly across treatments. BC@SL, integrating the advantages of both BC and SL-44, exhibits superior performance. Under BC@SL treatment, Bacillus content rises from 4.36% to 14.96%, and available phosphorus and ammonium nitrogen increase by 81.97% and 53.16%, respectively. Additionally, plant dry weight increases by 51.95%. These results highlight the effectiveness of BC@SL in microbial regulation, soil nutrient enhancement, and plant growth promotion. In summary, BC@SL proves to be a stable and efficient solid soil additive, supporting the advancement of green fertilizer practices.
Collapse
Affiliation(s)
- Zihe Deng
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Jianwen Wang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China; Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, PR China
| | - Yingrou Yan
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Jiani Wang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Wenjun Shao
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an, 710048, PR China.
| |
Collapse
|
3
|
Rusyn I, Gómora-Hernández JC. Constructed wetland microbial fuel cell as enhancing pollutants treatment technology to produce green energy. Biotechnol Adv 2024; 77:108468. [PMID: 39437879 DOI: 10.1016/j.biotechadv.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/02/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The persistent challenge of water pollution, exacerbated by slow progress in ecofriendly technologies and accumulating pollutants, underscores the need for innovative solutions. Constructed Wetland Microbial Fuel Cell (CW-MFC) emerges as an intriguing environmental technology capable of adressing this issue by eliminating contaminants from wastewater while simultaneously producing green energy as an additional bonus. In recent years, CW-MFC technology has gained attention due to its sustainability and promising prospects for a circular waste-free industry. However, due to various technological and biological challenges, it has not yet achieved wide-scale application. This review examines the current state of CW-MFC technology and identifies both biotic and abiotic strategies for optimization through operational and structural improvements affecting biocomponents. Our review highlights several key findings: (1) Plants play an important role in reducing the system's inner resistance through mechanisms such as radial oxygen loss, evapotranspiration, and high photosynthetic flow, which facilitate electroactive bacteria and affect redox potential. (2) Plant characteristics such as root porosity, phloem and aerenchyma development, chlorophyll content, and plant biomass are key indicators of CW-MFC performance and significantly impact both pollutant removal and energy harvesting. (3) We expand the criteria for selecting suitable plants to include mesophytes and C3 pollutant-tolerant species, in addition to traditional aquatic and C4 plants. Additionally, the review presents several technical approaches that enhance CW-MFC efficiency: (1) design optimization, (2) use of novel materials, and (3) application of external electrical fields, aeration, light, and temperature adjustments. CW-MFCs are capable of nearly complete elimination of a wide range of contaminants, including organic matter (84 % ± 10), total nitrogen (80 % ± 7) and phosphorus (79 % ± 18) compounds, metals (86 % ± 10), pharmaceuticals (87 % ± 7), dyes (90 % ± 8), and other complex pollutants, while generating green energy. We hope our findings will be useful in optimizing CW-MFC design and providing insights for researchers aiming to advance the technology and facilitate its future scaling.
Collapse
Affiliation(s)
- Iryna Rusyn
- Department of Ecology and Sustainable Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera St., 12, Lviv 79013, Ukraine.
| | - Julio César Gómora-Hernández
- Division of Environmental Engineering, National Technological Institute of Mexico (TecNM) / Technological of Higher Studies of Tianguistenco, Tianguistenco 52650, Mexico.
| |
Collapse
|
4
|
Gan S, Chen B, Li L, Sushkova S, Garg A. Effect of Three Different Types of Biochar on Bioelectricity Generated from Plant Microbial Fuel Cells under Unsaturated Soil Condition. ACS APPLIED BIO MATERIALS 2024; 7:6554-6567. [PMID: 39251357 DOI: 10.1021/acsabm.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Plant microbial fuel cell (PMFC) is an emerging technology, showing promise for environmental biosensors and sustainable energy production. Despite its potential, PMFCs struggle with issues like low power output and limited drought resistance. Recent studies proposed that integrating biochar may enhance PMFC performance due to its physicochemical properties. The influence of different biochar types on PMFC efficiency has been minimally explored. This study aims to fill this gap by evaluating the performance of PMFCs integrated with various biochar types under unsaturated soil conditions. The study found that the addition of biochar types─specifically reed straw biochar (RSB), apple wood biochar (AWB), and corn straw biochar (CSB)─significantly influenced the performance of PMFCs. RSB, with its large surface area and porous structure, notably increased the current output by reducing soil resistance and enhancing electron transfer efficiency in microbial reduction reactions, achieving a peak power density of approximately 1608 mW/m2. AWB, despite its less porous structure, leveraged its high cation exchange capacity and hydrophilic functional groups to foster microbial community growth and diversity, thereby also increasing bioelectricity output. Conversely, CSB, with its large surface area, showed the least improvement in PMFC performance due to its layered structure and lower water retention capacity. Additionally, under drought conditions, PMFCs with added RSB and AWB exhibited better drought resistance due to their ability to improve soil moisture characteristics and enhance soil conductivity. The addition of biochar reduced soil resistance, increasing the bioelectric output of PMFCs and maintaining good performance even under low moisture conditions. This study highlights the critical role of biochar's surface area and functional groups in optimizing PMFC performance. It enhances our understanding of PMFC optimization and might offer a novel power generation method for the future, while also presenting a fresh strategy for soil monitoring.
Collapse
Affiliation(s)
- Sibin Gan
- Department of Civil and Intelligent Construction Engineering, Shantou University, Shantou 515063 Guangdong, China
| | - Boneng Chen
- Department of Civil and Intelligent Construction Engineering, Shantou University, Shantou 515063 Guangdong, China
| | - Liye Li
- Department of Civil and Intelligent Construction Engineering, Shantou University, Shantou 515063 Guangdong, China
| | - Svetlana Sushkova
- Department of Soil Science, Southern Federal University, Rostov-on-Don 344006, Russia
| | - Ankit Garg
- Department of Civil and Intelligent Construction Engineering, Shantou University, Shantou 515063 Guangdong, China
| |
Collapse
|
5
|
Brugellis I, Grassi M, Malcovati P, Assini S. Plant Microbial Fuel Cells in a botanical perspective: Nomenclatural constraints and new insights on plant traits potentially affecting bioelectrical perfomance. Heliyon 2024; 10:e38733. [PMID: 39397903 PMCID: PMC11471249 DOI: 10.1016/j.heliyon.2024.e38733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024] Open
Abstract
Plant microbial fuel cells represent an innovative type of microbial fuel cell technology, utilizing plant rhizodeposition to fuel electrochemically active bacteria on the anode surface, thereby generating bioelectricity. This study delves into some botanical aspects of plant species employed in PMFCs and Constructed Wetland PMFCs, aiming to investigate whether their bioelectrical performance is influenced by Raunkiær life forms and root architecture. Our study involved 40 plant species described in 38 documents. In some cases, nomenclature issues prevented the interpretation of actual species used in the experiments. The bioelectrical performance of PMFCs appeared to be significantly affected by both life forms and root architecture. Therophytes and Hemicriptophytes exhibited higher median values than the other life forms, while the Geophyte group showed very high power density values despite a lower median value. In contrast, CW-PMFCs do not appeared to be significantly affected by the botanical traits considered, likely due to the limited data collected on this experimental configuration. The plant species that performed the best in PMFCs include Carex hirta, Alisma plantago-aquatica, Glyceria maxima and Canna indica, all of which have an adventitious root system. C. hirta, G. maxima and C. indica are geophytes, while A. plantago-aquatica is a hydrophyte. Consequently, epiphytes, chamaephytes and nanophanerophytes, as well as plants with fibrous root systems, appeared to be not recommended for PMFCs. Nevertheless, the results of our study may have certain limitation due to nomenclature issues that prevented the accurate identification of species used in the PMFCs, the absence of a standardized benchmark for electrical measurement, and the lack of clear match between each species and its bioelectrical performance, reducing the data pool.
Collapse
Affiliation(s)
- Ilaria Brugellis
- Department of Earth and Environmental Science, University of Pavia, Via Sant’Epifanio 14, 27100, Pavia, Italy
| | - Marco Grassi
- Department of Electrical Computer and Biomedical Engineering, University of Pavia, Via A. Ferrata 5, Pavia, Italy
| | - Piero Malcovati
- Department of Electrical Computer and Biomedical Engineering, University of Pavia, Via A. Ferrata 5, Pavia, Italy
| | - Silvia Assini
- Department of Earth and Environmental Science, University of Pavia, Via Sant’Epifanio 14, 27100, Pavia, Italy
| |
Collapse
|
6
|
Meder F, Armiento S, Naselli GA, Mondini A, Speck T, Mazzolai B. Charge generation by passive plant leaf motion at low wind speeds: design and collective behavior of plant-hybrid energy harvesters. BIOINSPIRATION & BIOMIMETICS 2024; 19:056003. [PMID: 38917810 DOI: 10.1088/1748-3190/ad5ba1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Energy harvesting techniques can exploit even subtle passive motion like that of plant leaves in wind as a consequence of contact electrification of the leaf surface. The effect is strongly enhanced by artificial materials installed as 'artificial leaves' on the natural leaves creating a recurring mechanical contact and separation. However, this requires a controlled mechanical interaction between the biological and the artificial component during the complex wind motion. Here, we build and test four artificial leaf designs with varying flexibility and degrees of freedom across the blade operating onNerium oleanderplants. We evaluate the apparent contact area (up to 10 cm2per leaf), the leaves' motion, together with the generated voltage, current and charge in low wind speeds of up to 3.3 m s-1and less. Single artificial leaves produced over 75 V and 1µA current peaks. Softer artificial leaves increase the contact area accessible for energy conversion, but a balance between softer and stiffer elements in the artificial blade is optimal to increase the frequency of contact-separation motion (here up to 10 Hz) for energy conversion also below 3.3 m s-1. Moreover, we tested how multiple leaves operating collectively during continuous wind energy harvesting over several days achieve a root mean square power of ∼6µW and are capable to transfer ∼80µC every 30-40 min to power a wireless temperature and humidity sensor autonomously and recurrently. The results experimentally reveal design strategies for energy harvesters providing autonomous micro power sources in plant ecosystems for example for sensing in precision agriculture and remote environmental monitoring.
