1
|
Yang W, Li X, Zhang M, Wang Q, Wang Y, Yu S, Dang R, Wang X, Yang Z, Fan S, Wu H, Wei B. N/O co-doping porous biomass carbon constructed electrochemical sensor for universal and sensitive detection to mycotoxins. Food Chem 2025; 475:143397. [PMID: 39956074 DOI: 10.1016/j.foodchem.2025.143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Mycotoxin contamination poses a great threat to food safety and human health. Thus, universal and sensitive detection of mycotoxins is urgently needed. Herein, N/O co-doped porous biomass carbon was synthesized from rice straw as a novel electrode modification material for fabricating an electrochemical sensor for mycotoxin detection. The fabricated sensor exhibited excellent universality in the detection of aflatoxin B1, aflatoxin G1, aflatoxin G2, aflatoxin M1, zearalenone, and deoxynivalenol. The limits of detection were ca. 0.5689, 0.0504, 0.0274, 0.6141, 0.0781, and 0.0512 fg·mL-1, respectively. The dynamic linear range was spanned from 0.001 to 1000 pg·mL-1. The biomass carbon-based electrochemical sensor also demonstrated accurate and rapid performance in detecting mycotoxins in real samples, with all recoveries near 100 %. Density functional theory calculation confirmed that the adsorption of mycotoxins by porous carbon changed the charge distribution of the electrode surface, which is the potential working mechanism of the designed electrochemical sensor for high sensitivity mycotoxin detection. The results indicated that the high sensitivity of the fabricated electrochemical sensor makes it suitable for the fast and accurate detection of mycotoxins in grain and feed products.
Collapse
Affiliation(s)
- Wei Yang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China
| | - Xiaonan Li
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China; Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, PR China
| | - Mengjie Zhang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China
| | - Qi Wang
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, PR China
| | - Yajun Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China
| | - Susu Yu
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China
| | - Ruhua Dang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China
| | - Xinru Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China
| | - Zheng Yang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China.
| | - Suhua Fan
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China.
| | - Hai Wu
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang 236037, PR China.
| | - Bing Wei
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, PR China.
| |
Collapse
|
2
|
Lin J, Li G, Hu Y, Zhong Q. Host-guest mediated recognition and rapid extraction of Fusarium mycotoxins in cereals by nickel ferrite magnetic calix[4]arene-derived covalent organic framework fabricated in room-temperature. Food Chem 2025; 464:141887. [PMID: 39522376 DOI: 10.1016/j.foodchem.2024.141887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/17/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Fusarium mycotoxins are toxic secondary fungal metabolites and widely distributed in cereals. Herein, a nickel ferrite magnetic calix[4]arene-derived covalent organic framework (NiFe2O4@CX4-COF) was meticulously designed and synthesized using a room-temperature method for the enrichment of mycotoxins. The CX4-COF exhibited a porous crystalline network with an eclipsed AA-stacking configuration. The ingenious integration of NiFe2O4, supramolecular calix[4]arene and COF contributed to host-guest mediated recognition, size-selectivity and high adsorption capacity, rapidly reaching adsorption equilibrium within only 3 min. Simulation calculations revealed that the host-guest interaction, size effect and abundant binding sites facilitated synergistically recognize and capture mycotoxins. NiFe2O4@CX4-COF has successfully applied for simultaneous extraction and analysis of mycotoxins in cereals, achieving negligible matrix effects (-14% to 13%), high sensitivity (LODs of 0.003-0.014 μg/L) and satisfactory recoveries (74.4%-116%). This work provides a prospective platform for constructing tailored macrocycle-based COFs under mild conditions for precise recognition and accurate analysis of trace hazardous substances in food.
Collapse
Affiliation(s)
- Jiana Lin
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qisheng Zhong
- Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510656, China
| |
Collapse
|
3
|
Ranbir, Singh G, Kaur N, Singh N. Machine learning driven metal oxide-based portable sensor array for on-site detection and discrimination of mycotoxins in corn sample. Food Chem 2025; 464:141869. [PMID: 39515166 DOI: 10.1016/j.foodchem.2024.141869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/13/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Cereals, grains, and feedstuffs are prone to contamination by fungi during various stages from growth to storage. These fungi may produce harmful mycotoxins impacting food quality and safety. Thus, the development of quick and reliable methods for on-site application is crucial for ensuring food safety and quality monitoring. Herein, we have developed an efficient sensor array based on hierarchically modified metal oxides with azodye-based metal complexes for on-site detection and segregation of harmful mycotoxins present in corn samples. The functionalized material has been fully characterized utilizing various sophisticated techniques. The sensor array successfully detected and differentiated five different mycotoxins with 100 % efficiency, validated by linear discriminant analysis (LDA) score plots. The limit of detection, as determined from calibration curves, ranges from 0.02 to 0.09 ppm for the respective mycotoxins. Additionally, the sensor array has also demonstrated 100 % accuracy in discriminating binary and ternary ratios of mycotoxins in real sample analyses.
Collapse
Affiliation(s)
- Ranbir
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India; Present Address: Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
4
|
Liu X, Luo Y, Zhang Y, Xie Z, Xu C. Gold nanoparticle-mediated fluorescence resonance energy transfer for analytical applications in the fields of life health and safety. Talanta 2025; 282:127023. [PMID: 39406076 DOI: 10.1016/j.talanta.2024.127023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024]
Abstract
Fluorescence Resonance Energy Transfer (FRET) has emerged as a predominant, highly sensitive, and homogeneous optical analytical technique in the realm of analytical testing and bio-imaging. Gold nanoparticles (AuNPs) demonstrate a size-dependent, broader absorption range within visible wavelengths owing to the phenomenon of surface plasmon resonance. As a result, they can effectively act as light acceptors, enabling the creation of a donor-acceptor system crucial for achieving precise target analyte analysis. In this comprehensive review, we present an extensive survey of recent research advancements in the field of FRET techniques based on AuNPs for the analytical detection of a wide range of entities, including some biomolecules, pesticides, enzymes, microorganisms, food safety and environmental pollutants. Additionally, we elucidate the procedural strategies and underlying mechanisms involved. Finally, we provide perspectives on the current issues and future efforts surrounding the FRET applications of AuNPs in biological analysis. Overall, this review aims to provide a holistic comprehension of gold nanoparticle applications in life analysis using FRET, while also presenting a promising vision for future endeavors in this domain.
Collapse
Affiliation(s)
- Xuemei Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Yunjing Luo
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Yong Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Ziqi Xie
- College of Mathematics Statistics and Mechanics, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Chao Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
5
|
El-Beshlawy MM, Barhoum A, Abdel-Haleem FM. Nanomolar detection of lurasidone hydrochloride in pharmaceutical formulations (Serodopamoun®) and spiked urine using a PVC/imprinted polymer/MWCNTs layer deposited onto polyaniline-coated screen-printed electrodes. RSC Adv 2024; 14:39769-39778. [PMID: 39697838 PMCID: PMC11653105 DOI: 10.1039/d4ra07098d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
This study developed potentiometric sensors for detecting lurasidone HCl (LSH), a vital drug for treating schizophrenia and bipolar I disorder, in pharmaceutical formulations and biological samples. The sensors are based on screen-printed electrodes (SPE) modified with a molecularly imprinted polymer (MIP) synthesized using lurasidone as a template, 1-vinyl-2-pyrrolidine (VP) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and benzoyl peroxide as an initiator. The SPE was further modified with a conductive polyaniline (PANI) film and a polyvinyl chloride (PVC) layer containing MIP as an ionophore and multiwalled carbon nanotubes (MWCNT) as a transducing material along with 2-nitrophenyl octyl ether (2-NPOE) as plasticizer. This configuration resulted in a sensor with a sensitive response and high selectivity for LSH. The electrochemical evaluation showed a Nernstian response slope of 57.3 ± 0.5 mV decade-1 in a concentration range of 10-4 to 10-8 M, with a detection limit of 10 nM and a response time of 2-3 minutes in Tris buffer (pH = 7.0). The optimized sensor possessed significantly enhanced accuracy, providing a cost-effective alternative to traditional methods. The accuracy, selectivity, precision, stability, and sensitivity of these potentiometric sensors make them valuable for detecting LSH in urine samples spiked with the pharmaceutical formulation Serodopamoun®.
