1
|
Li J, Zhou L, Hao Y, Xing C. Nanophotonic biosensors for COVID-19 detection: advances in mechanisms, methods, and design. NANOSCALE 2025; 17:7600-7616. [PMID: 40008826 DOI: 10.1039/d4nr04423a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The growing societal impact of coronavirus disease 2019 (COVID-19) has underscored the urgent need for innovative strategies to address the ongoing challenges posed by the pandemic. While rapid therapeutic interventions remain critical for short-term mitigation, equally vital is the development of accessible and efficient diagnostic tools to curb viral transmission. In this context, optical sensing technologies have emerged as foundational tools for detection and diagnosis, owing to their rapid response, user-friendliness, and adaptability. These attributes strengthen their indispensable role in identifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. This review systematically outlines the structural components of SARS-CoV-2 virions and their respective biological functions, classifies optical biosensors according to their underlying principles and evaluates the advantages and limitations of each methodology in real-world diagnostic applications. By addressing current detection challenges, these optical platforms not only enhance our capacity to manage SARS-CoV-2 but also establish a framework for deploying optical sensing technologies in future pandemic scenarios.
Collapse
Affiliation(s)
- Jiawei Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.
| | - Linyan Zhou
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.
| | - Yabin Hao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.
| | - Chenyang Xing
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
2
|
Singh R, Ryu J, Hyoung Lee W, Kang JH, Park S, Kim K. Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment. Crit Rev Biotechnol 2025; 45:413-433. [PMID: 38973015 DOI: 10.1080/07388551.2024.2354709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/03/2024] [Accepted: 04/28/2024] [Indexed: 07/09/2024]
Abstract
Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central FL, Orlando, FL, USA
| | - Joo-Hyon Kang
- Department of Civil and Environmental Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Sanghwa Park
- Bacteria Research Team, Freshwater Bacteria Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju-si, South Korea
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, Goyang, Gyeonggi-do, South Korea
| |
Collapse
|
3
|
Saldaña-Ahuactzi Z, Gómez-Montaño FJ, Morales-Chávez J, Salinas RA, Reyes-Betanzo C, Rojas-López M, Dutt A, Orduña-Díaz A. Advancing foodborne pathogen detection: a review of traditional and innovative optical and electrochemical biosensing approaches. Mikrochim Acta 2025; 192:102. [PMID: 39843762 DOI: 10.1007/s00604-024-06924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025]
Abstract
Foodborne diseases are a significant cause of morbidity (600 million cases) and mortality (420,000 deaths) worldwide every year and are mainly associated with pathogens. Besides the direct effects on human health, they have relevant concerns related to financial, logistics, and infrastructure for the food and medical industries. The standard pathogen identification techniques usually require a sample enrichment step, plating, isolation, and biochemical tests. This process involves specific facilities, a long-time analysis procedures, and skilled personnel. Conversely, biosensors are an emerging innovative approach to detecting pathogens in real time due to their portability, specificity, sensitivity, and low fabrication costs. These advantages can be achieved from the synergistic work between nanotechnology, materials science, and biotechnology for coupling biomolecules in nano-matrices to enhance biosensing performance. This review highlights recent advancements in electrochemical and optical biosensing techniques for detecting bacteria and viruses. Key properties, such as detection limits, are examined, as they depend on factors like the design of the biorecognition molecule, the type of transducer, the target's characteristics, and matrix interferences. Sensitivity levels reported range from 1 to 1 × 10⁸ CFU/mL, with detection times spanning 10 min to 8 h. Additionally, the review explores innovative approaches, including biosensors capable of distinguishing between live and dead bacteria, multimodal sensing, and the simultaneous detection of multiple foodborne pathogens - emerging trends in biosensor development.
Collapse
Affiliation(s)
- Zeus Saldaña-Ahuactzi
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México.
| | - Francisco Javier Gómez-Montaño
- Instituto Tecnológico Superior de San Martín Texmelucan. Camino a Barranca de Pesos S/N., San Martín Texmelucan, 74120, Puebla, México
| | | | - Rafael A Salinas
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, México
| | - Claudia Reyes-Betanzo
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, Tonantzintla, 72840, Puebla, México
| | - Marlon Rojas-López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacán, 04510, Mexico City, México
| | - Abdú Orduña-Díaz
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, 90700, Tlaxcala, México.
| |
Collapse
|
4
|
Kaur S, Singla P, Dann AJ, McClements J, Sullivan MV, Kim M, Stoufer S, Dawson JA, Crapnell RD, Banks CE, Turner NW, Moore MD, Kaur I, Peeters M. Sensitive Electrochemical and Thermal Detection of Human Noroviruses Using Molecularly Imprinted Polymer Nanoparticles Generated against a Viral Target. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51397-51410. [PMID: 39263982 PMCID: PMC11440458 DOI: 10.1021/acsami.4c01942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Norovirus (NoV) is the predominant cause of foodborne illness globally; current detection methods are typically expensive, have inadequate sensitivities, and utilize biological receptors with poor stability. Therefore, accurate, cost-effective, and highly stable detection methods are needed to screen for NoV in foods. We developed molecularly imprinted polymer nanoparticles (nanoMIPs) to detect NoV using a small target epitope (12 amino acids) with a solid-phase synthesis approach. The performance of three batches of nanoMIPs with varying monomer compositions (nanoMIP-1, -2, and -3) were compared both experimentally and computationally. Surface plasmon resonance examined nanoMIP binding affinity to norovirus virus-like particles (NoV-LPs), whereby nanoMIP-1 had the lowest KD value of 0.512 μM. This is significant, as traditional targets for generation of norovirus ligands previously reported were generated against drastically larger norovirus capsid segments that have limitations in ease of production. Further, an electrochemical sensor was developed by covalently attaching the nanoMIPs to glassy carbon electrodes. In agreement with our predictions from density functional theory simulations, electrochemical impedance spectroscopy showed a sensitive response toward NoV-LPs for nanoMIP batches tested; however, nanoMIP-1 was optimal, with an excellent detection limit of 3.4 pg/mL (1.9 × 105 particles/mL). Due to its exceptional performance, nanoMIP-1 was immobilized to screen-printed electrodes and utilized within a thermal sensor, where it exhibited a low detection limit of 6.5 pg/mL (3.7 × 105 particles/mL). Crucially, we demonstrated that nanoMIP-1 could detect NoV in real food samples (romaine lettuce) by using electrochemical and thermal sensors. Consequently, the study highlights the exceptional potential of nanoMIPs to replace traditional biological materials (e.g., antibodies) as sensitive, versatile, and highly stable receptors within NoV sensors.
Collapse
Affiliation(s)
- Sarbjeet Kaur
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Pankaj Singla
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
- School of Engineering, Engineering A building, East Booth Street, University of Manchester, Manchester, M13 9QS, United Kingdom
| | - Amy J Dann
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
- School of Engineering, Engineering A building, East Booth Street, University of Manchester, Manchester, M13 9QS, United Kingdom
| | - Jake McClements
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Mark V Sullivan
- Department of Chemistry, Dainton Building, University of Sheffield, Sheffield, S3 7HF, United Kingdom
| | - Minji Kim
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Sloane Stoufer
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - James A Dawson
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Robert D Crapnell
- Manchester Metropolitan University, Faculty of Science and Engineering, John Dalton Building, Chester Steet, Manchester, M1 5GD, United Kingdom
| | - Craig E Banks
- Manchester Metropolitan University, Faculty of Science and Engineering, John Dalton Building, Chester Steet, Manchester, M1 5GD, United Kingdom
| | - Nicholas W Turner
- Department of Chemistry, Dainton Building, University of Sheffield, Sheffield, S3 7HF, United Kingdom
| | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Inderpreet Kaur
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Marloes Peeters
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
- School of Engineering, Engineering A building, East Booth Street, University of Manchester, Manchester, M13 9QS, United Kingdom
| |
Collapse
|
5
|
Chen Y, Jia Y, Zhu X, Xu L, Li H, Li H. Self-Powered Immunoassay of Norovirus in Human Stools by π-Electron-Rich Homojunction for Enhanced Charge Transfer. ACS Sens 2024; 9:2429-2439. [PMID: 38668680 DOI: 10.1021/acssensors.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Norovirus (NoV) stands as a significant causative agent of nonbacterial acute gastroenteritis on a global scale, presenting a substantial threat to public health. Hence, the development of simple and rapid analytical techniques for NoV detection holds great importance in preventing and controlling the outbreak of the epidemic. In this work, a self-powered photoelectrochemical (PEC) immunosensor of NoV capsid protein (VP1) was proposed by the π-electron-rich carbon nitride homojunction (ER-CNH) as the photoanode. C4N2 ring derived from π-rich locust bean gum was introduced into the tri-s-triazine structure, creating a large π-delocalized conjugated carbon nitride homojunction. This strategy enhances the C/N atomic ratio, which widens light utilization, narrows the bandgap, and optimizes the electronic band structure of carbon nitride. By introduction of a π-rich conjugated structure, p-type domains were induced within n-type domains to build the internal electric field at the interface, thus forming a p-n homojunction to boost carrier separation and transfer. The ER-CNH photoanode exhibited excellent photoelectric performance and water oxidation capacity. Since VP1 inhibits the water oxidation of the ER-CNH photoanode, the open-circuit potential of the as-prepared PEC immunosensor system was reduced for detecting NoV VP1. The self-powered PEC immunosensor achieved a remarkably low detection limit (∼5 fg mL-1) and displayed high stability and applicability for actual stool samples. This research serves as a foundation concept for constructing immunosensors to detect other viruses and promotes the application of self-powered systems for life safety.