Collapse
Affiliation(s)
- Fabian Meder
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics, Via Morego 30, 16163 Genova, Italy
| | - Serena Armiento
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics, Via Morego 30, 16163 Genova, Italy
| | - Giovanna Adele Naselli
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics, Via Morego 30, 16163 Genova, Italy
| | - Alessio Mondini
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics, Via Morego 30, 16163 Genova, Italy
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Barbara Mazzolai
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
7
|
Muhammad Nashafi A, Thiravetyan P, Dolphen R, Treesubsuntorn C. Using stacked pot connection of wetland microbial fuel cells to charge the battery: Potential and effecting factor. ENVIRONMENTAL RESEARCH 2024; 252:119066. [PMID: 38714219 DOI: 10.1016/j.envres.2024.119066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
In the practical application of wetland microbial fuel cells (WMFCs), suitable designs and stacked connection systems have consistently been employed to increase and harvest power generation. Our study compares different WMFCs designs and demonstrates that the cylinder pot design outperforms the small hanging pot design in terms of electrical energy production. Moreover, power generation from the cylinder pot can be further optimized through separator modification and stacked connections. The stacked WMFCs design exhibited no voltage reversal, with an average power output ranging from 0.03 ± 0.01 mW (single pot) to 0.11 ± 0.05 mW (stacked connection of 5 pots) over a 60-day operational period. Additionally, our study identifies distinct patterns in both anodic and cathodic physiochemical factors including electrical conductivity (EC), pH, and nitrate (NO3-), highlighting the significant influence of plant involvement on altering concentrations and levels in different electrode zones. The WMFCs bioelectricity production system, employing 15 pots stacked connections achieves an impressive maximum power density of 9.02 mW/m2. The system's practical application is evidenced by its ability to successfully power a DC-DC circuit and charge a 1.2 V AAA battery over a period of 30 h, achieving an average charging rate of 0.0.2 V per hour.
Collapse
Affiliation(s)
- Azizuddin Muhammad Nashafi
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
8
|
Hassan S, Bhadwal SS, Khan M, Sabreena, Nissa KU, Shah RA, Bhat HM, Bhat SA, Lone IM, Ganai BA. Revitalizing contaminated lands: A state-of-the-art review on the remediation of mine-tailings using phytoremediation and genomic approaches. CHEMOSPHERE 2024; 356:141889. [PMID: 38583533 DOI: 10.1016/j.chemosphere.2024.141889] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India.
| | - Siloni Singh Bhadwal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Misba Khan
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Khair-Ul Nissa
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Rameez Ahmad Shah
- Department of Environmental Science, University of Kashmir, Srinagar, 190006, India
| | - Haneef Mohammad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Ishfaq Maqbool Lone
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
9
|
Rojas-Flores S, De La Cruz-Noriega M, Cabanillas-Chirinos L, Otiniano NM, Soto-Deza N, Terrones-Rodriguez N, De La Cruz-Cerquin M. Potential Use of Andean Tuber Waste for the Generation of Environmentally Sustainable Bioelectricity. Molecules 2024; 29:1978. [PMID: 38731469 PMCID: PMC11085406 DOI: 10.3390/molecules29091978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The growing demand for agricultural products has increased exponentially, causing their waste to increase and become a problem for society. Searching for sustainable solutions for organic waste management is increasingly urgent. This research focuses on considering the waste of an Andean tuber, such as Olluco, as a fuel source for generating electricity and becoming a potential sustainable energy source for companies dedicated to this area. This research used Olluco waste as fuel in single-chamber microbial fuel cells using carbon and zinc electrodes. An electric current and electric potential of 6.4 ± 0.4 mA and 0.99 ± 0.09 V were generated, operating with an electrical conductivity of 142.3 ± 6.1 mS/cm and a pH of 7.1 ± 0.2. It was possible to obtain a 94% decrease in COD and an internal resistance of 24.9 ± 2.8 Ω. The power density found was 373.8 ± 28.8 mW/cm2 and the current density was 4.96 A/cm2. On day 14, the cells were connected in earnest, achieving a power of 2.92 V and generating enough current to light an LED light bulb, thus demonstrating the potential that Olluco waste has to be used as fuel in microbial fuel cells.
Collapse
Affiliation(s)
- Segundo Rojas-Flores
- Institutos y Centros de Investigación de la Universidad Cesar Vallejo, Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (N.T.-R.); (M.D.L.C.-C.)
| | - Magaly De La Cruz-Noriega
- Institutos y Centros de Investigación de la Universidad Cesar Vallejo, Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (N.T.-R.); (M.D.L.C.-C.)
| | - Luis Cabanillas-Chirinos
- Investigación Formativa e Integridad Científica, Universidad César Vallejo, Trujillo 13001, Peru;
| | - Nélida Milly Otiniano
- Institutos y Centros de Investigación de la Universidad Cesar Vallejo, Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (N.T.-R.); (M.D.L.C.-C.)
| | - Nancy Soto-Deza
- Institutos y Centros de Investigación de la Universidad Cesar Vallejo, Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (N.T.-R.); (M.D.L.C.-C.)
| | - Nicole Terrones-Rodriguez
- Institutos y Centros de Investigación de la Universidad Cesar Vallejo, Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (N.T.-R.); (M.D.L.C.-C.)
| | - Mayra De La Cruz-Cerquin
- Institutos y Centros de Investigación de la Universidad Cesar Vallejo, Universidad Cesar Vallejo, Trujillo 13001, Peru; (M.D.L.C.-N.); (N.M.O.); (N.S.-D.); (N.T.-R.); (M.D.L.C.-C.)
| |
Collapse
|
10
|
Fan L, Feng W. Preparation of PANI-SA/CF anode to enhance the remediation and power generation capabilities of plant microbial fuel cells for chromium contaminated soil. Bioprocess Biosyst Eng 2024; 47:509-518. [PMID: 38492005 DOI: 10.1007/s00449-024-02981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
Plant microbial fuel cells (PMFCs) has important value for soil remediation and power generation. To improve the performance of PMFCs, a PMFC experimental system was established based on potted scindapsus aureus. Polyaniline (PANI) and sodium alginate (SA) were used as modifiers to prepare PANI-SA modified carbon felt anode. The soil remediation ability and electricity generation ability of PMFCs with four different anodes were compared and analyzed. The experimental results show that the steady-state voltage, the removal rate of hexavalent chromium, and the total chromium removal rate of PMFC using PANI-SA modified anode were 5.25 mV, 98%, and 90%, respectively, which are 253%, 10.4%, and 10% higher than those of PMFCs using unmodified carbon felt anode. PMFC is effective and feasible for removing soil chromium pollution and achieving efficient soil remediation, while modifying anodes with PANI-SA can further improve the soil remediation and electricity generation capabilities of PMFC.
Collapse
Affiliation(s)
- Liping Fan
- Key Laboratory of Collaborative Control and Optimization Technology of Industrial Environment and Resource of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, 110142, China.
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| | - Wanxue Feng
- Key Laboratory of Collaborative Control and Optimization Technology of Industrial Environment and Resource of Liaoning Province, Shenyang University of Chemical Technology, Shenyang, 110142, China
- College of Environment and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| |
Collapse
|
11
|
Hao H, Yue Y, Chen Q, Yang Y, Kuai B, Wang Q, Xiao T, Chen H, Zhang J. Effects of an efficient straw decomposition system mediated by Stropharia rugosoannulata on soil properties and microbial communities in forestland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170226. [PMID: 38280599 DOI: 10.1016/j.scitotenv.2024.170226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Cultivation of Stropharia rugosoannulata with straw in forestland is effective for straw biodegradation and can prevent the waste of straw resources and environmental pollution and generate economic benefits. However, there is a lack of systematic evaluation of spent mushroom substrate (SMS) input into forestland, such as soil properties and microbial succession. In this experiment, 0 (CK), 10 (SA), 20 (SB), 30 (SC), 40 (SD), and 50 (SE) kg/m2 straw were used to cultivate S. rugosoannulata, and two soil layers (0-10 cm, 10-20 cm) of the cultivated forestland were analyzed. The results indicated that SMS significantly promoted nutrient accumulation in forestland. The bacterial alpha diversity in the SC treatment group was greater than that in the control and gradually decreased to the control level with interannual changes, while the trend of fungal alpha diversity was opposite to that of bacterial alpha diversity. Furthermore, the SC treatment group positively affected soil nitrogen metabolism-related microorganisms for two consecutive years and significantly promoted tree growth. Habitat niche breadth and null model analysis revealed that bacterial communities were more sensitive than fungal communities after SMS input. Linear mixed model (LMM) analysis revealed that SMS supplementation significantly positively affected bacteria (Gammaproteobacteria and Bacteroidota) and significantly negatively affected fungi (Coniochaetales). The constructed fungal-bacterial co-occurrence networks exhibited modularity, and the five types of bacteria were significantly correlated with soil organic matter (SOM), soil organic carbon (SOC), available potassium (AK), available phosphorus (AAP) and available nitrogen (AN) levels. The structural equation model (SEM) showed that bacterial diversity responded more to changes in soil nutrients than did fungal diversity. Overall, 30 kg/m2 of straw decomposition and 2 years of continuous cultivation were beneficial to soil health. This study provides new insights into the rational decomposition of straw and maintenance of forestland ecological balance by S. rugosoannulata.
