1
|
He J, Xu X, Zhang Y, Jiang S, Lin Q, Zhang H, Xiong X, Wang Y, Deng H, Li C. Photoelectrochemical aptasensing and fluorescence imaging co-joint detecting MCF-7 cells in whole blood via an inertial separation microfluidic chip. Talanta 2025; 286:127488. [PMID: 39736202 DOI: 10.1016/j.talanta.2024.127488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
The mortality rate of tumor is still very high till now. Circulating tumor cells (CTCs) are the major culprit of high cancer mortality. To improve survival rate of cancer patients, real-time monitoring and quantitative detection of CTCs are of indescribable value. However, due to the extremely small content and heterogeneous characteristics of CTCs, to accurately detect CTCs is still a tremendous challenge in clinical trials. Herein, the photoelectrochemical aptasensing and fluorescence imaging were co-joint to detect MCF-7 cells in whole blood via an inertial separation microfluidic chip. A portable inertial microfluidic chip with a height of 150 μm was designed to separate MCF-7 cells from whole blood samples. Niblue-C6-IMC was used to label and image MCF-7 cells through specifically reacting with COX-2 enzyme from the over-expression on the cellular surface. Subsequently, MCF-7 cells were detected with a Bi2O2S nanoflower based photoelectrochemical sensing system. Parameters including the channel height and length, flow rate, focusing position, fluorescence probe concentration, and flow length of the microfluidic chip were optimized. The separation efficiency and purity of MCF-7 cells were 85 % and 80 %, respectively. For 1 mL of blood sample (100 cells mL-1), 85 cells and 90 cells could be calculated based on the signals from fluorescence imaging and photoelectrochemical response, respectively. Nevertheless, for assaying 1 mL of blood samples containing 50 MCF-7 cells, 40 cells and 39 cells were obtained from fluorescence imaging and photoelectrochemical responses, respectively.
Collapse
Affiliation(s)
- Jiangling He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xingxing Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yi Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shangjun Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Qingfeng Lin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Huijuan Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanying Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Chunya Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
2
|
Zhao YN, Zhang X, Bai JJ, Jia HY, Chen ML, Wang JH. Inertial and Deterministic Lateral Displacement Integrated Microfluidic Chips for Epithelial-Mesenchymal Transition Analysis. Anal Chem 2024; 96:18187-18194. [PMID: 39484816 DOI: 10.1021/acs.analchem.4c04366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
With the aim of efficiently sorting rare circulating tumor cells (CTCs) from blood and minimizing damage to CTCs during isolation, we constructed an inertia-assisted single-cell focusing generator (I-SCF) and a water droplet deterministic lateral displacement cell sorting (D-DLD) microfluidic system (IDIC) based on different sizes, the device is initially sorted by a continuous fluid swing and Dean flow-assisted helical micromixers, then flows through a droplet shaped DLD region, enabling single-cell focused sequencing and precise separation, improving cell separation efficiency (>95%) and purity, while ensuring a high single cells survival rate of more than 98.6%. Subsequently, breast cancer cell lines were run through our chip, and then the downstream epithelial-mesenchymal transition (EMT) process induced by TGF-β was detected, and the levels of three proteins, EpCAM, PD-L1, and N-cadherin, were analyzed to establish the relationship between PD-L1 and the EMT process. Compared with other analytical techniques such as the filtration method, the enrichment method and immunoaffinity capture methods, this method not only ensures the separation efficiency and purity, but also ensures the cell activity, and avoids missing the different results caused by the heterogeneity of CTCs due to the isolation of high purity (84.01%). The device has a high throughput processing capacity (5 mL of diluted whole blood/∼2.8 h). By using the chip, we can more easily and conveniently predict tumor stage and carry out cancer prevention and treatment in advance, and it is expected to be further developed into a clinical liquid biopsy technology in the future.
Collapse
Affiliation(s)
- Ya-Nan Zhao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jun-Jie Bai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Hao-Yu Jia
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
3
|
Farahinia A, Khani M, Morhart TA, Wells G, Badea I, Wilson LD, Zhang W. A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite-Arginine Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2024; 24:6031. [PMID: 39338775 PMCID: PMC11436177 DOI: 10.3390/s24186031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
This paper presents a novel centrifugal microfluidic approach (so-called lab-on-a-CD) for magnetic circulating tumor cell (CTC) separation from the other healthy cells according to their physical and acquired chemical properties. This study enhances the efficiency of CTC isolation, crucial for cancer diagnosis, prognosis, and therapy. CTCs are cells that break away from primary tumors and travel through the bloodstream; however, isolating CTCs from blood cells is difficult due to their low numbers and diverse characteristics. The proposed microfluidic device consists of two sections: a passive section that uses inertial force and bifurcation law to sort CTCs into different streamlines based on size and shape and an active section that uses magnetic forces along with Dean drag, inertial, and centrifugal forces to capture magnetized CTCs at the downstream of the microchannel. The authors designed, simulated, fabricated, and tested the device with cultured cancer cells and human cells. We also proposed a cost-effective method to mitigate the surface roughness and smooth surfaces created by micromachines and a unique pulsatile technique for flow control to improve separation efficiency. The possibility of a device with fewer layers to improve the leaks and alignment concerns was also demonstrated. The fabricated device could quickly handle a large volume of samples and achieve a high separation efficiency (93%) of CTCs at an optimal angular velocity. The paper shows the feasibility and potential of the proposed centrifugal microfluidic approach to satisfy the pumping, cell sorting, and separating functions for CTC separation.
Collapse
Affiliation(s)
- Alireza Farahinia
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Milad Khani
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Tyler A Morhart
- Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Garth Wells
- Synchrotron Laboratory for Micro and Nano Devices (SyLMAND), Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Ildiko Badea
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
4
|
Petruzzellis I, Martínez Vázquez R, Caragnano S, Gaudiuso C, Osellame R, Ancona A, Volpe A. Lab-on-Chip Systems for Cell Sorting: Main Features and Advantages of Inertial Focusing in Spiral Microchannels. MICROMACHINES 2024; 15:1135. [PMID: 39337795 PMCID: PMC11434521 DOI: 10.3390/mi15091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Inertial focusing-based Lab-on-Chip systems represent a promising technology for cell sorting in various applications, thanks to their alignment with the ASSURED criteria recommended by the World Health Organization: Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Delivered. Inertial focusing techniques using spiral microchannels offer a rapid, portable, and easy-to-prototype solution for cell sorting. Various microfluidic devices have been investigated in the literature to understand how hydrodynamic forces influence particle focusing in spiral microchannels. This is crucial for the effective prototyping of devices that allow for high-throughput and efficient filtration of particles of different sizes. However, a clear, comprehensive, and organized overview of current research in this area is lacking. This review aims to fill this gap by offering a thorough summary of the existing literature, thereby guiding future experimentation and facilitating the selection of spiral geometries and materials for cell sorting in microchannels. To this end, we begin with a detailed theoretical introduction to the physical mechanisms underlying particle separation in spiral microfluidic channels. We also dedicate a section to the materials and prototyping techniques most commonly used for spiral microchannels, highlighting and discussing their respective advantages and disadvantages. Subsequently, we provide a critical examination of the key details of inertial focusing across various cross-sections (rectangular, trapezoidal, triangular, hybrid) in spiral devices as reported in the literature.