Collapse
Affiliation(s)
| | - Ahmed Barhoum
- Nanostructures Research Group, Department of Chemistry, Faculty of Science, Helwan University Cairo 11795 Egypt
| | - Fatehy M Abdel-Haleem
- Department of Chemistry, Faculty of Science, Cairo University 12613 Giza Egypt
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Saudi Arabia
| |
Collapse
|
6
|
Khandagale DD, Wang SF. Cerium vanadate/functionalized carbon nanofiber composite for the electrochemical detection of nitrite. Food Chem 2024; 459:140353. [PMID: 39024884 DOI: 10.1016/j.foodchem.2024.140353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
This study presents a facial and quick electrochemical sensor platform that offers remarkable water and food safety applications. The present work represents a study of the synthesis and characterization for efficient cerium vanadate (CeVO4) with a functionalized carbon nanofiber (f-CNF) decorated electrode, which is a highly effective electrode modifier for sensitive nitrite detection. The CeVO4 nanoparticles were synthesized using the facial hydrothermal technique, and a composite (CeVO4@f-CNF) was prepared using the sonication method. Afterward, the produced materials were confirmed with spectroscopic and microscopic analysis. The electrochemical behavior of nitrite was studied through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The DPV analysis depicts an excellent linear range of 0.1-1033 μM and a promising detection limit of 0.004 μM for the proposed electrode. The CeVO4@f-CNF electrode was applied to detect nitrite in water and meat samples. The proposed electrochemical sensor attributes the significant results towards the detection of nitrite.
Collapse
Affiliation(s)
- Dhanashri D Khandagale
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan.
| |
Collapse
|
7
|
Ma X, Xu N, Yan X, Guo N, Yang C, Sun C, Li H. Enhancing reliability for AFB1 analysis in food: Ratiometric fluorescence/colorimetric dual-modal analysis platform using multifunctional GO-Fe 3O 4. Biosens Bioelectron 2024; 263:116594. [PMID: 39084043 DOI: 10.1016/j.bios.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Adsorption of DNA fluorescent probes on GO-Fe3O4 is a promising strategy for establishing fluorescent bioassays, often using magnetic separation or fluorescence quenching to generate signals. However, there is a lack of systematic understanding of ssDNA-regulated changes in the enzyme-mimetic activity of GO-Fe3O4, and the accuracy of the results of single-mode fluorescence analysis is susceptible to environmental interference. These limit the rational design and scope of application of the methods. Herein, the force and the catalytic mechanism of ssDNA/GO-Fe3O4 interactions were explored in detail. On this basis, a ratiometric fluorescence/colorimetric dual-modal analysis platform was constructed based on the superparamagnetism and DNA controllable peroxidase-like activity of GO-Fe3O4. The ratiometric fluorescent signal was generated by combining 7-amino-4-methyl-3-coumarinylacetic acid (AMCA) labeled aptamer (AMCA-aptamer) with AT hairpin-synthesized copper nanoparticles, which has built-in correction and resistance to environmental interference. The aptamer-modulated peroxidase-like activity of GO-Fe3O4 generated the colorimetric signal. Two signals correct each other to further enhance the reliability of the results. The analytical platform performed satisfactorily for AFB1 detection in the range of 0.1-150 μg/L, and was successfully applied to real samples (peanut, milk powder, and wheat flour). With the support of ImageJ software, quantitative detection was achieved by RGB channel analysis for real-color images, which provides a potential pathway for the rapid detection of food safety.
Collapse
Affiliation(s)
- Xinyue Ma
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Ningyi Xu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China
| | - Na Guo
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Chuanyu Yang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China; Chongqing Research Institute, Jilin University, Chongqing, 401123, PR China.
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China.
| |
Collapse
|
8
|
Cheng S, Yin F, Wang Z, Zhao M, Ji W, Lin JM, Wang X, Hu Q. A biosensor method based on surfactant-mediated surface droplet evaporation for the detection of Aflatoxin B 1. Food Chem 2024; 453:139635. [PMID: 38759445 DOI: 10.1016/j.foodchem.2024.139635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Aflatoxin B1 (AFB1) is a common mycotoxin that is of significant global concern due to its impact on food safety. Herein, we innovatively develop a sensing platform to detect AFB1 based on evaporation of surfactant solutions on the hydrophobic surface, resulting in dried patterns with varied sizes. The surfactant CTAB solution produces a relatively large dried pattern due to the surface wetting. However, the reduction in the dried pattern size is found when the mixture of CTAB and AFB1 aptamer is tested, because the formation of CTAB/aptamer complex. Moreover, the dried pattern size of the mixture of CTAB, aptamer, and AFB1 increases due to the specific binding of AFB1 to its aptamer. Using this innovative strategy, the AFB1 detection can be fulfilled with a detection limit of 0.77 pg/mL. As a simple, convenient, inexpensive, and label-free method, the surfactant-mediated surface droplet evaporation-based biosensor is very promising for various potential applications.
Collapse
Affiliation(s)
- Supan Cheng
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Fangchao Yin
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Zhongxing Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Mei Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Qiongzheng Hu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China.
| |
Collapse
|
9
|
Mi W, Liu S. Tetrodotoxin and the state-of-the-art progress of its associated analytical methods. Front Microbiol 2024; 15:1413741. [PMID: 39290516 PMCID: PMC11407752 DOI: 10.3389/fmicb.2024.1413741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Tetrodotoxin (TTX), which is found in various marine organisms, including pufferfish, shellfish, shrimp, crab, marine gastropods, and gobies, is an effective marine toxin and the cause of many seafood poisoning incidents. Owing to its toxicity and threat to public health, the development of simple, rapid, and efficient analytical methods to detect TTX in various food matrices has garnered increasing interest worldwide. Herein, we reviewed the structure and properties, origin and sources, toxicity and poisoning, and relevant legislative measures of TTX. Additionally, we have mainly reviewed the state-of-the-art progress of analytical methods for TTX detection in the past five years, such as bioassays, immunoassays, instrumental analysis, and biosensors, and summarized their advantages and limitations. Furthermore, this review provides an in-depth discussion of the most advanced biosensors, including cell-based biosensors, immunosensors, and aptasensors. Overall, this study provides useful insights into the future development and wide application of biosensors for TTX detection.
Collapse
Affiliation(s)
- Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, China
| |
Collapse
|
10
|
He Y, Wang H, Yu Z, Tang X, Zhou M, Guo Y, Xiong B. A disposable immunosensor array using cellulose paper assembled chemiresistive biosensor for simultaneous monitoring of mycotoxins AFB1 and FB1. Talanta 2024; 276:126145. [PMID: 38723473 DOI: 10.1016/j.talanta.2024.126145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/15/2024] [Accepted: 04/20/2024] [Indexed: 06/14/2024]
Abstract
Due to the common contamination of multiple mycotoxins in food, which results in stronger toxicity, it is particularly important to simultaneously test for various mycotoxins for the protection of human health. In this study, a disposable immunosensor array with low-cost was designed and fabricated using cellulose paper, polydimethylsiloxane (PDMS), and semiconducting single-walled carbon nanotubes (s-SWCNTs), which was modified with specific antibodies for mycotoxins AFB1 and FB1 detection. The strategy for fabricating the immunosensor array with two individual channels involved a two-step protocol starting with the form of two kinds of carbon films by depositing single-wall carbon nanotubes (SWCNTs) and s-SWCNTs on the cellulose paper as the conductive wire and sensing element, followed by the assembly of chemiresistive biosensor with SWCNTs strip as the wire and s-SWCNTs as the sensing element. After immobilizing AFB1-bovine serum albumin (AFB1-BSA) and FB1-bovine serum albumin (FB1-BSA) separately on the different sensing regions, the formation of mycotoxin-BSA-antibody immunocomplexes transfers to electrochemical signal, which would change with the different concentrations of free mycotoxins. Under optimal conditions, the immunosensor array achieved a limit of detection (LOD) of 0.46 pg/mL for AFB1 and 0.34 pg/mL for FB1 within a wide dynamic range from 1 pg/mL to 20 ng/mL. Furthermore, the AFB1 and FB1 spiked in the ground corn and wheat extracts were detected with satisfactory recoveries, demonstrating the excellent practicality of this established method for simultaneous detection of mycotoxins.