Collapse
Affiliation(s)
- Yun Chen
- School of Chemistry and Chemical Engineering, Institute for Energy Research, School of the Environment and Safety Engineering, Institute of Quantum and Sustainable Technology, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yunfan Jia
- School of Chemistry and Chemical Engineering, Institute for Energy Research, School of the Environment and Safety Engineering, Institute of Quantum and Sustainable Technology, Jiangsu University, Zhenjiang 212013, P. R. China
- Jiangsu Rugao Senior High School, Rugao 226500, P. R. China
| | - Xingwang Zhu
- School of Environmental Science and Engineering, College of Mechanical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, School of the Environment and Safety Engineering, Institute of Quantum and Sustainable Technology, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Henan Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, School of the Environment and Safety Engineering, Institute of Quantum and Sustainable Technology, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, School of the Environment and Safety Engineering, Institute of Quantum and Sustainable Technology, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
6
|
Miyamura S, Oe R, Nakahara T, Koresawa H, Okada S, Taue S, Tokizane Y, Minamikawa T, Yano TA, Otsuka K, Sakane A, Sasaki T, Yasutomo K, Kajisa T, Yasui T. Rapid, high-sensitivity detection of biomolecules using dual-comb biosensing. Sci Rep 2023; 13:14541. [PMID: 37752134 PMCID: PMC10522648 DOI: 10.1038/s41598-023-41436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
Rapid, sensitive detection of biomolecules is important for biosensing of infectious pathogens as well as biomarkers and pollutants. For example, biosensing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still strongly required for the fight against coronavirus disease 2019 (COVID-19) pandemic. Here, we aim to achieve the rapid and sensitive detection of SARS-CoV-2 nucleocapsid protein antigen by enhancing the performance of optical biosensing based on optical frequency combs (OFC). The virus-concentration-dependent optical spectrum shift produced by antigen-antibody interactions is transformed into a photonic radio-frequency (RF) shift by a frequency conversion between the optical and RF regions in the OFC, facilitating rapid and sensitive detection with well-established electrical frequency measurements. Furthermore, active-dummy temperature-drift compensation with a dual-comb configuration enables the very small change in the virus-concentration-dependent signal to be extracted from the large, variable background signal caused by temperature disturbance. The achieved performance of dual-comb biosensing will greatly enhance the applicability of biosensors to viruses, biomarkers, environmental hormones, and so on.
Collapse
Affiliation(s)
- Shogo Miyamura
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Ryo Oe
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Takuya Nakahara
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Hidenori Koresawa
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Shota Okada
- Graduate School of Sciences and Technology for Innovation, Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Shuji Taue
- School of System Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan
| | - Yu Tokizane
- Division of Next-Generation Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Takeo Minamikawa
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Taka-Aki Yano
- Division of Next-Generation Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
| | - Kunihiro Otsuka
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Ayuko Sakane
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Biochemistry, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Takuya Sasaki
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Biochemistry, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Koji Yasutomo
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Taira Kajisa
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.
- Graduate School of Interdisciplinary New Science, Toyo University, 2100 Kujirai, Kawagoe, Saitama, 350-8585, Japan.
| | - Takeshi Yasui
- Division of Next-Generation Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 2-1 Minami-Josanjima, Tokushima, Tokushima, 770-8506, Japan.
| |
Collapse
|
7
|
Luo B, Wang W, Zhao Y, Zhao Y. Hot-Electron Dynamics Mediated Medical Diagnosis and Therapy. Chem Rev 2023; 123:10808-10833. [PMID: 37603096 DOI: 10.1021/acs.chemrev.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Surface plasmon resonance excitation significantly enhances the absorption of light and increases the generation of "hot" electrons, i.e., conducting electrons that are raised from their steady states to excited states. These excited electrons rapidly decay and equilibrate via radiative and nonradiative damping over several hundred femtoseconds. During the hot-electron dynamics, from their generation to the ultimate nonradiative decay, the electromagnetic field enhancement, hot electron density increase, and local heating effect are sequentially induced. Over the past decade, these physical phenomena have attracted considerable attention in the biomedical field, e.g., the rapid and accurate identification of biomolecules, precise synthesis and release of drugs, and elimination of tumors. This review highlights the recent developments in the application of hot-electron dynamics in medical diagnosis and therapy, particularly fully integrated device techniques with good application prospects. In addition, we discuss the latest experimental and theoretical studies of underlying mechanisms. From a practical standpoint, the pioneering modeling analyses and quantitative measurements in the extreme near field are summarized to illustrate the quantification of hot-electron dynamics. Finally, the prospects and remaining challenges associated with biomedical engineering based on hot-electron dynamics are presented.
Collapse
Affiliation(s)
- Bing Luo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuxin Zhao
- The State Key Laboratory of Service Behavior and Structural Safety of Petroleum Pipe and Equipment Materials, CNPC Tubular Goods Research Institute (TGRI), Xi'an 710077, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
8
|
Yadav SK, Yadav RD, Tabassum H, Arya M. Recent Developments in Nanotechnology-Based Biosensors for the Diagnosis of Coronavirus. PLASMONICS (NORWELL, MASS.) 2023; 18:955-969. [PMID: 37229148 PMCID: PMC10040920 DOI: 10.1007/s11468-023-01822-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/08/2023] [Indexed: 05/27/2023]
Abstract
The major challenge in today's world is that medical research is facing the existence of a vast number of viruses and their mutations, which from time to time cause outbreaks. Also, the continuous and spontaneous mutations occurring in the viruses and the emergence of resistant virus strains have become serious medical hazards. So, in view of the growing number of diseases, like the recent COVID-19 pandemic that has caused the deaths of millions of people, there is a need to improve rapid and sensitive diagnostic strategies to initiate timely treatment for such conditions. In the cases like COVID-19, where a real cure due to erratic and ambiguous signs is not available, early intervention can be life-saving. In the biomedical and pharmaceutical industries, nanotechnology has evolved exponentially and can overcome multiple obstacles in the treatment and diagnosis of diseases. Nanotechnology has developed exponentially in the biomedical and pharmaceutical fields and can overcome numerous challenges in the treatment and diagnosis of diseases. At the nano stage, the molecular properties of materials such as gold, silver, carbon, silica, and polymers get altered and can be used for the creation of reliable and accurate diagnostic techniques. This review provides insight into numerous diagnostic approaches focused on nanoparticles that could have been established for quick and early detection of such diseases.
Collapse
Affiliation(s)
- Sarita K. Yadav
- Department of Pharmacy, MLN Medical College, Prayagraj, Uttar Pradesh India
| | - Rahul Deo Yadav
- Department of Pharmacy, MLN Medical College, Prayagraj, Uttar Pradesh India
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra India
| | - Malti Arya
- Department of Pharmaceutics, Chandra Shekhar Singh College of Pharmacy, Uttar Pradesh Kaushambi, India
| |
Collapse
|
9
|
Yin L, Li Y, Zhang W, Han X, Wu Q, Xie Y, Fan J, Ma L. Detection Methods for Foodborne Viruses: Current State-of-Art and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3551-3563. [PMID: 36657010 DOI: 10.1021/acs.jafc.2c06537] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Foodborne viruses have been recognized as important threats to food safety and human health. Rapid and accurate detection is one of the most crucial measures for food safety control. With the development of biology, chemistry, nanoscience, and related interdisciplines, detection strategies have been devised and advanced continuously. This review mainly focuses on the progress of detection methods for foodborne viruses. The current detection methods for foodborne viruses are summarized, including traditional electron microscopy and cultural isolation, immunoassay, molecular technology, biosensors, and newly emerging CRISPR/Cas-based detection technology. Furthermore, a comparison of the detection methods was objectively discussed. This review provides a comprehensive account of foodborne virus detection methods from fundamentals to state-of-the-art and illustrates the advantages and disadvantages of the current methods and proposes the future trends and directions for foodborne virus detection. It is hoped that this review can update current knowledge and present blueprints in order to accelerate futuristic development.
Collapse
Affiliation(s)
- Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenlu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiao Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qiankun Wu
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China
| | - Yanyan Xie
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jingjing Fan
- Beijing Kwinbon Biotechnology Co., Ltd, Beijing, 102200, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
10
|
Futane A, Narayanamurthy V, Jadhav P, Srinivasan A. Aptamer-based rapid diagnosis for point-of-care application. MICROFLUIDICS AND NANOFLUIDICS 2023; 27:15. [PMID: 36688097 PMCID: PMC9847464 DOI: 10.1007/s10404-022-02622-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/31/2022] [Indexed: 05/31/2023]
Abstract
Aptasensors have attracted considerable interest and widespread application in point-of-care testing worldwide. One of the biggest challenges of a point-of-care (POC) is the reduction of treatment time compared to central facilities that diagnose and monitor the applications. Over the past decades, biosensors have been introduced that offer more reliable, cost-effective, and accurate detection methods. Aptamer-based biosensors have unprecedented advantages over biosensors that use natural receptors such as antibodies and enzymes. In the current epidemic, point-of-care testing (POCT) is advantageous because it is easy to use, more accessible, faster to detect, and has high accuracy and sensitivity, reducing the burden of testing on healthcare systems. POCT is beneficial for daily epidemic control as well as early detection and treatment. This review provides detailed information on the various design strategies and virus detection methods using aptamer-based sensors. In addition, we discussed the importance of different aptamers and their detection principles. Aptasensors with higher sensitivity, specificity, and flexibility are critically discussed to establish simple, cost-effective, and rapid detection methods. POC-based aptasensors' diagnostic applications are classified and summarised based on infectious and infectious diseases. Finally, the design factors to be considered are outlined to meet the future of rapid POC-based sensors.