Collapse
Affiliation(s)
- Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yihong Yue
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Qun Chen
- School of Biology Food and Environment, Hefei University, Hefei 23060, China
| | - Yan Yang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Tingting Xiao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
12
|
K. C. BM, Lamichhane J, Khanal SN, Gauchan DP. Traditional utilization of bamboo in the Central Siwalik region, Nepal. PLoS One 2024; 19:e0296886. [PMID: 38289942 PMCID: PMC10826958 DOI: 10.1371/journal.pone.0296886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Bamboo are the fastest growing perennial woody grasses that have versatile applications. Most of the local people inhabiting the riverine area of the Siwalik region of Nepal rely on bamboo products for economic benefits and medicinal uses. Our objective was to identify the diversity of bamboo species, their ethnomedicinal practices, and economic and ecological importance. Data were collected by direct observation, key informant interviews, participatory rural appraisal, inventory technique, focus group discussions, and a household survey using semi-structured and structured questionnaires. We recorded four genera and nine species of bamboo, of which eight species have been used for agriculture, five for medicine, four for construction, food, fodder, artifacts and religious purpose, three for river embankment, and two for ornamental purpose. As the local people in the study area were deprived of medical facilities, using traditional herbal medicine to cure various diseases was a common practice. The inhabitants responded that they use bamboo-based primary ethnomedicinal care even against snake and scorpion bites. Similarly, they use bamboo young culm for reducing body weight and control diabetes. The value of the informant consensus factor was found to be maximum for the bamboo against snake and scorpion bites (1.0) and minimum for weight loss (0.81). This study concludes that the traditional utilization of all kinds of bamboo in the region is vast despite their less diversity. The recorded bamboo species are used not only for food and fodder but also in preparing artifacts, soil nutrients restoration in the fallow land, construction materials for the rural people, river embankments, and religious and spiritual purposes. Therefore, if grown on a large scale, bamboo can provide sustainable benefits for the local users and ecological aspects. Bambusa tulda and Dendrocalamus strictus have a broad spectrum of pharmacological agents. Considering the multifaceted application of bamboo in the Siwalik area, it is worthwhile to encourage the local people to bamboo plantation, which would contribute to supplement their household requirements and be one of the alternative livelihood options.
Collapse
Affiliation(s)
- Bishnu Maya K. C.
- Department of Biotechnology, School of Science, Kathmandu University, Dhulikhel, Nepal
| | - Janardan Lamichhane
- Department of Biotechnology, School of Science, Kathmandu University, Dhulikhel, Nepal
| | - Sanjay Nath Khanal
- Department of Environmental Science and Engineering, School of Science, Kathmandu University, Dhulikhel, Nepal
| | - Dhurva Prasad Gauchan
- Department of Biotechnology, School of Science, Kathmandu University, Dhulikhel, Nepal
| |
Collapse
|
13
|
Ahmadpanah H, Motamedian E, Mardanpour MM. Metabolic regulation boosts bioelectricity generation in Zymomonas mobilis microbial fuel cell, surpassing ethanol production. Sci Rep 2023; 13:20673. [PMID: 38001147 PMCID: PMC10673858 DOI: 10.1038/s41598-023-47846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
Zymomonas mobilis (Z. mobilis), a bacterium known for its ethanol production capabilities, can also generate electricity by transitioning from ethanol production to electron generation. The purpose of this study is to investigate the ability of Z. mobilis to produce bioelectricity when utilized as a biocatalyst in a single-chamber microbial fuel cell (MFC). Given the bacterium's strong inclination towards ethanol production, a metabolic engineering strategy was devised to identify key reactions responsible for redirecting electrons from ethanol towards electricity generation. To evaluate the electroactivity of cultured Z. mobilis and its ethanol production in the presence of regulators, the reduction of soluble Fe(III) was utilized. Among the regulators tested, CuCl2 demonstrated superior effectiveness. Consequently, the MFC was employed to analyze the electrochemical properties of Z. mobilis using both a minimal and modified medium. By modifying the bacterial medium, the maximum current and power density of the MFC fed with Z. mobilis increased by more than 5.8- and sixfold, respectively, compared to the minimal medium. These findings highlight the significant impact of metabolic redirection in enhancing the performance of MFCs. Furthermore, they establish Z. mobilis as an active electrogenesis microorganism capable of power generation in MFCs.
Collapse
Affiliation(s)
- Hananeh Ahmadpanah
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115‑143, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115‑143, Tehran, Iran.
| | | |
Collapse
|
14
|
Lan J, Wen F, Ren Y, Liu G, Jiang Y, Wang Z, Zhu X. An overview of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100278. [PMID: 37251519 PMCID: PMC10220241 DOI: 10.1016/j.ese.2023.100278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023]
Abstract
The global problem of petroleum contamination in soils seriously threatens environmental safety and human health. Current studies have successfully demonstrated the feasibility of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils due to their easy implementation, environmental benignity, and enhanced removal efficiency compared to bioremediation. This paper reviewed recent progress and development associated with bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. The working principles, removal efficiencies, affecting factors, and constraints of the two technologies were thoroughly summarized and discussed. The potentials, challenges, and future perspectives were also deliberated to shed light on how to overcome the barriers and realize widespread implementation on large scales of these two technologies.
Collapse
Affiliation(s)
- Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fang Wen
- Xinjiang Academy of Environmental Protection Science, Urumqi, 830011, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiuping Zhu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
15
|
Dinh MTN, Nguyen VT, Nguyen LTH. The potential application of carbazole-degrading bacteria for dioxin bioremediation. BIORESOUR BIOPROCESS 2023; 10:56. [PMID: 38647625 PMCID: PMC10992316 DOI: 10.1186/s40643-023-00680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 04/25/2024] Open
Abstract
Extensive research has been conducted over the years on the bacterial degradation of dioxins and their related compounds including carbazole, because these chemicals are highly toxic and has been widely distributed in the environment. There is a pressing need to explore and develop more bacterial strains with unique catabolic features to effectively remediate dioxin-polluted sites. Carbazole has a chemical structure similar to dioxins, and the degradation pathways of these two chemicals are highly homologous. Some carbazole-degrading bacterial strains have been demonstrated to have the ability to degrade dioxins, such as Pseudomonas sp. strain CA10 và Sphingomonas sp. KA1. The introduction of strain KA1 into dioxin-contaminated model soil resulted in the degradation of 96% and 70% of 2-chlorodibenzo-p-dioxin (2-CDD) and 2,3-dichlorodibenzo-p-dioxin (2,3-DCDD), respectively, after 7-day incubation period. These degradation rates were similar to those achieved with strain CA10, which removed 96% of 2-CDD and 80% of 2,3-DCDD from the same model soil. Therefore, carbazole-degrading bacteria hold significant promise as potential candidates for dioxin bioremediation. This paper overviews the connection between the bacterial degradation of dioxins and carbazole, highlighting the potential for dioxin biodegradation by carbazole-degrading bacterial strains.
Collapse
Affiliation(s)
- Mai Thi Ngoc Dinh
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, A9 Building, Nguyen Van Trac Street, Ha Dong District, Hanoi, Vietnam.
- Bioresource Research Center, Phenikaa University, Hanoi, Vietnam.
| | - Van Thi Nguyen
- VNU Institute of Microbiology and Biotechnology, Vietnam National University, E2 Building, 144 Xuan Thuy Street, Cau Giay District, Hanoi, Vietnam
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, Republic of Korea
| |
Collapse
|
16
|
Palanisamy G, Muhammed AP, Thangarasu S, Oh TH. Investigating the Sulfonated Chitosan/Polyvinylidene Fluoride-Based Proton Exchange Membrane with fSiO 2 as Filler in Microbial Fuel Cells. MEMBRANES 2023; 13:758. [PMID: 37755180 PMCID: PMC10536340 DOI: 10.3390/membranes13090758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Chitosan (CS), a promising potential biopolymer with exquisite biocompatibility, economic viability, hydrophilicity, and chemical modifications, has drawn interest as an alternative material for proton exchange membrane (PEM) fabrication. However, CS in its original form exhibited low proton conductivity and mechanical stability, restricting its usage in PEM development. In this work, chitosan was functionalized (sulfonic acid (-SO3H) groups)) to enhance proton conductivity. The sulfonated chitosan (sCS) was blended with polyvinylidene fluoride (PVDF) polymer, along with the incorporation of functionalized SiO2 (-OH groups), for fabricating chitosan-based composite proton exchange membranes to enhance microbial fuel cell (MFC) performances. The results show that adding functionalized inorganic fillers (fSiO2) into the membrane enhances the mechanical, thermal, and anti-biofouling behavior. From the results, the PVDF/sCS/fSiO2 composite membrane exhibited enhanced proton conductivity 1.0644 × 10-2 S cm-1 at room temperature and increased IEC and mechanical and chemical stability. Furthermore, this study presents a revolutionary way to generate environmentally friendly natural polymer-based membrane materials for developing PEM candidates for enhanced MFC performances in generating bioelectricity and wastewater treatment.