Collapse
Affiliation(s)
- Isabella Petruzzellis
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
| | - Rebeca Martínez Vázquez
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Piazza L. da Vinci 32, 20133 Milan, Italy;
| | - Stefania Caragnano
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
| | - Caterina Gaudiuso
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70125 Bari, Italy;
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Piazza L. da Vinci 32, 20133 Milan, Italy;
| | - Antonio Ancona
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70125 Bari, Italy;
| | - Annalisa Volpe
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70125 Bari, Italy;
| |
Collapse
|
5
|
Cai C, Tang H, Li F, Xu Z, Lin J, Li D, Tang Z, Yang C, Gao L. Archimedean Spirals with Controllable Chirality: Disk Substrate-Mediated Solution Assembly of Rod-Coil Block Copolymers. JACS AU 2024; 4:2363-2371. [PMID: 38938804 PMCID: PMC11200227 DOI: 10.1021/jacsau.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Spirals are common in nature; however, they are rarely observed in polymer self-assembly systems, and the formation mechanism is not well understood. Herein, we report the formation of two-dimensional (2D) spiral patterns via microdisk substrate-mediated solution self-assembly of polypeptide-based rod-coil block copolymers. The spiral pattern consists of multiple strands assembled from the block copolymers, and two central points are observed. The spirals fit well with the Archimedean spiral model, and their chirality is dependent on the chirality of the polypeptide blocks. As revealed by a combination of experiments and theoretical simulations, these spirals are induced by an interplay of the parallel ordering tendency of the strands and circular confinement of the microdisks. This work presents the first example regarding substrate-mediated self-assembly of block copolymers into spirals. The gained information could not only enhance our understanding of natural spirals but also assist in both the controllable preparations and applications of spiral nanostructures.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Hongfeng Tang
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Feiyan Li
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Zhanwen Xu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiaping Lin
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Da Li
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Zhengmin Tang
- Department
of Laboratory Medicine, the First Affiliated Hospital, College of
Medicine, Zhejiang University, Hangzhou 311121, China
| | - Chunming Yang
- Shanghai
Synchrotron Radiation Facility, Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Liang Gao
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Pillai S, Kwan JC, Yaziji F, Yu H, Tran SD. Mapping the Potential of Microfluidics in Early Diagnosis and Personalized Treatment of Head and Neck Cancers. Cancers (Basel) 2023; 15:3894. [PMID: 37568710 PMCID: PMC10417175 DOI: 10.3390/cancers15153894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Head and neck cancers (HNCs) account for ~4% of all cancers in North America and encompass cancers affecting the oral cavity, pharynx, larynx, sinuses, nasal cavity, and salivary glands. The anatomical complexity of the head and neck region, characterized by highly perfused and innervated structures, presents challenges in the early diagnosis and treatment of these cancers. The utilization of sub-microliter volumes and the unique phenomenon associated with microscale fluid dynamics have facilitated the development of microfluidic platforms for studying complex biological systems. The advent of on-chip microfluidics has significantly impacted the diagnosis and treatment strategies of HNC. Sensor-based microfluidics and point-of-care devices have improved the detection and monitoring of cancer biomarkers using biological specimens like saliva, urine, blood, and serum. Additionally, tumor-on-a-chip platforms have allowed the creation of patient-specific cancer models on a chip, enabling the development of personalized treatments through high-throughput screening of drugs. In this review, we first focus on how microfluidics enable the development of an enhanced, functional drug screening process for targeted treatment in HNCs. We then discuss current advances in microfluidic platforms for biomarker sensing and early detection, followed by on-chip modeling of HNC to evaluate treatment response. Finally, we address the practical challenges that hinder the clinical translation of these microfluidic advances.
Collapse
Affiliation(s)
| | | | | | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cell Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada; (S.P.); (J.C.K.); (F.Y.); (H.Y.)
| |
Collapse
|
7
|
Goldstein I, Alyas S, Asghar W, Ilyas A. Biosensors for the Isolation and Detection of Circulating Tumor Cells (CTCs) in Point-of-Care Settings. MICROMACHINES 2023; 14:mi14051035. [PMID: 37241658 DOI: 10.3390/mi14051035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Circulating tumor cells (CTCs) are cells that have been shed from tumors and circulate in the bloodstream. These cells can also be responsible for further metastases and the spread of cancer. Taking a closer look and analyzing CTCs through what has come to be known as "liquid biopsy" has immense potential to further researchers' understanding of cancer biology. However, CTCs are very sparse and are therefore difficult to detect and capture. To combat this issue, researchers have attempted to create devices, assays, and further techniques to successfully isolate CTCs for analysis. In this work, new and existing biosensing techniques for CTC isolation, detection, and release/detachment are discussed and compared to evaluate their efficacy, specificity, and cost. Here, we specifically aim to evaluate and identify the potential success of these techniques and devices in point-of-care (POC) settings.