Collapse
Affiliation(s)
- Abhishek Futane
- Fakulti Kejuruteraan Elektronik Dan Kejuruteraan Komputer, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
| | - Vigneswaran Narayanamurthy
- Advance Sensors and Embedded Systems (ASECs), Centre for Telecommunication Research and Innovation, Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100 Melaka, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP) Lebuhraya Tun Razak, Gambang, 26300 Kuantan, Pahang Malaysia
- InnoFuTech, No 42/12, 7Th Street, Vallalar Nagar, Chennai, Tamil Nadu 600072 India
| | - Arthi Srinivasan
- Faculty of Chemical and Process Engineering Technology, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, 26300 Kunatan, Pahang Malaysia
| |
Collapse
|
11
|
Cardoso AR, Alves JF, Frasco MF, Piloto AM, Serrano V, Mateus D, Sebastião AI, Matos AM, Carmo A, Cruz T, Fortunato E, Sales MGF. An ultra-sensitive electrochemical biosensor using the Spike protein for capturing antibodies against SARS-CoV-2 in point-of-care. Mater Today Bio 2022; 16:100354. [PMID: 35847374 PMCID: PMC9270181 DOI: 10.1016/j.mtbio.2022.100354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
This work presents an innovative ultra-sensitive biosensor having the Spike protein on carbon-based screen-printed electrodes (SPEs), for monitoring in point-of-care antibodies against SARS-CoV-2, a very important tool for epidemiological monitoring of COVID-19 infection and establishing vaccination schemes. In an innovative and simple approach, a highly conductive support is combined with the direct adsorption of Spike protein to enable an extensive antibody capture. The high conductivity was ensured by using carboxylated carbon nanotubes on the carbon electrode, by means of a simple and quick approach, which also increased the surface area. These were then modified with EDC/NHS chemistry to produce an amine layer and undergo Spike protein adsorption, to generate a stable layer capable of capturing the antibodies against SARS-CoV-2 in serum with great sensitivity. Electrochemical impedance spectroscopy was used to evaluate the analytical performance of this biosensor in serum. It displayed a linear response between 1.0 pg/mL and 10 ng/mL, with a detection limit of ∼0.7 pg/mL. The analysis of human positive sera containing antibody in a wide range of concentrations yielded accurate data, correlating well with the reference method. It also offered the unique ability of discriminating antibody concentrations in sera below 2.3 μg/mL, the lowest value detected by the commercial method. In addition, a proof-of-concept study was performed by labelling anti-IgG antibodies with quantum dots to explore a new electrochemical readout based on the signal generated upon binding to the anti-S protein antibodies recognised on the surface of the biosensor. Overall, the alternative serologic assay presented is a promising tool for assessing protective immunity to SARS-CoV-2 and a potential guide for revaccination. An ultra-sensitive biosensor for detection of low levels of antibodies against SARS-CoV-2. Highly conductive substrate with adsorbed protein S and point-of-care capability. Application to human sera samples and good correlation with commercial method. Electrochemical impedance readings with an iron-based redox probe. Alternative electrochemical impedance readings with anti-IgG labelled with quantum dots.
Collapse
Affiliation(s)
- Ana R Cardoso
- BioMark@UC/CEB - LABBELS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,BioMark@ISEP/ CEB - LABBELS, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal.,CENIMAT
- i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica, 2829-516, Caparica, Portugal
| | - João Frederico Alves
- BioMark@UC/CEB - LABBELS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Manuela F Frasco
- BioMark@UC/CEB - LABBELS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Ana Margarida Piloto
- BioMark@ISEP/ CEB - LABBELS, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Verónica Serrano
- BioMark@UC/CEB - LABBELS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Daniela Mateus
- BioMark@UC/CEB - LABBELS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Isabel Sebastião
- Center for Neuroscience and Cell Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Miguel Matos
- Chemical Engineering Processes and Forest Products Research Center, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Anália Carmo
- Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Teresa Cruz
- Center for Neuroscience and Cell Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Elvira Fortunato
- CENIMAT
- i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica, 2829-516, Caparica, Portugal
| | - M Goreti F Sales
- BioMark@UC/CEB - LABBELS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,BioMark@ISEP/ CEB - LABBELS, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| |
Collapse
|
12
|
Babaei A, Rafiee N, Taheri B, Sohrabi H, Mokhtarzadeh A. Recent Advances in Early Diagnosis of Viruses Associated with Gastroenteritis by Biosensors. BIOSENSORS 2022; 12:499. [PMID: 35884302 PMCID: PMC9313180 DOI: 10.3390/bios12070499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Gastroenteritis, as one of the main worldwide health challenges, especially in children, leads to 3-6 million deaths annually and causes nearly 20% of the total deaths of children aged ˂5 years, of which ~1.5 million gastroenteritis deaths occur in developing nations. Viruses are the main causative agent (~70%) of gastroenteritis episodes and their specific and early diagnosis via laboratory assays is very helpful for having successful antiviral therapy and reduction in infection burden. Regarding this importance, the present literature is the first review of updated improvements in the employing of different types of biosensors such as electrochemical, optical, and piezoelectric for sensitive, simple, cheap, rapid, and specific diagnosis of human gastroenteritis viruses. The Introduction section is a general discussion about the importance of viral gastroenteritis, types of viruses that cause gastroenteritis, and reasons for the combination of conventional diagnostic tests with biosensors for fast detection of viruses associated with gastroenteritis. Following the current laboratory detection tests for human gastroenteritis viruses and their limitations (with subsections: Electron Microscope (EM), Cell Culture, Immunoassay, and Molecular Techniques), structural features and significant aspects of various biosensing methods are discussed in the Biosensor section. In the next sections, basic information on viruses causing gastroenteritis and recent developments for fabrication and testing of different biosensors for each virus detection are covered, and the prospect of future developments in designing different biosensing platforms for gastroenteritis virus detection is discussed in the Conclusion and Future Directions section as well.
Collapse
Affiliation(s)
- Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin 59811-34197, Iran;
| | - Nastaran Rafiee
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran;
| | - Behnaz Taheri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran;
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran;
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran
| |
Collapse
|
13
|
Abstract
The effect of the on-going COVID-19 pandemic on global healthcare systems has underlined the importance of timely and cost-effective point-of-care diagnosis of viruses. The need for ultrasensitive easy-to-use platforms has culminated in an increased interest for rapid response equipment-free alternatives to conventional diagnostic methods such as polymerase chain reaction, western-blot assay, etc. Furthermore, the poor stability and the bleaching behavior of several contemporary fluorescent reporters is a major obstacle in understanding the mechanism of viral infection thus retarding drug screening and development. Owing to their extraordinary surface-to-volume ratio as well as their quantum confinement and charge transfer properties, nanomaterials are desirable additives to sensing and imaging systems to amplify their signal response as well as temporal resolution. Their large surface area promotes biomolecular integration as well as efficacious signal transduction. Due to their hole mobility, photostability, resistance to photobleaching, and intense brightness, nanomaterials have a considerable edge over organic dyes for single virus tracking. This paper reviews the state-of-the-art of combining carbon-allotrope, inorganic and organic-based nanomaterials with virus sensing and tracking methods, starting with the impact of human pathogenic viruses on the society. We address how different nanomaterials can be used in various virus sensing platforms (e.g. lab-on-a-chip, paper, and smartphone-based point-of-care systems) as well as in virus tracking applications. We discuss the enormous potential for the use of nanomaterials as simple, versatile, and affordable tools for detecting and tracing viruses infectious to humans, animals, plants as well as bacteria. We present latest examples in this direction by emphasizing major advantages and limitations.
Collapse
Affiliation(s)
- Muqsit Pirzada
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| | - Zeynep Altintas
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| |
Collapse
|
14
|
Nanotechnology Role Development for COVID-19 Pandemic Management. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/1872933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The global outbreak of coronavirus disease has sent an ominous message to the field of innovative and advanced technology research and development (COVID-19). To accomplish this, convectional technology and recent discoveries can be combined, or new research directions can be opened up using nanotechnology. Nanotechnology can be used to prevent, diagnose, and treat SARS-CoV-2 infection. As the pandemic spreads, a thorough examination of nanomaterials' role in pandemic response is highly desirable. According to this comprehensive review article, nanotechnology can be used to prevent, diagnose, and treat COVID-19. This research will be extremely useful during the COVID-19 outbreak in terms of developing rules for designing nanostructure materials to combat the outbreak.
Collapse
|
15
|
Anand U, Chandel AKS, Oleksak P, Mishra A, Krejcar O, Raval IH, Dey A, Kuca K. Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors. Appl Microbiol Biotechnol 2022; 106:2827-2853. [PMID: 35384450 PMCID: PMC8984675 DOI: 10.1007/s00253-022-11901-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022]
Abstract
Abstract The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. Key points • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Ishan H Raval
- Council of Scientific and Industrial Research - Central Salt and Marine Chemicals Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
16
|
Souri M, Chiani M, Farhangi A, Mehrabi MR, Nourouzian D, Raahemifar K, Soltani M. Anti-COVID-19 Nanomaterials: Directions to Improve Prevention, Diagnosis, and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:783. [PMID: 35269270 PMCID: PMC8912597 DOI: 10.3390/nano12050783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Following the announcement of the outbreak of COVID-19 by the World Health Organization, unprecedented efforts were made by researchers around the world to combat the disease. So far, various methods have been developed to combat this "virus" nano enemy, in close collaboration with the clinical and scientific communities. Nanotechnology based on modifiable engineering materials and useful physicochemical properties has demonstrated several methods in the fight against SARS-CoV-2. Here, based on what has been clarified so far from the life cycle of SARS-CoV-2, through an interdisciplinary perspective based on computational science, engineering, pharmacology, medicine, biology, and virology, the role of nano-tools in the trio of prevention, diagnosis, and treatment is highlighted. The special properties of different nanomaterials have led to their widespread use in the development of personal protective equipment, anti-viral nano-coats, and disinfectants in the fight against SARS-CoV-2 out-body. The development of nano-based vaccines acts as a strong shield in-body. In addition, fast detection with high efficiency of SARS-CoV-2 by nanomaterial-based point-of-care devices is another nanotechnology capability. Finally, nanotechnology can play an effective role as an agents carrier, such as agents for blocking angiotensin-converting enzyme 2 (ACE2) receptors, gene editing agents, and therapeutic agents. As a general conclusion, it can be said that nanoparticles can be widely used in disinfection applications outside in vivo. However, in in vivo applications, although it has provided promising results, it still needs to be evaluated for possible unintended immunotoxicity. Reviews like these can be important documents for future unwanted pandemics.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Ali Farhangi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Mohammad Reza Mehrabi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Dariush Nourouzian
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (M.S.); (M.C.); (A.F.)
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA;
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
| |
Collapse
|
17
|
Abstract
Unique pneumonia due to an unknown source emerged in December 2019 in the city of Wuhan, China. Consequently, the World Health Organization (WHO) declared this condition as a new coronavirus disease-19 also known as COVID-19 on February 11, 2020, which on March 13, 2020 was declared as a pandemic. The virus that causes COVID-19 was found to have a similar genome (80% similarity) with the previously known acute respiratory syndrome also known as SARS-CoV. The novel virus was later named Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 falls in the family of Coronaviridae which is further divided into Nidovirales and another subfamily called Orthocoronavirinae. The four generations of the coronaviruses belongs to the Orthocoronavirinae family that consists of alpha, beta, gamma and delta coronavirus which are denoted as α-CoV, β-CoV, γ-CoV, δ-CoV respectively. The α-CoV and β-CoVs are mainly known to infect mammals whereas γ-CoV and δ-CoV are generally found in birds. The β-CoVs also comprise of SARS-CoV and also include another virus that was found in the Middle East called the Middle East respiratory syndrome virus (MERS-CoV) and the cause of current pandemic SARS-CoV-2. These viruses initially cause the development of pneumonia in the patients and further development of a severe case of acute respiratory distress syndrome (ARDS) and other related symptoms that can be fatal leading to death.