Collapse
Affiliation(s)
- Yue He
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Zhixue Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Mengting Zhou
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
11
|
Lakavath K, Kafley C, Sajeevan A, Jana S, Marty JL, Kotagiri YG. Progress on Electrochemical Biomimetic Nanosensors for the Detection and Monitoring of Mycotoxins and Pesticides. Toxins (Basel) 2024; 16:244. [PMID: 38922139 PMCID: PMC11209398 DOI: 10.3390/toxins16060244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Monitoring agricultural toxins such as mycotoxins is crucial for a healthy society. High concentrations of these toxins lead to the cause of several chronic diseases; therefore, developing analytical systems for detecting/monitoring agricultural toxins is essential. These toxins are found in crops such as vegetables, fruits, food, and beverage products. Currently, screening of these toxins is mostly performed with sophisticated instrumentation such as chromatography and spectroscopy techniques. However, these techniques are very expensive and require extensive maintenance, and their availability is limited to metro cities only. Alternatively, electrochemical biomimetic sensing methodologies have progressed hugely during the last decade due to their unique advantages like point-of-care sensing, miniaturized instrumentations, and mobile/personalized monitoring systems. Specifically, affinity-based sensing strategies including immunosensors, aptasensors, and molecular imprinted polymers offer tremendous sensitivity, selectivity, and stability to the sensing system. The current review discusses the principal mechanisms and the recent developments in affinity-based sensing methodologies for the detection and continuous monitoring of mycotoxins and pesticides. The core discussion has mainly focused on the fabrication protocols, advantages, and disadvantages of affinity-based sensing systems and different exploited electrochemical transduction techniques.
Collapse
Affiliation(s)
- Kavitha Lakavath
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Chandan Kafley
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Anjana Sajeevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Soumyajit Jana
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| | - Jean Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India; (K.L.); (C.K.); (A.S.); (S.J.)
| |
Collapse
|
12
|
Xiong J, Sun B, Zhang S, Wang S, Qin L, Jiang H. Highly efficient dual-mode detection of AFB1 based on the inner filter effect: Donor-acceptor selection and application. Anal Chim Acta 2024; 1298:342384. [PMID: 38462339 DOI: 10.1016/j.aca.2024.342384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The utilization of inner filter effect (IFE) brings more opportunities for construction of fluorescence immunoassays but remains a great challenge, especially how to select best donor in the face of extensive fluorescent nanomaterials. Aflatoxin B1 possesses high toxicity among mycotoxins and is frequently found in agricultural products that may significantly threaten to human health. Therefore, with the help of signal transduction mechanism of IFE to develop a convenient and sensitive approach for AFB1 detection is of great significance in ensuring food safety. RESULTS Herein, the classical alkaline phosphatase (ALP) catalyzes hydrolysis of p-nitrophenylphosphate to produce p-nitrophenol (PNP) was employed as a model reaction, which intends to explore tunable multicolor fluorescence of gold nanoclusters (AuNCs) for matching PNP to maximize IFE efficiency. The luminescent green-emitting AuNCs were selected as an optimal donor in terms of excellent spectral overlap, high photoluminescence, and adequate system adaptability, thus achieving a 22-fold increase in sensitivity improvement compared to colorimetric method for ALP detection. The fluorescence quenching mechanism between PNP and AuNCs was validated as IFE by studying ultraviolet absorption, zeta potentials and fluorescence lifetime. In light of this, we integrated a highly specific antibody-antigen recognition system, efficient enzymatic reaction and excellent optical characteristics of AuNCs to develop dual-mode immunoassay for AFB1 monitoring. The sensitivity of fluorometric immunoassay was lower to 0.06 ng/mL, which obtained a 3.5-fold improvement compared to "gold standard" ELISA. Their practicability and applicability were confirmed in the tap water, corn, wheat and peanuts samples. SIGNIFICANCE This work provides an easy-to-understand screening procedure to select optimal donor-acceptor pairs in IFE analysis. Furthermore, we expect that integration of IFE-based signal conversion strategy into mature immunoassay not only extends the signal types, simplifies signal amplification steps, and reduces the false-positive/false-negative rates, but also provides a simple, convenient, and versatile strategy for monitoring of trace other contaminants.
Collapse
Affiliation(s)
- Jincheng Xiong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Boyan Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Shuai Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Sihan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Linqian Qin
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Kim Y, Jeon Y, Na M, Hwang SJ, Yoon Y. Recent Trends in Chemical Sensors for Detecting Toxic Materials. SENSORS (BASEL, SWITZERLAND) 2024; 24:431. [PMID: 38257524 PMCID: PMC10821350 DOI: 10.3390/s24020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Industrial development has led to the widespread production of toxic materials, including carcinogenic, mutagenic, and toxic chemicals. Even with strict management and control measures, such materials still pose threats to human health. Therefore, convenient chemical sensors are required for toxic chemical monitoring, such as optical, electrochemical, nanomaterial-based, and biological-system-based sensors. Many existing and new chemical sensors have been developed, as well as new methods based on novel technologies for detecting toxic materials. The emergence of material sciences and advanced technologies for fabrication and signal-transducing processes has led to substantial improvements in the sensing elements for target recognition and signal-transducing elements for reporting interactions between targets and sensing elements. Many excellent reviews have effectively summarized the general principles and applications of different types of chemical sensors. Therefore, this review focuses on chemical sensor advancements in terms of the sensing and signal-transducing elements, as well as more recent achievements in chemical sensors for toxic material detection. We also discuss recent trends in biosensors for the detection of toxic materials.
Collapse
Affiliation(s)
| | | | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.K.); (Y.J.); (M.N.); (S.-J.H.)
| |
Collapse
|
14
|
Katiyar D, Manish. Recent Advances in Electrochemical Biosensors Targeting Stress Markers. Comb Chem High Throughput Screen 2024; 27:1877-1886. [PMID: 38279751 DOI: 10.2174/0113862073278547231210170007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION When the body experiences a change in its internal environment due to factors such as mood (euphoria, stress) and illness, it releases biomarkers in large quantities. These biomarkers are used for detecting a disease at its early stages. This involves the detection of insufficient quantities of biocomponents, which can be done by using nanomaterials, conventional materials, and biotechnology; thus, scientists can increase the sensitivity of electrochemical sensors. According to studies conducted in this area, electrochemical sensors have shown promise as a diagnostic tool due to their ability to identify and pinpoint illness biomarkers. The present review article was compiled to gather the latest information on electrochemical biosensors targeting stress markers. MATERIALS AND METHODS The authors searched scholarly databases like ScienceDirect, Pubmed, Medline, and Scopus for information on electrochemical biosensors targeting stress markers. RESULTS In this article, we looked at the recent developments in electrochemical sensors for stress monitoring. Because of advances in nanomaterial and biomolecule processes, electrochemical biosensors have been developed with the sensitivity to detect several biomarkers in real-time in therapeutically relevant materials. CONCLUSION This biomarker sensor strategy can analyze various biofluids (sweat, plasma, urine, and saliva).
Collapse
Affiliation(s)
- Deepti Katiyar
- Department of Pharmacognosy, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Manish
- Department of Electronics and Communication Engineering, ABES Engineering College, 19th KM Stone, NH-09 Ghaziabad, 201009, Uttar Pradesh, India
| |
Collapse
|
15
|
Kong Y, Li Z, Liu Q, Song J, Zhu Y, Lin J, Song L, Li X. Artificial neural network-facilitated V 2C MNs-based colorimetric/fluorescence dual-channel biosensor for highly sensitive detection of AFB 1 in peanut. Talanta 2024; 266:125056. [PMID: 37567121 DOI: 10.1016/j.talanta.2023.125056] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
In this work, V2C Mxene nano-enzyme materials (V2C MNs) with excellent peroxidase-like activity and fluorescence quenching performance were prepared, and it was modified using 6-carboxyfluorescein-labelled aptamers (ssDNA-FAM) to construct a novel dual-mode sensor V2C@ssDNA-FAM, with detection limits of 0.0477 ng mL-1 and 0.2789 ng mL-1 of fluorescence (linear range of 0.1-550 ng mL-1) and colorimetric (linear range of 1-1000 ng mL-1) modes, respectively. Meanwhile, an ANN intelligent detection platform has been constructed, which could automatically track and analyze the fluorescence and colorimetric signal of the detection system through machine learning and immediately obtain the AFB1 concentration, and the detection limits of the fluorescence (linear range of 0.1-500 ng mL-1) and colorimetric (linear range of 1-800 ng mL-1) channels of it were 0.0905 ng mL-1 and 0.6845 ng mL-1, respectively. The recovery rates of fluorescence, colorimetric sensing detection and ANN-assisted fluorescence and colorimetric sensing detection of real samples ranged from 95.40% to 101.76%. The method constructed in this work was superior to most existing literature reports and had great potential for application in the field of food quality testing.