Collapse
Affiliation(s)
- Isaac Goldstein
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Paul D. Schreiber High School, Port Washington, NY 11050, USA
| | - Sobia Alyas
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore 54000, Pakistan
| | - Waseem Asghar
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Azhar Ilyas
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
8
|
Johnson A, Reimer S, Childres R, Cupp G, Kohs TCL, McCarty OJT, Kang Y(A. The Applications and Challenges of the Development of In Vitro Tumor Microenvironment Chips. Cell Mol Bioeng 2023; 16:3-21. [PMID: 36660587 PMCID: PMC9842840 DOI: 10.1007/s12195-022-00755-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
The tumor microenvironment (TME) plays a critical, yet mechanistically elusive role in tumor development and progression, as well as drug resistance. To better understand the pathophysiology of the complex TME, a reductionist approach has been employed to create in vitro microfluidic models called "tumor chips". Herein, we review the fabrication processes, applications, and limitations of the tumor chips currently under development for use in cancer research. Tumor chips afford capabilities for real-time observation, precise control of microenvironment factors (e.g. stromal and cellular components), and application of physiologically relevant fluid shear stresses and perturbations. Applications for tumor chips include drug screening and toxicity testing, assessment of drug delivery modalities, and studies of transport and interactions of immune cells and circulating tumor cells with primary tumor sites. The utility of tumor chips is currently limited by the ability to recapitulate the nuances of tumor physiology, including extracellular matrix composition and stiffness, heterogeneity of cellular components, hypoxic gradients, and inclusion of blood cells and the coagulome in the blood microenvironment. Overcoming these challenges and improving the physiological relevance of in vitro tumor models could provide powerful testing platforms in cancer research and decrease the need for animal and clinical studies.
Collapse
Affiliation(s)
- Annika Johnson
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Samuel Reimer
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Ryan Childres
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Grace Cupp
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Tia C. L. Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
- Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201 USA
| | - Youngbok (Abraham) Kang
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| |
Collapse
|
9
|
Xiang Y, Hu C, Wu G, Xu S, Li Y. Nanomaterial-based microfluidic systems for cancer biomarker detection: Recent applications and future perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Shah UJ, Alsulimani A, Ahmad F, Mathkor DM, Alsaieedi A, Harakeh S, Nasiruddin M, Haque S. Bioplatforms in liquid biopsy: advances in the techniques for isolation, characterization and clinical applications. Biotechnol Genet Eng Rev 2022; 38:339-383. [PMID: 35968863 DOI: 10.1080/02648725.2022.2108994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue biopsy analysis has conventionally been the gold standard for cancer prognosis, diagnosis and prediction of responses/resistances to treatments. The existing biopsy procedures used in clinical practice are, however, invasive, painful and often associated with pitfalls like poor recovery of tumor cells and infeasibility for repetition in single patients. To circumvent these limitations, alternative non-invasive, rapid and economical, yet sturdy, consistent and dependable, biopsy techniques are required. Liquid biopsy is an emerging technology that fulfills these criteria and potentially much more in terms of subject-specific real-time monitoring of cancer progression, determination of tumor heterogeneity and treatment responses, and specific identification of the type and stages of cancers. The present review first briefly revisits the state-of-the-art technique of liquid biopsy and then proceeds to address in detail, the advances in the potential clinical applications of four major biological agencies present in liquid biopsy samples (circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs)). Finally, the authors conclude with the limitations that need to be addressed in order for liquid biopsy to effectively replace the conventional invasive biopsy methods in the clinical settings.
Collapse
Affiliation(s)
- Ushma Jaykamal Shah
- MedGenome Labs Ltd, Kailash Cancer Hospital and Research Center, Vadodara, India
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Nasiruddin
- MedGenome Labs Ltd, Narayana Health City, Bangalore, India.,Genomics Lab, Orbito Asia Diagnostics, Coimbatore, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
11
|
Zha X, Qin W, Chen J, Chen M, Zhang Q, He K, Liu Y, Liu W. Anchoring red blood cell with tetrahedral DNA nanostructure: Electrochemical biosensor for the sensitive signage of circulating tumor DNA. Talanta 2022; 251:123793. [DOI: 10.1016/j.talanta.2022.123793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023]
|
12
|
Bhat MP, Thendral V, Uthappa UT, Lee KH, Kigga M, Altalhi T, Kurkuri MD, Kant K. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. BIOSENSORS 2022; 12:220. [PMID: 35448280 PMCID: PMC9025399 DOI: 10.3390/bios12040220] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 05/05/2023]
Abstract
CTCs (circulating tumor cells) are well-known for their use in clinical trials for tumor diagnosis. Capturing and isolating these CTCs from whole blood samples has enormous benefits in cancer diagnosis and treatment. In general, various approaches are being used to separate malignant cells, including immunomagnets, macroscale filters, centrifuges, dielectrophoresis, and immunological approaches. These procedures, on the other hand, are time-consuming and necessitate multiple high-level operational protocols. In addition, considering their low efficiency and throughput, the processes of capturing and isolating CTCs face tremendous challenges. Meanwhile, recent advances in microfluidic devices promise unprecedented advantages for capturing and isolating CTCs with greater efficiency, sensitivity, selectivity and accuracy. In this regard, this review article focuses primarily on the various fabrication methodologies involved in microfluidic devices and techniques specifically used to capture and isolate CTCs using various physical and biological methods as well as their conceptual ideas, advantages and disadvantages.
Collapse
Affiliation(s)
- Mahesh Padmalaya Bhat
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
| | - Venkatachalam Thendral
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | | | - Kyeong-Hwan Lee
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Madhuprasad Kigga
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Tariq Altalhi
- Department of Chemistry, Faculty of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Mahaveer D. Kurkuri
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Krishna Kant
- Departamento de Química Física, Campus Universitario, CINBIO Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
13
|
Li H, Li J, Zhang Z, Guo Z, Zhang C, Wang Z, Guo Q, Li C, Li C, Yao J, Zheng A, Xu J, Gao Q, Zhang W, Zhou L. Integrated microdevice with a windmill-like hole array for the clog-free, efficient, and self-mixing enrichment of circulating tumor cells. MICROSYSTEMS & NANOENGINEERING 2022; 8:23. [PMID: 35251688 PMCID: PMC8844004 DOI: 10.1038/s41378-021-00346-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/15/2021] [Accepted: 12/12/2021] [Indexed: 05/28/2023]
Abstract
Circulating tumor cells (CTCs) have tremendous potential to indicate disease progression and monitor therapeutic response using minimally invasive approaches. Considering the limitations of affinity strategies based on their cost, effectiveness, and simplicity, size-based enrichment methods that involve low-cost, label-free, and relatively simple protocols have been further promoted. Nevertheless, the key challenges of these methods are clogging issues and cell aggregation, which reduce the recovery rates and purity. Inspired by the natural phenomenon that the airflow around a windmill is disturbed, in this study, a windmill-like hole array on the SU-8 membrane was designed to perturb the fluid such that cells in a fluid would be able to self-mix and that the pressure acting on cells or the membrane would be dispersed to allow a greater velocity. In addition, based on the advantages of fluid coatings, a lipid coating was used to modify the membrane surface to prevent cell aggregation and clogging of the holes. Under the optimal conditions, recovery rates of 93% and 90% were found for A549 and HeLa cells in a clinical simulation test of our platform with a CTC concentration of 20-100 cells per milliliter of blood. The white blood cell (WBC) depletion rate was 98.7% (n = 15), and the CTC detection limit was less than 10 cells per milliliter of blood (n = 6). Moreover, compared with conventional membrane filtration, the advantages of the proposed device for the rapid (2 mL/min) and efficient enrichment of CTCs without clogging were shown both experimentally and theoretically. Due to its advantages in the efficient, rapid, uniform, and clog-free enrichment of CTCs, our platform offers great potential for metastatic detection and therapy analyses.
