1
|
Santano D, Zubiate P, Socorro-Leránoz AB, Del Villar I. Regenerable LMR-based fiber optic immunosensor with a SnO 2 metallic oxide thin film for label-free detection. Talanta 2025; 287:127658. [PMID: 39899935 DOI: 10.1016/j.talanta.2025.127658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/05/2025]
Abstract
This paper introduces the fabrication and characterization of a regenerable LMR-based, label-free optical fiber immunosensor. This innovative biosensor proposal was developed by functionalizing a SnO2 metallic oxide thin film deposited on a D-shaped optical fiber using a silanization protocol. The system successfully detected IgG - anti-IgG complexes in real-time in a range of concentrations from 0.5 to 10 μg/ml and achieved a limit of detection (LoD) of 0.12 μg/ml of anti-IgG. The biosensor was extensively tested to assess its capacity for regeneration, confirming that it can be reused repeatedly, reducing the overall cost and waste typically associated with disposable sensors. This regenerability has significant implications for a range of applications, providing a more sustainable and flexible approach to biosensing technology.
Collapse
Affiliation(s)
- D Santano
- Department of Electrical, Electronic and Communication Engineering, Universidad Pública de Navarra (UPNA), Ed. Los Tejos, Campus of Arrosadia s/n, 31006, Pamplona, Navarra, Spain
| | - P Zubiate
- Department of Electrical, Electronic and Communication Engineering, Universidad Pública de Navarra (UPNA), Ed. Los Tejos, Campus of Arrosadia s/n, 31006, Pamplona, Navarra, Spain
| | - A B Socorro-Leránoz
- Department of Electrical, Electronic and Communication Engineering, Universidad Pública de Navarra (UPNA), Ed. Los Tejos, Campus of Arrosadia s/n, 31006, Pamplona, Navarra, Spain; Institute of Smart Cities, Jeronimo de Ayanz R&D Center, Campus of Arrosadia, 31006, Pamplona, Navarra, Spain; Navarra Institute for Health Research (IdiSNa), Recinto de Complejo Hospitalario de Navarra, C/ Irunlarrea, 3, E-31008 Pamplona, Navarra, Spain
| | - I Del Villar
- Department of Electrical, Electronic and Communication Engineering, Universidad Pública de Navarra (UPNA), Ed. Los Tejos, Campus of Arrosadia s/n, 31006, Pamplona, Navarra, Spain; Institute of Smart Cities, Jeronimo de Ayanz R&D Center, Campus of Arrosadia, 31006, Pamplona, Navarra, Spain.
| |
Collapse
|
2
|
Matenda RT, Rip D, Marais J, Williams PJ. Exploring the potential of hyperspectral imaging for microbial assessment of meat: A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124261. [PMID: 38608560 DOI: 10.1016/j.saa.2024.124261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Food safety is always of paramount importance globally due to the devasting social and economic effects of foodborne disease outbreaks. There is a high consumption rate of meat worldwide, making it an essential protein source in the human diet, hence its microbial safety is of great importance. The food industry stakeholders are always in search of methods that ensure safe food whilst maintaining food quality and excellent sensory attributes. Currently, there are several methods used in microbial food analysis, however, these methods are often time-consuming and do not allow real-time analysis. Considering the recent technological breakthroughs in artificial intelligence and machine learning, it raises the question of whether these advancements could be leveraged within the meat industry to improve turnaround time for microbial assessments. Hyperspectral imaging (HSI) is a highly prospective technology worth exploring for microbial analysis. The rapid, non-destructive method has the potential to be integrated into food production systems and allows foodborne pathogen detection in food samples, thus saving time. Although there has been a substantial increase in research on the utilisation of HSI in food applications over the past years, its use in the microbial assessment of meat is not yet optimal. This review aims to provide a basic understanding of the visible-near infrared HSI system, recent applications in the microbial assessment of meat products, challenges, and possible future applications.
Collapse
Affiliation(s)
- Rumbidzai T Matenda
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Diane Rip
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Jeannine Marais
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Paul J Williams
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa.
| |
Collapse
|
3
|
Panwar S, Duggirala KS, Yadav P, Debnath N, Yadav AK, Kumar A. Advanced diagnostic methods for identification of bacterial foodborne pathogens: contemporary and upcoming challenges. Crit Rev Biotechnol 2023; 43:982-1000. [PMID: 35994308 DOI: 10.1080/07388551.2022.2095253] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/09/2022] [Indexed: 11/03/2022]
Abstract
It is a public health imperative to have safe food and water across the population. Foodborne infections are one of the primary causes of sickness and mortality in both developed and developing countries. An estimated 100 million foodborne diseases and 120 000 foodborne illness-related fatalities occur each year in India. Several factors affect foodborne illness, such as improper farming methods, poor sanitary and hygienic conditions at all levels of the food supply chain, the lack of preventative measures in the food processing industry, the misuse of food additives, as well as improper storage and handling. In addition, chemical and microbiological combinations also play a key role in disease development. But recent disease outbreaks indicated that microbial pathogens played a major role in the development of foodborne diseases. Therefore, prompt, rapid, and accurate detection of high-risk food pathogens is extremely vital to warrant the safety of the food items. Conventional approaches for identifying foodborne pathogens are labor-intensive and cumbersome. As a result, a range of technologies for the rapid detection of foodborne bacterial pathogens have been developed. Presently, many methods are available for the instantaneous detection, identification, and monitoring of foodborne pathogens, such as nucleic acid-based methods, biosensor-based methods, and immunological-based methods. The goal of this review is to provide a complete evaluation of several existing and emerging strategies for detecting food-borne pathogens. Furthermore, this review outlines innovative methodologies and their uses in food testing, along with their existing limits and future possibilities in the detection of live pathogens in food.
Collapse
Affiliation(s)
- Surbhi Panwar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | | | - Pooja Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, India
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Jammu, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Jammu, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
4
|
Miyamura S, Oe R, Nakahara T, Koresawa H, Okada S, Taue S, Tokizane Y, Minamikawa T, Yano TA, Otsuka K, Sakane A, Sasaki T, Yasutomo K, Kajisa T, Yasui T. Rapid, high-sensitivity detection of biomolecules using dual-comb biosensing. Sci Rep 2023; 13:14541. [PMID: 37752134 PMCID: PMC10522648 DOI: 10.1038/s41598-023-41436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
Rapid, sensitive detection of biomolecules is important for biosensing of infectious pathogens as well as biomarkers and pollutants. For example, biosensing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still strongly required for the fight against coronavirus disease 2019 (COVID-19) pandemic. Here, we aim to achieve the rapid and sensitive detection of SARS-CoV-2 nucleocapsid protein antigen by enhancing the performance of optical biosensing based on optical frequency combs (OFC). The virus-concentration-dependent optical spectrum shift produced by antigen-antibody interactions is transformed into a photonic radio-frequency (RF) shift by a frequency conversion between the optical and RF regions in the OFC, facilitating rapid and sensitive detection with well-established electrical frequency measurements. Furthermore, active-dummy temperature-drift compensation with a dual-comb configuration enables the very small change in the virus-concentration-dependent signal to be extracted from the large, variable background signal caused by temperature disturbance. The achieved performance of dual-comb biosensing will greatly enhance the applicability of biosensors to viruses, biomarkers, environmental hormones, and so on.
