1
|
Zhu D, Nilghaz A, Tong Z, Poole DP, O'Sullivan K, Imlach WL, Haberberger RV, Veldhuis NA, Matusica D, Voelcker NH. Pain-on-a-Chip: A microfluidic device for neuron differentiation and functional discrimination in animal models of chronic pain. Biosens Bioelectron 2025; 279:117401. [PMID: 40139049 DOI: 10.1016/j.bios.2025.117401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Chronic pain is a global health issue that is poorly understood and challenging to treat. Improving pain classification and treatment requires new strategies that objectively discriminate between pain conditions and minimise subjectivity associated with the perception of pain. To address this, we have developed a microfluidic biosensor - termed 'pain-on-a-chip' - that leverages recent advancements in biocompatible microfluidic technology with on-chip differentiation of nociceptor-like cells, enabling small sample volumes to be used. Following neuronal differentiation, we used on-chip live cell Ca2+ imaging to functionally validate the system. This includes characterising excitation responses in cells challenged with microfluidic perfusion of known nociceptive stimuli and biological fluids collected from different preclinical pain models. Our results demonstrate that this platform has the potential to discriminate between serum samples from distinct chronic pain models. This system has potential as an objective, and minimally invasive method for distinguishing between different subtypes of chronic pain.
Collapse
Affiliation(s)
- Douer Zhu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Azadeh Nilghaz
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Kelly O'Sullivan
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Wendy L Imlach
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Rainer V Haberberger
- Division of Anatomy and Pathology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5042, Australia
| | - Nicholas A Veldhuis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| | - Dusan Matusica
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia; Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
2
|
Dewan M, Shrivastava D, Goyal L, Zwiri A, Hussein AF, Alam MK, Srivastava KC, Anil S. Recent Advancements and Applications of Nanosensors in Oral Health: Revolutionizing Diagnosis and Treatment. Eur J Dent 2025; 19:286-297. [PMID: 39750525 PMCID: PMC12020585 DOI: 10.1055/s-0044-1792010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Advances in the field of nanomaterials are laying the foundation for the fabrication of nanosensors that are sensitive, selective, specific, cost-effective, biocompatible, and versatile. Being highly sensitive and selective, nanosensors are crucial in detecting small quantities of analytes and early diagnosis of diseases. These devices, operating on the nanoscale, detect signals, such as physical, chemical, optical, electrochemical, or biological, and then transduce them into a readable form. They show great promise for real-time, point-of-care, and home-based applications in health care. With the integration of wireless technology, these nanosensors, specifically biosensors, can potentially revolutionize therapeutic techniques. These advancements particularly impact the oral cavity, the primary entry point for various bodily substances. Nanosensors can transform oral and dental health practices, enabling timely disease diagnosis and precise drug delivery. This review examines the recent advancements in nanobiosensors, exploring their applications in various oral health conditions while discussing their benefits and potential limitations.
Collapse
Affiliation(s)
- Meghna Dewan
- Sudha Rastogi College of Dental Sciences and Research, Faridabad, Haryana, India
| | - Deepti Shrivastava
- Division of Periodontics, Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | - Lata Goyal
- Division of Periodontics, Department of Dentistry, All India Institute of Medical Sciences, Bathinda, India
| | - Abdalwhab Zwiri
- Department of Oral Surgery and Diagnostic Sciences, Faculty of Dentistry, Applied Sciences Private University, Amman, Jordan
| | - Areen Fareed Hussein
- Department of Oral Surgery and Diagnostic Sciences, Faculty of Dentistry, Applied Sciences Private University, Amman, Jordan
| | - Mohammad Khursheed Alam
- Division of Orthodontics, Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
- Department of Dental Research Cell, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
- Department of Public Health, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Kumar Chandan Srivastava
- Department of Oral & Maxillofacial Surgery & Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Sukumaran Anil
- Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, Doha, Qatar, College of Dental Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Pronina VV, Kostryukova LV, Ivanov SV, Tichonova EG, Archakov AI, Shumyantseva VV. Label-Free Electrochemical Cell-Based Biosensor for Toxicity Assay of Water-Soluble Form of Phosphatidylcholine. Biomedicines 2025; 13:996. [PMID: 40299676 PMCID: PMC12024718 DOI: 10.3390/biomedicines13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025] Open
Abstract
Background/Objectives: Our study brings a new method to properly evaluating drug efficacy at the non-invasive in vitro level. Methods: In this work, the electrochemical mediator-free and reagent-free analysis of cell lines based on the registration of electrochemical profiles of membrane proteins was developed. We studied the specificity of cell lines Wi-38 and HepG2 and the toxic effects of drugs on cell-on-electrode systems. Results: A linear dependence of the peak current on the concentration of cells applied to the electrode in the range from 1 × 105 to 6 × 105 cells/electrode was registered (R2 0.932 for Wi-38 and R2 0.912 for HepG2). The water-soluble form of phosphatidylcholine (wPC) nanoparticles recommended for atherosclerosis treatment and prevention of cardiovascular diseases did not show a toxic effect on the human fibroblast cells, Wi-38, or the human hepatocellular carcinoma cells, HepG2, at sufficiently high concentrations (such as 0.1-1 mg/mL). The antitumor drug doxorubicin, at concentrations of 3 and 10 μg/mL, showed a pronounced toxic effect on the tested cell lines, where the percentage of living cells was 50-55%. Conclusions: A comparative analysis of the cytotoxicity of wPC (0.1-1 mg/mL) and doxorubicin (3-10 μg/mL) on the cell lines Wi-38 and HepG2 using the MTT test and electrochemical approach for the registration of cells showed their clear adequacy.
Collapse
Affiliation(s)
- Veronica V. Pronina
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; (V.V.P.); (L.V.K.); (S.V.I.); (E.G.T.); (A.I.A.)
| | - Lyubov V. Kostryukova
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; (V.V.P.); (L.V.K.); (S.V.I.); (E.G.T.); (A.I.A.)
| | - Sergey V. Ivanov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; (V.V.P.); (L.V.K.); (S.V.I.); (E.G.T.); (A.I.A.)
| | - Elena G. Tichonova
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; (V.V.P.); (L.V.K.); (S.V.I.); (E.G.T.); (A.I.A.)
| | - Alexander I. Archakov
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; (V.V.P.); (L.V.K.); (S.V.I.); (E.G.T.); (A.I.A.)
| | - Victoria V. Shumyantseva
- Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; (V.V.P.); (L.V.K.); (S.V.I.); (E.G.T.); (A.I.A.)
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
4
|
Mendes F, Machado BO, Castro BB, Sousa MJ, Chaves SR. Harnessing the power of biosensors for environmental monitoring of pesticides in water. Appl Microbiol Biotechnol 2025; 109:92. [PMID: 40216649 PMCID: PMC11991957 DOI: 10.1007/s00253-025-13461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
The current strong reliance on synthetic chemicals, namely pesticides, is far from environmentally sustainable. These xenobiotics contribute significantly to global change and to the current biodiversity crisis, but have been overlooked when compared to other agents (e.g., climate change). Aquatic ecosystems are particularly vulnerable to pesticides, making monitoring programs essential to preserve ecosystem health, safeguard biodiversity, ensure water quality, and mitigate potential human health risks associated with contaminated water sources. Biosensors show great potential as time/cost-effective and disposable systems for the high-throughput detection (and quantification) of these pollutants. In this mini-review, we provide an overview of biosensors specifically developed for environmental water monitoring, covering different pesticide classes (and active ingredients), and types of biosensors (according to the bio-recognition element) and transducers, as well as the nature of sample matrices analyzed. We highlight the variety of biosensors that have been developed and successfully applied to detection of pesticides in aqueous samples, including enzymatic biosensors, immunosensors, aptasensors, and whole cell-based biosensors. While most biosensors have been designed to detect insecticides, expanding their compound target range could significantly streamline monitoring of environmental contaminants. Despite limitations related to stability, reproducibility, and interference from environmental factors, biosensors represent a promising and sustainable technology for pesticide monitoring in the aquatic environments, offering sensitivity and specificity, as well as portability and real-time results. We propose that biosensors would be most effective as an initial screening step in a tiered assessment, complementing conventional methods. KEY POINTS: • Pesticides harm aquatic ecosystems and biodiversity, requiring better monitoring • Biosensors offer cost-effective solutions to detect pesticides in water samples • Biosensors complement conventional methods as a sustainable tool for initial screens.
Collapse
Affiliation(s)
- Filipa Mendes
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Beatriz O Machado
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Bruno B Castro
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal
| | - Susana R Chaves
- Centre of Molecular and Environmental Biology (CBMA) & Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
5
|
Narang J, Rana N, Chauhan A, Kumari A, Minhas V. Accelerating the Understanding of Biosensors Through the Lens of Cells: State of the Field, Emerging Directions, Advances, and Challenges. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05209-0. [PMID: 40186688 DOI: 10.1007/s12010-025-05209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/07/2025]
Abstract
Cell-based biosensors are evolving as versatile tools for biological research, drug development, and environmental monitoring. Living cells are used to detect elements in these biosensors, which offer significant advantages over standard transducers. The purpose of this review article is to provide an in-depth overview of cell-based biosensors, emphasizing their working principles, fabrication processes, and applications. The potential of living cells to respond to particular analytes or stimuli supports the design and operation of cell-based biosensors. Real-time and label-free identification can be accomplished by combining these cells with transducers like microelectrodes or optical sensors. Genetically engineered cells or changed microenvironments can be used in cell-based biosensors to improve performance by optimizing cell types for increased dynamic range, sensitivity, and selectivity. Cell-based biosensors are developed by meticulously cultivating and immobilizing cells on transducer surfaces while retaining their vitality and performance. Cell-based biosensors have a wide range of applications, including monitoring the environment, healthcare, and pharmaceutical research. These biosensors have been used to detect diseases, toxic substances, pollutants, and therapeutic drug screening. Cell-based biosensors are cutting-edge technology that brings together the capabilities of live cells and transducers to detect analytes in a sensitive and specific manner. These biosensors illustrate the tremendous potential for upcoming uses in healthcare and monitoring environmental conditions with further developments in fabrication methods and the inclusion of artificial intelligence.
Collapse
Affiliation(s)
- Jasjeet Narang
- University Institute of Biotechnology, Chandigarh University, Punjab, 140413, India
| | - Niket Rana
- University Institute of Biotechnology, Chandigarh University, Punjab, 140413, India
- Department of Biotechnology, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, Uttar Pradesh, India.
| | - Anushka Kumari
- University Institute of Biotechnology, Chandigarh University, Punjab, 140413, India
| | - Vanshika Minhas
- University Institute of Biotechnology, Chandigarh University, Punjab, 140413, India
| |
Collapse
|
6
|
Rajaei SN, Darvish M, Zare A, Abdollahi H, Alivirdiloo V, Hajiabbasi M, Ghazi F, Mobed A. Advances in Nanobiosensors for Rapid and Sensitive Detection of Dengue Virus Biomarkers by Using Clinical Laboratory. J Clin Lab Anal 2025; 39:e70012. [PMID: 40079489 PMCID: PMC11981959 DOI: 10.1002/jcla.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/26/2025] [Accepted: 02/21/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND The recent rise in dengue virus (DENV) cases poses a significant threat to human health, with infections ranging from mild to severe and potentially leading to premature death. OBJECTIVE To highlight the importance of early detection of DENV and to review advancements in detection technologies, particularly focusing on nanobiosensors. METHODS This review examines traditional detection methods for DENV, including molecular, serological, and direct virus culture techniques, while discussing their limitations. It also explores innovative technologies that enhance detection accuracy, speed, and efficiency. RESULTS Nonstructural protein 1 (NS1) serves as a key biomarker present in high concentrations during the early stages of DENV infection, underscoring the need for timely detection. Traditional methods, while effective, have limitations that new technologies aim to address. Biosensors, particularly nanobiosensors, have emerged as promising tools for rapid, sensitive, and cost-effective DENV detection. CONCLUSION The adoption of advanced detection methods, especially nanobiosensors, is crucial for improving DENV management and reducing human suffering. This review provides a comprehensive overview of nanobiosensors and their applications, presented in an accessible manner for readers.