Collapse
Affiliation(s)
- Hao Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Jinze Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Zhiqi Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Zhen Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Ji Hua Laboratory, 528000 Foshan, China
| | - Changsong Zhang
- Department of Laboratory Medicine, The Affiliated Suzhou Science and Technology Town Hospital, Nanjing Medical University, 215153 Suzhou, China
| | - Zixu Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Qiuquan Guo
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, 518000 Shenzhen, China
| | - Chao Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Chuanyu Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
| | - Jia Yao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Anran Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Jingyi Xu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Qingxue Gao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Wei Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Lianqun Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
- Jinan Guoke Medical Technology Development Co., Ltd, 250001 Jinan, China
| |
Collapse
|
14
|
Descamps L, Le Roy D, Deman AL. Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy. Int J Mol Sci 2022; 23:ijms23041981. [PMID: 35216097 PMCID: PMC8875744 DOI: 10.3390/ijms23041981] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The selection of circulating tumor cells (CTCs) directly from blood as a real-time liquid biopsy has received increasing attention over the past ten years, and further analysis of these cells may greatly aid in both research and clinical applications. CTC analysis could advance understandings of metastatic cascade, tumor evolution, and patient heterogeneity, as well as drug resistance. Until now, the rarity and heterogeneity of CTCs have been technical challenges to their wider use in clinical studies, but microfluidic-based isolation technologies have emerged as promising tools to address these limitations. This review provides a detailed overview of latest and leading microfluidic devices implemented for CTC isolation. In particular, this study details must-have device performances and highlights the tradeoff between recovery and purity. Finally, the review gives a report of CTC potential clinical applications that can be conducted after CTC isolation. Widespread microfluidic devices, which aim to support liquid-biopsy-based applications, will represent a paradigm shift for cancer clinical care in the near future.
Collapse
Affiliation(s)
- Lucie Descamps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
| | - Damien Le Roy
- Institut Lumière Matière ILM-UMR 5306, CNRS, Université Lyon 1, 69622 Villeurbanne, France;
| | - Anne-Laure Deman
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
- Correspondence:
| |
Collapse
|
15
|
Liu X, Ma L, Yan W, Aazmi A, Fang M, Xu X, Kang H, Xu X. A review of recent progress toward the efficient separation of circulating tumor cells via micro‐/nanostructured microfluidic chips. VIEW 2022. [DOI: 10.1002/viw.20210013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Xiaoshi Liu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Liang Ma
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou P. R. China
- School of Mechanical Engineering Zhejiang University Hangzhou P. R. China
| | - Wenyuan Yan
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou P. R. China
- School of Mechanical Engineering Zhejiang University Hangzhou P. R. China
| | - Minghe Fang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Xiuzhen Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Hanyue Kang
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| | - Xiaobin Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education Shanghai Key Laboratory of D&A for Metal‐Functional Materials School of Materials Science and Engineering Institute for Advanced Study Tongji University Shanghai P. R. China
| |
Collapse
|
16
|
Li F, Xu H, Zhao Y. Magnetic particles as promising circulating tumor cell catchers assisting liquid biopsy in cancer diagnosis: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Xu X, Huang X, Sun J, Wang R, Yao J, Han W, Wei M, Chen J, Guo J, Sun L, Yin M. Recent progress of inertial microfluidic-based cell separation. Analyst 2021; 146:7070-7086. [PMID: 34761757 DOI: 10.1039/d1an01160j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell separation has consistently been a pivotal technology of sample preparation in biomedical research. Compared with conventional bulky cell separation technologies applied in the clinic, cell separation based on microfluidics can accurately manipulate the displacement of liquid or cells at the microscale, which has great potential in point-of-care testing (POCT) applications due to small device size, low cost, low sample consumption, and high operating accuracy. Among various microfluidic cell separation technologies, inertial microfluidics has attracted great attention due to its simple structure and high throughput. In recent years, many researchers have explored the principles and applications of inertial microfluidics and developed different channel structures, including straight channels, curved channels, and multistage channels. However, the recently developed multistage channels have not been discussed and classified in detail compared with more widely discussed straight and curved channels. Therefore, in this review, a comprehensive and detailed review of recent progress in the multistage channel is presented. According to the channel structure, the inertial microfluidic separation technology is divided into (i) straight channel, (ii) curved channel, (iii) composite channel, and (iv) integrated device. The structural development of straight and curved channels is discussed in detail. And based on straight and curved channels, the multistage cell separation structures are reviewed, with a special focus on a variety of latest structures and related innovations of composite and integrated channels. Finally, the future prospects for the existing challenges in the development of inertial microfluidic cell separation technology are presented.
Collapse
Affiliation(s)
- Xuefeng Xu
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Xiwei Huang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jingjing Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Renjie Wang
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jiangfan Yao
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Wentao Han
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Maoyu Wei
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jin Chen
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Jinhong Guo
- School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lingling Sun
- Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Ming Yin
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
18
|
Fabrication of the macro and micro-scale microbial fuel cells to monitor oxalate biodegradation in human urine. Sci Rep 2021; 11:14346. [PMID: 34253836 PMCID: PMC8275799 DOI: 10.1038/s41598-021-93844-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
This study presented the fabrication of macro and micro-scale microbial fuel cells (MFCs) to generate bioelectricity from oxalate solution and monitor the biodegradation in a micro-scale MFC for the first time. The maximum generated power density of 44.16 W m-3 in the micro-scale MFC elucidated its application as a micro-sized power generator for implantable medical devices (IMDs). It is also worthwhile noting that for the macro-scale MFC, the significant amounts of open circuit voltage, oxalate removal, and coulombic efficiency were about 935 mV, 99%, and 44.2%, respectively. These values compared to previously published studies indicate successful oxalate biodegradation in the macro-scale MFC. Regarding critical challenges to determine the substrate concentration in microfluidic outlets, sample collection in a suitable time and online data reporting, an analogy was made between macro and micro-scale MFCs to elicit correlations defining the output current density as the inlet and the outlet oxalate concentration. Another use of the system as an IMD is to be a platform to identify urolithiasis and hyperoxaluria diseases. As a versatile device for power generation and oxalate biodegradation monitoring, the use of facile and cheap materials (< $1.5 per device) and utilization of human excreta are exceptional features of the manufactured micro-scale MFC.