Collapse
Affiliation(s)
- Shogo Miyamura
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Ryo Oe
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Takuya Nakahara
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Hidenori Koresawa
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Shota Okada
- Graduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Shuji Taue
- School of System Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Yu Tokizane
- Division of Next-Generation Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Takeo Minamikawa
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Taka-Aki Yano
- Division of Next-Generation Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Kunihiro Otsuka
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Ayuko Sakane
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Biochemistry, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Takuya Sasaki
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Biochemistry, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Koji Yasutomo
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Taira Kajisa
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan.
| | - Takeshi Yasui
- Division of Next-Generation Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.
| |
Collapse
|
5
|
Adhikari P, Florien N, Gupta S, Kaushal A. Recent Advances in the Detection of Listeria monocytogenes. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Listeria monocytogenes is the third-most severe pathogen causing a yearly outbreak of food poisoning in the world that proliferates widely in the environment. Infants, pregnant mothers, and immuno-compromised people are at high risk. Its ability to grow in both biotic and abiotic environments leads to epidemics that infect 5 out of 10 people annually. Because of the epithelial adhesion (by E-cadherin binding), it can suppress immune cells and thrive in the gastrointestinal tract till the brain through blood flow (E-cadherin). Microbial culture is still used as a gold standard, but takes a long time and often yields false positive results due to incompetence and temperature variations. Therefore, in order to treat it rather than using broad spectrum antibiotics, a standardized time-saving and highly specific technology for early detection is very important. It has been observed that the production of a particular antibody is delaying (so does the detection process) as a result of the inadequate understanding of the pathophysiology of the bacteria. This book chapter provides a brief summary of a pathogen as well as the scientific advances that led to its identification more easily.
Collapse
|
6
|
Surface Plasmon Resonance Assay for Label‐Free and Selective Detection of
Xylella Fastidiosa. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
7
|
Zhang J, Wang Y, Lu X. Molecular imprinting technology for sensing foodborne pathogenic bacteria. Anal Bioanal Chem 2021; 413:4581-4598. [PMID: 33564924 DOI: 10.1007/s00216-020-03138-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 01/09/2023]
Abstract
Foodborne diseases caused by bacterial pathogens pose a widespread and growing threat to public health in the world. Rapid detection of pathogenic bacteria is of great importance to prevent foodborne diseases and ensure food safety. However, traditional detection methods are time-consuming, labour intensive and expensive. In recent years, many attempts have been made to develop alternative methods for bacterial detection. Biosensors integrated with molecular imprinted polymers (MIPs) and various transducer platforms are among the most promising candidates for the detection of pathogenic bacteria in a highly sensitive, selective and ultra-rapid manner. In this review, we summarize the most recent advances in molecular imprinting for bacterial detection, introduce the underlying recognition mechanisms and highlight the applications of MIP-based biosensors. In addition, the challenges and future perspectives are discussed with the aim of accelerating the development of MIP-based biosensors and extending their applications.
Collapse
Affiliation(s)
- Jingbin Zhang
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
8
|
Hadjilouka A, Loizou K, Apostolou T, Dougiakis L, Inglezakis A, Tsaltas D. Newly Developed System for the Robust Detection of Listeria monocytogenes Based on a Bioelectric Cell Biosensor. BIOSENSORS 2020; 10:E178. [PMID: 33212801 PMCID: PMC7698059 DOI: 10.3390/bios10110178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 11/16/2022]
Abstract
Human food-borne diseases caused by pathogenic bacteria have been significantly increased in the last few decades causing numerous deaths worldwide. The standard analyses used for their detection have significant limitations regarding cost, special facilities and equipment, highly trained staff, and a long procedural time that can be crucial for foodborne pathogens with high hospitalization and mortality rates, such as Listeria monocytogenes. This study aimed to develop a biosensor that could detect L. monocytogenes rapidly and robustly. For this purpose, a cell-based biosensor technology based on the Bioelectric Recognition Assay (BERA) and a portable device developed by EMBIO Diagnostics, called B.EL.D (Bio Electric Diagnostics), were used. Membrane engineering was performed by electroinsertion of Listeria monocytogenes homologous antibodies into the membrane of African green monkey kidney (Vero) cells. The newly developed biosensor was able to detect the pathogen's presence rapidly (3 min) at concentrations as low as 102 CFU mL-1, demonstrating a higher sensitivity than most existing biosensor-based methods. In addition, lack of cross-reactivity with other Listeria species, as well as with Escherichia coli, was shown, thus, indicating biosensor's significant specificity against L. monocytogenes.
Collapse
Affiliation(s)
- Agni Hadjilouka
- EMBIO Diagnostics Ltd., Athalassas Avenue 8, Strovolos, Nicosia 2018, Cyprus; (K.L.); (T.A.); (L.D.); (A.I.)
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 30 Archbishop Kyprianos, Limassol 3036, Cyprus;
| | - Konstantinos Loizou
- EMBIO Diagnostics Ltd., Athalassas Avenue 8, Strovolos, Nicosia 2018, Cyprus; (K.L.); (T.A.); (L.D.); (A.I.)
| | - Theofylaktos Apostolou
- EMBIO Diagnostics Ltd., Athalassas Avenue 8, Strovolos, Nicosia 2018, Cyprus; (K.L.); (T.A.); (L.D.); (A.I.)
| | - Lazaros Dougiakis
- EMBIO Diagnostics Ltd., Athalassas Avenue 8, Strovolos, Nicosia 2018, Cyprus; (K.L.); (T.A.); (L.D.); (A.I.)
| | - Antonios Inglezakis
- EMBIO Diagnostics Ltd., Athalassas Avenue 8, Strovolos, Nicosia 2018, Cyprus; (K.L.); (T.A.); (L.D.); (A.I.)
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 30 Archbishop Kyprianos, Limassol 3036, Cyprus;
| |
Collapse
|
9
|
Ferone M, Gowen A, Fanning S, Scannell AGM. Microbial detection and identification methods: Bench top assays to omics approaches. Compr Rev Food Sci Food Saf 2020; 19:3106-3129. [PMID: 33337061 DOI: 10.1111/1541-4337.12618] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022]
Abstract
Rapid detection of foodborne pathogens, spoilage microbes, and other biological contaminants in complex food matrices is essential to maintain food quality and ensure consumer safety. Traditional methods involve culturing microbes using a range of nonselective and selective enrichment methods, followed by biochemical confirmation among others. The time-to-detection is a key limitation when testing foods, particularly those with short shelf lives, such as fresh meat, fish, dairy products, and vegetables. Some recent detection methods developed include the use of spectroscopic techniques, such as matrix-assisted laser desorption ionization-time of flight along with hyperspectral imaging protocols.This review presents a comprehensive overview comparing insights into the principles, characteristics, and applications of newer and emerging techniques methods applied to the detection and identification of microbes in food matrices, to more traditional benchtop approaches. The content has been developed to provide specialist scientists a broad view of bacterial identification methods available in terms of their benefits and limitations, which may be useful in the development of future experimental design. The case is also made for incorporating some of these emerging methods into the mainstream, for example, underutilized potential of spectroscopic techniques and hyperspectral imaging.