Collapse
Affiliation(s)
| | | | | | - Tae Hwan Oh
- Department of Chemical Engineering, Yeungnam University, Gyeongsan 8541, Republic of Korea; (A.P.M.); (S.T.)
| |
Collapse
|
17
|
Gupta S, Patro A, Mittal Y, Dwivedi S, Saket P, Panja R, Saeed T, Martínez F, Yadav AK. The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162757. [PMID: 36931518 DOI: 10.1016/j.scitotenv.2023.162757] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
Microbial fuel cell (MFC) is an interesting technology capable of converting the chemical energy stored in organics to electricity. It has raised high hopes among researchers and end users as the world continues to face climate change, water, energy, and land crisis. This review aims to discuss the journey of continuously progressing MFC technology from the lab to the field so far. It evaluates the historical development of MFC, and the emergence of different variants of MFC or MFC-associated other technologies such as sediment-microbial fuel cell (S-MFC), plant-microbial fuel cell (P-MFC), and integrated constructed wetlands-microbial fuel cell (CW-MFC). This review has assessed primary applications and challenges to overcome existing limitations for commercialization of these technologies. In addition, it further illustrates the design and potential applications of S-MFC, P-MFC, and CW-MFC. Lastly, the maturity and readiness of MFC, S-MFC, P-MFC, and CW-MFC for real-world implementation were assessed by multicriteria-based assessment. Wastewater treatment efficiency, bioelectricity generation efficiency, energy demand, cost investment, and scale-up potential were mainly considered as key criteria. Other sustainability criteria, such as life cycle and environmental impact assessments were also evaluated.
Collapse
Affiliation(s)
- Supriya Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Yamini Mittal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Palak Saket
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore- 453552, India
| | - Rupobrata Panja
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Fernando Martínez
- Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain
| | - Asheesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India; Department of Chemical and Environmental Technology, Rey Juan Carlos University, Móstoles 28933, Madrid, Spain.
| |
Collapse
|
18
|
Niknejad N, Nazari B, Foroutani S, Hussin ARBC. A bibliometric analysis of green technologies applied to water and wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71849-71863. [PMID: 35091956 DOI: 10.1007/s11356-022-18705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Freshwater scarcity, a problem that has arisen particularly as a result of the progressive environmental damage caused by human consumption patterns, is strongly associated with a loss of living quality and a drop in global socioeconomic development. Wastewater treatment is one of the measures being taken to mitigate the current situation. However, the majority of existing treatments employ chemicals that have harmful environmental consequences and low effectiveness and are prohibitively expensive in most countries. Therefore, to increase water supplies, more advanced and cost-effective water treatment technologies are required to be developed for desalination and water reuse purposes. Green technologies have been highlighted as a long-term strategy for conserving natural resources, reducing negative environmental repercussions, and boosting social and economic growth. Thus, a bibliometric technique was applied in this study to identifying prominent green technologies utilised in water and wastewater treatment by analysing scientific publications considering authors, keywords, and countries. To do this, the VOSviewer software and Bibliometrix R Package software were employed. The results of this study revealed that constructed wetlands and photocatalysis are two technologies that have been considered as green technologies applicable to the improvement of water and wastewater treatment processes in most scientific articles.
Collapse
Affiliation(s)
- Naghmeh Niknejad
- School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Behzad Nazari
- Azman Hashim International Business School, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Saman Foroutani
- Department of Computer, Islamic Azad University Safashahr Branch, Safashahr, Fars, Iran.
| | - Ab Razak Bin Che Hussin
- Azman Hashim International Business School, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
19
|
Vethathirri RS, Santillan E, Thi SS, Hoon HY, Wuertz S. Microbial community-based production of single cell protein from soybean-processing wastewater of variable chemical composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162241. [PMID: 36804981 DOI: 10.1016/j.scitotenv.2023.162241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The use of food-processing wastewaters to produce microbial biomass-derived single cell protein (SCP) is a sustainable way to meet the global food demand. Microbial community-based approaches to SCP production have the potential benefits of lower costs and greater resource recovery compared to pure cultures, yet they have received scarce attention. Here, SCP production from soybean-processing wastewaters using their existent microbial communities was evaluated. Six sequencing batch reactors of 4.5-L working volume were operated at 30 °C for 34 d in cycles consisting of 3-h anaerobic and 9-h aerobic phases. Four reactors received no microbial inoculum and the remaining two were amended with 1.5 L of a mixed culture from a prior SCP production cycle. Reactors produced more SCP when fed with wastewaters of higher soluble total Kjeldahl nitrogen (sTKN) content. The protein yield in biomass ranged from 0.53 to 3.13 g protein/g sTKN, with a maximum protein content of 50 %. The average removal of soluble chemical oxygen demand (sCOD) and soluble total nitrogen (sTN) was 92 % and 73 %, respectively. Distinct microbial genera were enriched in all six bioreactors, with Azospirillum, Rhodobacter, Lactococcus, and Novosphingobium dominating. The study showed that constituents in soybean wastewater can be converted to SCP and demonstrated the effect of variable influent wastewater composition on SCP production.
Collapse
Affiliation(s)
- Ramanujam Srinivasan Vethathirri
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ezequiel Santillan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore.
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Hui Yi Hoon
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
20
|
Cao TND, Mukhtar H, Le LT, Tran DPH, Ngo MTT, Pham MDT, Nguyen TB, Vo TKQ, Bui XT. Roles of microalgae-based biofertilizer in sustainability of green agriculture and food-water-energy security nexus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161927. [PMID: 36736400 DOI: 10.1016/j.scitotenv.2023.161927] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
For years, agrochemical fertilizers have been used in agriculture for crop production. However, intensive utilization of chemical fertilizers is not an ecological and environmental choice since they are destroying soil health and causing an emerging threat to agricultural production on a global scale. Under the circumstances of the increasing utilization of chemical fertilizers, cultivating microalgae to produce biofertilizers would be a wise solution since desired environmental targets will be obtained including (1) replacing chemical fertilizer while improving crop yields and soil health; (2) reducing the harvest of non-renewable elements from limited natural resources for chemical fertilizers production, and (3) mitigating negative influences of climate change through CO2 capture through microalgae cultivation. Recent improvements in microalgae-derived-biofertilizer-applied agriculture will be summarized in this review article. At last, the recent challenges of applying biofertilizers will be discussed as well as the perspective regarding the concept of circular bio-economy and sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Thanh Ngoc-Dan Cao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Linh-Thy Le
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), Ward 11, District 5, Ho Chi Minh city 72714, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan, ROC; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - My Thi Tra Ngo
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Mai-Duy-Thong Pham
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNUT.HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan, ROC
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tan Phu district, Ho Chi Minh city 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNUT.HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
21
|
Li D, Sun Y, Shi Y, Wang Z, Okeke S, Yang L, Zhang W, Xiao L. Structure evolution of air cathodes and their application in electrochemical sensor development and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161689. [PMID: 36682546 DOI: 10.1016/j.scitotenv.2023.161689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Cathode structure and material are the most important factors to determine the performance and cost of single chamber air-cathode microbial fuel cell (MFC), which is the most promising type of MFC technology. Since the first air cathode was invented in 2004, five major structures (1-layer, 2-layer, 3-layer, 4-layer and separator-support) have been invented and modified to fit new material, improve power performance and lower MFC cost. This paper reviewed the structure evolution of air cathodes in past 18 years. The benefits and drawbacks of these structures, in terms of power generation, material cost, fabrication procedure and modification process are analyzed. The practical application cases (e.g., sensor development and wastewater treatment) employed with different cathode structures were also summarized and analyzed. Based on practical performance and long-term cost analysis, the 2-layer cathode demonstrated much greater potential over other structures. Compared with traditional activated-sludge technology, the cost of an MFC-based system is becoming competitive when employing with 2-layer structure. This review not only provides a detailed development history of air cathode but also reveals the advantages/disadvantages of air cathode with different structures, which will promote the research and application of air-cathode MFC technology.