Collapse
Affiliation(s)
- Yiqian Kong
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Zongyi Li
- School of Management, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, PR China
| | - Qi Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Juncheng Song
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Yinghua Zhu
- School of Information and Electrical Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Jinping Lin
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Lili Song
- Shandong Jinsheng Grain, Oil and Food Co., Ltd, Linyi, Shandong, 276629, PR China
| | - Xiangyang Li
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China.
| |
Collapse
|
16
|
Majer-Baranyi K, Adányi N, Székács A. Current Trends in Mycotoxin Detection with Various Types of Biosensors. Toxins (Basel) 2023; 15:645. [PMID: 37999508 PMCID: PMC10675009 DOI: 10.3390/toxins15110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
One of the most important tasks in food safety is to properly manage the investigation of mycotoxin contamination in agricultural products and foods made from them, as well as to prevent its occurrence. Monitoring requires a wide range of analytical methods, from expensive analytical procedures with high-tech instrumentation to significantly cheaper biosensor developments or even single-use assays suitable for on-site monitoring. This review provides a summary of the development directions over approximately a decade and a half, grouped according to the biologically sensitive components used. We provide an overview of the use of antibodies, molecularly imprinted polymers, and aptamers, as well as the diversity of biosensors and their applications within the food industry. We also mention the possibility of determining multiple toxins side by side, which would significantly reduce the time required for the analyses.
Collapse
Affiliation(s)
- Krisztina Majer-Baranyi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - Nóra Adányi
- Food Science Research Group, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, H-1118 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary;
| |
Collapse
|
17
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
18
|
Zhang L, Chen J, Lu L, Yu R, Zhang D. A smartphone-assisted colorimetric aptasensor based on aptamer and gold nanoparticles for visual, fast and sensitive detection of ZEN in maize. Food Chem X 2023; 19:100792. [PMID: 37780345 PMCID: PMC10534090 DOI: 10.1016/j.fochx.2023.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 10/03/2023] Open
Abstract
A simple, fast, low cost, sensitive, intuitive, visual, label-free, and smartphone-assisted aptamer sensor based on colorimetric assay for the measurement of zearalenone was constructed. The nucleic acid aptamer of zearalenone was used as the recognition element and gold nanoparticles were used as the indicator. Several factors that could influence sensitivity, including the concentration of aptamer and NaCl, and incubation time, and specificity, have been investigated. The results showed that under the optimal conditions, the signal had a good linear relationship when zearalenone concentration is 5-300 ng/mL. A linear regression equation is Y = 0.0003X + 0.5128 (R2 = 0.9989) and a limit of detection is 5 ng/mL. The specificity of the sensor was good. Zearalenone in maize samples were successfully measured. The recoveries of Zearalenone are 81.3 %-96.4 %. The whole process takes only 15 min to complete. The smartphone assisted colorimetric aptamer sensor can be used for the detection of zearalenone in maize.
Collapse
Affiliation(s)
- Liyuan Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China
| | - Jiayu Chen
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China
| | - Lifeng Lu
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China
| | - Runzhong Yu
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China
- Chinese National Engineering Research Center, Daqing 163319, PR China
- Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, PR China
| |
Collapse
|
19
|
Huang Z, Luo X, Yan F, Zhou B. Homogeneous Electrochemical Aptasensor for Sensitive Detection of Zearalenone Using Nanocomposite Probe and Silica Nanochannel Film. Molecules 2023; 28:7241. [PMID: 37959660 PMCID: PMC10647457 DOI: 10.3390/molecules28217241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Developing rapid and efficient analytical methods is of great importance for food safety Herein, we present a novel homogeneous electrochemical aptasensor for ultrasensitive quantitative determination of zearalenone (ZEN) based on a nanocomposite probe and silica nanochannel film. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and UV-Vis characterization techniques confirm that graphene oxide (GO) bears an aromatic conjugated structure, along with hydroxyl and carboxyl groups, facilitating the subsequent adsorption of cationic redox hexa-ammine-ruthenium (III) (Ru(NH3)63+) and anionic ZEN aptamer, to form a Ru(NH3)63+-ZEN aptamer-GO nanocomposite probe in a homogeneous solution. Vertically-ordered mesoporous silica films (VMSF) bearing silanol groups can be simply grown on the solid indium tin oxide (ITO) electrode surface and enable the selective preconcentration of Ru(NH3)63+, eventually leading to signal amplification. Since the detachment of Ru(NH3)63+ from the GO surface by the recognized ZEN aptamer in the presence of ZEN, more free Ru(NH3)63+ is released in solution and produces enhanced redox signals at the VMSF modified ITO electrode, allowing quantitative detection of ZEN. On the basis of the above sensing strategy, the proposed homogeneity, due to the assistance of graphene, as well as of the signal amplification and anti-fouling effects of VMSF, accurate analysis of ZEN can be realized in maize and Chinese chestnut samples.
Collapse
Affiliation(s)
- Zhongnan Huang
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development, Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China;
| | - Xuan Luo
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Fei Yan
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Bo Zhou
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development, Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China;
| |
Collapse
|
20
|
Poeta E, Liboà A, Mistrali S, Núñez-Carmona E, Sberveglieri V. Nanotechnology and E-Sensing for Food Chain Quality and Safety. SENSORS (BASEL, SWITZERLAND) 2023; 23:8429. [PMID: 37896524 PMCID: PMC10610592 DOI: 10.3390/s23208429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Nowadays, it is well known that sensors have an enormous impact on our life, using streams of data to make life-changing decisions. Every single aspect of our day is monitored via thousands of sensors, and the benefits we can obtain are enormous. With the increasing demand for food quality, food safety has become one of the main focuses of our society. However, fresh foods are subject to spoilage due to the action of microorganisms, enzymes, and oxidation during storage. Nanotechnology can be applied in the food industry to support packaged products and extend their shelf life. Chemical composition and sensory attributes are quality markers which require innovative assessment methods, as existing ones are rather difficult to implement, labour-intensive, and expensive. E-sensing devices, such as vision systems, electronic noses, and electronic tongues, overcome many of these drawbacks. Nanotechnology holds great promise to provide benefits not just within food products but also around food products. In fact, nanotechnology introduces new chances for innovation in the food industry at immense speed. This review describes the food application fields of nanotechnologies; in particular, metal oxide sensors (MOS) will be presented.
Collapse
Affiliation(s)
- Elisabetta Poeta
- Department of Life Sciences, University of Modena and Reggio Emilia, Via J.F. Kennedy, 17/i, 42124 Reggio Emilia, RE, Italy
| | - Aris Liboà
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/a, 43124 Parma, PR, Italy;
| | - Simone Mistrali
- Nano Sensor System srl (NASYS), Via Alfonso Catalani, 9, 42124 Reggio Emilia, RE, Italy;
| | - Estefanía Núñez-Carmona
- National Research Council, Institute of Bioscience and Bioresources (CNR-IBBR), Via J.F. Kennedy, 17/i, 42124 Reggio Emilia, RE, Italy;
| | - Veronica Sberveglieri
- Nano Sensor System srl (NASYS), Via Alfonso Catalani, 9, 42124 Reggio Emilia, RE, Italy;
- National Research Council, Institute of Bioscience and Bioresources (CNR-IBBR), Via J.F. Kennedy, 17/i, 42124 Reggio Emilia, RE, Italy;
| |
Collapse
|
21
|
Jiang M, Wang M, Song X, Lai W, Zhao C, Li J, Wei Z, Hong C. Dual-functional Nanomaterials Polyo-phenylenediamine and Ru-Au Complement Each Other to Construct an Electrochemical and Electrochemiluminescent Dual-Mode Aptamer Sensor for Sensitive Detection of Alternariol. Anal Chem 2023; 95:12459-12469. [PMID: 37566460 DOI: 10.1021/acs.analchem.3c02119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
To sensitively monitor trace amounts of alternariol (AOH) in fruits, a dual-mode aptamer sensor utilizing the dual-function nanomaterial PoPD/Ru-Au was developed. This sensor provides both electrochemical (EC) and electrochemiluminescence (ECL) signals, which can greatly avoid the potential false positive of the traditional single signal, thus enhancing the accuracy and reliability of detection results. Polyo-phenylenediamine (PoPD), known for its favorable EC response, can also assist in enhancing the ECL behavior of Ru-Au. Furthermore, Ru-Au demonstrates excellent ECL performance and effectively activates K2S2O8 to amplify the EC response of PoPD. The complementary effect of the two can effectively amplify the final detection signal. Additionally, the PoPD/Ru-Au nanomaterial exhibits excellent electrical conductivity, further enhancing the EC and ECL response signals. The experimental results demonstrate that the EC detection range of AOH was 0.01-100 ng/mL, while the ECL detection range was 0.001-100 ng/mL, both exhibiting a satisfactory linear relationship. Therefore, the mutual verification of the detection results can be highly realized, and the purpose of avoiding wrong detection can be achieved.