Collapse
|
19
|
Lee J, Kwak B. Simultaneous on-chip isolation and characterization of circulating tumor cell sub-populations. Biosens Bioelectron 2020; 168:112564. [PMID: 32892118 DOI: 10.1016/j.bios.2020.112564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022]
Abstract
The diagnosis of tumor metastasis using circulating tumor cells (CTCs) has been considered an important developmental target for several decades but remains a formidable challenge because of the rarity and heterogeneity of CTCs. Additional downstream analysis is required after isolating CTCs on-chip for subtype verification. To solve those problems, we have developed microfluidic based integrated system which uses magnetic field gradient and immune-fluorescence differences to on-chip isolation and discrimination of CTCs simultaneously. The system presented in the present study can isolate CTCs with an efficiency of >99% by utilizing magnetic nanoparticles conjugated to CTC membranes. Furthermore, the statuses of three biomarkers can be determined on-chip simultaneously. The devised microfluidic system can differentiate eight different subtypes of heterogenic CTCs by on-chip isolation and based on the statuses of three biomarkers (HER2, ER, and PR) which are critical variables to five-year overall survivals for breast cancer patients.
Collapse
Affiliation(s)
- Jaehun Lee
- Korea Institute of Machinery and Materials, Daegu Research Center for Medical Devices and Rehab. Engineering, Department of Medical Device, 330 Techno Sunhwan-ro, Yuga-eup, Dalsung-gun, Daegu, 42994, Republic of Korea; Kyungpook National University, College of IT Engineering, School of Electronics Engineering, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Bongseop Kwak
- Dongguk University, College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
20
|
Wang Z, Cheng L, Wei X, Cai B, Sun Y, Zhang Y, Liao L, Zhao XZ. High-throughput isolation of fetal nucleated red blood cells by multifunctional microsphere-assisted inertial microfluidics. Biomed Microdevices 2020; 22:75. [PMID: 33079273 DOI: 10.1007/s10544-020-00531-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
Being easy, safe and reliable, non-invasive prenatal diagnosis (NIPD) has been greatly pursued in recent years. Holding the complete genetic information of the fetus, fetal nucleated red blood cells (fNRBCs) are viewed as a suitable target for NIPD application. However, effective separating fNRBCs from maternal peripheral blood for clinic use still faces great challenges, given that fNRBCs are extremely rare in maternal blood circulation. Here, by combining the high-throughput inertial microfluidic chip with multifunctional microspheres as size amplification, we develop a novel method to isolate fNRBCs with high performance. To enlarge the size difference between fNRBCs and normal blood cells, we use the gelatin coated microspheres to capture fNRBCs with anti-CD147 as specific recognizer at first. The size difference between fNRBCs captured by the microspheres and normal blood cells makes it easy to purify the captured fNRBCs through the spiral microfluidic chip. Finally, the purified fNRBCs are mildly released from the microspheres by enzymatically degrading the gelatin coating. Cell capture efficiency about 81%, high purity of 83%, as well as cell release viability over 80% were achieved using spiked samples by this approach. Additionally, fNRBCs were successfully detected from peripheral blood of pregnant women with an average of 24 fNRBCs per mL, suggesting the great potential of this method for clinical non-invasive prenatal diagnosis.
Collapse
Affiliation(s)
- Zixiang Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lin Cheng
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Xiaoyun Wei
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| | - Lei Liao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
21
|
Sun L, Yang W, Cai S, Chen Y, Chu H, Yu H, Wang Y, Liu L. Recent advances in microfluidic technologies for separation of biological cells. Biomed Microdevices 2020; 22:55. [PMID: 32797312 DOI: 10.1007/s10544-020-00510-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell separation has always been a key topic in academic research, especially in the fields of medicine and biology, due to its significance in diagnosis and treatment. Accurate, high-throughput and non-invasive separation of individual cells is key to driving the development of biomedicine and cellular biology. In recent years, a series of researches on the use of microfluidic technologies for cell separation have been conducted to solve bio-related problems. Hence, we present here a comprehensive review on the recent developments of microfluidic technologies for cell separation. In this review, we discuss several cell separation methods, mainly including: physical and biochemical method, their working principles as well as their practical applications. We also analyze the advantages and disadvantages of each method in detail. In addition, the current challenges and future prospects of microfluidic-based cell separation were discussed.
Collapse
Affiliation(s)
- Lujing Sun
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China.
| | - Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Yibao Chen
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Honghui Chu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
22
|
Kip Ç, Akbay E, Gökçal B, Savaş BO, Onur MA, Tuncel A. Colorimetric determination of tumor cells via peroxidase-like activity of a cell internalizable nanozyme: Hyaluronic acid attached-silica microspheres containing accessible magnetite nanoparticles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Differential Sorting of Microparticles Using Spiral Microchannels with Elliptic Configurations. MICROMACHINES 2020; 11:mi11040412. [PMID: 32295138 PMCID: PMC7231368 DOI: 10.3390/mi11040412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/26/2022]
Abstract
Label-free, size-dependent cell-sorting applications based on inertial focusing phenomena have attracted much interest during the last decade. The separation capability heavily depends on the precision of microparticle focusing. In this study, five-loop spiral microchannels with a height of 90 µm and a width of 500 µm are introduced. Unlike their original spiral counterparts, these channels have elliptic configurations of varying initial aspect ratios, namely major axis to minor axis ratios of 3:2, 11:9, 9:11, and 2:3. Accordingly, the curvature of these configurations increases in a curvilinear manner through the channel. The effects of the alternating curvature and channel Reynolds number on the focusing of fluorescent microparticles with sizes of 10 and 20 µm in the prepared suspensions were investigated. At volumetric flow rates between 0.5 and 3.5 mL/min (allowing separation), each channel was tested to collect samples at the designated outlets. Then, these samples were analyzed by counting the particles. These curved channels were capable of separating 20 and 10 µm particles with total yields up to approximately 95% and 90%, respectively. The results exhibited that the level of enrichment and the focusing behavior of the proposed configurations are promising compared to the existing microfluidic channel configurations.