Collapse
Affiliation(s)
- Dunzhu Li
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Yifan Sun
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Yunhong Shi
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Zeena Wang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Saviour Okeke
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Luming Yang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Wen Zhang
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
22
|
Wang H, Long X, Cao X, Li L, Zhang J, Zhao Y, Wang D, Wang Z, Meng H, Dong W, Jiang C, Li J, Li X. Stimulation of atrazine degradation by activated carbon and cathodic effect in soil microbial fuel cell. CHEMOSPHERE 2023; 320:138087. [PMID: 36754303 DOI: 10.1016/j.chemosphere.2023.138087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/03/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Soil microbial fuel cells (MFCs) have been increasingly studied in recent years and have attracted significant attention as an environmentally sustainable bioelectrochemical technology. However, the poor conductivity of the soil matrix and the neglect of the cathodic function have limited its application. In this study, quartz sand and activated carbon were subjected to investigation on their influence on atrazine degradation. Atrazine was introduced in different layers (cathode, upper layer) to explore the cathodic effect on atrazine removal. The results revealed that activated carbon could reduce the internal resistance (693 Ω) and generate the highest power density (25.51 mW/m2) of the soil MFCs, and thus increase the removal efficiency (97.92%) of atrazine. The dynamic degradation profiles of atrazine were different for different adding layers. The cathode electrode acted as an electron donor could increase the distance of the effective influence of the soil MFCs' cathode from the middle to the cathode layer. The cathode (region) and the region close to the cathode could degrade atrazine with the atrazine removal efficiencies ranging from 60.67% to 92.79%, and the degradation ability of the cathode was stronger than that of other layers. The degradation effect followed the order: cathode > upper > lower > middle). Geobacter, Desulfobulbus, and Desulfuromonas belonging to the δ-Proteobacteria class were identified as the dominant electroactive microorganisms in the anode layer, while their relative abundances are quite low in the upper and cathode layers. Pseudomonas is an atrazine-degrading bacterium, but its relative abundance was only 0.13-0.51%. Thus, bioelectrochemistry rather than microbial degradation was the primary driving force.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xian Cao
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Lei Li
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China
| | - Jingran Zhang
- Chinese Academy of Sciences, Research Center for Eco-environmental Sciences, Beijing 100085, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Dongqi Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Zhe Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Haiyu Meng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Wen Dong
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Chunbo Jiang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Xianning Li
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, PR China.
| |
Collapse
|
23
|
Kumar M, Sridharan S, Sawarkar AD, Shakeel A, Anerao P, Mannina G, Sharma P, Pandey A. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160031. [PMID: 36372172 DOI: 10.1016/j.scitotenv.2022.160031] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical and personnel care products (PPCPs) from wastewater are a potential hazard to the human health and wildlife, and their occurrence in wastewater has caught the concern of researchers recently. To deal with PPCPs, various treatment technologies have been evolved such as physical, biological, and chemical methods. Nevertheless, modern and efficient techniques such as advance oxidation processes (AOPs) demand expensive chemicals and energy, which ultimately leads to a high treatment cost. Therefore, integration of chemical techniques with biological processes has been recently suggested to decrease the expenses. Furthermore, combining ozonation with activated carbon (AC) can significantly enhance the removal efficiency. There are some other emerging technologies of lower operational cost like photo-Fenton method and solar radiation-based methods as well as constructed wetland, which are promising. However, feasibility and practicality in pilot-scale have not been estimated for most of these advanced treatment technologies. In this context, the present review work explores the treatment of emerging PPCPs in wastewater, via available conventional, non-conventional, and integrated technologies. Furthermore, this work focused on the state-of-art technologies via an extensive literature search, highlights the limitations and challenges of the prevailing commercial technologies. Finally, this work provides a brief discussion and offers future research directions on technologies needed for treatment of wastewater containing PPCPs, accompanied by techno-economic feasibility assessment.
Collapse
Affiliation(s)
- Manish Kumar
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Srinidhi Sridharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Ankush D Sawarkar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440 010, India
| | - Adnan Shakeel
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Prathmesh Anerao
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
24
|
Kumar M, Ambika S, Hassani A, Nidheesh PV. Waste to catalyst: Role of agricultural waste in water and wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159762. [PMID: 36306836 DOI: 10.1016/j.scitotenv.2022.159762] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Presently, owing to the rapid development of industrialization and urbanization activities, a huge quantity of wastewater is generated that contain toxic chemical and heavy metals, imposing higher environmental jeopardies and affecting the life of living well-being and the economy of the counties, if not treated appropriately. Subsequently, the advancement in sustainable cost-effective wastewater treatment technology has attracted more attention from policymakers, legislators, and scientific communities. Therefore, the current review intends to highlight the recent development and applications of biochars and/or green nanoparticles (NPs) produced from agricultural waste via green routes in removing the refractory pollutants from water and wastewater. This review also highlights the contemporary application and mechanism of biochar-supported advanced oxidation processes (AOPs) for the removal of organic pollutants in water and wastewater. Although, the fabrication and application of agriculture waste-derived biochar and NPs are considered a greener approach, nevertheless, before scaling up production and application, its toxicological and life-cycle challenges must be taken into account. Furthermore, future efforts should be carried out towards process engineering to enhance the performance of green catalysts to improve the economy of the process.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Selvaraj Ambika
- Faculty, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Adjunct Faculty, Department of Climate Change, Indian Institute of Technology Hyderabad, Telangana, India; Faculty and Program Coordinator, E-Waste Resources Engineering and Management, Indian Institute of Technology Hyderabad, Telangana, India
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
25
|
Advanced biological and non-biological technologies for carbon sequestration, wastewater treatment, and concurrent valuable recovery: A review. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Ahirwar A, Das S, Das S, Yang YH, Bhatia SK, Vinayak V, Ghangrekar MM. Photosynthetic microbial fuel cell for bioenergy and valuable production: A review of circular bio-economy approach. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Muñoz-Palazon B, Gorrasi S, Rosa-Masegosa A, Pasqualetti M, Braconcini M, Fenice M. Treatment of High-Polyphenol-Content Waters Using Biotechnological Approaches: The Latest Update. Molecules 2022; 28:314. [PMID: 36615508 PMCID: PMC9822302 DOI: 10.3390/molecules28010314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Polyphenols and their intermediate metabolites are natural compounds that are spread worldwide. Polyphenols are antioxidant agents beneficial for human health, but exposure to some of these compounds can be harmful to humans and the environment. A number of industries produce and discharge polyphenols in water effluents. These emissions pose serious environmental issues, causing the pollution of surface or groundwater (which are used to provide drinking water) or harming wildlife in the receiving ecosystems. The treatment of high-polyphenol-content waters is mandatory for many industries. Nowadays, biotechnological approaches are gaining relevance for their low footprint, high efficiency, low cost, and versatility in pollutant removal. Biotreatments exploit the diversity of microbial metabolisms in relation to the different characteristics of the polluted water, modifying the design and the operational conditions of the technologies. Microbial metabolic features have been used for full or partial polyphenol degradation since several decades ago. Nowadays, the comprehensive use of biotreatments combined with physical-chemical treatments has enhanced the removal rates to provide safe and high-quality effluents. In this review, the evolution of the biotechnological processes for treating high-polyphenol-content water is described. A particular emphasis is given to providing a general concept, indicating which bioprocess might be adopted considering the water composition and the economic/environmental requirements. The use of effective technologies for environmental phenol removal could help in reducing/avoiding the detrimental effects of these chemicals. In addition, some of them could be employed for the recovery of beneficial ones.
Collapse
Affiliation(s)
- Barbara Muñoz-Palazon
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain
| | - Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Aurora Rosa-Masegosa
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071 Granada, Spain
- Faculty of Pharmacy, University of Granada, Campus de Cartuja, s/n, 18071 Granada, Spain
| | - Marcella Pasqualetti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Laboratory of Ecology of Marine Fungi, CoNISMa, Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Martina Braconcini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
- Laboratory of Applied Marine Microbiology, CoNISMa, Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy
| |
Collapse
|
28
|
Abhishek K, Shrivastava A, Vimal V, Gupta AK, Bhujbal SK, Biswas JK, Singh L, Ghosh P, Pandey A, Sharma P, Kumar M. Biochar application for greenhouse gas mitigation, contaminants immobilization and soil fertility enhancement: A state-of-the-art review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158562. [PMID: 36089037 DOI: 10.1016/j.scitotenv.2022.158562] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Rising global temperature, pollution load, and energy crises are serious problems, recently facing the world. Scientists around the world are ambitious to find eco-friendly and cost-effective routes for resolving these problems. Biochar has emerged as an agent for environmental remediation and has proven to be the effective sorbent to inorganic and organic pollutants in water and soil. Endowed with unique attributes such as porous structure, larger specific surface area (SSA), abundant surface functional groups, better cation exchange capacity (CEC), strong adsorption capacity, high environmental stability, embedded minerals, and micronutrients, biochar is presented as a promising material for environmental management, reduction in greenhouse gases (GHGs) emissions, soil management, and soil fertility enhancement. Therefore, the current review covers the influence of key factors (pyrolysis temperature, retention time, gas flow rate, and reactor design) on the production yield and property of biochar. Furthermore, this review emphasizes the diverse application of biochar such as waste management, construction material, adsorptive removal of petroleum and oil from aqueous media, immobilization of contaminants, carbon sequestration, and their role in climate change mitigation, soil conditioner, along with opportunities and challenges. Finally, this review discusses the evaluation of biochar standardization by different international agencies and their economic perspective.
Collapse
Affiliation(s)
- Kumar Abhishek
- Department of Environment, Forest and Climate Change, Government of Bihar, Patna, India
| | | | - Vineet Vimal
- Institute of Minerals and Materials Technology, Orissa, India
| | - Ajay Kumar Gupta
- Department of Environment, Forest and Climate Change, Government of Bihar, Patna, India
| | - Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, Bihar, India.