Collapse
Affiliation(s)
| | - Mohammad Darvish
- School of Aerospace and Subaquatic Medicine, Infectious Diseases & Tropical Medicine Research Center(IDTMC)AJA University of Medical SciencesTehranIran
| | - Alireza Zare
- Shiraz University of Medical SciencesFaculty of MedicineShirazIran
| | - Hamed Abdollahi
- Department of Parasitology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazKhuzestanIran
| | - Vahid Alivirdiloo
- Medical Doctor Department of Physiology and PharmacologyMazandaran University of Medical SciencesRamsarIran
| | | | - Farhood Ghazi
- Clinical Research Development Unit of Tabriz Valiasr HospitalTabriz University of Medical SciencesTabrizIran
| | - Ahmad Mobed
- Social Determinants of Health Research CenterHealth Management and Safety PromotionIran
| |
Collapse
|
7
|
Kamoun EA, Elsabahy M, Mohamed Elbadry AM, Abdelazim EB, Mohsen AA, A. Aleem M, Gao H, Eissa NG, Elghamry I, Salim SA. Recent Progress of Polymer-Based Biosensors for Cancer Diagnostic Applications: Natural versus Synthetic Polymers. ACS OMEGA 2025; 10:8816-8831. [PMID: 40092775 PMCID: PMC11904699 DOI: 10.1021/acsomega.4c10652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Early diagnosis of cancer can significantly contribute to improving therapeutic outcomes and enhancing survival rates for cancer patients. Polymer-based biosensors have emerged as a promising tool for cancer detection due to their high sensitivity, selectivity, and low cost. These biosensors utilize functionalized polymers in different parts of the body to detect cancer biomarkers in biological samples. This approach offers several advantages over traditional detection methods, including real-time monitoring and noninvasive detection while maintaining high sensitivity and accuracy. This review discusses recent advances in the development of polymer-based biosensors for cancer detection including their design, fabrication, and performance. The essential characteristics of biosensing devices are presented, along with examples for natural and synthetic polymers commonly utilized in biosensors. Furthermore, strategies employed to tailor polymers to improve biosensing applications and future perspectives for the application of polymer-based biosensors in cancer diagnosis are also highlighted. Integrating these advancements will illuminate the potential of polymer-based biosensors as transformative tools in the early detection and management of cancer.
Collapse
Affiliation(s)
- Elbadawy A. Kamoun
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Mahmoud Elsabahy
- Badr
University in Cairo Research Center, Badr
University in Cairo, Badr City, Cairo 11829, Egypt
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | | | - Esraa B. Abdelazim
- Badr
University in Cairo Research Center, Badr
University in Cairo, Badr City, Cairo 11829, Egypt
| | - Abdelrahman A. Mohsen
- Department
of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo 11456, Egypt
| | - Marwa A. Aleem
- Analytical
Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hui Gao
- State
Key
Laboratory of Separation Membranes and Membrane Processes, School
of Materials Science and Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Noura G. Eissa
- Badr
University in Cairo Research Center, Badr
University in Cairo, Badr City, Cairo 11829, Egypt
- Department
of Pharmaceutics, Faculty of Pharmacy, Zagazig
University, Zagazig 44519, Egypt
| | - Ibrahim Elghamry
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Samar A. Salim
- Biomaterials
for Medical and Pharmaceutical Applications Research Group, Nanotechnology
Research Centre (NTRC), The British University
in Egypt (BUE), El Sherouk
City, Suez Desert Road, Cairo 11837, Egypt
| |
Collapse
|
8
|
Rashed MS, Abdelkarim EA, Elsamahy T, Sobhy M, El-Mesery HS, Salem A. Advances in cell-based biosensors: Transforming food flavor evaluation with novel approaches. Food Chem X 2025; 26:102336. [PMID: 40115496 PMCID: PMC11923814 DOI: 10.1016/j.fochx.2025.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/23/2025] Open
Abstract
Food flavor, a blend of taste and smell, is key to consumer acceptance and food quality. Traditional sensory and instrumental methods often fail to replicate human sensory responses. This review discusses the role of cell-based biosensors in flavor evaluation, showcasing their sensitivity, specificity, and rapid response. Using living cells like taste and olfactory cells, these biosensors surpass traditional approaches. Advancements include microelectrode array systems with taste receptor cells for real-time detection of bitter, sweet, and umami substances and improved cell immobilization technologies for detecting complex odorant profiles. Challenges such as signal stability, selective detection, cell cultivation, and scalability persist. However, integrating artificial intelligence and portable technologies could broaden their applications. With the potential to revolutionize sensory analysis, cell-based biosensors offer a sustainable, precise, and scalable approach to food flavor evaluation, bridging sensory perception with advanced analytical methods and driving innovation in food science.
Collapse
Affiliation(s)
- Mahmoud Said Rashed
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Esraa A Abdelkarim
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Mabrouk Sobhy
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hany S El-Mesery
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
- Agricultural Engineering Research Institute, Agricultural Research Center, Dokki, 12611 Giza, Egypt
| | - Ali Salem
- Civil Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt
- Structural Diagnostics and Analysis Research Group, Faculty of Engineering and Information Technology, University of Pecs, Hungary
| |
Collapse
|
9
|
Jiang D, Xu Y, Jiang H, Xiang X, Wang L. A biomimetic skin microtissue biosensor for the detection of fish parvalbumin. Bioelectrochemistry 2025; 161:108805. [PMID: 39265374 DOI: 10.1016/j.bioelechem.2024.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
In this paper, a biomimetic skin microtissue biosensor was developed based on three-dimensional (3D) bioprinting to precisely and accurately determine fish parvalbumin (FV). Based on the principle that allergens stimulate cells to produce ONOO- (peroxynitrite anion), a screen-printed electrode for the detection nanomolar level ONOO- was innovatively prepared to indirectly detect FV based on the level of ONOO- release. Gelatin methacryloyl (GelMA), RBL-2H3 cells, and MS1 cells were used as bio-ink for 3D bioprinting. The high-throughput and standardized preparation of skin microtissue was achieved using stereolithography 3D bioprinting technology. The printed skin microtissues were put into the self-designed 3D platform that integrated cell culture and electrochemical detection. The experimental results showed that the sensor could effectively detect FV when the optimized ratio of RBL-2H3 to MS1 cells and allergen stimulation time were 2:8 and 2 h, respectively. The linear detection range was 0.125-3.0 μg/mL, and the calculated lowest detection limit was 0.122 μg/mL. In addition, the sensor had excellent selectivity, specificity, stability, and reliability. Thus, this study successfully constructed a biomimetic skin microtissue electrochemical sensor for PV detection.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Yang Xu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, PR China
| | - Xinyue Xiang
- Jiangsu Grain Group Co., Ltd, Nanjing, Jiangsu 210008, PR China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
10
|
Wu J, Bureik M, Marchisio MA. Efficient sex hormone biosensors in Saccharomyces cerevisiae cells to evaluate human aromatase activity and inhibition. Sci Rep 2025; 15:737. [PMID: 39753751 PMCID: PMC11698725 DOI: 10.1038/s41598-024-85022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Yeast sex-hormone whole-cell biosensors are analytical tools characterized by long-time storage and low production cost. We engineered compact β-estradiol biosensors in S. cerevisiae cells by leveraging short (20-nt long) operators bound by the fusion protein LexA-ER-VP64-where ER is the human estrogen receptor and VP64 a strong viral activation domain. Our best biosensors showed high accuracy since their recovery concentration ranged between 97.13% and 104.69%. As a novelty, we built on top of them testosterone biosensors that exploit the conversion of testosterone into β-estradiol by the human aromatase enzyme-expressed in S. cerevisiae together with its co-factor CPR. We used our engineered yeast strains to evaluate aromatase activity through fluorescence measurements without the need for protein purification. Besides, we set up an aromatase-inhibitors evaluation assay to measure the IC50 (half-maximal inhibitory concentration) of candidate inhibitory compounds and developed a screening assay for enzymes that metabolize β-estradiol that demands only to measure fluorescence. These two assays allow the screening of a large number of chemicals and proteins in a fast and economic fashion. We think that our work will facilitate considerably high throughput screening for the discovery of new drugs and unknown metabolic processes.
Collapse
Affiliation(s)
- Jie Wu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
- School of Life Science and Health, Northeastern University, Shenyang, 110169, China.
| |
Collapse
|
11
|
Park CH, Park JH, Suh YJ. Perspective of 3D culture in medicine: transforming disease research and therapeutic applications. Front Bioeng Biotechnol 2024; 12:1491669. [PMID: 39749112 PMCID: PMC11693738 DOI: 10.3389/fbioe.2024.1491669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
3D cell culture is gaining momentum in medicine due to its ability to mimic real tissues (in vivo) and provide more accurate biological data compared to traditional methods. This review explores the current state of 3D cell culture in medicine and discusses future directions, including the need for standardization and simpler protocols to facilitate wider use in research. Purpose 3D cell culture develops life sciences by mimicking the natural cellular environment. Cells in 3D cultures grow in three dimensions and interact with a matrix, fostering realistic cell behavior and interactions. This enhanced model offers significant advantages for diverse research areas. Methods By mimicking the cellular organization and functionalities found in human tissues, 3D cultures provide superior platforms for studying complex diseases like cancer and neurodegenerative disorders. This enables researchers to gain deeper insights into disease progression and identify promising therapeutic targets with greater accuracy. 3D cultures also play a crucial role in drug discovery by allowing researchers to effectively assess potential drugs' safety and efficacy. Results 3D cell culture's impact goes beyond disease research. It holds promise for tissue engineering. By replicating the natural tissue environment and providing a scaffold for cell growth, 3D cultures pave the way for regenerating damaged tissues, offering hope for treating burns, organ failure, and musculoskeletal injuries. Additionally, 3D cultures contribute to personalized medicine. Researchers can use patient-derived cells to create personalized disease models and identify the most effective treatment for each individual. Conclusion With ongoing advancements in cell imaging techniques, the development of novel biocompatible scaffolds and bioreactor systems, and a deeper understanding of cellular behavior within 3D environments, 3D cell culture technology stands poised to revolutionize various aspects of healthcare and scientific discovery.