Collapse
Affiliation(s)
- Mingzhe Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Min Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Xuetong Song
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Wenjing Lai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Chulei Zhao
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Jiajia Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
- School of Chemistry and Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Shihezi 832003, Xinjiang, China
| |
Collapse
|
22
|
Wang W, Yu Q, Zheng S, Li J, Wu T, Wang S, Wang C, Gu B. Ultrasensitive and simultaneous monitoring of multiple small-molecule pollutants on an immunochromatographic strip with multilayered film-like fluorescent tags. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162968. [PMID: 36958566 DOI: 10.1016/j.scitotenv.2023.162968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 05/13/2023]
Abstract
A wide variety of small-molecule pollutants is harmful to human health, and their highly sensitive universal and rapid detection in complex environments remains a challenge. Herein, a multiplexed and ultrasensitive immunochromatographic strip (ICS) was developed for the universal analysis of three kinds of different pollutants based on multilayered fluorescent nanofilm-guided signal amplification. Flexible three-dimensional nanofilms (GO-MQD) with large surface areas, high quantum dot (QD) loading, superior luminescence, and good stability were synthesized through the electrostatic adsorption-mediated layer-by-layer assembly of three layers of small QDs onto two-dimensional graphene oxide (GO) nanosheets, modified with specific antibodies, and utilized as enhanced fluorescent tags in the ICS method for quantitative target detection. By combining the GO-MQD nanofilms and multiplexed ICS, the proposed assay can rapidly and sensitively detect aflatoxin B1, clenbuterol, and kanamycin in actual samples/environmental samples (pork extract, milk, river water, and lake water) with low detection limit (0.87, 2.04, and 0.81 pg/mL), fast testing time (15 min), good stability and high reproducibility (RSD < 8.71 %). The GO-MQD-ICS method developed here exhibits great potential to meet the demands of the on-site and practical detection of small-molecule pollutants.
Collapse
Affiliation(s)
- Wenqi Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Qing Yu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Shuai Zheng
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China; Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, PR China
| | - Jiaxuan Li
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China
| | - Ting Wu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China; Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, PR China
| | - Shu Wang
- Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230036, PR China.
| | - Chongwen Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China; College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
23
|
Manikandan R, Pugal Mani S, Selvan KS, Yoon JH, Chang SC. Fabrication of S and O-incorporated graphitic carbon nitride linked poly(1,3,4-thiadiazole-2,5-dithiol) film for selective sensing of Hg 2+ ions in water, fish, and crab samples. Food Chem 2023; 425:136483. [PMID: 37269636 DOI: 10.1016/j.foodchem.2023.136483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Screen-printed carbon electrodes (SPCE) were modified with sulfur and oxygen-incorporated graphitic carbon nitride (S, O-GCN) linked poly(1,3,4-thiadiazole-2,5-dithiol) film (PTD) through thioester linkage. The promising interaction between the Hg2+ and modified materials containing sulfur as well as oxygen through strong affinity was studied. This study was utilized for the electrochemical selective sensing of Hg2+ ions by differential pulse anodic stripping voltammetry (DPASV). After, optimizing the different experimental parameters, S, O-GCN@PTD-SPCE was used to improve the electrochemical signal of Hg2+ ions and achieved a concentration range of 0.05-390 nM with a detection limit of 13 pM. The real-world application of the electrode was studied in different water, fish, and crab samples and their obtained results were confirmed with Inductive Coupled Plasma - Optical Emission Spectroscopy (ICP-OES) studies. Additionally, this work established a facile and consistent technique for enhancing the electrochemical sensing of Hg2+ ions and discusses various promising applications in water and food quality analysis.
Collapse
Affiliation(s)
- Ramalingam Manikandan
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - S Pugal Mani
- Department of Orthodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Kumar Sangeetha Selvan
- Department of Chemistry, Anna Adarsh College for Women, Anna Nagar, Chennai 600 040, Tamil Nadu, India
| | - Jang-Hee Yoon
- Busan Centre, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
24
|
Lu L, Yu R, Zhang L. AFB1 colorimetric aptamer sensor for the detection of AFB1 in ten different kinds of miscellaneous beans based on gold nanoparticles and smartphone imaging. Food Chem 2023; 421:136205. [PMID: 37094407 DOI: 10.1016/j.foodchem.2023.136205] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
A simple, rapid, low-cost, sensitive, intuitive, visual, label-free, colorimetric smartphone-assisted assay was developed for the measurement of aflatoxin B1 in miscellaneous beans. Ten different kinds of miscellaneous beans were treated and measured by modified QuEChERS(Quick、Easy、Cheap、Effective、Rugged、Safe) method with aflatoxin B1 nucleic acid aptamer as a recognition element and gold nanoparticles as indicators. Several factors influencing its sensitivity were investigated, including consumes and NaCl concentrations, as well as incubation time and specificity. The results showed a good linear relationship between concentrations of 0.2-8.0 ng/g under optimal conditions. With a detection limit of 0.08 ng/g, the linear regression equation was Y = 0.024X + 0.4615 (R = 0.9989). Sensor specificity is good. The content of aflatoxin B1 in bean samples was determined successfully. The recovery of aflatoxin B1 ranged from 87.18% to 110.24%. The whole thing took 15 min. This smartphone-assisted colorimetric aptamer sensor can be used to detect aflatoxin B1 in beans.
Collapse
Affiliation(s)
- Lifeng Lu
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China
| | - Runzhong Yu
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China
| | - Liyuan Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, PR China; Chinese National Engineering Research Center, Daqing 163319, PR China; Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang province, Daqing 163319, PR China.
| |
Collapse
|
25
|
Kummari S, Panicker LR, Rao Bommi J, Karingula S, Sunil Kumar V, Mahato K, Goud KY. Trends in Paper-Based Sensing Devices for Clinical and Environmental Monitoring. BIOSENSORS 2023; 13:bios13040420. [PMID: 37185495 PMCID: PMC10135896 DOI: 10.3390/bios13040420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Environmental toxic pollutants and pathogens that enter the ecosystem are major global issues. Detection of these toxic chemicals/pollutants and the diagnosis of a disease is a first step in efficiently controlling their contamination and spread, respectively. Various analytical techniques are available to detect and determine toxic chemicals/pathogens, including liquid chromatography, HPLC, mass spectroscopy, and enzyme-linked immunosorbent assays. However, these sensing strategies have some drawbacks such as tedious sample pretreatment and preparation, the requirement for skilled technicians, and dependence on large laboratory-based instruments. Alternatively, biosensors, especially paper-based sensors, could be used extensively and are a cost-effective alternative to conventional laboratory testing. They can improve accessibility to testing to identify chemicals and pollutants, especially in developing countries. Due to its low cost, abundance, easy disposal (by incineration, for example) and biocompatible nature, paper is considered a versatile material for the development of environmentally friendly electrochemical/optical (bio) sensor devices. This review presents an overview of sensing platforms constructed from paper, pointing out the main merits and demerits of paper-based sensing systems, their fabrication techniques, and the different optical/electrochemical detection techniques that they exploit.