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India.
| |
Collapse
|
29
|
Jawaharraj K, Sigdel P, Gu Z, Muthusamy G, Sani RK, Gadhamshetty V. Photosynthetic microbial fuel cells for methanol treatment using graphene electrodes. ENVIRONMENTAL RESEARCH 2022; 215:114045. [PMID: 35995227 DOI: 10.1016/j.envres.2022.114045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic microbial fuel cells (pMFC) represent a promising approach for treating methanol (CH3OH) wastewater. However, their use is constrained by a lack of knowledge on the extracellular electron transfer capabilities of photosynthetic methylotrophs, especially when coupled with metal electrodes. This study assessed the CH3OH oxidation capabilities of Rhodobacter sphaeroides 2.4.1 in two-compartment pMFCs. A 3D nickel (Ni) foam modified with plasma-grown graphene (Gr) was used as an anode, nitrate mineral salts media (NMS) supplemented with 0.1% CH3OH as anolyte, carbon brush as cathode, and 50 mM ferricyanide as catholyte. Two simultaneous pMFCs that used bare Ni foam and carbon felt served as controls. The Ni/Gr electrode registered a two-fold lower charge transfer resistance (0.005 kΩ cm2) and correspondingly 16-fold higher power density (141 mW/m2) compared to controls. The underlying reasons for the enhanced performance of R. sphaeroides at the graphene interface were discerned. The real-time polymerase chain reaction (PCR) analysis revealed the upregulation of cytochrome c oxidase, aa3 type, subunit I gene, and Flp pilus assembly protein genes in the sessile cells compared to their planktonic counterparts. The key EET pathways used for sustaining CH3OH oxidation were discussed.
Collapse
Affiliation(s)
- Kalimuthu Jawaharraj
- Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
| | - Pawan Sigdel
- Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
| | - Zhengrong Gu
- Agricultural and Biosystems Engineering, South Dakota State University, 2100 University Station, Brookings, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea, 80 Daehak-ro, Buk-gu, Daegu, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, Tamil Nadu, India
| | - Rajesh Kumar Sani
- Chemical and Biological Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; BuG ReMeDEE Consortia, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; 2D-materials for Biofilm Engineering, Science and Technology (2DBEST) Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA; Data-Driven Materials Discovery for Bioengineering Innovation Center, South Dakota Mines, 501 E. St. Joseph Street, Rapid City, SD, 57701, USA.
| |
Collapse
|
30
|
Annie Modestra J, Matsakas L, Rova U, Christakopoulos P. Prospects and trends in bioelectrochemical systems: Transitioning from CO 2 towards a low-carbon circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 364:128040. [PMID: 36182019 DOI: 10.1016/j.biortech.2022.128040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Resource scarcity and climate change are the most quested topics in view of environmental sustainability. CO2 sequestration through bioelectrochemical systems is an attractive option for fostering bioeconomy development upon several value-added products generation. This review details the state-of-the-art of bioelectrochemical systems for resource recovery from CO2 along with various biocatalysts capable of utilizing CO2. Two bioprocesses (photo-electrosynthesis and chemolithoelectrosynthesis) were discussed projecting their potential for biobased economy development from CO2. Significance of adopting circular strategies for efficient resource recycling, intensifying product value, integrations/interlinking of multiple process chains for the development of circular bioeconomy were discussed. Existing constrains as well as outlook for near establishment of circular bioeconomy from CO2 is presented by weighing fore-sighted plans with current actions. Need for developing CO2-based circular bioeconomy via innovative business models by analyzing social, technical, environmental and product related aspects are also discussed providing a roadmap of gaps to pursue for attaining practicality.
Collapse
Affiliation(s)
- J Annie Modestra
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden.
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| |
Collapse
|
31
|
Tang S, Fan T, Jin L, Lei P, Shao C, Wu S, Yang Y, He Y, Ren R, Xu J. Soil microbial diversity and functional capacity associated with the production of edible mushroom Stropharia rugosoannulata in croplands. PeerJ 2022; 10:e14130. [PMID: 36213510 PMCID: PMC9536307 DOI: 10.7717/peerj.14130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023] Open
Abstract
In recent years, a rare edible mushroom Stropharia rugosoannulata has become popular. S. rugosoannulata has the characteristics of easy cultivation, low cost, high output value, and low labor requirement, making its economic benefits significantly superior to those of other planting industries. Accumulating research demonstrates that cultivating edible fungus is advantageous for farming soil. The present experiment used idle croplands in winter for S. rugosoannulata cultivation. We explored the effects of S. rugosoannulata cultivation on soil properties and soil microbial community structure in paddy and dry fields, respectively. We cultivated S. rugosoannulata in the fields after planting chili and rice, respectively. The results showed that Chili-S. rugosoannulata and Rice-S. rugosoannulata planting patterns increased the yield, quality and amino acid content of S. rugosoannulata. By analyzing the soil properties, we found that the Chili-S. rugosoannulata and Rice-S. rugosoannulata cropping patterns increased the total nitrogen, available phosphorus, soil organic carbon, and available potassium content of the soil. We used 16s amplicons for bacteria and internal transcribed spacer (ITS) region for fungi to analyze the microbial communities in rhizosphere soils. Notably, S. rugosoannulata cultivation significantly increased the abundance of beneficial microorganisms such as Chloroflexi, Cladosporium and Mortierella and reduce the abundance of Botryotrichumin and Archaeorhizomyces. We consider S. rugosoannulata cultivation in cropland can improve soil properties, regulate the community structure of soil microorganisms, increase the expression abundance of beneficial organisms and ultimately improve the S. rugosoannulata yield and lay a good foundation for a new round of crops after this edible mushroom cultivation.
Collapse
Affiliation(s)
- Shaojun Tang
- Hunan Institute of Microbiology, Changsha, china
| | - Tingting Fan
- College of Forestry, Central South University of Forestry & Technology, Changsha, China
| | - Lei Jin
- Hunan Institute of Microbiology, Changsha, china
| | - Pin Lei
- Hunan Institute of Microbiology, Changsha, china
| | - Chenxia Shao
- Hunan Institute of Microbiology, Changsha, china
| | - Shenlian Wu
- Hunan Institute of Microbiology, Changsha, china
| | - Yi Yang
- Hunan Institute of Microbiology, Changsha, china
| | - Yuelin He
- Hunan Institute of Microbiology, Changsha, china
| | - Rui Ren
- Hunan Institute of Microbiology, Changsha, china
| | - Jun Xu
- Hunan Institute of Microbiology, Changsha, china
| |
Collapse
|
32
|
Ji B, Zhao Y, Li Q, Yang Y, Wei T, Tang C, Zhang J, Ruan W, Tai Y. Interrelation between macrophytes roots and cathode in constructed wetland-microbial fuel cells: Further evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156071. [PMID: 35597339 DOI: 10.1016/j.scitotenv.2022.156071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
As an essential component in constructed wetland-microbial fuel cells (CW-MFC) system, the macrophytes play multiple roles in bioelectricity generation and decontaminants performance. However, the interrelation between macrophytes roots and cathode has not been fully investigated despite the fact that plant cultivation strategy is a critical issue in practice. For the first time, this study was designed to explore the interaction between macrophytes and cathode in CW-MFC by planting Cyperus altrnlifolius at relatively different positions from the cathode. The results showed that plants exhibited higher bioelectricity generation and dramatically improved pollution removal, as well as the improved richness and diversity of cathode microbes. More significantly, the relative locations between the plant roots and the cathode could lead to different cathode working patterns, while the optimal cathode pattern "plant root-assisted bio- & air-cathode" was formed when the plant roots are directly placed on the air-cathode layer in CW-MFC. The insight into the plant root and cathode relationship lies in whether the "multi-function cathode" can be established. This study contributes to increase the knowledge regarding the presence and behavior of plant roots and cathode throughout a CW-MFC system.
Collapse
Affiliation(s)
- Bin Ji
- Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China; State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Qiwen Li
- Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Yang Yang
- Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Ting Wei
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Chemical Engineering Department, University of Alcalá, Madrid, Spain
| | - Cheng Tang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Jinhua Zhang
- Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Weifeng Ruan
- Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Yiping Tai
- Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China.
| |
Collapse
|
33
|
Dattatraya Saratale G, Rajesh Banu J, Nastro RA, Kadier A, Ashokkumar V, Lay CH, Jung JH, Seung Shin H, Ganesh Saratale R, Chandrasekhar K. Bioelectrochemical systems in aid of sustainable biorefineries for the production of value-added products and resource recovery from wastewater: A critical review and future perspectives. BIORESOURCE TECHNOLOGY 2022; 359:127435. [PMID: 35680092 DOI: 10.1016/j.biortech.2022.127435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) have the potential to be used in a variety of applications such as waste biorefinery, pollutants removal, CO2 capture, and the electrosynthesis of clean and renewable biofuels or byproducts, among others. In contrast, many technical challenges need to be addressed before BES can be scaled up and put into real-world applications. Utilizing BES, this review article presents a state-of-the-art overall view of crucial concepts and the most recent innovative results and achievements acquired from the BES system. Special attention is placed on a hybrid approach for product recovery and wastewater treatment. There is also a comprehensive overview of waste biorefinery designs that are included. In conclusion, the significant obstacles and technical concerns found throughout the BES studies are discussed, and suggestions and future requirements for the virtual usage of the BES concept in actual waste treatment are outlined.