Collapse
Affiliation(s)
- Mariateresa Ferone
- UCD School of Agriculture and Food Science, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, Dublin, Ireland.,UCD Institute of Food and Health, Dublin, Ireland
| | - Aoife Gowen
- UCD School of Agriculture and Food Science, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, Dublin, Ireland.,UCD Institute of Food and Health, Dublin, Ireland
| | - Séamus Fanning
- UCD Institute of Food and Health, Dublin, Ireland.,UCD-Centre for Food Safety, Dublin, Ireland.,UCD School of Public Health, Physiotherapy and Sport Science University College Dublin, Dublin, Ireland
| | - Amalia G M Scannell
- UCD School of Agriculture and Food Science, Dublin, Ireland.,UCD Institute of Food and Health, Dublin, Ireland.,UCD-Centre for Food Safety, Dublin, Ireland
| |
Collapse
|
10
|
Qu JH, Dillen A, Saeys W, Lammertyn J, Spasic D. Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing. Anal Chim Acta 2019; 1104:10-27. [PMID: 32106939 DOI: 10.1016/j.aca.2019.12.067] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/04/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022]
Abstract
Inspired by the rapid progress and existing limitations in surface plasmon resonance (SPR) biosensing technology, we have summarized the recent trends in the fields of both chip-SPR and fiber optic (FO)-SPR biosensors during the past five years, primarily regarding smart layers design, multiplexing, continuous monitoring and in vivo sensing. Versatile surface chemistries, biomaterials and nanomaterials have been utilized thus far to generate smart layers on SPR platforms and as such achieve oriented immobilization of bioreceptors, improved fouling resistance and sensitivity enhancement, collectively aiming to improve the biosensing performance. Furthermore, often driven by the desires for time- and cost-effective quantification of multiple targets in a single measurement, efforts have been made to implement multiplex bioassays on SPR platforms. While this aspect largely remains difficult to attain, numerous alternative strategies arose for obtaining parallel analysis of multiple analytes in one single device. Additionally, one of the upcoming challenges in this field will be to succeed in using SPR platforms for continuous measurements and in vivo sensing, and as such match up other biosensing platforms where these goals have been already conquered. Overall, this review will give insight into multiple possibilities that have become available over the years for boosting the performance of SPR biosensors. However, because combining them all into one optimal sensor is practically not feasible, the final application needs to be considered while designing an SPR biosensor, as this will determine the requirements of the bioassay and will thus help in selecting the essential elements from the recent progress made in SPR sensing.
Collapse
Affiliation(s)
- Jia-Huan Qu
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Annelies Dillen
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Wouter Saeys
- KU Leuven, Department of Biosystems, MeBioS - Biophotonics, Kasteelpark Arenberg 30, Box 2456, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium.
| | - Dragana Spasic
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| |
Collapse
|
11
|
Subtractive inhibition assay for the detection of Campylobacter jejuni in chicken samples using surface plasmon resonance. Sci Rep 2019; 9:13642. [PMID: 31541137 PMCID: PMC6754509 DOI: 10.1038/s41598-019-49672-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/13/2019] [Indexed: 11/24/2022] Open
Abstract
In this work, a subtractive inhibition assay (SIA) based on surface plasmon resonance (SPR) for the rapid detection of Campylobacter jejuni was developed. For this, rabbit polyclonal antibody with specificity to C. jejuni was first mixed with C. jejuni cells and unbound antibody was subsequently separated using a sequential process of centrifugation and then detected using an immobilized goat anti-rabbit IgG polyclonal antibody on the SPR sensor chip. This SIA-SPR method showed excellent sensitivity for C. jejuni with a limit of detection (LOD) of 131 ± 4 CFU mL−1 and a 95% confidence interval from 122 to 140 CFU mL−1. The method has also high specificity. The developed method showed low cross-reactivity to bacterial pathogens such as Salmonellaenterica serovar Typhimurium (7.8%), Listeria monocytogenes (3.88%) and Escherichia coli (1.56%). The SIA-SPR method together with the culturing (plating) method was able to detect C. jejuni in the real chicken sample at less than 500 CFU mL−1, the minimum infectious dose for C. jejuni while a commercial ELISA kit was unable to detect the bacterium. Since the currently available detection tools rely on culturing methods, which take more than 48 hours to detect the bacterium, the developed method in this work has the potential to be a rapid and sensitive detection method for C. jejuni.
Collapse
|
12
|
Boulade M, Morlay A, Piat F, Roupioz Y, Livache T, Charette PG, Canva M, Leroy L. Early detection of bacteria using SPR imaging and event counting: experiments with Listeria monocytogenes and Listeria innocua. RSC Adv 2019; 9:15554-15560. [PMID: 35514840 PMCID: PMC9064316 DOI: 10.1039/c9ra01466g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Foodborne pathogens are of significant concern in the agrifood industry and the development of associated rapid detection and identification methods are of major importance. This paper describes the novel use of resolution-optimized prism-based surface plasmon resonance imaging (RO-SPRI) and data processing for the detection of the foodborne pathogens Listeria monocytogenes and Listeria innocua. With an imaging spatial resolution on the order of individual bacteria (2.7 ± 0.5 μm × 7.9 ± 0.6 μm) over a field of view 1.5 mm2, the RO-SPRI system enabled accurate counting of individual bacteria on the sensor surface. Using this system, we demonstrate the detection of two species of Listeria at an initial concentration of 2 × 102 CFU mL-1 in less than 7 hours. The surface density of bacteria at the point of positive detection was 15 ± 4 bacteria per mm2. Our approach offers great potential for the development of fast specific detection systems based on affinity monitoring.