Collapse
|
18
|
Wang N, Pan G, Liu P, Rong S, Gao Z, Li Q. Advances and Future Perspective on Detection Technology of Human Norovirus. Pathogens 2021; 10:pathogens10111383. [PMID: 34832539 PMCID: PMC8618740 DOI: 10.3390/pathogens10111383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Human norovirus (HuNoV) is a food-borne pathogen that causes acute gastroenteritis in people of all ages worldwide. However, no approved vaccines and antiviral drugs are available at present. Therefore, the development of accurate and rapid detection technologies is important in controlling the outbreak of HuNoVs. This paper reviewed the research progress on HuNoV detection, including immunological methods, molecular detection and biosensor technology. Immunological methods and molecular detection technologies are still widely used for HuNoV detection. Furthermore, biosensors will become an emerging developmental direction for the rapid detection of HuNoVs because of their high sensitivity, low cost, easy operation and suitability for onsite detection.
Collapse
Affiliation(s)
- Nan Wang
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
| | - Guiying Pan
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
| | - Ping Liu
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
| | - Shaofeng Rong
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
| | - Zhiyong Gao
- Beijing Research Center for Preventive Medicine, Beijing Center for Disease Prevention and Control, Beijing 100013, China;
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai 201418, China; (N.W.); (G.P.); (P.L.); (S.R.)
- Correspondence: ; Tel.: +86-21-60873381
| |
Collapse
|
19
|
Kamat S, Kumari M, Jayabaskaran C. Nano-engineered tools in the diagnosis, therapeutics, prevention, and mitigation of SARS-CoV-2. J Control Release 2021; 338:813-836. [PMID: 34478750 PMCID: PMC8406542 DOI: 10.1016/j.jconrel.2021.08.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 01/07/2023]
Abstract
The recent outbreak of SARS-CoV-2 has forever altered mankind resulting in the COVID-19 pandemic. This respiratory virus further manifests into vital organ damage, resulting in severe post COVID-19 complications. Nanotechnology has been moonlighting in the scientific community to combat several severe diseases. This review highlights the triune of the nano-toolbox in the areas of diagnostics, therapeutics, prevention, and mitigation of SARS-CoV-2. Nanogold test kits have already been on the frontline of rapid detection. Breath tests, magnetic nanoparticle-based nucleic acid detectors, and the use of Raman Spectroscopy present myriads of possibilities in developing point of care biosensors, which will ensure sensitive, affordable, and accessiblemass surveillance. Most of the therapeutics are trying to focus on blocking the viral entry into the cell and fighting with cytokine storm, using nano-enabled drug delivery platforms. Nanobodies and mRNA nanotechnology with lipid nanoparticles (LNPs) as vaccines against S and N protein have regained importance. All the vaccines coming with promising phase 3 clinical trials have used nano-delivery systems for delivery of vaccine-cargo, which are currently administered widely in many countries. The use of chemically diverse metal, carbon and polymeric nanoparticles, nanocages and nanobubbles demonstrate opportunities to develop anti-viral nanomedicine. In order to prevent and mitigate the viral spread, high-performance charged nanofiber filters, spray coating of nanomaterials on surfaces, novel materials for PPE kits and facemasks have been developed that accomplish over 90% capture of airborne SARS-CoV-2. Nano polymer-based disinfectants are being tested to make smart-transport for human activities. Despite the promises of this toolbox, challenges in terms of reproducibility, specificity, efficacy and emergence of new SARS-CoV-2 variants are yet to overcome.
Collapse
Affiliation(s)
- Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India.
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
20
|
Saatçi E, Natarajan S. State-of-the-art colloidal particles and unique interfaces-based SARS-CoV-2 detection methods and COVID-19 diagnosis. Curr Opin Colloid Interface Sci 2021; 55:101469. [PMID: 34093063 PMCID: PMC8164518 DOI: 10.1016/j.cocis.2021.101469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In March 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-based infections were declared 'COVID-19 pandemic' by the World Health Organization. Pandemic raised the necessity to design and develop genuine and sensitive tests for precise specific SARS-CoV-2 infections detection. Nanotechnological methods offer new ways to fight COVID-19. Nanomaterials are ideal for unique sensor platforms because of their chemically versatile properties and they are easy to manufacture. In this context, selected examples for integrating nanomaterials and distinct biosensor platforms are given to detect SARS-CoV-2 biological materials and COVID-19 biomarkers, giving researchers and scientists more goals and a better forecast to design more relevant and novel sensor arrays for COVID-19 diagnosis.
Collapse
Affiliation(s)
- Ebru Saatçi
- Erciyes University, Faculty of Science, Biology Department, 38039, Kayseri, Turkey
| | - Satheesh Natarajan
- Healthcare Technology Innovation Centre, Indian Institute of Technology, Madras, 600113, Tamilnadu, India
| |
Collapse
|
21
|
Sulfur-doped carbon dots@polydopamine-functionalized magnetic silver nanocubes for dual-modality detection of norovirus. Biosens Bioelectron 2021; 193:113540. [PMID: 34403935 DOI: 10.1016/j.bios.2021.113540] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 12/27/2022]
Abstract
Synergistic dual-mode optical platforms are up-and-coming detection tools in the diagnosis and management of infectious diseases. Here, novel dual-modality fluorescence (FL) and surface-enhanced Raman scattering (SERS) techniques have been integrated into a single probe for the rapid and ultrasensitive detection of norovirus (NoV). The developed FL-SER-based biosensor relies on the dual-signal enhancements of newly synthesized sulfur-doped agar-derived carbon dots (S-agCDs). The antigen-antibody immunoreaction results in forming a core-satellite immunocomplex between anti-NoV antibody-conjugated S-agCDs and polydopamine-functionalized magnetic silver nanocubes [poly (dop)-MNPs-Ag NCs]. By deploying an immunomagnetic enrichment protocol and performing the SERS modality on a single-layer graphene substrate, norovirus-like particles (NoV-LPs) were detected across a wide range of 1 fg mL-1 - 10 ng mL-1 with an excellent limit of detection of 0.1 fg mL-1. The combined advantage of the dual-signaling properties of the biosensor was demonstrated using FL confocal imaging for "hotspots" tracking prior to SERS detection of clinical NoV in fecal specimen down to ⁓10 RNA copies mL-1. The proposed dual-modality biosensor's performance increases the prospect of a rapid and low-cost sensitive NoV detection and surveillance option for public health.
Collapse
|
22
|
Hassan MM, Sium FS, Islam F, Choudhury SM. A review on plasmonic and metamaterial based biosensing platforms for virus detection. SENSING AND BIO-SENSING RESEARCH 2021; 33:100429. [PMID: 38620669 PMCID: PMC8133828 DOI: 10.1016/j.sbsr.2021.100429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Due to changes in our climate and constant loss of habitat for animals, new pathogens for humans are constantly erupting. SARS-CoV-2 virus, become so infectious and deadly that they put new challenge to the whole technological advancement of healthcare. Within this very decade, several other deadly virus outbreaks were witnessed by humans such as Zika virus, Ebola virus, MERS-coronavirus etc. and there might be even more infectious and deadlier diseases in the horizon. Though conventional techniques have succeeded in detecting these viruses to some extent, these techniques are time-consuming, costly, and require trained human-resources. Plasmonic metamaterial based biosensors might pave the way to low-cost rapid virus detection. So this review discusses in details, the latest development in plasmonics and metamaterial based biosensors for virus, viral particles and antigen detection and the future direction of research in this field.
Collapse
Affiliation(s)
- Mohammad Muntasir Hassan
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Farhan Sadik Sium
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Department of Electrical and Electronic Engineering, Daffodil International University, Dhaka, Bangladesh
| | - Fariba Islam
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- Department of Computer Science and Engineering, BRAC University, Dhaka, Bangladesh
| | - Sajid Muhaimin Choudhury
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| |
Collapse
|
23
|
Zaczek-Moczydlowska MA, Beizaei A, Dillon M, Campbell K. Current state-of-the-art diagnostics for Norovirus detection: Model approaches for point-of-care analysis. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Olejnik B, Kozioł A, Brzozowska E, Ferens-Sieczkowska M. Application of selected biosensor techniques in clinical diagnostics. Expert Rev Mol Diagn 2021; 21:925-937. [PMID: 34289786 DOI: 10.1080/14737159.2021.1957833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Examination of disease biomarkers mostly performed on crude materials, such as serum, meets some obstacles, resulting from sample complexity and the wide range of concentrations and sizes of the components. Techniques currently used in clinical diagnostics are usually time-consuming and expensive. The more sensitive and portable devices are needed for early diagnostics. Chemical sensors are devices that convert chemical information into parameters suitable for fast and precise processing and measurement. AREA COVERED We review the use of biosensors and their possible application in early diagnostics of some diseases like cancer or viral infections. We focus on different types of biorecognition and some technical modifications, lowering the limit of detection potentially attractive to medical practitioners. EXPERT OPINION Among the new diagnostic strategies, the use of biosensors is of increasing interest. In these techniques, the capture ligand interacts with the analyte of interest. Measuring interactions between partners in real time by surface plasmon resonance yields valuable information about kinetics and affinity in a short time and without labels. Importantly, the tendency in such techniques is to make biosensor devices smaller and the test results apparent with the naked eye, so they can be used in point-of-care medicine.