Collapse
Affiliation(s)
- Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Rosa Anna Nastro
- Department of Science and Technology, University Parthenope of Naples- Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Chyi-How Lay
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung 40724, Taiwan
| | - Ju-Hyeong Jung
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, South Korea
| | - K Chandrasekhar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi-522213, Guntur, Andhra Pradesh, India.
| |
Collapse
|
34
|
Bhanse P, Kumar M, Singh L, Awasthi MK, Qureshi A. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. CHEMOSPHERE 2022; 303:134954. [PMID: 35595111 DOI: 10.1016/j.chemosphere.2022.134954] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 05/02/2023]
Abstract
Soil is considered as a vital natural resource equivalent to air and water which supports growth of the plants and provides habitats to microorganisms. Changes in soil properties, productivity, and, inevitably contamination/stress are the result of urbanisation, industrialization, and long-term use of synthetic fertiliser. Therefore, in the recent scenario, reclamation of contaminated/stressed soils has become a potential challenge. Several customized, such as, physical, chemical, and biological technologies have been deployed so far to restore contaminated land. Among them, microbial-assisted phytoremediation is considered as an economical and greener approach. In recent decades, soil microbes have successfully been used to improve plants' ability to tolerate biotic and abiotic stress and strengthen their phytoremediation capacity. Therefore, in this context, the current review work critically explored the microbial assisted phytoremediation mechanisms to restore different types of stressed soil. The role of plant growth-promoting rhizobacteria (PGPR) and their potential mechanisms that foster plants' growth and also enhance phytoremediation capacity are focussed. Finally, this review has emphasized on the application of advanced tools and techniques to effectively characterize potent soil microbial communities and their significance in boosting the phytoremediation process of stressed soils along with prospects for future research.
Collapse
Affiliation(s)
- Poonam Bhanse
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manish Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
35
|
Wu Q, Liu J, Li Q, Mo W, Wan R, Peng S. Effect of Electrode Distances on Remediation of Eutrophic Water and Sediment by Sediment Microbial Fuel Cell Coupled Floating Beds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10423. [PMID: 36012057 PMCID: PMC9408168 DOI: 10.3390/ijerph191610423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Efficient and sustainable technologies for cleaning of contaminated water and sediments are in urgent demand. In this study, a new type of sediment microbial fuel cell coupled floating bed (FB-SMFC) was developed to repair eutrophic water and sediment in a cleaner way. The effect of electrode spacing on the power generation capacity and the synchronous remediation of pollutants from eutrophic water and sediment were studied. When the electrode distance was 60 cm, the maximum power generation and pollutant removal effects were obtained. At the end of the experiment, the maximum output voltage was 0.4 V, and the chemical oxygen demand (CODCr, potassium dichromate method), total nitrogen (TN), and total phosphorus (TP) contents in the overlying water were 8 mg/L, 0.7 mg/L, and 0.39 mg/L. The corresponding removal rates were 88.2%, 78.8%, and 59.0%, respectively. The removal rates of organic matter and TN in the sediment were 12.8% and 86.4%, respectively, and the fixation rate of TP was 29.2%. Proteobacteria was the dominant phylum of bacteria in the sediment and anode. Many anaerobic bacteria were found in the overlying water, which facilitated denitrification. Overall, the results of this research revealed a highly efficient and reliable strategy for eutrophic water and sediment remediation, aquatic ecosystems restoration, and human health protection.
Collapse
|
36
|
Awasthi SK, Kumar M, Kumar V, Sarsaiya S, Anerao P, Ghosh P, Singh L, Liu H, Zhang Z, Awasthi MK. A comprehensive review on recent advancements in biodegradation and sustainable management of biopolymers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119600. [PMID: 35691442 DOI: 10.1016/j.envpol.2022.119600] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Recent years have seen upsurge in plastic manufacturing and its utilization in various fields, such as, packaging, household goods, medical applications, and beauty products. Due to various adverse impacts imposed by synthetic plastics on the health of living well-being and the environment, the biopolymers have been emerged out an alternative. Although, the biopolymers such as polyhydroxyalkanoates (PHA) are entirely degradable. However, the other polymers, such as poly (lactic acid) (PLA) are only partially degradable and often not biosynthesized. Biodegradation of the polymers using microorganisms is considered an effective bioremediation approach. Biodegradation can be performed in aerobic and anaerobic environments. In this context, the present review discusses the biopolymer production, their persistence in the environment, aerobic biodegradation, anaerobic biodegradation, challenges associated with biodegradation and future perspectives. In addition, this review discusses the advancement in the technologies associated with biopolymer production, biodegradation, and their biodegradation standard in different environmental settings. Furthermore, differences in the degradation condition in the laboratory as well as on-site are discussed.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Prathmesh Anerao
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| |
Collapse
|
37
|
Borja-Maldonado F, López Zavala MÁ. Contribution of configurations, electrode and membrane materials, electron transfer mechanisms, and cost of components on the current and future development of microbial fuel cells. Heliyon 2022; 8:e09849. [PMID: 35855980 PMCID: PMC9287189 DOI: 10.1016/j.heliyon.2022.e09849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 06/28/2022] [Indexed: 10/25/2022] Open
Abstract
Microbial fuel cells (MFCs) are a technology that can be applied to both the wastewater treatment and bioenergy generation. This work discusses the contribution of improvements regarding the configurations, electrode materials, membrane materials, electron transfer mechanisms, and materials cost on the current and future development of MFCs. Analysis of the most recent scientific publications on the field denotes that dual-chamber MFCs configuration offers the greatest potential due to the excellent ability to be adapted to different operating environments. Carbon-based materials show the best performance, biocompatibility of carbon-brush anode favors the formation of the biofilm in a mixed consortium and in wastewater as a substrate resembles the conditions of real scenarios. Carbon-cloth cathode modified with nanotechnology favors the conductive properties of the electrode. Ceramic clay membranes emerge as an interesting low-cost membrane with a proton conductivity of 0.0817 S cm-1, close to that obtained with the Nafion membrane. The use of nanotechnology in the electrodes also enhances electron transfer in MFCs. It increases the active sites at the anode and improves the interface with microorganisms. At the cathode, it favors its catalytic properties and the oxygen reduction reaction. These features together favor MFCs performance through energy production and substrate degradation with values above 2.0 W m-2 and 90% respectively. All the recent advances in MFCs are gradually contributing to enable technological alternatives that, in addition to wastewater treatment, generate energy in a sustainable manner. It is important to continue the research efforts worldwide to make MFCs an available and affordable technology for industry and society.
Collapse
Affiliation(s)
- Fátima Borja-Maldonado
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| | - Miguel Ángel López Zavala
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, N.L., Mexico
| |
Collapse
|
38
|
Varjani S, Shahbeig H, Popat K, Patel Z, Vyas S, Shah AV, Barceló D, Hao Ngo H, Sonne C, Shiung Lam S, Aghbashlo M, Tabatabaei M. Sustainable management of municipal solid waste through waste-to-energy technologies. BIORESOURCE TECHNOLOGY 2022; 355:127247. [PMID: 35490955 DOI: 10.1016/j.biortech.2022.127247] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Increasing municipal solid waste (MSW) generation and environmental concerns have sparked global interest in waste valorization through various waste-to-energy (WtE) to generate renewable energy sources and reduce dependency on fossil-derived fuels and chemicals. These technologies are vital for implementing the envisioned global "bioeconomy" through biorefineries. In light of that, a detailed overview of WtE technologies with their benefits and drawbacks is provided in this paper. Additionally, the biorefinery concept for waste management and sustainable energy generation is discussed. The identification of appropriate WtE technology for energy recovery continues to be a significant challenge. So, in order to effectively apply WtE technologies in the burgeoning bioeconomy, this review provides a comprehensive overview of the existing scenario for sustainable MSW management along with the bottlenecks and perspectives.