Collapse
|
24
|
Zhao W, Tian S, Huang L, Liu K, Dong L, Guo J. A smartphone-based biomedical sensory system. Analyst 2020; 145:2873-2891. [PMID: 32141448 DOI: 10.1039/c9an02294e] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disease diagnostics, food safety monitoring and environmental quality monitoring are the key means to safeguard human health. However, conventional detection devices for health care are costly, bulky and complex, restricting their applications in resource-limited areas of the world. With the rapid development of biosensors and the popularization of smartphones, smartphone-based sensing systems have emerged as novel detection devices that combine the sensitivity of biosensors and diverse functions of smartphones to provide a rapid, low-cost and convenient detection method. In these systems, a smartphone is used as a microscope to observe and count cells, as a camera to record fluorescence images, as an analytical platform to analyze experimental data, and as an effective tool to connect detection devices and online doctors. These systems are widely used for cell analysis, biochemical analysis, immunoassays, and molecular diagnosis, which are applied in the fields of disease diagnostics, food safety monitoring and environmental quality monitoring. Therefore, we discuss four types of smartphone-based sensing systems in this review paper, specifically in terms of the structure, performance and efficiency of these systems. Finally, we give some suggestions for improvement and future prospective trends.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | | | | | | | | | | |
Collapse
|
25
|
Lin Z, Luo G, Du W, Kong T, Liu C, Liu Z. Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells' (CTCs) Isolation and Tumor-On-A-Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903899. [PMID: 31747120 DOI: 10.1002/smll.201903899] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/13/2019] [Indexed: 05/03/2023]
Abstract
Cancer remains the leading cause of death worldwide despite the enormous efforts that are made in the development of cancer biology and anticancer therapeutic treatment. Furthermore, recent studies in oncology have focused on the complex cancer metastatic process as metastatic disease contributes to more than 90% of tumor-related death. In the metastatic process, isolation and analysis of circulating tumor cells (CTCs) play a vital role in diagnosis and prognosis of cancer patients at an early stage. To obtain relevant information on cancer metastasis and progression from CTCs, reliable approaches are required for CTC detection and isolation. Additionally, experimental platforms mimicking the tumor microenvironment in vitro give a better understanding of the metastatic microenvironment and antimetastatic drugs' screening. With the advancement of microfabrication and rapid prototyping, microfluidic techniques are now increasingly being exploited to study cancer metastasis as they allow precise control of fluids in small volume and rapid sample processing at relatively low cost and with high sensitivity. Recent advancements in microfluidic platforms utilized in various methods for CTCs' isolation and tumor models recapitulating the metastatic microenvironment (tumor-on-a-chip) are comprehensively reviewed. Future perspectives on microfluidics for cancer metastasis are proposed.
Collapse
Affiliation(s)
- Zhengjie Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guanyi Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Weixiang Du
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
26
|
Jiang SS, Deng B, Feng YG, Qian K, Tan QY, Wang RW. Circulating tumor cells prior to initial treatment is an important prognostic factor of survival in non-small cell lung cancer: a meta-analysis and system review. BMC Pulm Med 2019; 19:262. [PMID: 31878900 PMCID: PMC6933689 DOI: 10.1186/s12890-019-1029-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Our study aimed to verify the prognostic value of circulating tumor cells (CTCs) prior to initial treatment on survival of non-small cell lung cancer (NSCLC) by using meta-analysis and system review of published studies. MATERIALS AND METHODS The PubMed, EMBASE and Cochrane Library were searched, respectively, to identify all studies that addressed the issues of CTCs prior to initial treatment and progression-free survival (PFS) and overall survival (OS). Finally, ten citations were included for analysis and assessment of publication bias by using review manager 5.3 statistical software and STATA 15.0. RESULTS Randomized model analyzing multivariate Cox Proportional Hazards Regression indicated that higher abundance of CTCs significantly predicts poorer prognosis of lung cancer cases basing both on PFS (Z = 2.31, P = 0.02) and OS of advanced cases (Z = 2.44, P = 0.01), and systematic study aslo indicated the similar results. CONCLUSION High CTCs prior to initial treatment can predict shorter PFS and OS in NSCLC, and further studies are warranted in the future.
Collapse
Affiliation(s)
- Sha-Sha Jiang
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Bo Deng
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| | - Yong-Geng Feng
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Kai Qian
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Qun-You Tan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Ru-Wen Wang
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| |
Collapse
|
27
|
Wang Z, Sun N, Liu H, Chen C, Ding P, Yue X, Zou H, Xing C, Pei R. High-Efficiency Isolation and Rapid Identification of Heterogeneous Circulating Tumor Cells (CTCs) Using Dual-Antibody-Modified Fluorescent-Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39586-39593. [PMID: 31577122 DOI: 10.1021/acsami.9b14051] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extreme rarity and inherent heterogeneity of circulating tumor cells (CTCs) result in a tremendous challenge for the CTC isolation from patient blood samples with high efficiency and purity. Current CTC isolation approaches mainly rely on the epithelial cell adhesion molecule (EpCAM), which may significantly reduce the ability to capture CTCs when the expression of EpCAM is lost or down-regulated in epithelial-mesenchymal transition. Here, a rapid and highly efficient method is developed to isolate and identify heterogeneous CTCs with high efficiency from patient blood samples using the fluorescent-magnetic nanoparticles (F-MNPs). A dual-antibody interface targeting EpCAM and N-cadherin is fabricated onto the F-MNPs to capture epithelial CTCs as well as mesenchymal CTCs from whole blood samples. The poly(carboxybetaine methacrylate) brushes of excellent antifouling properties are employed to decrease nonspecific cell adhesion. Moreover, the F-MNPs provide a prompt identification strategy for heterogeneous CTCs (F-MNPs+, Hoechst 33342+, and CD45-) that can directly identify CTCs in a gentle one-step processing within 1 h after isolation from patient blood samples. This has been demonstrated through artificial samples as well as patient samples in details.