Collapse
Affiliation(s)
- Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Departments of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jung Ho Park
- Department of Breast and Endocrine Surgery, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Yong Joon Suh
- Department of Breast and Endocrine Surgery, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| |
Collapse
|
12
|
Huang Z, Gustave W, Bai S, Li Y, Li B, Elçin E, Jiang B, Jia Z, Zhang X, Shaheen SM, He F. Challenges and opportunities in commercializing whole-cell bioreporters in environmental application. ENVIRONMENTAL RESEARCH 2024; 262:119801. [PMID: 39147190 DOI: 10.1016/j.envres.2024.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Since the initial introduction of whole-cell bioreporters (WCBs) nearly 30 years ago, their high sensitivity, selectivity, and suitability for on-site detection have rendered them highly promising for environmental monitoring, medical diagnosis, food safety, biomanufacturing, and other fields. Especially in the environmental field, the technology provides a fast and efficient way to assess the bioavailability of pollutants in the environment. Despite these advantages, the technology has not been commercialized. This lack of commercialization is confusing, given the broad application prospects of WCBs. Over the years, numerous research papers have focused primarily on enhancing the sensitivity and selectivity of WCBs, with little attention paid to their wider commercial applications. So far, there is no a critical review has been published yet on this topic. Therefore, in this article we critically reviewed the research progress of WCBs over the past three decades, assessing the performance and limitations of current systems to understand the barriers to commercial deployment. By identifying these obstacles, this article provided researchers and industry stakeholders with deeper insights into the challenges hindering market entry and inspire further research toward overcoming these barriers, thereby facilitating the commercialization of WCBs as a promising technology for environmental monitoring.
Collapse
Affiliation(s)
- Zefeng Huang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau, 4912, Bahamas
| | - Shanshan Bai
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yongshuo Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215123, China; Meadows Center for Water and the Environment, Texas State University, San Marcos, TX, 78666, USA
| | - Evrim Elçin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, 09970, Turkey
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhemin Jia
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Environmental Sciences, Department of Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Feng He
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
13
|
Liu Q, Mendoza DA, Yasar A, Caygara D, Kassem A, Densmore D, Yazicigil RT. Integrated Real-Time CMOS Luminescence Sensing and Impedance Spectroscopy in Droplet Microfluidics. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:1233-1252. [PMID: 39509304 PMCID: PMC11875993 DOI: 10.1109/tbcas.2024.3491594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
High-throughput biosensor screening and optimization are critical for health and environmental monitoring applications to ensure rapid and accurate detection of biological and chemical targets. Traditional biosensor design and optimization methods involve labor-intensive processes, such as manual pipetting of large sample volumes, making them low throughput and inefficient for large-scale library screenings under various environmental and chemical conditions. We address these challenges by introducing a modular droplet microfluidic system embedded with custom CMOS integrated circuits (ICs) for impedance spectroscopy and bioluminescence detection. Fabricated in a 65 nm process, our CMOS ICs enable efficient droplet detection and analysis. We demonstrate successful sensing of luciferase enzyme-substrate reactions in nL-volume droplets. The impedance spectroscopy chip detects 4 nL droplets at 67 mm/s with a 45 pA resolution, while the luminescence detector senses optical signals from 38 nL droplets with a 6.7 nA/count resolution. We show real-time concurrent use of both detection methods within our hybrid platform for cross-validation. This system greatly advances conventional biosensor testing by increasing flexibility, scalability, and cost-efficiency.
Collapse
|
14
|
Kaur D, Esseili MA, Ramasamy RP. A Cell-Based Electrochemical Biosensor for the Detection of Infectious Hepatitis A Virus. BIOSENSORS 2024; 14:576. [PMID: 39727841 PMCID: PMC11726883 DOI: 10.3390/bios14120576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
Hepatitis A virus (HAV), a major cause of acute liver infections, is transmitted through the fecal-oral route and close contact with infected individuals. Current HAV standardized methods rely on the detection of virus antigen or RNA, which do not differentiate between infectious and non-infectious HAV. The objective of this study was to develop a prototype cell-based electrochemical biosensor for detection of infectious HAV. A cell culture-adapted HAV strain (HM175/18f) and its permissive cells (FRhK-4), along with gold nanoparticle-modified screen-printed electrodes, were used to develop the biosensor. Electrochemical impedance spectroscopy was used to quantify the electrical impedance signal. Nyquist plots showed successful fabrication of the cell-based biosensor. The optimum period of HAV incubation with the biosensor was 6 h. A significant linear relationship (R2 = 0.98) was found between the signal and a 6-log range of HAV titers, with a limit of detection of ~5 TCID50/mL (tissue culture infectious dose). The biosensor did not detect non-target viruses such as feline calicivirus and human coronavirus 229E. The biosensor was stable for 3 to 7 days at an abusive temperature (37 °C), retaining ~90 to 60% of the original signal, respectively. In conclusion, this prototype cell-based biosensor is capable of rapidly detecting low levels of infectious HAV.
Collapse
Affiliation(s)
- Dilmeet Kaur
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA;
| | - Malak A. Esseili
- Center for Food Safety, University of Georgia, Griffin Campus, Griffin, GA 30223, USA
| | - Ramaraja P. Ramasamy
- Nano Electrochemistry Laboratory, College of Engineering, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
15
|
Kim Y, Jeon Y, Song K, Ji H, Hwang SJ, Yoon Y. Development of an Escherichia coli Cell-Based Biosensor for Aspirin Monitoring by Genetic Engineering of MarR. BIOSENSORS 2024; 14:547. [PMID: 39590006 PMCID: PMC11591804 DOI: 10.3390/bios14110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Multiple antibiotic resistance regulators (MarRs) control the transcription of genes in the mar operon of Escherichia coli in the presence of salicylic acid (SA). The interaction with SA induces conformational changes in the MarR released from the promoter of the mar operon, turning on transcription. We constructed an SA-specific E. coli cell-based biosensor by fusing the promoter of the mar operon (PmarO) and the gene that encodes an enhanced green fluorescent protein (egfp). Because SA and aspirin are structurally similar, a biosensor for monitoring aspirin can be obtained by genetically engineering MarR to be aspirin (ASP)-responsive. To shift the selectivity of MarR toward ASP, we changed the residues around the ligand-binding sites by site-directed mutagenesis. We examined the effects of genetic engineering on MarR by introducing MarRs with PmarO-egfp into E. coli. Among the tested mutants, MarR T72A improved the ASP responses by approximately 3 times compared to the wild-type MarR, while still showing an SA response. Although the MarR T72A biosensor exhibited mutual interference between SA and ASP, it accurately determined the ASP concentration in spiked water and medicine samples with over 90% accuracy. While the ASP biosensors still require improvement, our results provide valuable insights for developing E. coli cell-based biosensors for ASP and transcription factor-based biosensors in general.
Collapse
Affiliation(s)
| | | | | | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.K.); (Y.J.)
| |
Collapse
|
16
|
Antonelli G, Filippi J, D'Orazio M, Curci G, Casti P, Mencattini A, Martinelli E. Integrating machine learning and biosensors in microfluidic devices: A review. Biosens Bioelectron 2024; 263:116632. [PMID: 39116628 DOI: 10.1016/j.bios.2024.116632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Microfluidic devices are increasingly widespread in the literature, being applied to numerous exciting applications, from chemical research to Point-of-Care devices, passing through drug development and clinical scenarios. Setting up these microenvironments, however, introduces the necessity of locally controlling the variables involved in the phenomena under investigation. For this reason, the literature has deeply explored the possibility of introducing sensing elements to investigate the physical quantities and the biochemical concentration inside microfluidic devices. Biosensors, particularly, are well known for their high accuracy, selectivity, and responsiveness. However, their signals could be challenging to interpret and must be carefully analysed to carry out the correct information. In addition, proper data analysis has been demonstrated even to increase biosensors' mentioned qualities. To this regard, machine learning algorithms are undoubtedly among the most suitable approaches to undertake this job, automatically learning from data and highlighting biosensor signals' characteristics at best. Interestingly, it was also demonstrated to benefit microfluidic devices themselves, in a new paradigm that the literature is starting to name "intelligent microfluidics", ideally closing this benefic interaction among these disciplines. This review aims to demonstrate the advantages of the triad paradigm microfluidics-biosensors-machine learning, which is still little used but has a great perspective. After briefly describing the single entities, the different sections will demonstrate the benefits of the dual interactions, highlighting the applications where the reviewed triad paradigm was employed.
Collapse
Affiliation(s)
- Gianni Antonelli
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Joanna Filippi
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Michele D'Orazio
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Giorgia Curci
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Paola Casti
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Arianna Mencattini
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy.
| |
Collapse
|
17
|
Blázquez AB, Jiménez de Oya N. Biosensors for the detection of flaviviruses: A review. Synth Syst Biotechnol 2024; 10:194-206. [PMID: 39552759 PMCID: PMC11564047 DOI: 10.1016/j.synbio.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Flaviviruses affect the lives of millions of people in endemic regions and also have the potential to impact non-endemic areas. Factors such as climate change, global warming, deforestation, and increased travel and trade are linked to the spread of flaviviruses into new habitats and host species. Given the absence of specific treatments and the limited availability of vaccines, it is imperative to understand the biology of flaviviruses and develop rapid and sensitive diagnostic tests. These measures are essential for preventing the transmission of these potentially life-threatening pathogens. Flavivirus infections are mainly diagnosed using conventional methods. However, these techniques present several drawbacks, including high expenses, time-consuming procedures, and the need for skilled professionals. The search for fast, easy-to-use, and affordable alternative techniques as a feasible solution for developing countries is leading to the search for new methods in the diagnosis of flaviviruses, such as biosensors. This review provides a comprehensive overview of different biosensor detection strategies for flaviviruses and describes recent advances in diagnostic technologies. Finally, we explore their future prospects and potential applications in pathogen detection. This review serves as a valuable resource to understand advances in ongoing research into new biosensor-based diagnostic methods for flaviviruses.
Collapse
Affiliation(s)
- Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| | - Nereida Jiménez de Oya
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de La Coruña, km 7.5, 28040 Madrid, Spain
| |
Collapse
|
18
|
Prakash O, Verma D, Singh PC. Exploring enzyme-immobilized MOFs and their application potential: biosensing, biocatalysis, targeted drug delivery and cancer therapy. J Mater Chem B 2024; 12:10198-10214. [PMID: 39283204 DOI: 10.1039/d4tb01556h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Enzymes are indispensable in several applications including biosensing and degradation of pollutants and in the drug industry. However, adverse conditions restrict enzymes' utility in biocatalysis due to their inherent limitations. Metal-organic frameworks (MOFs), with their robust structure, offer an innovative avenue for enzyme immobilization, enhancing their resilience against harsh solvents and temperatures. This advancement is pivotal for application in bio-sensing, bio-catalysis, and specifically, targeted drug delivery in cancer therapy, where enzyme-MOF composites enable precise therapeutic localization, minimizing the side effects of traditional treatment. The adaptable nature of MOFs enhances drug biocompatibility and availability, significantly improving therapeutic outcomes. Moreover, the integration of enzyme-immobilized MOFs into bio-sensing represents a leap forward in the rapid and accurate identification of biomarkers, facilitating early diagnosis and disease monitoring. In bio-catalysis, this synergy promotes efficient and environmentally safe chemical synthesis, enhancing reaction rates and yields and broadening the scope of enzyme application in pharmaceutical and bio-fuel production. This review article explores the immobilization techniques and their biomedical applications, specifically focusing on drug delivery in cancer therapy and bio-sensing. Additionally, it addresses the challenges faced in this expanding field.