Collapse
Affiliation(s)
- Beata Olejnik
- Department of Chemistry and Immunochemistry, Medical University of Wroclaw, Wrocław, Poland
| | - Agata Kozioł
- Department of Chemistry and Immunochemistry, Medical University of Wroclaw, Wrocław, Poland
| | - Ewa Brzozowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Laboratory of Medical Microbiology, Wrocław, Poland
| | | |
Collapse
|
25
|
Rasmi Y, Saloua KS, Nemati M, Choi JR. Recent Progress in Nanotechnology for COVID-19 Prevention, Diagnostics and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1788. [PMID: 34361174 PMCID: PMC8308319 DOI: 10.3390/nano11071788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic is currently an unprecedented public health threat. The rapid spread of infections has led to calls for alternative approaches to combat the virus. Nanotechnology is taking root against SARS-CoV-2 through prevention, diagnostics and treatment of infections. In light of the escalating demand for managing the pandemic, a comprehensive review that highlights the role of nanomaterials in the response to the pandemic is highly desirable. This review article comprehensively discusses the use of nanotechnology for COVID-19 based on three main categories: prevention, diagnostics and treatment. We first highlight the use of various nanomaterials including metal nanoparticles, carbon-based nanoparticles and magnetic nanoparticles for COVID-19. We critically review the benefits of nanomaterials along with their applications in personal protective equipment, vaccine development, diagnostic device fabrication and therapeutic approaches. The remaining key challenges and future directions of nanomaterials for COVID-19 are briefly discussed. This review is very informative and helpful in providing guidance for developing nanomaterial-based products to fight against COVID-19.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 5714783734, Iran;
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Kouass Sahbani Saloua
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran;
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
26
|
Ahmadi S, Rabiee N, Fatahi Y, Hooshmand SE, Bagherzadeh M, Rabiee M, Jajarmi V, Dinarvand R, Habibzadeh S, Saeb MR, Varma RS, Shokouhimehr M, Hamblin MR. Green chemistry and coronavirus. SUSTAINABLE CHEMISTRY AND PHARMACY 2021; 21:100415. [PMID: 33686371 PMCID: PMC7927595 DOI: 10.1016/j.scp.2021.100415] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 05/05/2023]
Abstract
The novel coronavirus pandemic has rapidly spread around the world since December 2019. Various techniques have been applied in identification of SARS-CoV-2 or COVID-19 infection including computed tomography imaging, whole genome sequencing, and molecular methods such as reverse transcription polymerase chain reaction (RT-PCR). This review article discusses the diagnostic methods currently being deployed for the SARS-CoV-2 identification including optical biosensors and point-of-care diagnostics that are on the horizon. These innovative technologies may provide a more accurate, sensitive and rapid diagnosis of SARS-CoV-2 to manage the present novel coronavirus outbreak, and could be beneficial in preventing any future epidemics. Furthermore, the use of green synthesized nanomaterials in the optical biosensor devices could leads to sustainable and environmentally-friendly approaches for addressing this crisis.
Collapse
Affiliation(s)
- Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Center (USERN), Tehran, Iran
| | - Seyyed Emad Hooshmand
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| |
Collapse
|
27
|
Bahl S, Bagha AK, Rab S, Javaid M, Haleem A, Singh RP. Advancements in Biosensor Technologies for Medical Field and COVID-19 Pandemic. JOURNAL OF INDUSTRIAL INTEGRATION AND MANAGEMENT 2021. [DOI: 10.1142/s2424862221500081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
World health organization (WHO) has declared the COVID-19 outbreak as a public health emergency of international concern and then as a pandemic on 30th of January and 11th of March 2020, respectively. After such concern, the world scientific communities have rushed to search for solutions to bring down the disease’s spread, fast-paced vaccine development, and associated medical research using modern technologies. Biosensor technologies play a crucial role in diagnosing various medical diseases, including COVID-19. The present paper describes the major advancement of biosensor-based technological solutions for medical diagnosis, including COVID-19. This review-based work covers the biosensors and their working principles in the context of medical applications. The paper also discusses different biosensors and their applications to tackle medical issues, including this ongoing pandemic.
Collapse
Affiliation(s)
- Shashi Bahl
- Department of Mechanical Engineering, I.K. Gujral Punjab Technical University, Hoshiarpur Campus, Hoshiarpur 146001, India
| | - Ashok Kumar Bagha
- Department of Mechanical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, India
| | - Shanay Rab
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohd Javaid
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi 110025, India
| | - Abid Haleem
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi 110025, India
| | - Ravi Pratap Singh
- Department of Industrial and Production Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, India
| |
Collapse
|
28
|
Pilevar M, Kim KT, Lee WH. Recent advances in biosensors for detecting viruses in water and wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124656. [PMID: 33308919 DOI: 10.1016/j.jhazmat.2020.124656] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 05/09/2023]
Abstract
As there is a considerable number of virus particles in wastewater which cause numerous infectious diseases, it is necessary to eliminate viruses from domestic wastewater before it is released in the environment. In addition, on-site detection of viruses in wastewater can provide information on possible virus exposures in the community of a given wastewater catchment. For this purpose, the pre-detection of different strains of viruses in wastewaters is an essential environmental step. Epidemiological studies illustrate that viruses are the most challenging pathogens to be detected in water samples because of their nano sizes, discrete distribution, and low infective doses. Over the past decades, several methods have been applied for the detection of waterborne viruses which include polymerase chain reaction-based methods (PCR), enzyme-linked immunosorbent assay (ELISA), and nucleic acid sequence-based amplification (NASBA). Although they have shown acceptable performance in virus measurements, their drawbacks such as complicated and time-consuming procedures, low sensitivity, and high analytical cost call for alternatives. Although biosensors are still in an early stage for practical applications, they have shown great potential to become an alternative means for virus detection in water and wastewater. This comprehensive review addresses the different types of viruses found in water and the recent development of biosensors for detecting waterborne viruses.
Collapse
Affiliation(s)
- Mohsen Pilevar
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Keug Tae Kim
- Department of Environmental & Energy Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, South Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
29
|
Maddali H, Miles CE, Kohn J, O'Carroll DM. Optical Biosensors for Virus Detection: Prospects for SARS-CoV-2/COVID-19. Chembiochem 2021; 22:1176-1189. [PMID: 33119960 PMCID: PMC8048644 DOI: 10.1002/cbic.202000744] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 12/29/2022]
Abstract
The recent pandemic of the novel coronavirus disease 2019 (COVID-19) has caused huge worldwide disruption due to the lack of available testing locations and equipment. The use of optical techniques for viral detection has flourished in the past 15 years, providing more reliable, inexpensive, and accurate detection methods. In the current minireview, optical phenomena including fluorescence, surface plasmons, surface-enhanced Raman scattering (SERS), and colorimetry are discussed in the context of detecting virus pathogens. The sensitivity of a viral detection method can be dramatically improved by using materials that exhibit surface plasmons or SERS, but often this requires advanced instrumentation for detection. Although fluorescence and colorimetry lack high sensitivity, they show promise as point-of-care diagnostics because of their relatively less complicated instrumentation, ease of use, lower costs, and the fact that they do not require nucleic acid amplification. The advantages and disadvantages of each optical detection method are presented, and prospects for applying optical biosensors in COVID-19 detection are discussed.
Collapse
Affiliation(s)
- Hemanth Maddali
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Catherine E Miles
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Deirdre M O'Carroll
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
30
|
An X, Erramilli S, Reinhard BM. Plasmonic nano-antimicrobials: properties, mechanisms and applications in microbe inactivation and sensing. NANOSCALE 2021; 13:3374-3411. [PMID: 33538743 PMCID: PMC8349509 DOI: 10.1039/d0nr08353d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacterial, viral and fungal infections pose serious threats to human health and well-being. The continuous emergence of acute infectious diseases caused by pathogenic microbes and the rapid development of resistances against conventional antimicrobial drugs necessitates the development of new and effective strategies for the safe elimination of microbes in water, food or on surfaces, as well as for the inactivation of pathogenic microbes in human hosts. The need for new antimicrobials has triggered the development of plasmonic nano-antimicrobials that facilitate both light-dependent and -independent microbe inactivation mechanisms. This review introduces the relevant photophysical mechanisms underlying these plasmonic nano-antimicrobials, and provides an overview of how the photoresponses and materials properties of plasmonic nanostructures can be applied in microbial pathogen inactivation and sensing applications. Through a systematic analysis of the inactivation efficacies of different plasmonic nanostructures, this review outlines the current state-of-the-art in plasmonic nano-antimicrobials and defines the application space for different microbial inactivation strategies. The advantageous optical properties of plasmonic nano-antimicrobials also enhance microbial detection and sensing modalities and thus help to avoid exposure to microbial pathogens. Sensitive and fast plasmonic microbial sensing modalities and their theranostic and targeted therapeutic applications are discussed.
Collapse
Affiliation(s)
- Xingda An
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Shyamsunder Erramilli
- Department of Physics, Boston University, Boston, MA 02215, USA and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Björn M Reinhard
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
31
|
Zhang X, Li G, Chen G, Zhu N, Wu D, Wu Y, James TD. Recent progresses and remaining challenges for the detection of Zika virus. Med Res Rev 2021; 41:2039-2108. [PMID: 33559917 DOI: 10.1002/med.21786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
Abstract
Zika virus (ZIKV) has emerged as a particularly notorious mosquito-borne flavivirus, which can lead to a devastating congenital syndrome in the fetuses of pregnant mothers (e.g., microcephaly, spasticity, craniofacial disproportion, miscarriage, and ocular abnormalities) and cause the autoimmune disorder Guillain-Barre' syndrome of adults. Due to its severity and rapid dispersal over several continents, ZIKV has been acknowledged to be a global health concern by the World Health Organization. Unfortunately, the ZIKV has recently resurged in India with the potential for devastating effects. Researchers from all around the world have worked tirelessly to develop effective detection strategies and vaccines for the prevention and control of ZIKV infection. In this review, we comprehensively summarize the most recent research into ZIKV, including the structural biology and evolution, historical overview, pathogenesis, symptoms, and transmission. We then focus on the detection strategies for ZIKV, including viral isolation, serological assays, molecular assays, sensing methods, reverse transcription loop mediated isothermal amplification, transcription-mediated amplification technology, reverse transcription strand invasion based amplification, bioplasmonic paper-based device, and reverse transcription isothermal recombinase polymerase amplification. To conclude, we examine the limitations of currently available strategies for the detection of ZIKV, and outline future opportunities and research challenges.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guang Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Niu Zhu
- Department of Public Health, Xi'an Medical University, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
32
|
Bhardwaj SK, Bhardwaj N, Kumar V, Bhatt D, Azzouz A, Bhaumik J, Kim KH, Deep A. Recent progress in nanomaterial-based sensing of airborne viral and bacterial pathogens. ENVIRONMENT INTERNATIONAL 2021; 146:106183. [PMID: 33113463 DOI: 10.1016/j.envint.2020.106183] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 05/25/2023]
Abstract
Airborne pathogens are small microbes that can cause a multitude of diseases (e.g., the common cold, flu, asthma, anthrax, tuberculosis, botulism, and pneumonia). As pathogens are transmitted from infected hosts via a number of routes (e.g., aerosolization, sneezing, and coughing), there is a great demand to accurately monitor their presence and behavior. Despite such need, conventional detection methods (e.g., colony counting, immunoassays, and various molecular techniques) generally suffer from a number of demerits (e.g., complex, time-consuming, and labor-intensive nature). To help overcome such limitations, nanomaterial-based biosensors have evolved as alternative candidates to realize portable, rapid, facile, and direct on-site identification of target microbes. In this review, nano-biosensors developed for the detection of airborne pathogens are listed and discussed in reference to conventional options. The prospects for the development of advanced nano-biosensors with enhanced accuracy and portability are also discussed.