Collapse
Affiliation(s)
- Marine Boulade
- INAC-SyMMES, Univ. Grenoble Alpes, CEA, CNRS 38000 Grenoble France
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, UGA 3000 Boulevard Université J1K OA5 Québec Canada
| | - Alexandra Morlay
- INAC-SyMMES, Univ. Grenoble Alpes, CEA, CNRS 38000 Grenoble France
- Prestodiag 1 Mail du Professeur Georges Mathé F-94800 Villejuif France
| | - Felix Piat
- Prestodiag 1 Mail du Professeur Georges Mathé F-94800 Villejuif France
| | - Yoann Roupioz
- INAC-SyMMES, Univ. Grenoble Alpes, CEA, CNRS 38000 Grenoble France
| | - Thierry Livache
- INAC-SyMMES, Univ. Grenoble Alpes, CEA, CNRS 38000 Grenoble France
- Aryballe Technologies 17 Avenue des Martyrs 38000 Grenoble France
| | - Paul G Charette
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, UGA 3000 Boulevard Université J1K OA5 Québec Canada
| | - Michael Canva
- Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, UGA 3000 Boulevard Université J1K OA5 Québec Canada
| | - Loïc Leroy
- INAC-SyMMES, Univ. Grenoble Alpes, CEA, CNRS 38000 Grenoble France
| |
Collapse
|
13
|
Soni DK, Ahmad R, Dubey SK. Biosensor for the detection of Listeria monocytogenes: emerging trends. Crit Rev Microbiol 2018; 44:590-608. [PMID: 29790396 DOI: 10.1080/1040841x.2018.1473331] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The early detection of Listeria monocytogenes (L. monocytogenes) and understanding the disease burden is of paramount interest. The failure to detect pathogenic bacteria in the food industry may have terrible consequences, and poses deleterious effects on human health. Therefore, integration of methods to detect and trace the route of pathogens along the entire food supply network might facilitate elucidation of the main contamination sources. Recent research interest has been oriented towards the development of rapid and affordable pathogen detection tools/techniques. An innovative and new approach like biosensors has been quite promising in revealing the foodborne pathogens. In spite of the existing knowledge, advanced research is still needed to substantiate the expeditious nature and sensitivity of biosensors for rapid and in situ analysis of foodborne pathogens. This review summarizes recent developments in optical, piezoelectric, cell-based, and electrochemical biosensors for Listeria sp. detection in clinical diagnostics, food analysis, and environmental monitoring, and also lists their drawbacks and advantages.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- a Department of Botany, Institute of Science , Banaras Hindu University , Varanasi , India
| | - Rafiq Ahmad
- b Sensors Lab, Electrical Engineering Program, Computer, Electrical and Mathematical Science and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal , Kingdom of Saudi Arabia
| | - Suresh Kumar Dubey
- a Department of Botany, Institute of Science , Banaras Hindu University , Varanasi , India
| |
Collapse
|
14
|
Wachiralurpan S, Sriyapai T, Areekit S, Kaewphinit T, Sriyapai P, Santiwatanakul S, Chansiri K. Development of a Rapid Screening Test for Listeria monocytogenes in Raw Chicken Meat Using Loop-Mediated Isothermal Amplification (LAMP) and Lateral Flow Dipstick (LFD). FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0949-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Abstract
The use of optical biosensors for studying macromolecular interactions is gaining increasing popularity. In one study, 1514 papers that involved the application of biosensor data were identified for the year 2009 alone (Rich and Myszka, J Mol Recognit 24:892-914, 2011), the sheer volume and variety of which present a daunting task for the burgeoning biosensor user to accumulate and decipher. This chapter is designed to provide the reader with the tools necessary to prepare, design, and efficiently execute a kinetic experiment on Biacore. It is written to guide the Biacore user through basic theory, system maintenance, and assay setup while also offering some practical tips that we find useful for Biacore-based studies. Many kinetic-based screening assays require rigorous sample preparation and purification prior to analysis. To highlight these procedures, this protocol describes the kinetic characterization of single chain Fv (scFv) antibody fragments from crude bacterial lysates using an antibody affinity capture approach. Even though we specifically describe the capture of HA-tagged scFv antibody fragments to an anti-HA tag monoclonal antibody-immobilized surface prior to kinetic analysis, the same methodologies are universally applicable and can be used for practically any affinity pair and most Biacore systems.
Collapse
Affiliation(s)
- Paul Leonard
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Stephen Hearty
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Hui Ma
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Richard O'Kennedy
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland.
- School of Biotechnology, Dublin City University, Dublin 9, Ireland.
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
16
|
Mendonça M, Moreira GMSG, Conceição FR, Hust M, Mendonça KS, Moreira ÂN, França RC, da Silva WP, Bhunia AK, Aleixo JAG. Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species. PLoS One 2016; 11:e0160544. [PMID: 27489951 PMCID: PMC4973958 DOI: 10.1371/journal.pone.0160544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus.
Collapse
Affiliation(s)
- Marcelo Mendonça
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana, United Sates of America
| | - Gustavo Marçal Schmidt Garcia Moreira
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr, Braunschweig, Germany
| | - Fabricio Rochedo Conceição
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr, Braunschweig, Germany
| | - Karla Sequeira Mendonça
- Laboratório de Microbiologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ângela Nunes Moreira
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo Correa França
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Laboratório de Microbiologia de Alimentos, Departamento de Ciência e Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana, United Sates of America
| | - José Antonio G. Aleixo
- Laboratório de Imunologia Aplicada, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
17
|
A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:437-46. [DOI: 10.1007/s00249-015-1044-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
18
|
Kausar ASMZ, Reza AW, Latef TA, Ullah MH, Karim ME. Optical nano antennas: state of the art, scope and challenges as a biosensor along with human exposure to nano-toxicology. SENSORS (BASEL, SWITZERLAND) 2015; 15:8787-831. [PMID: 25884787 PMCID: PMC4431286 DOI: 10.3390/s150408787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/19/2015] [Accepted: 02/02/2015] [Indexed: 01/25/2023]
Abstract
The concept of optical antennas in physical optics is still evolving. Like the antennas used in the radio frequency (RF) regime, the aspiration of optical antennas is to localize the free propagating radiation energy, and vice versa. For this purpose, optical antennas utilize the distinctive properties of metal nanostructures, which are strong plasmonic coupling elements at the optical regime. The concept of optical antennas is being advanced technologically and they are projected to be substitute devices for detection in the millimeter, infrared, and visible regimes. At present, their potential benefits in light detection, which include polarization dependency, tunability, and quick response times have been successfully demonstrated. Optical antennas also can be seen as directionally responsive elements for point detectors. This review provides an overview of the historical background of the topic, along with the basic concepts and parameters of optical antennas. One of the major parts of this review covers the use of optical antennas in biosensing, presenting biosensing applications with a broad description using different types of data. We have also mentioned the basic challenges in the path of the universal use of optical biosensors, where we have also discussed some legal matters.
Collapse
Affiliation(s)
| | - Ahmed Wasif Reza
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Tarik Abdul Latef
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Mohammad Habib Ullah
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | |
Collapse
|
19
|
Tawil N, Sacher E, Mandeville R, Meunier M. Bacteriophages: biosensing tools for multi-drug resistant pathogens. Analyst 2015; 139:1224-36. [PMID: 24434867 DOI: 10.1039/c3an01989f] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pathogen detection is of utmost importance in many sectors, such as in the food industry, environmental quality control, clinical diagnostics, bio-defence and counter-terrorism. Failure to appropriately, and specifically, detect pathogenic bacteria can lead to serious consequences, and may ultimately be lethal. Public safety, new legislation, recent outbreaks in food contamination, and the ever-increasing prevalence of multidrug-resistant infections have fostered a worldwide research effort targeting novel biosensing strategies. This review concerns phage-based analytical and biosensing methods targeted towards theranostic applications. We discuss and review phage-based assays, notably phage amplification, reporter phage, phage lysis, and bioluminescence assays for the detection of bacterial species, as well as phage-based biosensors, including optical (comprising SPR sensors and fiber optic assays), electrochemical (comprising amperometric, potentiometric, and impedimetric sensors), acoustic wave and magnetoelastic sensors.
Collapse
Affiliation(s)
- N Tawil
- Regroupement Québécois de Matériaux de Pointe, Department of Engineering Physics, École Polytechnique de Montréal, Case Postale 6079, succursale Centre-ville, Montréal, Québec H3C 3A7, Canada.
| | | | | | | |
Collapse
|
20
|
A portable automatic endpoint detection system for amplicons of loop mediated isothermal amplification on microfluidic compact disk platform. SENSORS 2015; 15:5376-89. [PMID: 25751077 PMCID: PMC4435121 DOI: 10.3390/s150305376] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/19/2015] [Accepted: 01/28/2015] [Indexed: 11/17/2022]
Abstract
In recent years, many improvements have been made in foodborne pathogen detection methods to reduce the impact of food contamination. Several rapid methods have been developed with biosensor devices to improve the way of performing pathogen detection. This paper presents an automated endpoint detection system for amplicons generated by loop mediated isothermal amplification (LAMP) on a microfluidic compact disk platform. The developed detection system utilizes a monochromatic ultraviolet (UV) emitter for excitation of fluorescent labeled LAMP amplicons and a color sensor to detect the emitted florescence from target. Then it processes the sensor output and displays the detection results on liquid crystal display (LCD). The sensitivity test has been performed with detection limit up to 2.5 × 10−3 ng/µL with different DNA concentrations of Salmonella bacteria. This system allows a rapid and automatic endpoint detection which could lead to the development of a point-of-care diagnosis device for foodborne pathogens detection in a resource-limited environment.