Collapse
Affiliation(s)
- Shekher Kummari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India
| | - Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India
| | | | - Sampath Karingula
- Department of Chemistry, National Institute of Technology, Warangal 506004, Telangana, India
| | - Venisheety Sunil Kumar
- Department of Physical Sciences, Kakatiya Institute of Technology and Science, Warangal 506015, Telangana, India
| | - Kuldeep Mahato
- Department of Nanoengineering, University of California, La Jolla, San Diego, CA 92093, USA
| | - Kotagiri Yugender Goud
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India
| |
Collapse
|
26
|
Kaur M, Gaba J, Singh K, Bhatia Y, Singh A, Singh N. Recent Advances in Recognition Receptors for Electrochemical Biosensing of Mycotoxins-A Review. BIOSENSORS 2023; 13:391. [PMID: 36979603 PMCID: PMC10046307 DOI: 10.3390/bios13030391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Mycotoxins are naturally occurring toxic secondary metabolites produced by fungi in cereals and foodstuffs during the stages of cultivation and storage. Electrochemical biosensing has emerged as a rapid, efficient, and economical approach for the detection and quantification of mycotoxins in different sample media. An electrochemical biosensor consists of two main units, a recognition receptor and a signal transducer. Natural or artificial antibodies, aptamers, molecularly imprinted polymers (MIP), peptides, and DNAzymes have been extensively employed as selective recognition receptors for the electrochemical biosensing of mycotoxins. This article affords a detailed discussion of the recent advances and future prospects of various types of recognition receptors exploited in the electrochemical biosensing of mycotoxins.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Jyoti Gaba
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Komal Singh
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Yashika Bhatia
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Anoop Singh
- Department of Chemistry, Indian Institute of Technology, Ropar 140001, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar 140001, India
| |
Collapse
|
27
|
Aptasensor-based assay for dual-readout determination of aflatoxin B1 in corn and wheat via an electrostatic force-mediated FRET strategy. Mikrochim Acta 2023; 190:80. [PMID: 36729205 DOI: 10.1007/s00604-023-05641-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/28/2022] [Indexed: 02/03/2023]
Abstract
A rapid and sensitive aptasensor was established for the dual-readout determination of aflatoxin B1 (AFB1) utilizing an electrostatically mediated fluorescence resonance energy transfer (FRET) signal amplification strategy. In the presence of AFB1, the aptamer preferentially bound to AFB1, resulting in the aggregation of bare gold nanoparticles (AuNPs) induced by NaCl, accompanied by a change of AuNP solution from wine-red to purple. This color change was used for colorimetric channel analysis. Then, the positively charged quantum dots were introduced into reaction system and interacted with negatively charged AuNPs, which successfully converted the color signal into a more sensitive fluorescence signal through FRET. The fluorescence quenching efficiency decreased with increasing concentrations of AFB1, and the fluorescence of aptasensor gradually recovered. The variation of fluorescence intensity was employed for fluorometric channel analysis. Under the optimal conditions, the color and fluorescence signals exhibited excellent response to AFB1 concentration within the ranges 10-320 ng·mL-1 and 3-320 ng·mL-1, respectively, and the limit of detection was as low as 7.32 ng·mL-1 and 1.48 ng·mL-1, respectively. The proposed aptasensor exhibited favorable selectivity, good recovery (85.3-113.4% in spiked corn and wheat samples), stable reproducibility (RSD<13.3%), and satisfactory correlation with commercial kits (R2=0.998). The aptasensor developed integrates advantages of modification-free, dual-readout, self-calibration, easy operation, and cost-effectiveness, while providing a simple and universal strategy for rapid and sensitive detection of mycotoxins in foodstuffs.
Collapse
|
28
|
Xiong J, He S, Zhang S, Qin L, Yang L, Wang Z, Zhang L, Shan W, Jiang H. A label-free aptasensor for dual-mode detection of aflatoxin B1 based on inner filter effect using silver nanoparticles and arginine-modified gold nanoclusters. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
29
|
Chen X, Wu H, Tang X, Zhang Z, Li P. Recent Advances in Electrochemical Sensors for Mycotoxin Detection in Food. ELECTROANAL 2023; 35. [DOI: 10.1002/elan.202100223] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/11/2022]
Abstract
AbstractMycotoxins pose a grave global threat to human life and health by contaminating food and feed and cause enormous losses in healthcare and trading. Trace mycotoxin concentrations and diverse matrices in food make identification and measurement challenges, necessitating highly specific and sensitive detection methods. Electrochemical (EC) sensors are characterized by simple operation, outstanding sensitivity, low cost, and facile miniaturization and have become a promising strategy for addressing specificity and sensitivity in detection. Recent studies on EC sensors for mycotoxin detection for food safety are reviewed here. First, we summarize the fabrication of EC sensors and techniques with enhanced specificity and sensitivity. Then, we review state‐of‐the‐art EC sensors for detecting major mycotoxins. Challenges and opportunities for this technology are further discussed. Finally, in‐depth information is provided on using EC sensors to detect mycotoxins for food safety, as well as the development of EC sensors for academic study and practical application.
Collapse
Affiliation(s)
- Xiao Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Key Laboratory of Polymer Materials National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology Key Laboratory of Regional Development and Environmental Response in Hubei Province Faculty of Resources and Environmental Science College of Chemistry & Chemical
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
| | - Huimin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei Key Laboratory of Polymer Materials National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology Key Laboratory of Regional Development and Environmental Response in Hubei Province Faculty of Resources and Environmental Science College of Chemistry & Chemical
| | - Xiaoqian Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- National Reference Laboratory for Agricultural Testing (Biotoxin) 430062 Wuhan P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Laboratory of Risk Assessment for Oilseeds Products Wuhan, Ministry of Agriculture 430062 Wuhan P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences 430062 Wuhan P. R. China
- National Reference Laboratory for Agricultural Testing (Biotoxin) 430062 Wuhan P. R. China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Key Laboratory of Detection for Mycotoxins Ministry of Agriculture and Rural Affairs 430062 Wuhan P. R. China
- Laboratory of Risk Assessment for Oilseeds Products Wuhan, Ministry of Agriculture 430062 Wuhan P. R. China
| |
Collapse
|
30
|
Wei Y, Hui Y, Lu X, Liu C, Zhang Y, Fan Y, Chen W. One-pot preparation of NiMn layered double hydroxide-MOF material for highly sensitive electrochemical sensing of glucose. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
31
|
Zhou X, Sun Z, Su X, Zheng K, Zou X, Zhang W. Ratiometric Detection of Ochratoxin A Using a Regenerable COF-Au-MB-Apt Signal Probe on a Thermal-Regulated Sensor Module. Anal Chem 2023; 95:1916-1923. [PMID: 36621809 DOI: 10.1021/acs.analchem.2c04031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ochratoxin A (OTA) frequently contaminates grains and consequently threatens human health. Herein, we develop a regenerable signal probe and apply it to a Au-based screen-printed electrode module (SPE) for OTA determination. The signal probe, containing a structural covalent organic framework, gold nanoparticles (AuNPs), indicative methylene blue (MB), and a highly selective aptamer, is synthesized with hydrothermal and self-assembly methods. The SPE is permanently functionalized with Prussian blue (PB), AuNPs, and semicomplementary ssDNA. The signal probe, absorbed onto this SPE via hybridization, is competitively expelled by OTA, providing a ratiometric readout of ΔIMB/IPB. Probe regeneration, to erase expired COF-Au-MB-Apt after each analysis, is established with the synergy of OTA-conducted Apt-ssDNA dissociation and on-chip thermal regulation. This advantage powerfully guarantees reduplicative analyses by avoiding irreversible Apt-OTA combination and accumulation on the sensing interface. Regenerations are performed in repetitive cycles (N = 7) with 98.5% reproduction efficiency, and IMB and IPB fluctuations are calculated as 1.45 and 1.12%. This method shows log-linear OTA response in a wide range from 0.2 pg/mL to 0.6 μg/mL, and the limit of detection is 0.12 pg/mL. During natural OTA determinations, recommended readouts match well with HPLC with less than 4.82% relative error.
Collapse
Affiliation(s)
- Xuan Zhou
- College of Photoelectric Engineering, Chongqing University, Chongqing 400044, China
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zongbao Sun
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyu Su
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaiyi Zheng
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- College of Photoelectric Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
32
|
Su J, Zhu B, Inoue A, Oyama H, Morita I, Dong J, Yasuda T, Sugita-Konishi Y, Kitaguchi T, Kobayashi N, Miyake S, Ueda H. The Patrol Yeast: A new biosensor armed with antibody-receptor chimera detecting a range of toxic substances associated with food poisoning. Biosens Bioelectron 2023; 219:114793. [PMID: 36265251 DOI: 10.1016/j.bios.2022.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022]
Abstract
Baker's yeast is an attractive host with established safety and stability characteristics. Many yeast-based biosensors have been developed, but transmembrane signal transduction has not been used to detect membrane-impermeable substances using antigen-antibody interactions. Therefore, we created Patrol Yeast, a novel yeast-based immunosensor of various targets, particularly toxic substances in food. A membrane-based yeast two-hybrid system using split-ubiquitin was successfully used to detect practically important concentration ranges of caffeine and aflatoxins using separated variable regions of an antibody. Moreover, enterohemorrhagic Escherichia coli O157 was detected using a specific single-chain antibody, in which Zymolyase was added to partially destroy the cell wall. The incorporation of secreted Cypridina luciferase reporter further simplified the signal detection procedures without cell lysis. The methodology is more cost-effective and faster than using mammalian cells. The ability to detect various targets renders Patrol Yeast a valuable tool for ensuring food and beverage safety and addressing other environmental and technological issues.