Collapse
Affiliation(s)
- Sanjeev K Bhardwaj
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh 160025, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute, S.A.S. Nagar 140306, Punjab, India
| | - Deepanshu Bhatt
- Central Scientific Instruments Organisation, Sector 30 C, Chandigarh 160030, India
| | - Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tétouan, Morocco
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 133-791, Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organisation, Sector 30 C, Chandigarh 160030, India.
| |
Collapse
|
33
|
Manivannan S, Ponnuchamy K. Quantum dots as a promising agent to combat COVID-19. Appl Organomet Chem 2020; 34:e5887. [PMID: 32836625 PMCID: PMC7361141 DOI: 10.1002/aoc.5887] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022]
Abstract
Approximately every 100 years, as witnessed in the last two centuries, we are facing an influenza pandemic, necessitating the need to combat a novel virus strain. As a result of the new coronavirus (severe acute respiratory syndrome coronavirus type 2 [SARS-CoV-2] outbreak in January 2020, many clinical studies are being carried out with the aim of combating or eradicating the disease altogether. However, so far, developing coronavirus disease 2019 (COVID-19) detection kits or vaccines has remained elusive. In this regard, the development of antiviral nanomaterials by surface engineering with enhanced specificity might prove valuable to combat this novel virus. Quantum dots (QDs) are multifaceted agents with the ability to fight against/inhibit the activity of COVID-19 virus. This article exclusively discusses the potential role of QDs as biosensors and antiviral agents for attenuation of viral infection.
Collapse
Affiliation(s)
- Selvambigai Manivannan
- Department of Biomedical Science and Centre for Membrane Interactions and Dynamics (CMIAD)The University of SheffieldWestern BankSheffieldS10 2TNUK
| | - Kumar Ponnuchamy
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and ManagementAlagappa UniversityKaraikudiIndia630003India
| |
Collapse
|
34
|
Jalandra R, Yadav AK, Verma D, Dalal N, Sharma M, Singh R, Kumar A, Solanki PR. Strategies and perspectives to develop SARS-CoV-2 detection methods and diagnostics. Biomed Pharmacother 2020; 129:110446. [PMID: 32768943 PMCID: PMC7303646 DOI: 10.1016/j.biopha.2020.110446] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
To develop diagnostics and detection methods, current research is focussed on targeting the detection of coronavirus based on its RNA. Besides the RNA target, research reports are coming to develop diagnostics by targeting structure and other parts of coronavirus. PCR based detection system is widely used and various improvements in the PCR based detection system can be seen in the recent research reports. This review will discuss multiple detection methods for coronavirus for developing appropriate, reliable, and fast alternative techniques. Considering the current scenario of COVID-19 diagnostics around the world and an urgent need for the development of reliable and cheap diagnostic, various techniques based on CRISPR technology, antibody, MIP, LAMP, microarray, etc. should be discussed and tried.
Collapse
Affiliation(s)
- Rekha Jalandra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India; Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Amit K Yadav
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Damini Verma
- Amity Institute of Applied Sciences, Amity University, Uttar Pradesh, 201313, India
| | - Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India; Department of Environmental Science, Satyawati College, Delhi University, New Delhi, 110052, India
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, India
| | - Rajeev Singh
- Department of Environmental Science, Satyawati College, Delhi University, New Delhi, 110052, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| | - Pratima R Solanki
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
35
|
Guo J, Liu D, Yang Z, Weng W, Chan EWC, Zeng Z, Wong KY, Lin P, Chen S. A photoelectrochemical biosensor for rapid and ultrasensitive norovirus detection. Bioelectrochemistry 2020; 136:107591. [PMID: 32645567 DOI: 10.1016/j.bioelechem.2020.107591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 11/28/2022]
Abstract
The highly contagious norovirus (NoV) is the most common causative agent of acute gastroenteritis, resulting in >200,000 deaths worldwide annually. A rapid and sensitive detection method is a prerequisite for effective prevention and timely identification of NoV contamination. In the present study, we developed a photoelectrochemical (PEC) biosensor coupled with a novel custom-made monoclonal antibody (mAb) for specific and sensitive NoV detection. Our system could detect levels of recombinant NoV capsid protein VP1 as low as 2 × 10-10 g mL-1 (4.9 pM) within 30 min in a concentration-dependent manner. More importantly, the biosensor was versatile in detecting virus isolated from real samples that were as low as 46 copies μL-1. These findings indicate that this system has the potential to serve as a convenient point-of-care system for diagnosing NoV infection and detecting NoV-contaminated food samples.
Collapse
Affiliation(s)
- Jiubiao Guo
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Dan Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhiqiang Yang
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China
| | - Wenchuan Weng
- Department of Supervision on Import & Export Food Safety, Guangdong Entry-Exit Inspection and Quarantine Bureau, Guangzhou, Guangdong, China
| | - Edward Wai Chi Chan
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kwok-Yin Wong
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China
| | - Peng Lin
- Shenzhen Key Laboratory of Special Functional Materials & Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Sheng Chen
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, China; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
36
|
Szunerits S, Nait Saada T, Meziane D, Boukherroub R. Magneto-Optical Nanostructures for Viral Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1271. [PMID: 32610549 PMCID: PMC7408614 DOI: 10.3390/nano10071271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
The eradication of viral infections is an ongoing challenge in the medical field, as currently evidenced with the newly emerged Coronavirus disease 2019 (COVID-19) associated with severe respiratory distress. As treatments are often not available, early detection of an eventual infection and its level becomes of outmost importance. Nanomaterials and nanotechnological approaches are increasingly used in the field of viral sensing to address issues related to signal-to-noise ratio, limiting the sensitivity of the sensor. Superparamagnetic nanoparticles (MPs) present one of the most exciting prospects for magnetic bead-based viral aggregation assays and their integration into different biosensing strategies as they can be easily separated from a complex matrix containing the virus through the application of an external magnetic field. Despite the enormous potential of MPs as capture/pre-concentrating elements, they are not ideal with regard of being active elements in sensing applications as they are not the sensor element itself. Even though engineering of magneto-plasmonic nanostructures as promising hybrid materials directly applicable for sensing due to their plasmonic properties are often used in sensing, to our surprise, the literature of magneto-plasmonic nanostructures for viral sensing is limited to some examples. Considering the wide interest this topic is evoking at present, the different approaches will be discussed in more detail and put into wider perspectives for sensing of viral disease markers.
Collapse
Affiliation(s)
- Sabine Szunerits
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN-UMR CNRS 8520), University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (T.N.S.); (R.B.)
| | - Tamazouzt Nait Saada
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN-UMR CNRS 8520), University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (T.N.S.); (R.B.)
- Laboratory of Applied Chemistry and Chemical Engineering (LCAGC), Université Mouloud Mammeri de Tizi-Ouzou, Tizi-Ouzou -15000, Algeria;
| | - Dalila Meziane
- Laboratory of Applied Chemistry and Chemical Engineering (LCAGC), Université Mouloud Mammeri de Tizi-Ouzou, Tizi-Ouzou -15000, Algeria;
| | - Rabah Boukherroub
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN-UMR CNRS 8520), University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (T.N.S.); (R.B.)
| |
Collapse
|
37
|
Zhou J, Ren M, Wang W, Huang L, Lu Z, Song Z, Foda MF, Zhao L, Han H. Pomegranate-Inspired Silica Nanotags Enable Sensitive Dual-Modal Detection of Rabies Virus Nucleoprotein. Anal Chem 2020; 92:8802-8809. [PMID: 32450687 DOI: 10.1021/acs.analchem.0c00200] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The outbreak of rabies virus (RABV) in Asia and Africa has attracted widespread concern due to its 100% mortality rate, and RABV detection is crucial to its diagnosis and treatment. Herein, we report a sensitive and reliable strategy for the dual-modal RABV detection using pomegranate-shaped dendritic silica nanospheres fabricated with densely incorporated quantum dots (QDs) and horseradish peroxidase (HRP)-labeled antibody. The immunoassay involves the specific interaction between virus and nanospheres-conjugated antibody coupled with robust fluorescence signal originating from QDs and naked-eye discernible colorimetric signal on the oxTMB. The ultrahigh loading capacity of QDs enables the detection limit down to 8 pg/mL via fluorescence modality, a 348-fold improvement as compared with conventional enzyme-linked immunosorbent assay (ELISA). In addition, the detection range was from 1.20 × 102 to 2.34 × 104 pg/mL by plotting the absorbance at 652 nm with RABV concentrations with a detection limit of 91 pg/mL, which is nearly 2 order of magnitude lower than that of the conventional ELISA. Validated with 12 brain tissue samples, our immunoassay results are completely consistent with polymerase chain reaction (PCR) results. Compared with the PCR assay, our approach requires no complex sample pretreatments or expensive instruments. This is the first report on RABV diagnosis using nanomaterials for colorimetry-based prescreening and fluorescence-based quantitative detection, which may pave the way for virus-related disease diagnosis and clinical analysis.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Meishen Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohamed F Foda
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, 13736, Egypt.,State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
38
|
Rana A, Killa M, Yadav N, Mishra A, Mathur A, Kumar A, Khanuja M, Narang J, Pilloton R. Graphitic Carbon Nitride as an Amplification Platform on an Electrochemical Paper-Based Device for the Detection of Norovirus-Specific DNA. SENSORS 2020; 20:s20072070. [PMID: 32272681 PMCID: PMC7180435 DOI: 10.3390/s20072070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
Norovirus is one of the leading causes of gastroenteritis, acute vomiting, intense diarrhoea, acute pain in the stomach, high fever, headaches, and body pain. Conventional methods of detection gave us very promising results but had disadvantages such as low sensitivity, cost ineffectiveness, reduced specificity and selectivity, etc. Therefore, biosensors can be a viable alternative device which can overcome all setbacks associated with the conventional method. An electrochemical sensor based on oxidized graphitic carbon nitride (Ox-g-C3N4) modified electrochemical paper-based analytical device (ePAD) was fabricated for the detection of norovirus DNA. The synthesized Ox-g-C3N4 nanosheets were characterized by field emission scanning electron microscopy (FESEM), X-ray Diffraction (XRD), UV-Vis spectroscopy and X-Ray Photoelectron Spectroscopy. The capture probe DNA (PDNA) modified electrodes were characterized by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). These two characterization techniques were also employed to find the optimal scan rate, response time and temperature of the fabricated sensor. The fabricated biosensor showed a limit of detection (LOD) of 100 fM. Furthermore, the specificity of the reported biosensor was affirmed by testing the response of capture probe DNA with oxidized graphitic carbon nitride (PDNA/Ox-g-C3N4) modified ePAD on the introduction of a non-complimentary DNA. The fabricated ePAD sensor is easy to fabricate, cost effective and specific, and requires a minimum analysis time of 5 s.