Collapse
Affiliation(s)
- Om Prakash
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Deepika Verma
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Poonam C Singh
- Division of Microbial Technology, CSIR-NBRI, Lucknow 226001, India
| |
Collapse
|
19
|
Sun S, Chen J. Recent Advances in Hydrogel-Based Biosensors for Cancer Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46988-47002. [PMID: 39190320 PMCID: PMC11403555 DOI: 10.1021/acsami.4c02317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Early cancer detection is crucial for effective treatment, but current methods have limitations. Novel biomaterials, such as hydrogels, offer promising alternatives for developing biosensors for cancer detection. Hydrogels are three-dimensional and cross-linked networks of hydrophilic polymers that have properties similar to biological tissues. They can be combined with various biosensors to achieve high sensitivity, specificity, and stability. This review summarizes the recent advances in hydrogel-based biosensors for cancer detection, their synthesis, their applications, and their challenges. It also discusses the implications and future directions of this emerging field.
Collapse
Affiliation(s)
- Shengwei Sun
- Department of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Jinju Chen
- Department of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
20
|
Hemdan M, Ali MA, Doghish AS, Mageed SSA, Elazab IM, Khalil MM, Mabrouk M, Das DB, Amin AS. Innovations in Biosensor Technologies for Healthcare Diagnostics and Therapeutic Drug Monitoring: Applications, Recent Progress, and Future Research Challenges. SENSORS (BASEL, SWITZERLAND) 2024; 24:5143. [PMID: 39204840 PMCID: PMC11360123 DOI: 10.3390/s24165143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review delves into the forefront of biosensor technologies and their critical roles in disease biomarker detection and therapeutic drug monitoring. It provides an in-depth analysis of various biosensor types and applications, including enzymatic sensors, immunosensors, and DNA sensors, elucidating their mechanisms and specific healthcare applications. The review highlights recent innovations such as integrating nanotechnology, developing wearable devices, and trends in miniaturisation, showcasing their transformative potential in healthcare. In addition, it addresses significant sensitivity, specificity, reproducibility, and data security challenges, proposing strategic solutions to overcome these obstacles. It is envisaged that it will inform strategic decision-making, drive technological innovation, and enhance global healthcare outcomes by synthesising multidisciplinary insights.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Mohamed A. Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City 11829, Egypt; (M.H.); (M.A.A.)
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Ibrahim M. Elazab
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Magdy M. Khalil
- Medical Biophysics, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt;
- School of Applied Health Sciences, Badr University in Cairo (BUC), Badr City 11829, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Bohouth St., Giza 12622, Egypt;
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Alaa S. Amin
- Chemistry Department, Faculty of Science, Benha University, Benha 13511, Egypt;
| |
Collapse
|
21
|
Wei Y, Shi D, Chen T, Zhou S, Yang Z, Li H, Yang D, Li J, Jin M. CRISPR/Cas9-based engineered Escherichia coli biosensor for sensitive and specific detection of Cd(II) in drinking water. CHEMOSPHERE 2024; 362:142607. [PMID: 38876330 DOI: 10.1016/j.chemosphere.2024.142607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024]
Abstract
Cadmium (Cd) is a ubiquitous pollutant that poses a potential threat to human health. Monitoring Cd(II) in drinking water has significant implications for preventing potential threats of Cd(II) to human. However, the weak signal output and response to nontarget interference limit the detection of Cd(II) using bacterial biosensors. In this study, to enable sensitive and specific detection of Cd(II) in water, a stable whole-cell biosensor, K12-PMP-luxCDABE-△cysI, was constructed in a dual-promoter mode by fusing the mercury promoter Pmer, regulatory gene merR(m), and luciferase gene luxCDABE into the E.coli chromosome based on CRISPR/Cas9 gene editing technology. By knocking out the cadmium-resistance-gene cysI, the sensitivity of the biosensor to Cd(II) was further enhanced. The constructed E. coli biosensor K12-PMP-luxCDABE-△cysI exhibited good nonlinear responses to 0.005-2 mg/L Cd(II). Notably, among the three constructed E. coli biosensor, it exhibited the strongest fluorescence intensity, with the limit of detection meeting the allowable limit for Cd(II) in drinking water. Simultaneously, it could specifically detect Cd(II). Nontarget metal ions, such as Zn(II), Hg(II), and Pb(II), did not affect its performance. Furthermore, it exhibited superior performance in detecting Cd(II) in real drinking water samples by avoiding background interference, and showed excellent stability with the relative standard deviation under 5%. Thus, K12-PMP-luxCDABE-△cysI holds promise as a potential tool for the detection of Cd(II) in drinking water.
Collapse
Affiliation(s)
- Yijun Wei
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Danyang Shi
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Tianjiao Chen
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Shuqing Zhou
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Zhongwei Yang
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Haibei Li
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Dong Yang
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Junwen Li
- Military Medical Sciences Academy, Academy of Military Sciences, China
| | - Min Jin
- Military Medical Sciences Academy, Academy of Military Sciences, China.
| |
Collapse
|
22
|
Jiang D, Feng Z, Jiang H, Cao H, Xiang X, Wang L. 3D bio-printing-based vascular-microtissue electrochemical biosensor for fish parvalbumin detection. Food Chem 2024; 445:138799. [PMID: 38401313 DOI: 10.1016/j.foodchem.2024.138799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
A novel 3D bio-printing vascular microtissue biosensor was developed to detect fish parvalbumin quickly. The graphite rod electrode was modified with gold and copper organic framework (Cu-MOF) to improve the sensor properties. Polydopamine-modified multi-wall carbon nanotubes (PDA-MWCNT) were mixed with gelatin methacryloyl (GelMA) to prepare a conductive hydrogel. The conductive hydrogel was mixed with mast cells and endothelial cells to produce a bio-ink for 3D bioprinting. High throughput and standardized preparation of vascular microtissue was performed by stereolithography 3D bioprinting. The vascular microtissue was immobilized on the modified electrode to construct the microtissue sensor. The biosensor's peak current was positively correlated with the fish parvalbumin concentration, and the detection linear concentration range was 0.1 ∼ 2.5 μg/mL. The standard curve equation was IDPV(μA) = 31.30 + 5.46 CPV(μg/mL), the correlation coefficient R2 was 0.990 (n = 5), and the detection limit was 0.065 μg/mL. These indicated a biomimetic microtissue sensor detecting fish parvalbumin has been successfully constructed.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Zeng Feng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, PR China
| | - Hanwen Cao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Xinyue Xiang
- Jiangsu Grain Group Co., Ltd, Nanjing, Jiangsu 210008, PR China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
23
|
Schann K, Bakker J, Boinot M, Kuschel P, He H, Nattermann M, Paczia N, Erb T, Bar‐Even A, Wenk S. Design, construction and optimization of formaldehyde growth biosensors with broad application in biotechnology. Microb Biotechnol 2024; 17:e14527. [PMID: 39031508 PMCID: PMC11259041 DOI: 10.1111/1751-7915.14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
Formaldehyde is a key metabolite in natural and synthetic one-carbon metabolism. To facilitate the engineering of formaldehyde-producing enzymes, the development of sensitive, user-friendly, and cost-effective detection methods is required. In this study, we engineered Escherichia coli to serve as a cellular biosensor capable of detecting a broad range of formaldehyde concentrations. Using both natural and promiscuous formaldehyde assimilation enzymes, we designed three distinct E. coli growth biosensor strains that depend on formaldehyde for cell growth. These strains were engineered to be auxotrophic for one or several essential metabolites that could be produced through formaldehyde assimilation. The respective assimilating enzyme was expressed from the genome to compensate the auxotrophy in the presence of formaldehyde. We first predicted the formaldehyde dependency of the biosensors by flux balance analysis and then analysed it experimentally. Subsequent to strain engineering, we enhanced the formaldehyde sensitivity of two biosensors either through adaptive laboratory evolution or modifications at metabolic branch points. The final set of biosensors demonstrated the ability to detect formaldehyde concentrations ranging approximately from 30 μM to 13 mM. We demonstrated the application of the biosensors by assaying the in vivo activity of different methanol dehydrogenases in the most sensitive strain. The fully genomic nature of the biosensors allows them to be deployed as "plug-and-play" devices for high-throughput screenings of extensive enzyme libraries. The formaldehyde growth biosensors developed in this study hold significant promise for advancing the field of enzyme engineering, thereby supporting the establishment of a sustainable one-carbon bioeconomy.
Collapse
Affiliation(s)
- Karin Schann
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Jenny Bakker
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Maximilian Boinot
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Pauline Kuschel
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Hai He
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | | | - Nicole Paczia
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Tobias Erb
- Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
| | - Arren Bar‐Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Sebastian Wenk
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| |
Collapse
|
24
|
Ihsan MF, Kawashima D, Li S, Ogasawara S, Murata T, Takei M. Non-invasive hERG channel screening based on electrical impedance tomography and extracellular voltage activation (EIT-EVA). LAB ON A CHIP 2024; 24:3183-3190. [PMID: 38828904 DOI: 10.1039/d4lc00230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
hERG channel screening has been achieved based on electrical impedance tomography and extracellular voltage activation (EIT-EVA) to improve the non-invasive aspect of drug discovery. EIT-EVA screens hERG channels by considering the change in extracellular ion concentration which modifies the extracellular resistance in cell suspension. The rate of ion passing in cell suspension is calculated from the extracellular resistance Rex, which is obtained from the EIT measurement at a frequency of 500 kHz. In the experiment, non-invasive screening is applied by a novel integrated EIT-EVA printed circuit board (PCB) sensor to human embryonic kidney (HEK) 293 cells transfected with the human ether-a-go-go-related gene (hERG) ion channel, while the E-4031 antiarrhythmic drug is used for hERG channel inhibition. The extracellular resistance Rex of the HEK 293 cells suspension is measured by EIT as the hERG channels are activated by EVA over time. The Rex is reconstructed into extracellular conductivity distribution change Δσ to reflect the extracellular K+ ion concentration change Δc resulting from the activated hERG channel. Δc is increased rapidly during the hERG channel non-inhibition state while Δc is increased slower with increasing drug concentration cd. In order to evaluate the EIT-EVA system, the inhibitory ratio index (IR) was calculated based on the rate of Δc over time. Half-maximal inhibitory concentration (IC50) of 2.7 nM is obtained from the cd and IR dose-response relationship. The IR from EIT-EVA is compared with the results from the patch-clamp method, which gives R2 of 0.85. In conclusion, EIT-EVA is successfully applied to non-invasive hERG channel screening.