Collapse
Affiliation(s)
- Jiulong Su
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Akihito Inoue
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | - Jinhua Dong
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takanobu Yasuda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Shiro Miyake
- School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan; World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
33
|
Siva S, Jin JO, Choi I, Kim M. Nanoliposome based biosensors for probing mycotoxins and their applications for food: A review. Biosens Bioelectron 2023; 219:114845. [PMID: 36327568 DOI: 10.1016/j.bios.2022.114845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
Mycotoxins are the most common feed and food contaminants affecting animals and humans, respectively; continuous exposure causes tremendous health problems such as kidney disorders, infertility, immune suppression, liver inflammation, and cancer. Consequently, their control and quantification in food materials is crucial. Biosensors are potential tools for the rapid detection and quantification of mycotoxins with high sensitivity and selectivity. Nanoliposomes (NLs) are vesicular carriers formed by self-assembling phospholipids that surround the aqueous cores. Utilizing their biocompatibility, biodegradability, and high carrying capacity, researchers have employed NLs in biosensors for monitoring various targets in biological and food samples. The NLs are used for surface modification, signal marker delivery, and detection of toxins, bacteria, pesticides, and diseases. Here, we review marker-entrapped NLs used in the development of NL-based biosensors for mycotoxins. These biosensors are sensitive, selective, portable, and cost-effective analytical tools, and the resulting signal can be produced and/or amplified with or without destroying the NLs. In addition, this review emphasizes the benefits of the immunoliposome method in comparison with traditional detection approaches. We expect this review to serve as a valuable reference for researchers in this rapidly growing field. The insights provided may facilitate the rational design of next-generation NL-based biosensors.
Collapse
Affiliation(s)
- Subramanian Siva
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Jun-O Jin
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Inho Choi
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
34
|
Electrochemistry Applied to Mycotoxin Determination in Food and Beverages. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Rajendrachari S, Basavegowda N, Adimule VM, Avar B, Somu P, R. M. SK, Baek KH. Assessing the Food Quality Using Carbon Nanomaterial Based Electrodes by Voltammetric Techniques. BIOSENSORS 2022; 12:1173. [PMID: 36551140 PMCID: PMC9775119 DOI: 10.3390/bios12121173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The world is facing a global financial loss and health effects due to food quality adulteration and contamination, which are seriously affecting human health. Synthetic colors, flavors, and preservatives are added to make food more attractive to consumers. Therefore, food safety has become one of the fundamental needs of mankind. Due to the importance of food safety, the world is in great need of developing desirable and accurate methods for determining the quality of food. In recent years, the electrochemical methods have become more popular, due to their simplicity, ease in handling, economics, and specificity in determining food safety. Common food contaminants, such as pesticides, additives, and animal drug residues, cause foods that are most vulnerable to contamination to undergo evaluation frequently. The present review article discusses the electrochemical detection of the above food contaminants using different carbon nanomaterials, such as carbon nanotubes (CNTs), graphene, ordered mesoporous carbon (OMC), carbon dots, boron doped diamond (BDD), and fullerenes. The voltammetric methods, such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV), have been proven to be potential methods for determining food contaminants. The use of carbon-based electrodes has the added advantage of electrochemically sensing the food contaminants due to their excellent sensitivity, specificity, large surface area, high porosity, antifouling, and biocompatibility.
Collapse
Affiliation(s)
- Shashanka Rajendrachari
- Department of Metallurgical and Materials Engineering, Bartin University, 74100 Bartin, Turkey
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Vinayak M Adimule
- Angadi Institute of Technology and Management (AITM), Savagaon Road, Belagavi 5800321, Karnataka, India
| | - Baris Avar
- Department of Metallurgical and Materials Engineering, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Turkey
| | - Prathap Somu
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602105, Tamil Nadu, India
| | - Saravana Kumar R. M.
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Chennai 602105, Tamil Nadu, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
36
|
Rational design of hexagonal zinc oxide/boron-doped g-C3N4 nanosheets as efficient electrocatalyst for enhanced sensing of rutin in fruit samples. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Yang Y, Ren MY, Xu XG, Han Y, Zhao X, Li CH, Zhao ZL. Recent advances in simultaneous detection strategies for multi-mycotoxins in foods. Crit Rev Food Sci Nutr 2022; 64:3932-3960. [PMID: 36330603 DOI: 10.1080/10408398.2022.2137775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination has become a challenge in the field of food safety testing, given the increasing emphasis on food safety in recent years. Mycotoxins are widely distributed, in heavily polluted areas. Food contamination with these toxins is difficult to prevent and control. Mycotoxins, as are small-molecule toxic metabolites produced by several species belonging to the genera Aspergillus, Fusarium, and Penicillium growing in food. They are considered teratogenic, carcinogenic, and mutagenic to humans and animals. Food systems are often simultaneously contaminated with multiple mycotoxins. Due to the additive or synergistic toxicological effects caused by the co-existence of multiple mycotoxins, their individual detection requires reliable, accurate, and high-throughput techniques. Currently available, methods for the detection of multiple mycotoxins are mainly based on chromatography, spectroscopy (colorimetry, fluorescence, and surface-enhanced Raman scattering), and electrochemistry. This review provides a comprehensive overview of advances in the multiple detection methods of mycotoxins during the recent 5 years. The principles and features of these techniques are described. The practical applications and challenges associated with assays for multiple detection methods of mycotoxins are summarized. The potential for future development and application is discussed in an effort, to provide standards of references for further research.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Meng-Yu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xiao-Guang Xu
- School of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xin Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Chun-Hua Li
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zhi-Lei Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
38
|
Ali MR, Bacchu MS, Al-Mamun MR, Hossain MI, Khaleque A, Khatun A, Ridoy DD, Aly MAS, Khan MZH. Recent Advanced in MXene Research toward Biosensor Development. Crit Rev Anal Chem 2022; 54:1381-1398. [PMID: 36068703 DOI: 10.1080/10408347.2022.2115286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
MXene is a rapidly emerging group of two-dimensional (2D) multifunctional nanomaterials, drawing huge attention from researchers of a broad scientific field. Reporting the synthesis of MXene was the following breakthrough in 2D materials following the discovery of graphene. MXene is considered the most recent developments of materials, including transition metal carbonitrides, nitrides, and carbides synthesized by etching or mechanical-based exfoliation of selective MAX phases. MXene has a plethora of prodigious properties such as unique interlayer spacing, high ion and electron transport, large surface area, excellent thermal and electrical conductivity, exceptional volumetric capacitance, thermal shock, and oxidation resistance, easily machinable and inherently hydrophilic, and biocompatibility. Owing to the abundance of tailorable surface function groups, these properties can be further enhanced by surface functionalization with covalent and non-covalent modifications via numerous surface functionalization methods. Therefore, MXene finds their way to a plethora of applications in numerous fields including catalysis, membrane separation, energy storage, sensing, and biomedicine. Here, the focus is on reviewing the structure, synthesis techniques, and functionalization methods of MXene. Furthermore, MXene-based detection platforms in different sensing applications are survived. Great attention is given to reviewing the applications of MXene in the detection of biomolecules, pathogenic bacteria and viruses, cancer biomarkers food contaminants and mycotoxins, and hazardous pollutants. Lastly, the future perspective of MXene-based biosensors as a next-generation diagnostics tool is discussed. Crucial visions are introduced for materials science and sensing communities to better route while investigating the potential of MXene for creating innovative detection mechanisms.