Collapse
|
21
|
Kim N, Kim WY. Measurement of polyphenol oxidase activity using optical waveguide lightmode spectroscopy-based immunosensor. Food Chem 2015; 169:211-7. [PMID: 25236218 DOI: 10.1016/j.foodchem.2014.07.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 07/08/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022]
Abstract
Polyphenol oxidase (PPO) is an important quality index during food processing involving heat-treatment and sensitive determination of PPO activity has been a critical concern in the food industry. In this study, a new measurement of PPO activity exploiting an optical waveguide lightmode spectroscopy-based immunosensor is presented using a polyclonal anti-PPO antibody that was immobilized in situ to the surface of a 3-aminopropyltriethoxysilane-treated optical grating coupler activated with glutaraldehyde. When analysed with a purified PPO fraction from potato tubers, a linear relationship was found between PPO activities of 0.0005607-560.7U/mL and the sensor responses obtained. The sensor was applicable to measurement of PPO activity in real samples that were prepared from potato tubers, grapes and Kimchi cabbage, and the analytical results were compared with those obtained by a conventional colorimetric assay measuring PPO activity. When tested for long-term stability, the sensor was reusable up to 10th day after preparation.
Collapse
Affiliation(s)
- Namsoo Kim
- Research Group of Convergence Technology, Korea Food Research Institute, Seongnam 463-746, Republic of Korea.
| | - Woo-Yeon Kim
- Department of Biotechnology, Chung-Ang University, Ansung 456-756, Republic of Korea
| |
Collapse
|
22
|
Amani J, Mirhosseini SA, Imani Fooladi AA. A review approaches to identify enteric bacterial pathogens. Jundishapur J Microbiol 2015; 8:e17473. [PMID: 25793091 PMCID: PMC4353029 DOI: 10.5812/jjm.17473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/10/2014] [Accepted: 04/05/2014] [Indexed: 12/15/2022] Open
Abstract
CONTEXT Diarrhea is a common disease across the world. According to WHO, every year about two billion cases of diarrhea are reported in the world. It occurs mainly in the tropical regions and is a main cause of morbidity and mortality, particularly in young children and adults. EVIDENCE ACQUISITION One of the major causes of diarrheal diseases is bacteria; detection of pathogenic bacteria is a global key to the prevention and identification of food-borne diseases and enteric infections (like diarrhea). CONCLUSIONS Therefore, development of rapid diagnostic methods with suitable sensitivity and specificity is very important about this infectious disease. In this review, we will discuss some of the important diagnostic methods.
Collapse
Affiliation(s)
- Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
23
|
Law JWF, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 2015. [PMID: 25628612 DOI: 10.3389/fmicb.2014.00770.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor Darul Ehsan, Malaysia ; School of Science, Monash University Malaysia Selangor Darul Ehsan, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Bandar Tun Razak Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor Darul Ehsan, Malaysia
| |
Collapse
|
24
|
Law JWF, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 2015; 5:770. [PMID: 25628612 PMCID: PMC4290631 DOI: 10.3389/fmicb.2014.00770] [Citation(s) in RCA: 562] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/17/2014] [Indexed: 12/11/2022] Open
Abstract
The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaSelangor Darul Ehsan, Malaysia
- School of Science, Monash University MalaysiaSelangor Darul Ehsan, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Bandar Tun RazakKuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaSelangor Darul Ehsan, Malaysia
| |
Collapse
|
25
|
Lee SH, Ahn JY, Lee KA, Um HJ, Sekhon SS, Sun Park T, Min J, Kim YH. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes. Biosens Bioelectron 2015; 68:272-280. [PMID: 25590973 DOI: 10.1016/j.bios.2015.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023]
Abstract
As a major human pathogen in the Listeria genus, Listeria monocytogenes causes the bacterial disease listeriosis, which is a serious infection caused by eating food contaminated with the bacteria. We have developed an aptamer-based sandwich assay (ABSA) platform that demonstrates a promising potential for use in pathogen detection using aptamers as analytical bioconjugates. The whole-bacteria SELEX (WB-SELEX) strategy was adopted to generate aptamers with high affinity and specificity against live L. monocytogenes. Of the 35 aptamer candidates tested, LMCA2 and LMCA26 reacted to L. monocytogenes with high binding, and were consequently chosen as sensing probes. The ABSA platform can significantly enhance the sensitivity by employing a very specific aptamer pair for the sandwich complex. The ABSA platform exhibited a linear response over a wide concentration range of L. monocytogenes from 20 to 2×10(6) CFU per mL and was closely correlated with the following relationship: y=9533.3x+1542.3 (R(2)=0.99). Our proposed ABSA platform also provided excellent specificity for the tests to distinguish L. monocytogenes from other Listeria species and other bacterial genera (3 Listeria spp., 4 Salmonella spp., 2 Vibrio spp., 3 Escherichia coli and 3 Shigella spp.). Improvements in the sensitivity and specificity have not only facilitated the reliable detection of L. monocytogenes at extremely low concentrations, but also allowed for the development of a 96-well plate-based routine assay platform for multivalent diagnostics.
Collapse
Affiliation(s)
- Sang-Hee Lee
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 362-763, South Korea
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 362-763, South Korea
| | - Kyeong-Ah Lee
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 362-763, South Korea
| | - Hyun-Ju Um
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 362-763, South Korea
| | - Simranjeet Singh Sekhon
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 362-763, South Korea
| | - Tae Sun Park
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Chonbuk National University Medical School, 634-18 Geumam-Dong, Duckjin-Gu, Jeonju 561-712, South Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1Ga Deokjin-Gu, Jeonju 561-756, South Korea.
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 362-763, South Korea.
| |
Collapse
|
26
|
Gao L, Feng C, Li B, Liu T, Liu B, Chen W. Detection of Tilletia controversa using immunofluorescent monoclonal antibodies. J Appl Microbiol 2014; 118:497-505. [PMID: 25421490 DOI: 10.1111/jam.12703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 11/28/2022]
Abstract
AIMS Tilletia controversa is an internationally quarantined pathogenic fungus that causes dwarf bunt of wheat and is similar to Tilletia caries in both teliospore morphology and genetic structure. This study developed a rapid and sensitive immunofluorescence method for differentiating the teliospores of T. controversa from T. caries. METHODS AND RESULTS The method utilizes monoclonal antibody D-1 against teliospores of T. controversa as well as a PE-Cy3-conjugated goat anti-mouse antibody (overlapping light excitation of 495 and 555 nm). The orange cycle fluorescent signal was stronger against T. controversa teliospores in the outer spore wall and net ridge, whereas only the green signal was observed for the protoplasm of T. caries teliospores. The detection limit of this method was 2.0 μg ml(-1) of the D-1 monoclonal antibody. CONCLUSION This study describes the production and diagnostic application of a novel mouse monoclonal antibody specific to T. controversa teliospores. SIGNIFICANCE AND IMPACT OF THE STUDY This method could be used for the on-site identification of T. controversa teliospores in the near future and will help in selecting fungicides to control dwarf bunt of wheat as further technical developments are achieved.