Collapse
Affiliation(s)
- Muhammad Fathul Ihsan
- Department of Mechanical Engineering, Graduate School of Science and Engineering, Division of Fundamental Engineering, Chiba University, Chiba 263-8522, Japan
| | - Daisuke Kawashima
- Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba 263-8522, Japan.
| | - Songshi Li
- Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan
| | - Masahiro Takei
- Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
25
|
Zhang J, Guo Y, Lin YR, Ma BC, Ge XR, Zhang WQ, Zhang NX, Yang SM, Hui CY. Detection of Cadmium in Human Biospecimens by a Cadmium-Selective Whole-Cell Biosensor Based on Deoxyviolacein. ACS Biomater Sci Eng 2024; 10:4046-4058. [PMID: 38722544 DOI: 10.1021/acsbiomaterials.3c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cadmium poses a severe health risk, impacting various bodily systems. Monitoring human exposure is vital. Urine and blood cadmium serve as critical biomarkers. However, current urine and blood cadmium detection methods are expensive and complex. Being cost-effective, user-friendly, and efficient, visual biosensing offers a promising complement to existing techniques. Therefore, we constructed a cadmium whole-cell biosensor using CadR10 and deoxyviolacein pigment in this study. We assessed the sensor for time-dose response, specific response to cadmium, sensitivity response to cadmium, and stability response to cadmium. The results showed that (1) the sensor had a preferred signal-to-noise ratio when the incubation time was 4 h; (2) the sensor showed excellent specificity for cadmium compared to the group 12 metals and lead; (3) the sensor was responsive to cadmium down to 1.53 nM under experimental conditions and had good linearity over a wide range from 1.53 nM to 100 μM with good linearity (R2 = 0.979); and (4) the sensor had good stability. Based on the excellent results of the performance tests, we developed a cost-effective, high-throughput method for detecting urinary and blood cadmium. Specifically, this was realized by adding the blood or urine samples into the culture system in a particular proportion. Then, the whole-cell biosensor was subjected to culture, n-butanol extraction, and microplate reading. The results showed that (1) at 20% urine addition ratio, the sensor had an excellent curvilinear relationship (R2 = 0.986) in the range of 3.05 nM to 100 μM, and the detection limit could reach 3.05 nM. (2) At a 10% blood addition ratio, the sensor had an excellent nonlinear relationship (R2 = 0.978) in the range of 0.097-50 μM, and the detection limit reached 0.195 μM. Overall, we developed a sensitive and wide-range method based on a whole-cell biosensor for the detection of cadmium in blood and urine, which has the advantages of being cost-effective, ease of operation, fast response, and low dependence on instrumentation and has the potential to be applied in the monitoring of cadmium exposure in humans as a complementary to the mainstream detection techniques.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Yi-Ran Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Bing-Chan Ma
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xue-Ru Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Wen-Qi Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Nai-Xing Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| | - Shu-Man Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Chang-Ye Hui
- Shenzhen Prevention and Treatment Center for Occupational Diseases, 2019 Buxin Road, Shenzhen 518020, China
| |
Collapse
|
26
|
Sytu MRC, Cho DH, Hahm JI. Self-Assembled Block Copolymers as a Facile Pathway to Create Functional Nanobiosensor and Nanobiomaterial Surfaces. Polymers (Basel) 2024; 16:1267. [PMID: 38732737 PMCID: PMC11085100 DOI: 10.3390/polym16091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Block copolymer (BCP) surfaces permit an exquisite level of nanoscale control in biomolecular assemblies solely based on self-assembly. Owing to this, BCP-based biomolecular assembly represents a much-needed, new paradigm for creating nanobiosensors and nanobiomaterials without the need for costly and time-consuming fabrication steps. Research endeavors in the BCP nanobiotechnology field have led to stimulating results that can promote our current understanding of biomolecular interactions at a solid interface to the never-explored size regimes comparable to individual biomolecules. Encouraging research outcomes have also been reported for the stability and activity of biomolecules bound on BCP thin film surfaces. A wide range of single and multicomponent biomolecules and BCP systems has been assessed to substantiate the potential utility in practical applications as next-generation nanobiosensors, nanobiodevices, and biomaterials. To this end, this Review highlights pioneering research efforts made in the BCP nanobiotechnology area. The discussions will be focused on those works particularly pertaining to nanoscale surface assembly of functional biomolecules, biomolecular interaction properties unique to nanoscale polymer interfaces, functionality of nanoscale surface-bound biomolecules, and specific examples in biosensing. Systems involving the incorporation of biomolecules as one of the blocks in BCPs, i.e., DNA-BCP hybrids, protein-BCP conjugates, and isolated BCP micelles of bioligand carriers used in drug delivery, are outside of the scope of this Review. Looking ahead, there awaits plenty of exciting research opportunities to advance the research field of BCP nanobiotechnology by capitalizing on the fundamental groundwork laid so far for the biomolecular interactions on BCP surfaces. In order to better guide the path forward, key fundamental questions yet to be addressed by the field are identified. In addition, future research directions of BCP nanobiotechnology are contemplated in the concluding section of this Review.
Collapse
Affiliation(s)
- Marion Ryan C. Sytu
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| | - David H. Cho
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | - Jong-in Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| |
Collapse
|
27
|
Yousif NM, Gomaa OM. Screen-printed biosensor based on electro-polymerization of bio-composite for nitrate detection in aqueous media. ENVIRONMENTAL TECHNOLOGY 2024; 45:2363-2374. [PMID: 36689460 DOI: 10.1080/09593330.2023.2172618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Bacillus sp. possessing a periplasmic nitrate reductase was used as a recognition element to develop a nitrate biosensor. The bacteria was embedded within a polyaniline (PANI) electro-conductive matrix via electro-polymerization on miniaturized carbon screen-printed electrodes (SPE) at 100 mV/s and scan rate from -0.35 V to + 1.7 V. Surface medication of SPE was verified via Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The optimal bacterial density was OD600 1.2. To enhance the biosensors performance, Bacillus sp. was (1) grown in riboflavin (RF) inducing media as an endogenous redox mediator and (2) exposed to different gamma radiation doses as a physical method to increase electron transfer. Results show a link between exposing cells to gamma irradiation stress, this was evident by electron spin resonance (ESR) and changes in FTIR spectrum, in addition to the increase in catalase enzyme. The nitrate limit of detection (LOD) was 0.5-25 mg/L for non-irradiated RF induced immobilized cells and LOD was 0.5-75 mg/L nitrate for 2 kGy gamma irradiated cells. The prepared biosensor showed acceptable reproducibility and multiple usages after storage at 4°C over 3 months. Low cost and simple preparation allow the biosensor to be mass-produced as a disposable device. Bacillus sp. and its endogenous redox mediator immobilized within polyaniline are good candidates for the improvement of amperometric biosensors for the quantification of nitrate in aqueous solutions.
Collapse
Affiliation(s)
- Nashwa M Yousif
- Solid State Physics and Accelerators Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ola M Gomaa
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
28
|
Battisti A. Editorial for Special Issue on Biosensors for Biomedical and Environmental Applications. MICROMACHINES 2024; 15:607. [PMID: 38793180 PMCID: PMC11123321 DOI: 10.3390/mi15050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
A sensor is typically defined as a device able to transform a physical quantity of interest into a different kind of signal that can be easily measured and recorded [...].
Collapse
|
29
|
Champagne A, Chebra I, Jain P, Ringuette Goulet C, Lauzier A, Guyon A, Neveu B, Pouliot F. An Extracellular Matrix Overlay Model for Bioluminescence Microscopy to Measure Single-Cell Heterogeneous Responses to Antiandrogens in Prostate Cancer Cells. BIOSENSORS 2024; 14:175. [PMID: 38667168 PMCID: PMC11048191 DOI: 10.3390/bios14040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Prostate cancer (PCa) displays diverse intra-tumoral traits, impacting its progression and treatment outcomes. This study aimed to refine PCa cell culture conditions for dynamic monitoring of androgen receptor (AR) activity at the single-cell level. We introduced an extracellular matrix-Matrigel (ECM-M) culture model, enhancing cellular tracking during bioluminescence single-cell imaging while improving cell viability. ECM-M notably tripled the traceability of poorly adherent PCa cells, facilitating robust single-cell tracking, without impeding substrate permeability or AR response. This model effectively monitored AR modulation by antiandrogens across various PCa cell lines. Single-cell imaging unveiled heterogeneous antiandrogen responses within populations, correlating non-responsive cell proportions with drug IC50 values. Integrating ECM-M culture with the PSEBC-TSTA biosensor enabled precise characterization of ARi responsiveness within diverse cell populations. Our ECM-M model stands as a promising tool to assess heterogeneous single-cell treatment responses in cancer, offering insights to link drug responses to intracellular signaling dynamics. This approach enhances our comprehension of the nuanced and dynamic nature of PCa treatment responses.
Collapse
Affiliation(s)
- Audrey Champagne
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Imene Chebra
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Pallavi Jain
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Cassandra Ringuette Goulet
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Annie Lauzier
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Antoine Guyon
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Bertrand Neveu
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Frédéric Pouliot
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| |
Collapse
|
30
|
Pan M, Zhao Y, Qiao J, Meng X. Electrochemical biosensors for pathogenic microorganisms detection based on recognition elements. Folia Microbiol (Praha) 2024; 69:283-304. [PMID: 38367165 DOI: 10.1007/s12223-024-01144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
The worldwide spread of pathogenic microorganisms poses a significant risk to human health. Electrochemical biosensors have emerged as dependable analytical tools for the point-of-care detection of pathogens and can effectively compensate for the limitations of conventional techniques. Real-time analysis, high throughput, portability, and rapidity make them pioneering tools for on-site detection of pathogens. Herein, this work comprehensively reviews the recent advances in electrochemical biosensors for pathogen detection, focusing on those based on the classification of recognition elements, and summarizes their principles, current challenges, and prospects. This review was conducted by a systematic search of PubMed and Web of Science databases to obtain relevant literature and construct a basic framework. A total of 171 publications were included after online screening and data extraction to obtain information of the research advances in electrochemical biosensors for pathogen detection. According to the findings, the research of electrochemical biosensors in pathogen detection has been increasing yearly in the past 3 years, which has a broad development prospect, but most of the biosensors have performance or economic limitations and are still in the primary stage. Therefore, significant research and funding are required to fuel the rapid development of electrochemical biosensors. The overview comprehensively evaluates the recent advances in different types of electrochemical biosensors utilized in pathogen detection, with a view to providing insights into future research directions in biosensors.
Collapse
Affiliation(s)
- Mengting Pan
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yurui Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Jinjuan Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiangying Meng
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
31
|
Guette-Marquet S, Saunier V, Pilloux L, Roques C, Bergel A. Electrochemical assay of mammalian cell viability. Bioelectrochemistry 2024; 156:108625. [PMID: 38086275 DOI: 10.1016/j.bioelechem.2023.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
We present the first use of amperometric detection to assess the viability of mammalian cells in continuous mode, directly in the cell culture medium. Vero or HeLa cells were injected into electrochemical sensors equipped with a 3-electrode system and containing DCIP 50 µM used as the redox mediator. DCIP was reduced by the viable cells and the reduced form was detected amperometrically at 300 mV vs silver pseudo-reference. The continuous regeneration of the oxidized form of the mediator ensured a stable redox state of the cell environment, allowing the cells to survive during the measurement time. The electrochemical response was related to cell metabolism (no response with dead cells or lysed cells) and depended on both mediator concentration and cell density. The protocol was applied to both cells in suspension and adhered cells. It was also adapted to detect trans-plasma membrane electron transfer (tPMET) by replacing DCIP by ferricyanide 500 µM and using linear scan voltammetry (2 mV/s). The pioneering results described here pave the way to the development of routine electrochemical assays for cell viability and for designing a cell-based analytical platform.