Collapse
Affiliation(s)
- Zhili Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Na Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Hui Liu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Changchong Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| | - Xinmin Yue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research , Nankai University , Tianjin 300353 , China
| | - Hanqing Zou
- The Second Affiliated Hospital of Soochow University , Suzhou 215008 , China
| | - Chungen Xing
- The Second Affiliated Hospital of Soochow University , Suzhou 215008 , China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences , Suzhou 215123 , China
| |
Collapse
|
28
|
Rapid and efficient isolation and detection of circulating tumor cells based on ZnS:Mn2+ quantum dots and magnetic nanocomposites. Talanta 2019; 202:230-236. [DOI: 10.1016/j.talanta.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 01/07/2023]
|
29
|
Al-Halhouli A, Albagdady A, Al-Faqheri W, Kottmeier J, Meinen S, Frey LJ, Krull R, Dietzel A. Enhanced inertial focusing of microparticles and cells by integrating trapezoidal microchambers in spiral microfluidic channels. RSC Adv 2019; 9:19197-19204. [PMID: 35516901 PMCID: PMC9064905 DOI: 10.1039/c9ra03587g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, manipulating width and equilibrium position of fluorescent microparticles in spiral microchannel fractionation devices by embedding microchambers along the last turn of a spiral is reported. Microchambers with different shapes and sizes were tested at Reynolds numbers between 15.7 and 156.6 (100-1000 μL min-1) to observe focusing of 2, 5 and 10 μm fluorescent microparticles. This paper also discusses the fabrication process of the microfluidic chips with femtosecond laser ablation on glass wafers, as well as a particle imaging velocimetry (μPIV) study of microparticle trajectories inside a microchamber. It could be demonstrated with an improved final design with inclined microchamber side walls, that the 2 μm particle equilibrium position is shifted towards the inner wall by ∼27 μm and the focusing line's width is reduced by ∼18 μm. Finally, Saccharomyces cerevisiae yeast cells were tested in the final chip and a cell focusing efficiency of 99.1% is achieved.
Collapse
Affiliation(s)
| | - Ahmed Albagdady
- NanoLab, School of Applied Technical Sciences, German Jordanian University Amman Jordan
| | - Wisam Al-Faqheri
- MicroNano Mechatronic Lab, Mechanical, Automotive & Materials Engineering, University of Windsor Windsor ON Canada
| | - Jonathan Kottmeier
- Institut für Mikrotechnik, Technische Universität Braunschweig Braunschweig Germany
| | - Sven Meinen
- Institut für Mikrotechnik, Technische Universität Braunschweig Braunschweig Germany
| | - Lasse Jannis Frey
- Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig Braunschweig Germany
| | - Rainer Krull
- Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig Braunschweig Germany
| | - Andreas Dietzel
- Institut für Mikrotechnik, Technische Universität Braunschweig Braunschweig Germany
| |
Collapse
|
30
|
Chen Y, Wang W, Tyagi D, Carrier AJ, Cui S, He S, Zhang X. Non-invasive isolation of rare circulating tumor cells with a DNA mimic of double-sided tape using multimeric aptamers. NANOSCALE 2019; 11:5879-5883. [PMID: 30869719 DOI: 10.1039/c9nr00364a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Circulating tumor cells (CTCs) are indicative for cancer diagnosis and prognosis. However, conventional immuno-magnetic cell capture technologies using antibody- and aptamer-functionalized magnetic particles generate increased intracellular oxidative stress through endocytosis. Herein, we efficiently, selectively, and non-invasively isolate CTCs from whole blood by mimicking double-sided tape using DNA.
Collapse
Affiliation(s)
- Yongli Chen
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, 518055, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Dalili A, Samiei E, Hoorfar M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. Analyst 2019; 144:87-113. [DOI: 10.1039/c8an01061g] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have reviewed the microfluidic approaches for cell/particle isolation and sorting, and extensively explained the mechanism behind each method.
Collapse
Affiliation(s)
- Arash Dalili
- The University of British
- School of Engineering
- Kelowna
- Canada V1 V 1 V7
| | - Ehsan Samiei
- University of Victoria
- Department of Mechanical Engineering
- Victoria
- Canada
| | - Mina Hoorfar
- The University of British
- School of Engineering
- Kelowna
- Canada V1 V 1 V7
| |
Collapse
|
32
|
Dong Z, Tang C, Zhao L, Xu J, Wu Y, Tang X, Zhou W, He R, Zhao R, Xu L, Zhang Z, Fang X. A Microwell-Assisted Multiaptamer Immunomagnetic Platform for Capture and Genetic Analysis of Circulating Tumor Cells. Adv Healthc Mater 2018; 7:e1801231. [PMID: 30565898 DOI: 10.1002/adhm.201801231] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/31/2018] [Indexed: 12/28/2022]
Abstract
Detection of circulating tumor cells (CTCs) in peripheral blood is of paramount significance for cancer diagnosis, progress evaluation, and individualized therapy. However, the rareness and heterogeneity of CTCs introduces significant challenges in the capture of cancer cells as well as downstream genetic analysis. In this work, a microwell-assisted multiaptamer immunomagnetic platform (MMAIP) is proposed for highly efficient capture of CTCs with minimum influence of heterogeneity. Assisted by a microwell chip, the purity of CTCs is greatly improved, thus meeting the requirement of downstream gene analysis. This is, as far as is known, the first aptamer based platform enabling mutation analysis of the captured CTCs from cancer patients, which will contribute to the practical application of aptamers in clinics.
Collapse
Affiliation(s)
- Zaizai Dong
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Chuanhao Tang
- Department of Medical Oncology; Peking University International Hospital; Beijing 102206 P. R. China
| | - Libo Zhao
- Echo Biotech Co., Ltd; Beijing 102206 P. R. China
| | - Jiachao Xu
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Yayun Wu
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Xiaojun Tang
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Wei Zhou
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Rongxiang He
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices; Ministry of Education; Jianghan University; Wuhan 430056 P. R. China
| | - Rong Zhao
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Li Xu
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Zhen Zhang
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Xiaohong Fang
- Beijing National Research Center for Molecular Sciences; Key Laboratory of Molecular Nanostructure and Nanotechnology; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
33
|
Song Z, Li M, Li B, Yan Y, Song Y. Automatic detecting and counting magnetic beads-labeled target cells from a suspension in a microfluidic chip. Electrophoresis 2018; 40:897-905. [DOI: 10.1002/elps.201800345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Zhenyu Song
- Department of Radiotherapy; Jiaozhou Central Hospital; Qingdao P. R. China
| | - Mengqi Li
- Department of Mechanical and Mechatronics Engineering; University of Waterloo; Waterloo ON Canada
| | - Bao Li
- Department of Marine Engineering; Dalian Maritime University; Dalian P. R. China
| | - Yimo Yan
- Department of Biomedical Engineering; School of Medicine; Tsinghua University; Beijing P. R. China
- Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
| | - Yongxin Song
- Department of Marine Engineering; Dalian Maritime University; Dalian P. R. China
| |
Collapse
|
34
|
Zou D, Cui D. Advances in isolation and detection of circulating tumor cells based on microfluidics. Cancer Biol Med 2018; 15:335-353. [PMID: 30766747 PMCID: PMC6372907 DOI: 10.20892/j.issn.2095-3941.2018.0256] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/19/2018] [Indexed: 01/09/2023] Open
Abstract
Circulating tumor cells (CTCs) are the cancer cells that circulate in the peripheral blood after escaping from the original or metastatic tumors. CTCs could be used as non-invasive source of clinical information in early diagnosis of cancer and evaluation of cancer development. In recent years, CTC research has become a hotspot field wherein many novel CTC detection technologies based on microfluidics have been developed. Great advances have been made that exhibit obvious technical advantages, but cannot yet satisfy the current clinical requirements. In this study, we review the main advances in isolation and detection methods of CTC based on microfluidics research over several years, propose five technical indicators for evaluating these methods, and explore the application prospects. We also discuss the concepts, issues, approaches, advantages, limitations, and challenges with an aim of stimulating a broader interest in developing microfluidics-based CTC detection technology.