Collapse
Affiliation(s)
- L Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | | | | | | | | | | |
Collapse
|
27
|
Usachev E, Usacheva O, Agranovski I. Surface plasmon resonance-based bacterial aerosol detection. J Appl Microbiol 2014; 117:1655-62. [DOI: 10.1111/jam.12638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/15/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022]
Affiliation(s)
- E.V. Usachev
- Griffith School of Engineering; Griffith University; Brisbane Qld Australia
| | - O.V. Usacheva
- Department of molecular genetics; The D.I. Ivanovsky Institute of Virology of The Ministry of Health and Social Development of The Russian Federation; Moscow Russia
| | - I.E. Agranovski
- Griffith School of Engineering; Griffith University; Brisbane Qld Australia
| |
Collapse
|
28
|
Adley CC. Past, Present and Future of Sensors in Food Production. Foods 2014; 3:491-510. [PMID: 28234333 PMCID: PMC5302250 DOI: 10.3390/foods3030491] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022] Open
Abstract
Microbial contamination management is a crucial task in the food industry. Undesirable microbial spoilage in a modern food processing plant poses a risk to consumers' health, causing severe economic losses to the manufacturers and retailers, contributing to wastage of food and a concern to the world's food supply. The main goal of the quality management is to reduce the time interval between the filling and the detection of a microorganism before release, from several days, to minutes or, at most, hours. This would allow the food company to stop the production, limiting the damage to just a part of the entire batch, with considerable savings in terms of product value, thereby avoiding the utilization of raw materials, packaging and strongly reducing food waste. Sensor systems offer major advantages over current systems as they are versatile and affordable but need to be integrated in the existing processing systems as a process analytical control (PAT) tool. The desire for good selectivity, low cost, portable and usable at working sites, sufficiently rapid to be used at-line or on-line, and no sample preparation devices are required. The application of biosensors in the food industry still has to compete with the standard analytical techniques in terms of cost, performance and reliability.
Collapse
Affiliation(s)
- Catherine C Adley
- Microbiology Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
29
|
Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes. Biomed Microdevices 2014; 16:509-20. [DOI: 10.1007/s10544-014-9853-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Yáñez-Sedeño P, Agüí L, Villalonga R, Pingarrón JM. Biosensors in forensic analysis. A review. Anal Chim Acta 2014; 823:1-19. [PMID: 24746348 DOI: 10.1016/j.aca.2014.03.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 02/04/2023]
Abstract
Forensic analysis is an important branch of modern Analytical Chemistry with many legal and socially relevant implications. Biosensors can play an important role as efficient tools in this field considering their well known advantages of sensitivity, selectivity, easy functioning, affordability and capability of miniaturization and automation. This article reviews the latest advances in the use of biosensors for forensic analysis. The different methodologies for the transduction of the produced biological events are considered and the applications to forensic toxicological analysis, classified by the nature of the target analytes, as well as those related with chemical and biological weapons critically commented. The article provides several Tables where the more relevant analytical characteristics of the selected reported methods are gathered.
Collapse
Affiliation(s)
- P Yáñez-Sedeño
- University Complutense, Department of Analytical Chemistry, Faculty of Chemistry, Ciudad Universitaria, Madrid 28040, Spain.
| | - L Agüí
- University Complutense, Department of Analytical Chemistry, Faculty of Chemistry, Ciudad Universitaria, Madrid 28040, Spain
| | - R Villalonga
- University Complutense, Department of Analytical Chemistry, Faculty of Chemistry, Ciudad Universitaria, Madrid 28040, Spain
| | - J M Pingarrón
- University Complutense, Department of Analytical Chemistry, Faculty of Chemistry, Ciudad Universitaria, Madrid 28040, Spain
| |
Collapse
|
31
|
Abadian PN, Kelley CP, Goluch ED. Cellular Analysis and Detection Using Surface Plasmon Resonance Techniques. Anal Chem 2014; 86:2799-812. [DOI: 10.1021/ac500135s] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Pegah N. Abadian
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Chase P. Kelley
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Edgar D. Goluch
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
32
|
Zhang X, Kitaoka H, Tsuji S, Tamai M, Kobayashi H, Honjoh KI, Miyamoto T. Development of a Simultaneous Detection Method for Foodborne Pathogens Using Surface Plasmon Resonance Biosensors. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2014. [DOI: 10.3136/fstr.20.317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Sharma H, Agarwal M, Goswami M, Sharma A, Roy SK, Rai R, Murugan M. Biosensors: tool for food borne pathogen detection. Vet World 2013. [DOI: 10.14202/vetworld.2013.968-973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
34
|
Gao L, Chen W, Liu T, Liu B. An immunofluorescence assay for the detection of wheat rust species using monoclonal antibody against urediniospores of Puccinia triticina. J Appl Microbiol 2013; 115:1023-8. [PMID: 23795944 DOI: 10.1111/jam.12295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/08/2013] [Accepted: 06/19/2013] [Indexed: 11/27/2022]
Abstract
AIMS Wheat (Triticum aestivum) is one of the most important crop species, but yields are often drastically reduced by rust epidemics. In this report, we describe a rapid and sensitive immunofluorescence method for the detection of urediniospores of the fungi Puccinia striiformis f. sp. tritici, Puccinia triticina and Puccinia graminis f. sp. tritici, which are causal agents of wheat rust. METHODS AND RESULTS The method uses monoclonal antibody LPT-2 against the urediniospores of P. triticina and PE-cy3 goat anti-mouse. Urediniospores of P. triticina or those of two species that are difficult to distinguish from P. triticina, P. striiformis f. sp. tritici or P. graminis f. sp. tritici were immobilized on a glass slide, and the sample was then treated with LPT-2. Thereafter, a second antibody, goat anti-mouse conjugated PE-cy3, was added, and the slide was observed in a fluoroscope. The fluorescent signal was strong with P. triticina urediniospores, weak with P. striiformis f. sp. tritici urediniospores and weak-to-intermediate with P. graminis f. sp. tritici urediniospores. The detection limit of this method was 2 ng ml(-1) of the monoclonal antibody LPT-2. CONCLUSIONS In this article, we describe the production and diagnostic application of a novel mouse monoclonal antibody specific to urediniospores of P. triticina. SIGNIFICANCE AND IMPACT OF THE STUDY After further technical development, this method may become a tool for on-site identification of P. triticina urediniospores and will therefore help in the selection and timing of fungicide applications for control of wheat rust outbreaks.
Collapse
Affiliation(s)
- L Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, CAAS, Beijing, China
| | | | | | | |
Collapse
|
35
|
Zeng C, Huang X, Xu J, Li G, Ma J, Ji HF, Zhu S, Chen H. Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor. Anal Biochem 2013; 440:18-22. [PMID: 23660014 DOI: 10.1016/j.ab.2013.04.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 11/26/2022]
Abstract
We report a biosensor based on surface plasmon resonance (SPR) for the selective detection of maize chlorotic mottle virus (MCMV). 11-Mercaptoundecanoic acid was applied on a gold surface to form a self-assembled monolayer, and a layer of anti-MCMV antibody was crosslinked on the surface for specific recognition of MCMV. The effects of coupling reaction time and antibody concentration on detection sensitivity were studied. The coverage mass change is a function of the concentration of MCMV with a dynamic range from 1 to 1000 ppb. The detection limit is approximately 1 ppb, which is approximately two orders of magnitude higher than that of the existing enzyme-linked immunosorbent assay (ELISA) method. The developed SPR sensor showed highly specific recognition for both purified MCMV and crude extracts from real-world samples.