Collapse
Affiliation(s)
- Simon Guette-Marquet
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Valentin Saunier
- INSERM, UMR 1048, Institut des Maladies Métaboliques et Cardiovasculaires I2MC, Equipe 1, Toulouse, France
| | - Ludovic Pilloux
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Faculté des Sciences Pharmaceutiques, Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
32
|
Wang Y, Javeed A, Jian C, Zeng Q, Han B. Precautions for seafood consumers: An updated review of toxicity, bioaccumulation, and rapid detection methods of marine biotoxins. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116201. [PMID: 38489901 DOI: 10.1016/j.ecoenv.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Seafood products are globally consumed, and there is an increasing demand for the quality and safety of these products among consumers. Some seafoods are easily contaminated by marine biotoxins in natural environments or cultured farming processes. When humans ingest different toxins accumulated in seafood, they may exhibit different poisoning symptoms. According to the investigations, marine toxins produced by harmful algal blooms and various other marine organisms mainly accumulate in the body organs such as liver and digestive tract of seafood animals. Several regions around the world have reported incidents of seafood poisoning by biotoxins, posing a threat to human health. Thus, most countries have legislated to specify the permissible levels of these biotoxins in seafood. Therefore, it is necessary for seafood producers and suppliers to conduct necessary testing of toxins in seafood before and after harvesting to prohibit excessive toxins containing seafood from entering the market, which therefore can reduce the occurrence of seafood poisoning incidents. In recent years, some technologies which can quickly, conveniently, and sensitively detect biological toxins in seafood, have been developed and validated, these technologies have the potential to help seafood producers, suppliers and regulatory authorities. This article reviews the seafood toxins sources and types, mechanism of action and bioaccumulation of marine toxins, as well as legislation and rapid detection technologies for biotoxins in seafood for official and fishermen supervision.
Collapse
Affiliation(s)
- Yifan Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Ansar Javeed
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Cuiqin Jian
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiuyu Zeng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergic Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
33
|
Gerdan Z, Saylan Y, Denizli A. Biosensing Platforms for Cardiac Biomarker Detection. ACS OMEGA 2024; 9:9946-9960. [PMID: 38463295 PMCID: PMC10918812 DOI: 10.1021/acsomega.3c06571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Myocardial infarction (MI) is a cardiovascular disease that occurs when there is an elevated demand for myocardial oxygen as a result of the rupture or erosion of atherosclerotic plaques. Globally, the mortality rates associated with MI are steadily on the rise. Traditional diagnostic biomarkers employed in clinical settings for MI diagnosis have various drawbacks, prompting researchers to investigate fast, precise, and highly sensitive biosensor platforms and technologies. Biosensors are analytical devices that combine biological elements with physicochemical transducers to detect and quantify specific compounds or analytes. These devices play a crucial role in various fields including healthcare, environmental monitoring, food safety, and biotechnology. Biosensors developed for the detection of cardiac biomarkers are typically electrochemical, mass, and optical biosensors. Nanomaterials have emerged as revolutionary components in the field of biosensing, offering unique properties that significantly enhance the sensitivity and specificity of the detection systems. This review provides a comprehensive overview of the advancements and applications of nanomaterial-based biosensing systems. Beginning with an exploration of the fundamental principles governing nanomaterials, we delve into their diverse properties, including but not limited to electrical, optical, magnetic, and thermal characteristics. The integration of these nanomaterials as transducers in biosensors has paved the way for unprecedented developments in analytical techniques. Moreover, the principles and types of biosensors and their applications in cardiovascular disease diagnosis are explained in detail. The current biosensors for cardiac biomarker detection are also discussed, with an elaboration of the pros and cons of existing platforms and concluding with future perspectives.
Collapse
Affiliation(s)
- Zeynep Gerdan
- Department
of Biomedical Engineering, Istanbul Beykent
University, Istanbul 34398, Turkey
| | - Yeşeren Saylan
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
34
|
Zhu C, Takemoto H, Higuchi Y, Yamashita F. Programmed immobilization of living cells using independent click pairs. Biochem Biophys Res Commun 2024; 699:149556. [PMID: 38277727 DOI: 10.1016/j.bbrc.2024.149556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Therapeutic devices incorporating living cells or tissues have been intensively investigated for applications in tissue engineering and regenerative medicine. Because many biological processes are governed by spatially dependent signals, programmable immobilization of materials is crucial for manipulating multiple types of cells. In this study, click chemistry substrates were introduced onto the surfaces of cells and cover glass, and the cells were fixed on the cover glass via covalent bonds for selective cell deposition. Azide group (Az)-labeled living cells were prepared by metabolic labeling with azido sugars. Following the introduction of Az, TCO (trans-cyclooctene) was metabolically labeled into the living cells by reacting with TCO-DBCO (dibenzocyclooctyne). Az and TCO in the cells were detected using DBCO-FAM (fluorescein)and tetrazine-Cy3, respectively. The mixture of Az-labeled green fluorescent protein HeLa cells and TCO-labeled red fluorescent protein HeLa cells was reacted in a culture dish in which three different cover glasses, DBCO-, tetrazine-, or methyl-coated, were added. Az- or TCO-labeled cells could be immobilized in a functional group-dependent manner. Next, tetrazine-labeled cells were incubated on TCO- or Az-labeled cell layers instead of cover glass. Functional group-dependent immobilization was also achieved in the cell layer. Introducing substrates for the click reaction could achieve cell-selective immobilization on different patterned glass surfaces, as well as cell-cell immobilization.
Collapse
Affiliation(s)
- Chengyuan Zhu
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroyasu Takemoto
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 606-0823, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan; Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
35
|
Liu A, Zhang X, Liu Z, Li Y, Peng X, Li X, Qin Y, Hu C, Qiu Y, Jiang H, Wang Y, Li Y, Tang J, Liu J, Guo H, Deng T, Peng S, Tian H, Ren TL. The Roadmap of 2D Materials and Devices Toward Chips. NANO-MICRO LETTERS 2024; 16:119. [PMID: 38363512 PMCID: PMC10873265 DOI: 10.1007/s40820-023-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Due to the constraints imposed by physical effects and performance degradation, silicon-based chip technology is facing certain limitations in sustaining the advancement of Moore's law. Two-dimensional (2D) materials have emerged as highly promising candidates for the post-Moore era, offering significant potential in domains such as integrated circuits and next-generation computing. Here, in this review, the progress of 2D semiconductors in process engineering and various electronic applications are summarized. A careful introduction of material synthesis, transistor engineering focused on device configuration, dielectric engineering, contact engineering, and material integration are given first. Then 2D transistors for certain electronic applications including digital and analog circuits, heterogeneous integration chips, and sensing circuits are discussed. Moreover, several promising applications (artificial intelligence chips and quantum chips) based on specific mechanism devices are introduced. Finally, the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed, and potential development pathways or roadmaps are further speculated and outlooked.
Collapse
Affiliation(s)
- Anhan Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Xiaowei Zhang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Ziyu Liu
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuning Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Xueyang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yue Qin
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chen Hu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanqing Qiu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Jiang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yang Wang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yifan Li
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Tao Deng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China.
- IMECAS-HKUST-Joint Laboratory of Microelectronics, Beijing, 100029, People's Republic of China.
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| |
Collapse
|
36
|
Kim Y, Jeon Y, Jang G, Kim BG, Yoon Y. A novel Escherichia coli cell-based bioreporter for quantification of salicylic acid in cosmetics. Appl Microbiol Biotechnol 2024; 108:148. [PMID: 38240881 PMCID: PMC10799119 DOI: 10.1007/s00253-024-13006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Transcription factor-based bioreporters have been extensively studied for monitoring and detecting environmental toxicants. In Escherichia coli, the multiple antibiotic resistance regulator (MarR) induces transcription upon binding to salicylic acid (SA). We generated SA-specific E. coli cell-based bioreporters utilizing the operator region of the mar operon and MarR as components of the reporter and sensing domains, respectively. Although bioreporters based on endogenous MarR and wild-type E. coli cells responded to SA, their sensitivity and selectivity were insufficient for practical sample monitoring. To improve these parameters, we genetically engineered host strains for optimal MarR expression, which enhanced the sensitivity of the biosensor to micromolar quantities of SA with increased selectivity. Under the optimized experimental conditions, the biosensor could quantify SA in environmental samples. For validation, the SA concentration in artificially contaminated SA-containing cosmetic samples was determined using the developed biosensor. Reliability assessment by comparing the concentrations determined using LC-MS/MS revealed > 90% accuracy of the bioreporters. Although bioreporters are not considered standard tools for environmental monitoring, bacterial cell-based bioreporters may serve as alternative tools owing to their affordability and simplicity. The SA biosensor developed in this study can potentially be a valuable tool for monitoring SA in environmental systems. KEY POINTS: • SA-responsive bioreporter is generated by employing mar operon system in E. coli • SA specificity and selectivity were enhanced by genetic/biochemical engineering • The novel bioreporter would be valuable for SA monitoring in environmental systems.
Collapse
Affiliation(s)
- Yeonhong Kim
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yangwon Jeon
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bong-Gyu Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
37
|
Naula Duchi EA, Betancourt Cervantes HA, Yañez Espinosa CR, Rodríguez CA, Garza-Castañon LE, Martínez López JI. Particle Tracking and Micromixing Performance Characterization with a Mobile Device. SENSORS (BASEL, SWITZERLAND) 2023; 23:9900. [PMID: 38139748 PMCID: PMC10747875 DOI: 10.3390/s23249900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Strategies to stir and mix reagents in microfluid devices have evolved concomitantly with advancements in manufacturing techniques and sensing. While there is a large array of reported designs to combine and homogenize liquids, most of the characterization has been focused on setups with two inlets and one outlet. While this configuration is helpful to directly evaluate the effects of features and parameters on the mixing degree, it does not portray the conditions for experiments that involve more than two substances required to be subsequently combined. In this work, we present a mixing characterization methodology based on particle tracking as an alternative to the most common approach to measure homogeneity using the standard deviation of pixel intensities from a grayscale image. The proposed algorithm is implemented on a free and open-source mobile application (MIQUOD) for Android devices, numerically tested on COMSOL Multiphysics, and experimentally tested on a bidimensional split and recombine micromixer and a three-dimensional micromixer with sinusoidal grooves for different Reynolds numbers and geometrical features for samples with fluids seeded with red, blue, and green microparticles. The application uses concentration field data and particle track data to evaluate up to eleven performance metrics. Furthermore, with the insights from the experimental and numerical data, a mixing index for particles (mp) is proposed to characterize mixing performance for scenarios with multiple input reagents.
Collapse
Affiliation(s)
- Edisson A. Naula Duchi
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (E.A.N.D.); (H.A.B.C.); (C.R.Y.E.); (C.A.R.); (L.E.G.-C.)
| | - Héctor Andrés Betancourt Cervantes
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (E.A.N.D.); (H.A.B.C.); (C.R.Y.E.); (C.A.R.); (L.E.G.-C.)
| | - Christian Rodrigo Yañez Espinosa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (E.A.N.D.); (H.A.B.C.); (C.R.Y.E.); (C.A.R.); (L.E.G.-C.)
| | - Ciro A. Rodríguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (E.A.N.D.); (H.A.B.C.); (C.R.Y.E.); (C.A.R.); (L.E.G.-C.)