Collapse
Affiliation(s)
- Aditya Rana
- Amity Institute of Nanotechnology, Amity University, Noida 201313, India; (A.R.); (M.K.); (A.M.); (A.M.)
| | - Manjari Killa
- Amity Institute of Nanotechnology, Amity University, Noida 201313, India; (A.R.); (M.K.); (A.M.); (A.M.)
| | - Neelam Yadav
- Centre for Biotechnology Maharshi Dayanand University, Haryana 124001, India;
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Haryana 131039, India
| | - Annu Mishra
- Amity Institute of Nanotechnology, Amity University, Noida 201313, India; (A.R.); (M.K.); (A.M.); (A.M.)
| | - Ashish Mathur
- Amity Institute of Nanotechnology, Amity University, Noida 201313, India; (A.R.); (M.K.); (A.M.); (A.M.)
| | - Arun Kumar
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia University, New Delhi 110025, India;
| | - Manika Khanuja
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia University, New Delhi 110025, India;
- Correspondence: (M.K.); (R.P.)
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India;
| | - Roberto Pilloton
- National Research Council (CNR), Institute of Crystallography (IC), Via Salaria Km 29.3, Rome I-00015, Italy
- Correspondence: (M.K.); (R.P.)
| |
Collapse
|
39
|
Ganganboina AB, Chowdhury AD, Khoris IM, Nasrin F, Takemura K, Hara T, Abe F, Suzuki T, Park EY. Dual modality sensor using liposome-based signal amplification technique for ultrasensitive norovirus detection. Biosens Bioelectron 2020; 157:112169. [PMID: 32250939 DOI: 10.1016/j.bios.2020.112169] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 12/22/2022]
Abstract
Sensitive and accurate detection methods for infectious viruses are the pressing need for effective disease diagnosis and treatment. Herein, based on V2O5 nanoparticles-encapsulated liposomes (VONP-LPs) we demonstrate a dual-modality sensing platform for ultrasensitive detection of the virus. The sensing performance relies on intrinsic peroxidase and electrochemical redox property of V2O5 nanoparticles (V2O5 NPs). The target-specific antibody-conjugated VONP-LPs and magnetic nanoparticles (MNPs) enrich the virus by magnetic separation and the separated VONP-LPs bound viruses are hydrolyzed to release the encapsulated V2O5 NPs. These released nanoparticles from captured liposomes act as peroxidase mimics and electrochemical redox indicator resulting in noticeable colorimetric and robust electrochemical dual-signal. Utilizing the superiority of dual-modality sensor with two quantitative analysis forms, norovirus like particles (NoV-LPs) can be detected by electrochemical signals with a wide linear range and low detection limit. To verify the applicability in real samples, norovirus (NoV) collected from actual clinical samples are effectively-identified with excellent accuracy. This proposed detection method can be a promising next-generation bioassay platform for early-stage diagnosis of virus disease and surveillance for public health.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Ankan Dutta Chowdhury
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Indra Memdi Khoris
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Fahmida Nasrin
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Kenshin Takemura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Toshimi Hara
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, 4-27-2, Kita-ando, Aoi-ku, Shizuoka, 420-8637, Japan.
| | - Fuyuki Abe
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, 4-27-2, Kita-ando, Aoi-ku, Shizuoka, 420-8637, Japan.
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, 1-20-1 Higashi-ku, Handa-yama, Hamamatsu, 431-3192, Japan.
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
40
|
A Survey of Analytical Techniques for Noroviruses. Foods 2020; 9:foods9030318. [PMID: 32164213 PMCID: PMC7142446 DOI: 10.3390/foods9030318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022] Open
Abstract
As the leading cause of acute gastroenteritis worldwide, human noroviruses (HuNoVs) have caused around 685 million cases of infection and nearly $60 billion in losses every year. Despite their highly contagious nature, an effective vaccine for HuNoVs has yet to become commercially available. Therefore, rapid detection and subtyping of noroviruses is crucial for preventing viral spread. Over the past half century, there has been monumental progress in the development of techniques for the detection and analysis of noroviruses. However, currently no rapid, portable assays are available to detect and subtype infectious HuNoVs. The purpose of this review is to survey and present different analytical techniques for the detection and characterization of noroviruses.
Collapse
|
41
|
Janczuk-Richter M, Gromadzka B, Richter Ł, Panasiuk M, Zimmer K, Mikulic P, Bock WJ, Maćkowski S, Śmietana M, Niedziółka Jönsson J. Immunosensor Based on Long-Period Fiber Gratings for Detection of Viruses Causing Gastroenteritis. SENSORS 2020; 20:s20030813. [PMID: 32028629 PMCID: PMC7038722 DOI: 10.3390/s20030813] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
Since the norovirus is the main cause of acute gastroenteritis all over the world, its fast detection is crucial in medical diagnostics. In this work, a rapid, sensitive, and selective optical fiber biosensor for the detection of norovirus virus-like particles (VLPs) is reported. The sensor is based on highly sensitive long-period fiber gratings (LPFGs) coated with antibodies against the main coat protein of the norovirus. Several modification methods were verified to obtain reliable immobilization of protein receptors on the LPFG surface. We were able to detect 1 ng/mL norovirus VLPs in a 40-min assay in a label-free manner. Thanks to the application of an optical fiber as the sensor, there is a possibility to increase the user’s safety by separating the measurement point from the signal processing setup. Moreover, our sensor is small and light, and the proposed assay is straightforward. The designed LPFG-based biosensor could be applied in both fast norovirus detection and in vaccine testing.
Collapse
Affiliation(s)
- Marta Janczuk-Richter
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.J.-R.)
| | - Beata Gromadzka
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307 Gdańsk, Poland; (B.G.); (M.P.); (K.Z.)
| | - Łukasz Richter
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.J.-R.)
| | - Mirosława Panasiuk
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307 Gdańsk, Poland; (B.G.); (M.P.); (K.Z.)
| | - Karolina Zimmer
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, A. Abrahama 58, 80-307 Gdańsk, Poland; (B.G.); (M.P.); (K.Z.)
| | - Predrag Mikulic
- Centre de recherche en photonique, Université du Québec en Outaouais, 101 rue Saint-Jean-Bosco, Gatineau, QC J8X 3X7, Canada; (P.M.); (W.J.B.)
| | - Wojtek J. Bock
- Centre de recherche en photonique, Université du Québec en Outaouais, 101 rue Saint-Jean-Bosco, Gatineau, QC J8X 3X7, Canada; (P.M.); (W.J.B.)
| | - Sebastian Maćkowski
- Baltic Institute of Technology, Al. Zwycięstwa 96/98, 81-451 Gdynia, Poland;
| | - Mateusz Śmietana
- Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, 00-662 Koszykowa 75, Warsaw, Poland;
| | - Joanna Niedziółka Jönsson
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.J.-R.)
- Correspondence: ; Tel.: +48-22-343-3130
| |
Collapse
|
42
|
Lee S, Ahn S, Chakkarapani SK, Kang SH. Supersensitive Detection of the Norovirus Immunoplasmon by 3D Total Internal Reflection Scattering Defocus Microscopy with Wavelength-Dependent Transmission Grating. ACS Sens 2019; 4:2515-2523. [PMID: 31429291 DOI: 10.1021/acssensors.9b01242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Norovirus (NoV) is a major foodborne pathogen, and even low levels of virus can cause infection and gastroenteritis. We developed a supersensitive NoV sensor that detects NoV group-I capsid protein (NoVP) via three-dimensional (3D) total internal reflection scattering defocus microscopy (TIRSDM) with wavelength-dependent transmission grating (TG). The combination of evanescent wave scattering and TG significantly enhanced the detection sensitivity and selectivity of NoVP in first-order spectral images (n = +1) by minimizing spectroscopic interference and background noise. In particular, wavelength-dependent 3D defocused TG imaging (3D TG-TIRSDM) separated silver nanotag and gold nanoplate signals on a NoVP immunoplasmon chip along the x, y, and z coordinates simultaneously. Additionally, the use of wavelength-dependent TG increased the spectral resolution by 5-fold along the xy-axis and 1.4-fold along the z-axis compared to conventional 3D TIRSDM at the subdiffraction limit. The NoVP sensor exhibited a lower limit of detection of 820 yM, which is 29 000 times better than the previous potentiometer method, and a wide dynamic detection range of 820 yM to 92.45 pM (R = 0.9801). This new method could be applied to detect various pathogenic viruses during the initial stage of infection.