Collapse
Affiliation(s)
- Chang Zeng
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100029, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Strategies to improve the surface plasmon resonance-based immmunodetection of bacterial cells. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-0975-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
An overview of transducers as platform for the rapid detection of foodborne pathogens. Appl Microbiol Biotechnol 2013; 97:1829-40. [PMID: 23329385 DOI: 10.1007/s00253-013-4692-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/29/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
The driving advent of portable, integrated biosensing ways for pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques. The miniaturization and automation of integrated detection systems present a significant advantage for rapid, portable detection of foodborne microbes. In this review, we have highlighted current developments and directions in foodborne pathogen detection systems. Recent progress in the biosensor protocols toward the detection of specific microbes has been elaborated in detail. It also includes strategies and challenges for the implementation of a portable platform toward rapid foodborne sensing systems.
Collapse
|
38
|
|
39
|
Cant NE, Harrison SE. Impact of particulate antigens, such as Bacillus anthracis, on the uniformity of response across a biosensor flow cell as determined by GC-SPR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12410-12416. [PMID: 22881408 DOI: 10.1021/la300782q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biosensors are desired for the detection of a wide range of analytes in various scenarios, for example environmental monitoring for biological threats, from toxins to viruses and bacteria. Ideally a single sensor will be capable of simultaneous multianalyte detection. The varying nature, and in particular disparate size, of such a variety of analytes poses a significant challenge in the development of effective high-confidence instruments. Many existing biosensors employ functionalized flow cells in which spatially defined arrays of surface-immobilized recognition elements, such as antibodies, specifically capture their analyte of interest. To function optimally, arrays should provide equivalent responses for equivalent events across their active area. Experimental data obtained using a grating coupled surface plasmon resonance (GC-SPR) instrument, the BIAcore Flexchip, have revealed differences in response behaviors between proteinaceous and particulate analytes. In particular, the magnitude of responses seen with Bacillus anthracis spores appears to be influenced by shear and gravitational effects while those from soluble proteins are more uniform. We have explored this dependence to understand its fundamental impact on the successful implementation of multianalyte environmental biological detection systems.
Collapse
Affiliation(s)
- Nicola E Cant
- Detection Department, Dstl Porton Down, Salisbury, Wiltshire, UK.
| | | |
Collapse
|
40
|
Francis GA, Gallone A, Nychas GJ, Sofos JN, Colelli G, Amodio ML, Spano G. Factors Affecting Quality and Safety of Fresh-Cut Produce. Crit Rev Food Sci Nutr 2012; 52:595-610. [DOI: 10.1080/10408398.2010.503685] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Jadhav S, Bhave M, Palombo EA. Methods used for the detection and subtyping of Listeria monocytogenes. J Microbiol Methods 2012; 88:327-41. [PMID: 22261140 DOI: 10.1016/j.mimet.2012.01.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/30/2011] [Accepted: 01/03/2012] [Indexed: 11/16/2022]
Abstract
Listeria monocytogenes is an important foodborne pathogen responsible for non-invasive and invasive diseases in the elderly, pregnant women, neonates and immunocompromised populations. This bacterium has many similarities with other non-pathogenic Listeria species which makes its detection from food and environmental samples challenging. Subtyping of L. monocytogenes strains can prove to be crucial in epidemiological investigations, source tracking contamination from food processing plants and determining evolutionary relationships between different strains. In recent years there has been a shift towards the use of molecular subtyping. This has led to the development of new subtyping techniques such as multi-locus variable number tandem repeat analysis (MLVA) and multi-locus sequence based typing (MLST). This review focuses on the available methods for Listeria detection including immuno-based techniques and the more recently developed molecular methods and analytical techniques such as matrix-assisted laser desorption/ionisation time-of-flight based mass spectrometry (MALDI-TOF MS). It also includes a comparison and critical analysis of the available phenotypic and genotypic subtyping techniques that have been investigated for L. monocytogenes.
Collapse
Affiliation(s)
- Snehal Jadhav
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn 3122, Victoria, Australia
| | | | | |
Collapse
|
42
|
Marusov G, Sweatt A, Pietrosimone K, Benson D, Geary SJ, Silbart LK, Challa S, Lagoy J, Lawrence DA, Lynes MA. A microarray biosensor for multiplexed detection of microbes using grating-coupled surface plasmon resonance imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:348-59. [PMID: 22029256 PMCID: PMC3312245 DOI: 10.1021/es201239f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Grating-coupled surface plasmon resonance imaging (GCSPRI) utilizes an optical diffraction grating embossed on a gold-coated sensor chip to couple collimated incident light into surface plasmons. The angle at which this coupling occurs is sensitive to the capture of analyte at the chip surface. This approach permits the use of disposable biosensor chips that can be mass-produced at low cost and spotted in microarray format to greatly increase multiplexing capabilities. The current GCSPRI instrument has the capacity to simultaneously measure binding at over 1000 unique, discrete regions of interest (ROIs) by utilizing a compact microarray of antibodies or other specific capture molecules immobilized on the sensor chip. In this report, we describe the use of GCSPRI to directly detect multiple analytes over a large dynamic range, including soluble protein toxins, bacterial cells, and viruses, in near real-time. GCSPRI was used to detect a variety of agents that would be useful for diagnostic and environmental sensing purposes, including macromolecular antigens, a nontoxic form of Pseudomonas aeruginosa exotoxin A (ntPE), Bacillus globigii, Mycoplasma hyopneumoniae, Listeria monocytogenes, Escherichia coli, and M13 bacteriophage. These studies indicate that GCSPRI can be used to simultaneously assess the presence of toxins and pathogens, as well as quantify specific antibodies to environmental agents, in a rapid, label-free, and highly multiplexed assay requiring nanoliter amounts of capture reagents.
Collapse
Affiliation(s)
- Gregory Marusov
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Andrew Sweatt
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Kathryn Pietrosimone
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - David Benson
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Steven J. Geary
- Department of Pathobiology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
- The Center of Excellence For Vaccine Research, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Lawrence K. Silbart
- Department of Allied Health Sciences, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
- The Center of Excellence For Vaccine Research, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Sreerupa Challa
- Department of Allied Health Sciences, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
- The Center of Excellence For Vaccine Research, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | - Jacqueline Lagoy
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| | | | - Michael A. Lynes
- Department of Molecular and Cell Biology, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
- The Center of Excellence For Vaccine Research, The University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269-3125
| |
Collapse
|
43
|
Ghosh SK, Ostanin VP, Johnson CL, Lowe CR, Seshia AA. Probing biomolecular interaction forces using an anharmonic acoustic technique for selective detection of bacterial spores. Biosens Bioelectron 2011; 29:145-50. [DOI: 10.1016/j.bios.2011.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/08/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
|
44
|
Buzalewicz I, Wieliczko A, Podbielska H. Influence of various growth conditions on Fresnel diffraction patterns of bacteria colonies examined in the optical system with converging spherical wave illumination. OPTICS EXPRESS 2011; 19:21768-21785. [PMID: 22109028 DOI: 10.1364/oe.19.021768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The novel optical system based on converging spherical wave illumination for analysis of bacteria colonies diffraction patterns, is proposed. The complex physical model of light transformation on bacteria colonies in this system, is presented. Fresnel diffraction patterns of bacteria colonies Escherichia coli, Salmonella enteritidis, Staphylococcus aureus grown in various conditions, were examined. It was demonstrated that the proposed system enables the characterization of morphological changes of colony structures basing on the changes of theirs Fresnel diffraction patterns.