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 64629, Mexico
| | - Luis E. Garza-Castañon
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (E.A.N.D.); (H.A.B.C.); (C.R.Y.E.); (C.A.R.); (L.E.G.-C.)
| | - J. Israel Martínez López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey 64849, Mexico; (E.A.N.D.); (H.A.B.C.); (C.R.Y.E.); (C.A.R.); (L.E.G.-C.)
- Laboratorio Nacional de Manufactura Aditiva y Digital MADiT, Apodaca 64629, Mexico
| |
Collapse
|
38
|
Fuse H, Kikawada T, Cornette R. Effective methods for immobilization of non-adherent Pv11 cells while maintaining their desiccation tolerance. Cytotechnology 2023; 75:491-503. [PMID: 37841960 PMCID: PMC10575823 DOI: 10.1007/s10616-023-00592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Pv11 was derived from embryos of the sleeping chironomid Polypedilum vanderplanki, which displays an extreme form of desiccation tolerance known as anhydrobiosis. Pre-treatment with a high concentration of trehalose allows Pv11 cells to enter anhydrobiosis. In the dry state, Pv11 cells preserve transgenic luciferase while retaining its activity. Thus, these cells could be utilized for dry-preserving antibodies, enzymes, signaling proteins or other valuable biological materials without denaturation. However, Pv11 cells grow in suspension, which limits their applicability; for instance, they cannot be integrated into microfluidic devices or used in devices such as sensor chips. Therefore, in this paper, we developed an effective immobilization system for Pv11 cells that, crucially, allows them to maintain their anhydrobiotic potential even when immobilized. Pv11 cells exhibited a very high adhesion rate with both biocompatible anchor for membrane (BAM) and Cell-Tak coatings, which have been reported to be effective on other cultured cells. We also found that Pv11 cells immobilized well to uncoated glass if handled in serum-free medium. Interestingly, Pv11 cells showed desiccation tolerance when trehalose treatment was done prior to immobilization of the cells. In contrast, trehalose treatment after immobilization of Pv11 cells resulted in a significant decrease in desiccation tolerance. Thus, it is important to induce anhydrobiosis before immobilization. In summary, we report the successful development of a protocol for the dry preservation of immobilized Pv11 cells. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00592-0.
Collapse
Affiliation(s)
- Hiroto Fuse
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa, Chiba 277-8562 Japan
| | - Takahiro Kikawada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa, Chiba 277-8562 Japan
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851 Japan
| | - Richard Cornette
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0851 Japan
| |
Collapse
|
39
|
Saitta L, Cutuli E, Celano G, Tosto C, Sanalitro D, Guarino F, Cicala G, Bucolo M. Projection Micro-Stereolithography to Manufacture a Biocompatible Micro-Optofluidic Device for Cell Concentration Monitoring. Polymers (Basel) 2023; 15:4461. [PMID: 38006185 PMCID: PMC10675802 DOI: 10.3390/polym15224461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
In this work, a 3D printed biocompatible micro-optofluidic (MoF) device for two-phase flow monitoring is presented. Both an air-water bi-phase flow and a two-phase mixture composed of micrometric cells suspended on a liquid solution were successfully controlled and monitored through its use. To manufacture the MoF device, a highly innovative microprecision 3D printing technique was used named Projection Microstereolithography (PμSL) in combination with the use of a novel 3D printable photocurable resin suitable for biological and biomedical applications. The concentration monitoring of biological fluids relies on the absorption phenomenon. More precisely, the nature of the transmission of the light strictly depends on the cell concentration: the higher the cell concentration, the lower the optical acquired signal. To achieve this, the microfluidic T-junction device was designed with two micrometric slots for the optical fibers' insertion, needed to acquire the light signal. In fact, both the micro-optical and the microfluidic components were integrated within the developed device. To assess the suitability of the selected biocompatible transparent resin for optical detection relying on the selected working principle (absorption phenomenon), a comparison between a two-phase flow process detected inside a previously fully characterized micro-optofluidic device made of a nonbiocompatible high-performance resin (HTL resin) and the same made of the biocompatible one (BIO resin) was carried out. In this way, it was possible to highlight the main differences between the two different resin grades, which were further justified with proper chemical analysis of the used resins and their hydrophilic/hydrophobic nature via static water contact angle measurements. A wide experimental campaign was performed for the biocompatible device manufactured through the PμSL technique in different operative conditions, i.e., different concentrations of eukaryotic yeast cells of Saccharomyces cerevisiae (with a diameter of 5 μm) suspended on a PBS (phosphate-buffered saline) solution. The performed analyses revealed that the selected photocurable transparent biocompatible resin for the manufactured device can be used for cell concentration monitoring by using ad hoc 3D printed micro-optofluidic devices. In fact, by means of an optical detection system and using the optimized operating conditions, i.e., the optimal values of the flow rate FR=0.1 mL/min and laser input power P∈{1,3} mW, we were able to discriminate between biological fluids with different concentrations of suspended cells with a robust working ability R2=0.9874 and Radj2=0.9811.
Collapse
Affiliation(s)
- Lorena Saitta
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
| | - Emanuela Cutuli
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (M.B.)
| | - Giovanni Celano
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
| | - Claudio Tosto
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
| | - Dario Sanalitro
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (M.B.)
| | - Francesca Guarino
- Department of Biomedical and Biotechnological Science, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| | - Gianluca Cicala
- Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (G.C.); (C.T.); (G.C.)
- INSTM-UDR CT, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Maide Bucolo
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (D.S.); (M.B.)
| |
Collapse
|
40
|
Yamin D, Uskoković V, Wakil AM, Goni MD, Shamsuddin SH, Mustafa FH, Alfouzan WA, Alissa M, Alshengeti A, Almaghrabi RH, Fares MAA, Garout M, Al Kaabi NA, Alshehri AA, Ali HM, Rabaan AA, Aldubisi FA, Yean CY, Yusof NY. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel) 2023; 13:3246. [PMID: 37892067 PMCID: PMC10606640 DOI: 10.3390/diagnostics13203246] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Antibiotic resistance is a global public health concern, posing a significant threat to the effectiveness of antibiotics in treating bacterial infections. The accurate and timely detection of antibiotic-resistant bacteria is crucial for implementing appropriate treatment strategies and preventing the spread of resistant strains. This manuscript provides an overview of the current and emerging technologies used for the detection of antibiotic-resistant bacteria. We discuss traditional culture-based methods, molecular techniques, and innovative approaches, highlighting their advantages, limitations, and potential future applications. By understanding the strengths and limitations of these technologies, researchers and healthcare professionals can make informed decisions in combating antibiotic resistance and improving patient outcomes.
Collapse
Affiliation(s)
- Dina Yamin
- Al-Karak Public Hospital, Karak 61210, Jordan;
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
| | - Vuk Uskoković
- TardigradeNano LLC., Irvine, CA 92604, USA;
- Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA
| | - Abubakar Muhammad Wakil
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, University Malaysia Kelantan, Kota Bharu 16100, Kelantan, Malaysia;
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri 600104, Borno, Nigeria
| | - Mohammed Dauda Goni
- Public Health and Zoonoses Research Group, Faculty of Veterinary Medicine, University Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia;
| | - Shazana Hilda Shamsuddin
- Department of Pathology, School of Medical Sciences, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Fatin Hamimi Mustafa
- Department of Electronic & Computer Engineering, Faculty of Electrical Engineering, University Teknologi Malaysia, Johor Bharu 81310, Johor, Malaysia;
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia;
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Rana H. Almaghrabi
- Pediatric Department, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates;
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Hamza M. Ali
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia;
| | - Ali A. Rabaan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | | | - Chan Yean Yean
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine, University Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
41
|
Kamanina OA, Lantsova EA, Rybochkin PV, Arlyapov VA, Saverina EA, Kulikovskaya NS, Perepukhov AM, Vereshchagin AN, Ananikov VP. "3-in-1" Hybrid Biocatalysts: Association of Yeast Cells Immobilized in a Sol-Gel Matrix for Determining Sewage Pollution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47779-47789. [PMID: 37782502 DOI: 10.1021/acsami.3c09897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This study presents a novel ″3-in-1″ hybrid biocatalyst design that combines the individual efficiency of microorganisms while avoiding negative interactions between them. Yeast cells of Ogataea polymorpha VKM Y-2559, Blastobotrys adeninivorans VKM Y-2677, and Debaryomyces hansenii VKM Y-2482 were immobilized in an organosilicon material by using the sol-gel method, resulting in a hybrid biocatalyst. The catalytic activity of the immobilized microorganism mixture was evaluated by employing it as the bioreceptor element of a biosensor. Optical and scanning electron microscopies were used to examine the morphology of the biohybrid material. Elemental distribution analysis confirmed the encapsulation of yeast cells in a matrix composed of methyltriethoxysilane (MTES) and tetraethoxysilane (TEOS) (85 and 15 vol %, respectively). The resulting heterogeneous biocatalyst exhibited excellent performance in determining the biochemical oxygen demand (BOD) index in real surface water samples, with a sensitivity coefficient of 50 ± 3 × 10-3·min-1, a concentration range of 0.3-31 mg/L, long-term stability for 25 days, and a relative standard deviation of 3.8%. These findings demonstrate the potential of the developed hybrid biocatalyst for effective pollution monitoring and wastewater treatment applications.
Collapse
Affiliation(s)
| | | | | | | | - Evgeniya A Saverina
- Tula State University, pr. Lenina 92, 300012 Tula, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Natalia S Kulikovskaya
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Alexander M Perepukhov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Anatoly N Vereshchagin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
42
|
Wang T, Wu M, Cao L, Liu B. Organic functional substance engineered living materials for biomedical applications. Biomaterials 2023; 301:122248. [PMID: 37487360 DOI: 10.1016/j.biomaterials.2023.122248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Modifying living materials with organic functional substances (OFS) is a convenient and effective strategy to control and monitor the transport, engraftment, and secretion processes in living organisms. OFSs, including small organic molecules and organic polymers, own the merit of design flexibility, satisfying performance, and excellent biocompatibility, which allow for living materials functionalization to realize real-time sensing, controlled drug release, enhanced biocompatibility, accurate diagnosis, and precise treatment. In this review, we discuss the different principles of OFS modification on living materials and demonstrate the applications of engineered living materials in health monitoring, drug delivery, wound healing, and tissue regeneration.