Collapse
Affiliation(s)
- Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India.
| | - Hossein Shahbeig
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Kartik Popat
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar 382007, Gujarat, India
| | - Zeel Patel
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Shaili Vyas
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India; Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat 382015, India
| | - Anil V Shah
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain; Catalan Institute for Water Research (ICRA-CERCA), Girona, Catalonia, Spain
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Christian Sonne
- Arhus University, Department of Ecoscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Tabatabaei
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
39
|
Narayanan M, Ma Y. Influences of Biochar on Bioremediation/Phytoremediation Potential of Metal-Contaminated Soils. Front Microbiol 2022; 13:929730. [PMID: 35756072 PMCID: PMC9218714 DOI: 10.3389/fmicb.2022.929730] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
A number of anthropogenic and weathering activities accumulate heavy metals in soils, causing adverse effects on soil characteristics, microbial activity (diversity), agricultural practices, and underground aquifers. Controlling soil heavy metal pollution is difficult due to its persistence in soils, resulting in the deposition and transmission into the food web via agricultural food products, ultimately affecting human health. This review critically explores the potential for remediation of metal-contaminated soils using a biochar-based responsible approach. Plant-based biochar is an auspicious bio-based residue substance that can be used for metal-polluted soil remediation and soil improvement as a sustainable approach. Plants with rapid growth and increased biomass can meet the requirements for phytoremediation in large quantities. Recent research indicates significant progress in understanding the mechanisms of metal accumulation and contaminant movement in plants used for phytoremediation of metal-contaminated soil. Excessive contamination reduces plant biomass and growth, which has substantial hyperaccumulating possibilities and is detrimental to the phytoremediation process. Biochar derived from various plant sources can promote the growth and phytoremediation competence of native or wild plants grown in metal-polluted soil. Carbon-enriched biochar encourages native microbial growth by neutralizing pH and providing nutritional support. Thus, this review critically discusses the influence of plant and agricultural waste-based biochar on plant phytoremediation potential in metal-contaminated soils.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Department of Biotechnology, Division of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
40
|
Spatiotemporal Variations in Grassland Vulnerability on the Qinghai-Tibet Plateau Based on a Comprehensive Framework. SUSTAINABILITY 2022. [DOI: 10.3390/su14094912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Grasslands are globally important for providing essential ecosystem services and maintaining ecological security. Monitoring and assessing grassland vulnerability are critical for developing long-term grassland management policies and strategies. The grassland vulnerability on the Qinghai-Tibet Plateau (QTP) is considered high, but its spatial and temporal variations in response to human activities and climate change are not well understood. In this study, a comprehensive grassland vulnerability index (GVI), which includes natural factors (VNF), environmental disturbances (VED), and socioeconomic impacts (VSI), was developed by using the analytic hierarchy process (AHP), principal component analysis (PCA), and environmental vulnerability distance index (EVDI). Our results showed that the spatial distribution of GVI had obvious heterogeneity, decreasing from northwest to southeast; the regions with serious and extreme vulnerability were mainly concentrated in the north-western alpine steppe and desert steppe. From 2000 to 2018, GVI decreased from 0.61 in 2000 to 0.60 in 2010 and then to 0.59 in 2018, demonstrating a healthy tendency. The normalized difference vegetation index (NDVI), land desertification, and population were the factors that had the most significant impact on VNF, VED, and VSI, respectively. The global Moran’s I index of grassland vulnerability was greater than 0, with a significant positive spatial correlation. The number of High-High and Low-Low units decreased, indicating that the High-High and Low-Low cluster regions tended to be discrete. Moreover, our results suggest that understanding the variations in grassland vulnerability on the QTP is important for regional sustainable development in the context of intensified climate change and human disturbances.
Collapse
|
41
|
Apollon W, Rusyn I, González-Gamboa N, Kuleshova T, Luna-Maldonado AI, Vidales-Contreras JA, Kamaraj SK. Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153055. [PMID: 35032528 DOI: 10.1016/j.scitotenv.2022.153055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Microbial energy generation systems, i.e., bioelectrochemical systems (BESs) are promising sustainable technologies that have been used in different fields of application such as biofuel production, biosensor, nutrient recovery, wastewater treatment, and heavy metals removal. However, BESs face great challenges such as large-scale application in real time, low power performance, and suitable materials for their configuration. This review paper aimed to discuss the use of BES systems such as conventional microbial fuel cells (MFCs), as well as plant microbial fuel cell (P-MFC), sediment microbial fuel cell (S-MFC), constructed wetland microbial fuel cell (CW-MFC), osmotic microbial fuel cell (OsMFC), photo-bioelectrochemical fuel cell (PBFC), and MFC-Fenton systems in the zero waste sustainable recovery process. Firstly, the configuration and electrode materials used in BESs as the main sources to improve the performance of these technologies are discussed. Additionally, zero waste recovery process from solid and wastewater feedstock, i.e., energy recovery: electricity generation (from 12 to 26,680 mW m-2) and fuel generation, i.e., H2 (170 ± 2.7 L-1 L-1 d-1) and CH4 (107.6 ± 3.2 mL-1 g-1), nutrient recovery of 100% (PO43-P), and 13-99% (NH4+-N), heavy metal removal/recovery: water recovery, nitrate (100%), sulfate (53-99%), and sulfide recovery/removal (99%), antibiotic, dye removal, and other product recovery are critically analyzed in this review paper. Finally, the perspective and challenges, and future outlook are highlighted. There is no doubt that BES technologies are an economical option for the simultaneous zero waste elimination and energy recovery. However, more research is required to carry out the large-scale application of BES, as well as their commercialization.
Collapse
Affiliation(s)
- Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico.
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera st., 12, Lviv 79013, Ukraine
| | - Nancy González-Gamboa
- Renewable Energy Unit, Yucatan Center for Scientist Research, Carretera Sierra Papacal-Chuburná Puerto Km 5, CP 97302 Sierra Papacal, Yucatan, Mexico
| | - Tatiana Kuleshova
- Agrophysical Research Institute, Department of Plant Lightphysiology and Agroecosystem Bioproductivity, 195220 Saint-Petersburg 14, Grazhdanskiy pr., Russia
| | - Alejandro Isabel Luna-Maldonado
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Juan Antonio Vidales-Contreras
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Sathish-Kumar Kamaraj
- TecNM-Instituto Tecnológico El Llano Aguascalientes (ITEL), Laboratorio de Medio Ambiente Sostenible, Km.18 Carretera Aguascalientes-San Luis Potosí, El Llano Ags. C.P. 20330, Mexico.
| |
Collapse
|
42
|
Shrivastava V, Ali I, Marjub MM, Rene ER, Soto AMF. Wastewater in the food industry: Treatment technologies and reuse potential. CHEMOSPHERE 2022; 293:133553. [PMID: 35016953 DOI: 10.1016/j.chemosphere.2022.133553] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Water is the most extensively used raw material in the food and beverage industry. This industrial sector has a negative impact on the environment and economy as a result of rising water demand and wastewater production. With the increasing scarcity of drinking water, the reuse of wastewater streams has become an important economic and ecological concern. Therefore, the optimisation of water consumption and wastewater reuse in the food industry is essential. On the other hand, several countries limit the reuse of wastewater because of legal curtailment, public health and safety concerns. This represents a major challenge for both industries and administrations due to the technical complexity and financial costs involved. The present review aims at addressing the key issues related to water consumption, wastewater generation, treatment and successful implementation cases of water reuse in the food and beverage industry. Moreover, the various case studies of already employed technologies for the food industry wastewater treatment and reuse have been analysed for their performance. Also, this review reveals future research on the application of other innovative technologies such as ultraviolet irradiation and micro electrolysis. However, the successful implementation of reuse strategies is associated with the holistic evaluation of local factors such as governmental incentives, social acceptance and legislation harmonisation related to the cost, risks, and environmental performance.
Collapse
Affiliation(s)
| | - Izba Ali
- KU Leuven Technology Campus De Nayer, Jan Pieter de Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium.
| | - Makid Maskawat Marjub
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands.
| | - Ailén María Florencia Soto
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands; Instituto de Grasa, Spanish National Research Council (CSIC), Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1, 41013, Seville, Spain.
| |
Collapse
|
43
|
Rathour R, Kumar H, Prasad K, Anerao P, Kumar M, Kapley A, Pandey A, Kumar Awasthi M, Singh L. Multifunctional applications of bamboo crop beyond environmental management: an Indian prospective. Bioengineered 2022; 13:8893-8914. [PMID: 35333141 PMCID: PMC9161982 DOI: 10.1080/21655979.2022.2056689] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Increasing population, industrialization, and economic growth cause several adverse impacts on the existing environment and living being. Therefore, rising pollutants load and their mitigation strategies, as well as achieving energy requirements while reducing reliance on fossil fuels are the key areas, which needs significant consideration for sustainable environment. Since India has considerable biomass resources, bioenergy is a significant part of the country’s energy policy. However, the selection of feedstock is a crucial step in bioenergy production that could produce raw material without compromising food reserve along with the sustainable environment. Higher growth capacity of bamboo species makes them a suitable lignocellulosic substrate for the production of high-value greener products such as fuels, chemicals, and biomaterials as well as an appropriate candidate for eco-restoration of degraded land. In that context, the current review discusses the multidimensional applications of bamboo species in India. The bioenergy potency of bamboo and probability of aligning its production, cultivation, and operation with economic and social development agendas are also addressed, making it an exceptional crop in India. Additionally, its fast growth, perennial root systems, and capability to restore degraded land make it an essential part of ecological restoration. Furthermore, this review explores additional benefits of bamboo plantation on the environment, economy, and society along with future research prospects.
Collapse
Affiliation(s)
- Rashmi Rathour
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Hemant Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Komal Prasad
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Prathmesh Anerao
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Atya Kapley
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, India.,Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.,Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| |
Collapse
|
44
|
Awasthi SK, Kumar M, Sarsaiya S, Ahluwalia V, Chen H, Kaur G, Sirohi R, Sindhu R, Binod P, Pandey A, Rathour R, Kumar S, Singh L, Zhang Z, Taherzadeh MJ, Awasthi MK. Multi-criteria research lines on livestock manure biorefinery development towards a circular economy: From the perspective of a life cycle assessment and business models strategies. JOURNAL OF CLEANER PRODUCTION 2022; 341:130862. [DOI: 10.1016/j.jclepro.2022.130862] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|