Collapse
|
43
|
Chung S, Breshears LE, Perea S, Morrison CM, Betancourt WQ, Reynolds KA, Yoon JY. Smartphone-Based Paper Microfluidic Particulometry of Norovirus from Environmental Water Samples at the Single Copy Level. ACS OMEGA 2019; 4:11180-11188. [PMID: 31460218 PMCID: PMC6648858 DOI: 10.1021/acsomega.9b00772] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/14/2019] [Indexed: 05/08/2023]
Abstract
Human enteric viruses can be highly infectious and thus capable of causing disease upon ingestion of low doses ranging from 100 to 102 virions. Norovirus is a good example with a minimum infectious dose as low as a few tens of virions, that is, below femtogram scale. Norovirus detection from commonly implicated environmental matrices (water and food) involves complicated concentration of viruses and/or amplification of the norovirus genome, thus rendering detection approaches not feasible for field applications. In this work, norovirus detection was performed on a microfluidic paper analytic device without using any sample concentration or nucleic acid amplification steps by directly imaging and counting on-paper aggregation of antibody-conjugated, fluorescent submicron particles. An in-house developed smartphone-based fluorescence microscope and an image-processing algorithm isolated the particles aggregated by antibody-antigen binding, leading to an extremely low limit of norovirus detection, as low as 1 genome copy/μL in deionized water and 10 genome copies/μL in reclaimed wastewater.
Collapse
Affiliation(s)
- Soo Chung
- Department
of Biosystems Engineering, Department of Biomedical Engineering, Department of Chemical
and Environmental Engineering, Department of Soil, Water and Environmental
Science, and Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona 85721, United States
| | - Lane E. Breshears
- Department
of Biosystems Engineering, Department of Biomedical Engineering, Department of Chemical
and Environmental Engineering, Department of Soil, Water and Environmental
Science, and Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona 85721, United States
| | - Sean Perea
- Department
of Biosystems Engineering, Department of Biomedical Engineering, Department of Chemical
and Environmental Engineering, Department of Soil, Water and Environmental
Science, and Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona 85721, United States
| | - Christina M. Morrison
- Department
of Biosystems Engineering, Department of Biomedical Engineering, Department of Chemical
and Environmental Engineering, Department of Soil, Water and Environmental
Science, and Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona 85721, United States
| | - Walter Q. Betancourt
- Department
of Biosystems Engineering, Department of Biomedical Engineering, Department of Chemical
and Environmental Engineering, Department of Soil, Water and Environmental
Science, and Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kelly A. Reynolds
- Department
of Biosystems Engineering, Department of Biomedical Engineering, Department of Chemical
and Environmental Engineering, Department of Soil, Water and Environmental
Science, and Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jeong-Yeol Yoon
- Department
of Biosystems Engineering, Department of Biomedical Engineering, Department of Chemical
and Environmental Engineering, Department of Soil, Water and Environmental
Science, and Mel and Enid Zuckerman College of Public Health, The University of Arizona, Tucson, Arizona 85721, United States
- E-mail:
| |
Collapse
|
44
|
Gyawali P, Kc S, Beale DJ, Hewitt J. Current and Emerging Technologies for the Detection of Norovirus from Shellfish. Foods 2019; 8:foods8060187. [PMID: 31159220 PMCID: PMC6617275 DOI: 10.3390/foods8060187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
Reports of norovirus infections associated with the consumption of contaminated bivalve molluscan shellfish negatively impact both consumers and commercial shellfish operators. Current virus recovery and PCR detection methods can be expensive and time consuming. Due to the lack of rapid, user-friendly and onsite/infield methods, it has been difficult to establish an effective virus monitoring regime that is able to identify contamination points across the production line (i.e., farm-to-plate) to ensure shellfish quality. The focus of this review is to evaluate current norovirus detection methods and discuss emerging approaches. Recent advances in omics-based detection approaches have the potential to identify novel biomarkers that can be incorporated into rapid detection kits for onsite use. Furthermore, some omics techniques have the potential to simultaneously detect multiple enteric viruses that cause human disease. Other emerging technologies discussed include microfluidic, aptamer and biosensor-based detection methods developed to detect norovirus with high sensitivity from a simple matrix. Many of these approaches have the potential to be developed as user-friendly onsite detection kits with minimal costs. However, more collaborative efforts on research and development will be required to commercialize such products. Once developed, these emerging technologies could provide a way forward that minimizes public health risks associated with shellfish consumption.
Collapse
Affiliation(s)
- Pradip Gyawali
- Institute of Environmental Science and Research Ltd. (ESR), Porirua 5240, New Zealand.
| | - Sanjaya Kc
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - David J Beale
- Commonwealth Scientific and Industrial Research Organization, Ecoscience Precinct, Dutton Park, QLD 4102, Australia.
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd. (ESR), Porirua 5240, New Zealand.
| |
Collapse
|
45
|
Saylan Y, Erdem Ö, Ünal S, Denizli A. An Alternative Medical Diagnosis Method: Biosensors for Virus Detection. BIOSENSORS 2019; 9:E65. [PMID: 31117262 PMCID: PMC6627152 DOI: 10.3390/bios9020065] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 12/14/2022]
Abstract
Infectious diseases still pose an omnipresent threat to global and public health, especially in many countries and rural areas of cities. Underlying reasons of such serious maladies can be summarized as the paucity of appropriate analysis methods and subsequent treatment strategies due to the limited access of centralized and equipped health care facilities for diagnosis. Biosensors hold great impact to turn our current analytical methods into diagnostic strategies by restructuring their sensing module for the detection of biomolecules, especially nano-sized objects such as protein biomarkers and viruses. Unquestionably, current sensing platforms require continuous updates to address growing challenges in the diagnosis of viruses as viruses change quickly and spread largely from person-to-person, indicating the urgency of early diagnosis. Some of the challenges can be classified in biological barriers (specificity, low number of targets, and biological matrices) and technological limitations (detection limit, linear dynamic range, stability, and reliability), as well as economical aspects that limit their implementation into resource-scarce settings. In this review, the principle and types of biosensors and their applications in the diagnosis of distinct infectious diseases were comprehensively explained. The deployment of current biosensors into resource-scarce settings is further discussed for virus detection by elaborating the pros and cons of existing methods as a conclusion and future perspective.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Özgecan Erdem
- Department of Biology, Hacettepe University, Ankara 06800, Turkey.
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara 06230, Turkey.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|
46
|
T4 DNA polymerase-assisted upgrade of a nicking/polymerization amplification strategy for ultrasensitive electrochemical detection of Watermelon mosaic virus. Anal Bioanal Chem 2019; 411:2915-2924. [DOI: 10.1007/s00216-019-01737-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/24/2019] [Accepted: 02/28/2019] [Indexed: 01/16/2023]
|
47
|
Visual Detection of Cucumber Green Mottle Mosaic Virus Based on Terminal Deoxynucleotidyl Transferase Coupled with DNAzymes Amplification. SENSORS 2019; 19:s19061298. [PMID: 30875853 PMCID: PMC6471243 DOI: 10.3390/s19061298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/03/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
A simple, rapid, and sensitive visual detection method for observing cucumber green mottle mosaic virus was reported based on the template-independent polymerization activity of terminal deoxynucleotidyl transferase (TdT), coupled with the cascade amplification of Mg2+-dependent DNAzyme and hemin/G-quadruplex DNAzyme. Briefly, the hybridized dsDNA of T1/P1 was cut into two parts at its position of 5′-AA↓CG↑TT-3′ by the restricted enzyme AcII. The longer, newborn fragment originating from P1 was tailed at its 3’-end by oligo dG, and an intact enzymatic sequence of Mg2+-dependent DNAzyme was generated. The substrate sequence in the loop segment of the hairpin probe (HP) hybridized with the newborn enzymatic sequence and was cleaved into two parts in the presence of Mg2+. The locked G-quadruplex sequence in the stem segment of the HP was released, which catalyzed the oxidation of ABTS2- in the presence of H2O2, and the resulting solution turned green. A correlation between the absorbance and concentration of T1 was obtained in a range from 0.1 pM to 2 nM, with a detection limit of 0.1 pM. In addition to promoting a lower detection limit and shorter monitoring time, this method also demonstrated an excellent selectivity to single or double nucleotide changes. Therefore, the designed strategy provided a rapid and efficient platform for viral inspection and plant protection.
Collapse
|
48
|
Development of a rapid and sensitive electrochemical biosensor for detection of human norovirus via novel specific binding peptides. Biosens Bioelectron 2019; 123:223-229. [DOI: 10.1016/j.bios.2018.08.064] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/01/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
|
49
|
Zhang LJ, Xia L, Xie HY, Zhang ZL, Pang DW. Quantum Dot Based Biotracking and Biodetection. Anal Chem 2018; 91:532-547. [DOI: 10.1021/acs.analchem.8b04721] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Li-Juan Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Li Xia
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology, Wuhan University, Luojia Hill, Wuhan 430072, P.R. China
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| |
Collapse
|
50
|
Lee J, Adegoke O, Park EY. High-Performance Biosensing Systems Based on Various Nanomaterials as Signal Transducers. Biotechnol J 2018; 14:e1800249. [PMID: 30117715 DOI: 10.1002/biot.201800249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/06/2018] [Indexed: 12/15/2022]
Abstract
Recently, highly sensitive and selective biosensors have become necessary for improving public health and well-being. To fulfill this need, high-performance biosensing systems based on various nanomaterials, such as nanoparticles, carbon nanomaterials, and hybrid nanomaterials, are developed. Numerous nanomaterials show excellent physical properties, including plasmonic, magnetic, catalytic, mechanical and fluorescence properties and high electrical conductivities, and these unique and beneficial properties have contributed to the fabrication of high-performance biosensors with various applications, including in optical, electrical, and electrochemical detection platforms. In addition, these properties can be transformed to signals for the detection of biomolecules. In this review, various types of nanomaterial-based biosensors are introduced, and they show high sensitivity and selectivity. In addition, the potential applications of these sensors on the biosensing of several types of biomolecules are also discussed. These nanomaterials-based biosensing systems provide a significant improvement on healthcare including rapid monitoring and early detection of infectious disease for public health.
Collapse
Affiliation(s)
- Jaewook Lee
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Oluwasesan Adegoke
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.,Laboratory of Biotechnology, College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|