Collapse
Affiliation(s)
- Dan Zou
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
35
|
Li WM, Zhou LL, Zheng M, Fang J. Selection of Metastatic Breast Cancer Cell-Specific Aptamers for the Capture of CTCs with a Metastatic Phenotype by Cell-SELEX. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:707-717. [PMID: 30098503 PMCID: PMC6083002 DOI: 10.1016/j.omtn.2018.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022]
Abstract
Circulating tumor cells (CTCs) have the potential to predict metastasis, and the capture of CTCs based on their surface markers is mostly applied for CTC detection. Considering that the CTCs with a metastatic phenotype preferably form a metastatic focus and that aptamers have the ability to bind targets with high specificity and affinity, we selected aptamers directed toward metastatic cells by subtractive Cell-SELEX technology using highly metastatic MDA-MB-231 cells as the target cell and low-metastatic MCF-7 cells as the negative cell for the capture of metastatic CTCs. Affinity and selectivity assays showed that aptamer M3 had the highest affinity, with a KD of 45.6 ± 1.2 nM, and had good specificity against several other types of metastatic cancer cells. Based on these findings, we developed an M3-based capture system for CTC enrichment, which has the capability to specifically capture the metastatic cells MDA-MB-231 mixed with non-metastatic MCF-7 cells and CTCs derived from the peripheral blood from metastatic breast cancer patients. A further comparative analysis with the anti-EpCAM probe showed that M3 probe captured epithelial feature-deletion metastatic cells. We developed an aptamer-based CTC capture system through the selection of aptamers by taking whole metastatic cells, not known molecules, as targets, which provided a new insight into CTC capture and Cell-SELEX application.
Collapse
Affiliation(s)
- Wan-Ming Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Lin-Lin Zhou
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China; Institute of Immunotherapy, Fujian Medical University, Fuzhou 350122, China
| | - Min Zheng
- Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Jin Fang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
36
|
Progress in Circulating Tumor Cell Research Using Microfluidic Devices. MICROMACHINES 2018; 9:mi9070353. [PMID: 30424286 PMCID: PMC6082257 DOI: 10.3390/mi9070353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Abstract
Circulating tumor cells (CTCs) are a popular topic in cancer research because they can be obtained by liquid biopsy, a minimally invasive procedure with more sample accessibility than tissue biopsy, to monitor a patient’s condition. Over the past decades, CTC research has covered a wide variety of topics such as enumeration, profiling, and correlation between CTC number and patient overall survival. It is important to isolate and enrich CTCs before performing CTC analysis because CTCs in the blood stream are very rare (0–10 CTCs/mL of blood). Among the various approaches to separating CTCs, here, we review the research trends in the isolation and analysis of CTCs using microfluidics. Microfluidics provides many attractive advantages for CTC studies such as continuous sample processing to reduce target cell loss and easy integration of various functions into a chip, making “do-everything-on-a-chip” possible. However, tumor cells obtained from different sites within a tumor exhibit heterogenetic features. Thus, heterogeneous CTC profiling should be conducted at a single-cell level after isolation to guide the optimal therapeutic path. We describe the studies on single-CTC analysis based on microfluidic devices. Additionally, as a critical concern in CTC studies, we explain the use of CTCs in cancer research, despite their rarity and heterogeneity, compared with other currently emerging circulating biomarkers, including exosomes and cell-free DNA (cfDNA). Finally, the commercialization of products for CTC separation and analysis is discussed.
Collapse
|
37
|
Kim B, Oh S, Shin S, Yim SG, Yang SY, Hahn YK, Choi S. Pumpless Microflow Cytometry Enabled by Viscosity Modulation and Immunobead Labeling. Anal Chem 2018; 90:8254-8260. [PMID: 29874050 DOI: 10.1021/acs.analchem.8b01804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Major challenges of miniaturizing flow cytometry include obviating the need for bulky, expensive, and complex pump-based fluidic and laser-based optical systems while retaining the ability to detect target cells based on their unique surface receptors. We addressed these critical challenges by (i) using a viscous liquid additive to control flow rate passively, without external pumping equipment, and (ii) adopting an immunobead assay that can be quantified with a portable fluorescence cell counter based on a blue light-emitting diode. Such novel features enable pumpless microflow cytometry (pFC) analysis by simply dropping a sample solution onto the inlet reservoir of a disposable cell-counting chamber. With our pFC platform, we achieved reliable cell counting over a dynamic range of 9-298 cells/μL. We demonstrated the practical utility of the platform by identifying a type of cancer cell based on CD326, the epithelial cell adhesion molecule. This portable microflow cytometry platform can be applied generally to a range of cell types using immunobeads labeled with specific antibodies, thus making it valuable for cell-based and point-of-care diagnostics.
Collapse
Affiliation(s)
- Byeongyeon Kim
- Department of Biomedical Engineering , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| | - Sein Oh
- Department of Biomedical Engineering , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| | - Suyeon Shin
- Department of Biomedical Engineering , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| | - Sang-Gu Yim
- Department of Biomaterials Science, Life and Industry Convergence Institute , Pusan National University , 1268-50 Samrangjin-ro , Miryang 50463 , Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute , Pusan National University , 1268-50 Samrangjin-ro , Miryang 50463 , Republic of Korea
| | - Young Ki Hahn
- Department of New Biology , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Sungyoung Choi
- Department of Biomedical Engineering , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea
| |
Collapse
|