Collapse
Affiliation(s)
- Md Romzan Ali
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Md Sadek Bacchu
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Md Rashid Al-Mamun
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Md Ikram Hossain
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Abdul Khaleque
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Anowara Khatun
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Dipto Debnath Ridoy
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| | - Mohamed Aly Saad Aly
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Md Zaved Hossain Khan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology, Jashore, Bangladesh
| |
Collapse
|
39
|
A highly sensitive photothermal immunochromatographic sensor for detection of aflatoxin B 1 based on Cu 2-xSe-Au nanoparticles. Food Chem 2022; 401:134065. [PMID: 36116302 DOI: 10.1016/j.foodchem.2022.134065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/25/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022]
Abstract
In the study, Cu2-xSe-Au nanoparticles (CSA) with a photothermal conversion efficiency of 60.78 % at 808 nm were applied to the construction of thermal analysis immunochromatographic test strips for the highly sensitive quantitative detection of aflatoxin B1 (AFB1) in grain. The CSA was coupled with the AFB1 antibody to form a photothermal sensor probe by physical adsorption. The constructed immunosensor exhibited high sensitivity and a wide linear range from 0.01 to 10 μg/L in PBS. The detection limits of 0.00842 μg/L based on the thermal analysis was significantly improved by 11.88-fold compared with colorimetric results. No cross-reaction with the other mycotoxins was found except for aflatoxin B2, aflatoxin M1, aflatoxin G1 and aflatoxin G2. Applied to analysize grain sample, the method achieved the detection of AFB1 ranging from 0.16 to 160 μg/kg.
Collapse
|
40
|
Zhao X, Shen H, Huo B, Wang Y, Gao Z. A novel bionic magnetic SERS aptasensor for the ultrasensitive detection of Deoxynivalenol based on “dual antennae” nano-silver. Biosens Bioelectron 2022; 211:114383. [DOI: 10.1016/j.bios.2022.114383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 12/27/2022]
|
41
|
Tajik S, Dourandish Z, Nejad FG, Beitollahi H, Jahani PM, Di Bartolomeo A. Transition metal dichalcogenides: Synthesis and use in the development of electrochemical sensors and biosensors. Biosens Bioelectron 2022; 216:114674. [DOI: 10.1016/j.bios.2022.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/14/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
|
42
|
Express high-sensitive detection of ochratoxin A in food by a lateral flow immunoassay based on magnetic biolabels. Food Chem 2022; 383:132427. [PMID: 35248864 DOI: 10.1016/j.foodchem.2022.132427] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 12/30/2022]
Abstract
We present an easy-to-use lateral flow immunoassay for rapid, precise and sensitive quantification of one of the most hazardous mycotoxins - ochratoxin A (OTA), which is widely present in food and agricultural commodities. The achieved limit of detection during the 20-min OTA registration is 11 pg/mL. The assay provides accurate results in both low- and high-concentration ranges. That is due to the extraordinary steepness of the linear calibration plot: 5-order dynamic range of concentrations causes almost a 1000-fold change in the signal obtained by electronic detection of magnetic biolabels using their non-linear magnetization. High specificity, repeatability, and reproducibility of the assay have been verified, including measuring OTA in real samples of contaminated corn flour. The developed assay is a promising analytical tool for food and feed safety control; it may become an express, convenient and high-precision alternative to the traditional sophisticated laboratory techniques based on liquid chromatography.
Collapse
|
43
|
Yin L, You T, El-Seedi HR, El-Garawani IM, Guo Z, Zou X, Cai J. Rapid and sensitive detection of zearalenone in corn using SERS-based lateral flow immunosensor. Food Chem 2022; 396:133707. [PMID: 35853376 DOI: 10.1016/j.foodchem.2022.133707] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Zearalenone (ZEN) is a universal mycotoxin contaminant in corn and its products. A surface-enhanced Raman scattering (SERS) based test strip was proposed for the detection of ZEN, which had the advantages of simplicity, rapidity, and high sensitivity. Core-shell Au@AgNPs with embedded reporter molecules (4-MBA) were synthesized as SERS nanoprobe, which exhibited excellent SERS signals and high stability. The detection range of ZEN for corn samples was 10-1000 μg/kg with the limit of detection (LOD) of 3.6 μg/kg, which is far below the recommended tolerable level (60 μg/kg). More importantly, the SERS method was verified by HPLC in the application on corn samples contaminated with ZEN, and the coincidence rates were in the range of 86.06%-111.23%, suggesting a high accuracy of the SERS assay. Therefore, the SERS-based test strip with an analysis time of less than 15 min is a promising tool for accurate and rapid detection of ZEN-field contamination.
Collapse
Affiliation(s)
- Limei Yin
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Islam M El-Garawani
- Department of Zoology, Faculty of Science, Menoufia University, Menoufia 32511, Egypt
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
44
|
Hua Y, Ahmadi Y, Sonne C, Kim KH. Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119218. [PMID: 35364185 DOI: 10.1016/j.envpol.2022.119218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Mycotoxin is toxic secondary metabolite formed by certain filamentous fungi. This toxic compound can enter the food chain through contamination of food (e.g., by colonization of toxigenic fungi on food). In light of the growing concerns on the health hazards posed by mycotoxins, it is desirable to develop reliable analytical tools for their detection in food products in both sensitive and efficient manner. For this purpose, the potential utility of molecularly imprinted polymers (MIPs) has been explored due to their meritful properties (e.g., large number of tailor-made binding sites, sensitive template molecules, high recognition specificity, and structure predictability). This review addresses the recent advances in the application of MIPs toward the sensing of various mycotoxins (e.g., aflatoxins and patulin) along with their fabrication strategies. Then, performance evaluation is made for various types of MIP- and non-MIP-based sensing platforms built for the listed target mycotoxins in terms of quality assurance such as limit of detection (LOD). Further, the present challenges in the MIP-based sensing application of mycotoxins are discussed along with the future outlook in this research field.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
45
|
Niazi S, Khan IM, Yue L, Ye H, Lai B, Sameh A K, Mohsin A, Rehman A, Zhang Y, Wang Z. Nanomaterial-based optical and electrochemical aptasensors: A reinforced approach for selective recognition of zearalenone. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
46
|
Cioates Negut C, Stefan-van Staden RI, van Staden J(KF. Minireview: Current Trends and Future Challenges for the Determination of Patulin in Food Products. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2083146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Catalina Cioates Negut
- Laboratory of Electrochemistry and PATLAB - Bucharest, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB - Bucharest, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Jacobus (Koos) Frederick van Staden
- Laboratory of Electrochemistry and PATLAB - Bucharest, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| |
Collapse
|
47
|
Deoxynivalenol: An Overview on Occurrence, Chemistry, Biosynthesis, Health Effects and Its Detection, Management, and Control Strategies in Food and Feed. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycotoxins are fungi-produced secondary metabolites that can contaminate many foods eaten by humans and animals. Deoxynivalenol (DON), which is formed by Fusarium, is one of the most common occurring predominantly in cereal grains and thus poses a significant health risk. When DON is ingested, it can cause both acute and chronic toxicity. Acute signs include abdominal pain, anorexia, diarrhea, increased salivation, vomiting, and malaise. The most common effects of chronic DON exposure include changes in dietary efficacy, weight loss, and anorexia. This review provides a succinct overview of various sources, biosynthetic mechanisms, and genes governing DON production, along with its consequences on human and animal health. It also covers the effect of environmental factors on its production with potential detection, management, and control strategies.
Collapse
|
48
|
Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S. Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Crit Rev Anal Chem 2022; 54:355-388. [PMID: 35584031 DOI: 10.1080/10408347.2022.2076063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mycotoxins, which are toxic secondary metabolites produced by fungi, are harmful to humans. Mycotoxin-induced contamination has drawn attention worldwide. Consequently, the development of reliable and sensitive detection methods and high-efficiency control strategies for mycotoxins is important to safeguard food industry safety and public health. With the rapid development of nanotechnology, many novel nanomaterials that provide tremendous opportunities for greatly improving the detection and control performance of mycotoxins because of their unique properties have emerged. This review comprehensively summarizes recent trends in the application of nanomaterials for detecting mycotoxins (fluorescence, colorimetric, surface-enhanced Raman scattering, electrochemical, and point-of-care testing) and controlling mycotoxins (inhibition of fungal growth, mycotoxin absorption, and degradation). These detection methods possess the advantages of high sensitivity and selectivity, operational simplicity, and rapidity. With research attention on the control of mycotoxins and the gradual excavation of the properties of nanomaterials, nanomaterials are also employed for the inhibition of fungal growth, mycotoxin absorption, and mycotoxin degradation, and impressive controlling effects are obtained. This review is expected to provide the readers insight into this state-of-the-art area and a reference to design nanomaterials-based schemes for the detection and control of mycotoxins.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Wenyan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
49
|
dos Santos D, Migliorini F, Soares A, Mattoso L, Oliveira O, Correa D. Electrochemical immunosensor made with zein‐based nanofibers for on‐site detection of Aflatoxin B1. ELECTROANAL 2022. [DOI: 10.1002/elan.202100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
|