Collapse
Affiliation(s)
- Igor Buzalewicz
- Bio-optics Group, Institute of Biomedical Engineering and Instrumentation, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | | | | |
Collapse
|
45
|
Skottrup PD, Leonard P, Kaczmarek JZ, Veillard F, Enghild JJ, O'Kennedy R, Sroka A, Clausen RP, Potempa J, Riise E. Diagnostic evaluation of a nanobody with picomolar affinity toward the protease RgpB from Porphyromonas gingivalis. Anal Biochem 2011; 415:158-67. [PMID: 21569755 DOI: 10.1016/j.ab.2011.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 12/23/2022]
Abstract
Porphyromonas gingivalis is one of the major periodontitis-causing pathogens. P. gingivalis secretes a group of proteases termed gingipains, and in this study we have used the RgpB gingipain as a biomarker for P. gingivalis. We constructed a naive camel nanobody library and used phage display to select one nanobody toward RgpB with picomolar affinity. The nanobody was used in an inhibition assay for detection of RgpB in buffer as well as in saliva. The nanobody was highly specific for RgpB given that it did not bind to the homologous gingipain HRgpA. This indicated the presence of a binding epitope within the immunoglobulin-like domain of RgpB. A subtractive inhibition assay was used to demonstrate that the nanobody could bind native RgpB in the context of intact cells. The nanobody bound exclusively to the P. gingivalis membrane-bound RgpB isoform (mt-RgpB) and to secreted soluble RgpB. Further cross-reactivity studies with P. gingivalis gingipain deletion mutants showed that the nanobody could discriminate between native RgpB and native Kgp and RgpA in complex bacterial samples. This study demonstrates that RgpB can be used as a specific biomarker for P. gingivalis detection and that the presented nanobody-based assay could supplement existing methods for P. gingivalis detection.
Collapse
Affiliation(s)
- Peter Durand Skottrup
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang Y, Ye Z, Si C, Ying Y. Subtractive inhibition assay for the detection of E. coli O157:H7 using surface plasmon resonance. SENSORS (BASEL, SWITZERLAND) 2011; 11:2728-39. [PMID: 22163763 PMCID: PMC3231628 DOI: 10.3390/s110302728] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 01/29/2011] [Accepted: 02/21/2011] [Indexed: 11/30/2022]
Abstract
A surface plasmon resonance (SPR) immunosensor was developed for the detection of E. coli O157:H7 by means of a new subtractive inhibition assay. In the subtractive inhibition assay, E. coli O157:H7 cells and goat polyclonal antibodies for E. coli O157:H7 were incubated for a short of time, and then the E. coli O157:H7 cells which bound antibodies were removed by a stepwise centrifugation process. The remaining free unbound antibodies were detected through interaction with rabbit anti-goat IgG polyclonal antibodies immobilized on the sensor chip using a BIAcore 3000 biosensor. The results showed that the signal was inversely correlated with the concentration of E. coli O157:H7 cells in a range from 3.0 × 10(4) to 3.0 × 10(8) cfu/mL with a detection limit of 3.0 × 10(4) cfu/mL. Compared with direct SPR by immobilizing antibodies on the chip surface to capture the bacterial cells and ELISA for E. coli O157:H7 (detection limit: both 3.0 × 10(5) cfu/mL in this paper), the detection limit of subtractive inhibition assay method was reduced by one order of magnitude. The method simplifies bacterial cell detection to protein-protein interaction, which has the potential for providing a practical alternative for the monitoring of E. coli O157:H7 and other pathogens.
Collapse
Affiliation(s)
- Yixian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang, China; E-Mails: (Y.W.); (C.S.); (Y.Y.)
| | - Zunzhong Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang, China; E-Mails: (Y.W.); (C.S.); (Y.Y.)
| | - Chengyan Si
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang, China; E-Mails: (Y.W.); (C.S.); (Y.Y.)
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang, China; E-Mails: (Y.W.); (C.S.); (Y.Y.)
| |
Collapse
|
47
|
Development of biosensor-based assays to identify anti-infective oligosaccharides. Anal Biochem 2011; 410:200-5. [DOI: 10.1016/j.ab.2010.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/11/2010] [Accepted: 11/19/2010] [Indexed: 11/17/2022]
|
48
|
Abstract
The use of optical biosensors for studying macromolecular interactions is gaining increasing popularity. In one study, 1,179 papers that involved the application of biosensor data were identified for the year 2007 alone (Rich and Myszka, J Mol Recognit 21:355-400, 2008), the sheer volume and variety of which present a daunting task for the burgeoning biosensor user to accumulate and decipher. This chapter is designed to provide the reader with the tools necessary to prepare, design, and efficiently execute a kinetic experiment on Biacore. It is written to guide the Biacore user through basic theory, system maintenance, and assay set-up while also offering some practical tips that we find useful for Biacore-based studies. Many kinetic-based screening assays require rigorous sample preparation and purification prior to analysis. To highlight these procedures, this protocol describes the kinetic characterisation of single chain Fv (scFv) antibody fragments from crude bacterial lysates using an antibody affinity capture approach. Even though we specifically describe the capture of HA-tagged scFv antibody fragments to an anti-HA tag monoclonal antibody-immobilised surface prior to kinetic analysis, the same methodologies are universally applicable and can be used for practically any affinity pair and most Biacore systems.
Collapse
Affiliation(s)
- Paul Leonard
- School of Biotechnology and Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland
| | | | | |
Collapse
|
49
|
Akdo_an E, Mutlu M. Basic Principles of Optical Biosensors in Food Engineering. BIOSENSORS IN FOOD PROCESSING, SAFETY, AND QUALITY CONTROL 2010. [DOI: 10.1201/b10466-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
Dwivedi HP, Jaykus LA. Detection of pathogens in foods: the current state-of-the-art and future directions. Crit Rev Microbiol 2010; 37:40-63. [PMID: 20925593 DOI: 10.3109/1040841x.2010.506430] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the last fifty years, microbiologists have developed reliable culture-based techniques to detect food borne pathogens. Although these are considered to be the "gold-standard," they remain cumbersome and time consuming. Despite the advent of rapid detection methods such as ELISA and PCR, it is clear that reduction and/or elimination of cultural enrichment will be essential in the quest for truly real-time detection methods. As such, there is an important role for bacterial concentration and purification from the sample matrix as a step preceding detection, so-called pre-analytical sample processing. This article reviews recent advancements in food borne pathogen detection and discusses future methods with a focus on pre-analytical sample processing, culture independent methods, and biosensors.
Collapse
Affiliation(s)
- Hari P Dwivedi
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC-27695-7624, USA.
| | | |
Collapse
|