Collapse
Affiliation(s)
- Tongtong Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Min Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| | - Lei Cao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Bin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
43
|
Zhu J, Wang B, Zhang Y, Wei T, Gao T. Living electrochemical biosensing: Engineered electroactive bacteria for biosensor development and the emerging trends. Biosens Bioelectron 2023; 237:115480. [PMID: 37379794 DOI: 10.1016/j.bios.2023.115480] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Bioelectrical interfaces made of living electroactive bacteria (EAB) provide a unique opportunity to bridge biotic and abiotic systems, enabling the reprogramming of electrochemical biosensing. To develop these biosensors, principles from synthetic biology and electrode materials are being combined to engineer EAB as dynamic and responsive transducers with emerging, programmable functionalities. This review discusses the bioengineering of EAB to design active sensing parts and electrically connective interfaces on electrodes, which can be applied to construct smart electrochemical biosensors. In detail, by revisiting the electron transfer mechanism of electroactive microorganisms, engineering strategies of EAB cells for biotargets recognition, sensing circuit construction, and electrical signal routing, engineered EAB have demonstrated impressive capabilities in designing active sensing elements and developing electrically conductive interfaces on electrodes. Thus, integration of engineered EAB into electrochemical biosensors presents a promising avenue for advancing bioelectronics research. These hybridized systems equipped with engineered EAB can promote the field of electrochemical biosensing, with applications in environmental monitoring, health monitoring, green manufacturing, and other analytical fields. Finally, this review considers the prospects and challenges of the development of EAB-based electrochemical biosensors, identifying potential future applications.
Collapse
Affiliation(s)
- Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Baoguo Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yixin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
44
|
Yao H, Xiao J, Tang X. Microbial Fuel Cell-Based Organic Matter Sensors: Principles, Structures and Applications. Bioengineering (Basel) 2023; 10:886. [PMID: 37627771 PMCID: PMC10451650 DOI: 10.3390/bioengineering10080886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Wastewater contains a significant quantity of organic matter, continuously causing environmental pollution. Timely and accurate detection of organic content in water can facilitate improved wastewater treatment and better protect the environment. Microbial fuel cells (MFCs) are increasingly recognized as valuable biological monitoring systems, due to their ability to swiftly detect organic indicators such as biological oxygen demand (BOD) and chemical oxygen demand (COD) in water quality. Different types of MFC sensors are used for BOD and COD detection, each with unique features and benefits. This review focuses on different types of MFC sensors used for BOD and COD detection, discussing their benefits and structural optimization, as well as the influencing factors of MFC-based biomonitoring systems. Additionally, the challenges and prospects associated with the development of reliable MFC sensing systems are discussed.
Collapse
Affiliation(s)
| | | | - Xinhua Tang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430062, China
| |
Collapse
|
45
|
Abstract
Optical biosensors are frontrunners for the rapid and real-time detection of analytes, particularly for low concentrations. Among them, whispering gallery mode (WGM) resonators have recently attracted a growing focus due to their robust optomechanical features and high sensitivity, measuring down to single binding events in small volumes. In this review, we provide a broad overview of WGM sensors along with critical advice and additional "tips and tricks" to make them more accessible to both biochemical and optical communities. Their structures, fabrication methods, materials, and surface functionalization chemistries are discussed. We propose this reflection under a pedagogical approach to describe and explain these biochemical sensors with a particular focus on the most recent achievements in the field. In addition to highlighting the advantages of WGM sensors, we also discuss and suggest strategies to overcome their current limitations, leaving room for further development as practical tools in various applications. We aim to provide new insights and combine different knowledge and perspectives to advance the development of the next generation of WGM biosensors. With their unique advantages and compatibility with different sensing modalities, these biosensors have the potential to become major game changers for biomedical and environmental monitoring, among many other relevant target applications.
Collapse
Affiliation(s)
- Médéric Loyez
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Maxwell Adolphson
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Jie Liao
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| |
Collapse
|
46
|
Lillico DME, Hussain NAS, Choo-Yin YY, Qin R, How ZT, El-Din MG, Stafford JL. Using immune cell-based bioactivity assays to compare the inflammatory activities of oil sands process-affected waters from a pilot scale demonstration pit lake. J Environ Sci (China) 2023; 128:55-70. [PMID: 36801042 DOI: 10.1016/j.jes.2022.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/18/2023]
Abstract
In this study, we provide evidence that oil sands process-affected waters (OSPW) contain factors that activate the antimicrobial and proinflammatory responses of immune cells. Specifically, using the murine macrophage RAW 264.7 cell line, we establish the bioactivity of two different OSPW samples and their isolated fractions. Here, we directly compared the bioactivity of two pilot scale demonstration pit lake (DPL) water samples, which included expressed water from treated tailings (termed the before water capping sample; BWC) as well as an after water capping (AWC) sample consisting of a mixture of expressed water, precipitation, upland runoff, coagulated OSPW and added freshwater. Significant inflammatory (i.e. macrophage activating) bioactivity was associated with the AWC sample and its organic fraction (OF), whereas the BWC sample had reduced bioactivity that was primarily associated with its inorganic fraction (IF). Overall, these results indicate that at non-toxic exposure doses, the RAW 264.7 cell line serves as an acute, sensitive and reliable biosensor for the screening of inflammatory constituents within and among discrete OSPW samples.
Collapse
Affiliation(s)
- Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Yemaya Y Choo-Yin
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada
| | - Rui Qin
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - Zuo Tong How
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Alberta T6G 2E9, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta T6G 2E9, Canada.
| |
Collapse
|
47
|
Ma Z, Li Y, Lu C, Li M. On-site screening method for bioavailability assessment of the organophosphorus pesticide, methyl parathion, and its primary metabolite in soils by paper strip biosensor. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131725. [PMID: 37295330 DOI: 10.1016/j.jhazmat.2023.131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
An important public concern worldwide is soil pollution caused by organophosphorus pesticides and their primary metabolites. To protect the public's health, screening these pollutants on-site and determining their soil bioavailability is important, but doing so is still challenging. This work improved the already-existing organophosphorus pesticide hydrolase (mpd) and transcriptional activator (pobR), and it first designed and constructed a novel biosensor (Escherichia coli BL21/pNP-LacZ) that can precisely detect methyl parathion (MP) and its primary metabolite p-nitrophenol with low background value. To create a paper strip biosensor, E. coli BL21/pNP-LacZ was fixed to filter paper using bio-gel alginate and sensitizer polymyxin B. According to the calibrations of the paper strip biosensor for soil extracts and standard curve, the color intensity of the paper strip biosensor collected by the mobile app may be used to compute the concentration of MP and p-nitrophenol. This method's detection limits were 5.41 µg/kg for p-nitrophenol and 9.57 µg/kg for MP. The detection of p-nitrophenol and MP in laboratory and field soil samples confirmed this procedure. Paper strip biosensor on-site allows for the semi-quantitative measurement of p-nitrophenol and MP levels in soils in a simple, inexpensive, and portable method.
Collapse
Affiliation(s)
- Zhao Ma
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Chao Lu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
48
|
Hui CY, Hu SY, Yang XQ, Guo Y. A panel of visual bacterial biosensors for the rapid detection of genotoxic and oxidative damage: A proof of concept study. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503639. [PMID: 37188434 DOI: 10.1016/j.mrgentox.2023.503639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023]
Abstract
The emergence of new compounds during the past decade requires a high-throughput screening method for toxicity assay. The stress-responsive whole-cell biosensor is a powerful tool to evaluate direct or indirect damages of biological macromolecules induced by toxic chemicals. In this proof-of-concept study, nine well-characterized stress-responsive promoters were first selected to assemble a set of blue indigoidine-based biosensors. The PuspA-based, PfabA-based, and PgrpE-based biosensors were eliminated due to their high background. A dose-dependent increase of visible blue signal was observed in PrecA-, PkatG-, and PuvrA-based biosensors, responsive to potent mutagens, including mitomycin and nalidixic acid, but not to genotoxic lead and cadmium. The PrecA, PkatG, and Ppgi gene promoters were further fused to a purple deoxyviolacein synthetic enzyme cluster. Although high basal production of deoxyviolacein is unavoidable, an enhanced visible purple signal in response to mitomycin and nalidixic acid was observed as dose-dependent, especially in PkatG-based biosensors. The study shows that a set of stress-responsive biosensors employing visible pigment as a reporter is pre-validating in detecting extensive DNA damage and intense oxidative stress. Unlike widely-used fluorescent and bioluminescent biosensors, the visual pigment-based biosensor can become a novel, low-cost, mini-equipment, and high-throughput colorimetric device for the toxicity assessment of chemicals. However, combining multiple improvements can further improve the biosensing performance in future studies.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Shun-Yu Hu
- Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xue-Qin Yang
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| |
Collapse
|
49
|
Thai TD, Lim W, Na D. Synthetic bacteria for the detection and bioremediation of heavy metals. Front Bioeng Biotechnol 2023; 11:1178680. [PMID: 37122866 PMCID: PMC10133563 DOI: 10.3389/fbioe.2023.1178680] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Toxic heavy metal accumulation is one of anthropogenic environmental pollutions, which poses risks to human health and ecological systems. Conventional heavy metal remediation approaches rely on expensive chemical and physical processes leading to the formation and release of other toxic waste products. Instead, microbial bioremediation has gained interest as a promising and cost-effective alternative to conventional methods, but the genetic complexity of microorganisms and the lack of appropriate genetic engineering technologies have impeded the development of bioremediating microorganisms. Recently, the emerging synthetic biology opened a new avenue for microbial bioremediation research and development by addressing the challenges and providing novel tools for constructing bacteria with enhanced capabilities: rapid detection and degradation of heavy metals while enhanced tolerance to toxic heavy metals. Moreover, synthetic biology also offers new technologies to meet biosafety regulations since genetically modified microorganisms may disrupt natural ecosystems. In this review, we introduce the use of microorganisms developed based on synthetic biology technologies for the detection and detoxification of heavy metals. Additionally, this review explores the technical strategies developed to overcome the biosafety requirements associated with the use of genetically modified microorganisms.
Collapse
Affiliation(s)
| | | | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Xu S, Liu Y, Yang Y, Zhang K, Liang W, Xu Z, Wu Y, Luo J, Zhuang C, Cai X. Recent Progress and Perspectives on Neural Chip Platforms Integrating PDMS-Based Microfluidic Devices and Microelectrode Arrays. MICROMACHINES 2023; 14:709. [PMID: 37420942 PMCID: PMC10145465 DOI: 10.3390/mi14040709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 07/09/2023]
Abstract
Recent years have witnessed a spurt of progress in the application of the encoding and decoding of neural activities to drug screening, diseases diagnosis, and brain-computer interactions. To overcome the constraints of the complexity of the brain and the ethical considerations of in vivo research, neural chip platforms integrating microfluidic devices and microelectrode arrays have been raised, which can not only customize growth paths for neurons in vitro but also monitor and modulate the specialized neural networks grown on chips. Therefore, this article reviews the developmental history of chip platforms integrating microfluidic devices and microelectrode arrays. First, we review the design and application of advanced microelectrode arrays and microfluidic devices. After, we introduce the fabrication process of neural chip platforms. Finally, we highlight the recent progress on this type of chip platform as a research tool in the field of brain science and neuroscience, focusing on neuropharmacology, neurological diseases, and simplified brain models. This is a detailed and comprehensive review of neural chip platforms. This work aims to fulfill the following three goals: (1) summarize the latest design patterns and fabrication schemes of such platforms, providing a reference for the development of other new platforms; (2) generalize several important applications of chip platforms in the field of neurology, which will attract the attention of scientists in the field; and (3) propose the developmental direction of neural chip platforms integrating microfluidic devices and microelectrode arrays.
Collapse
Affiliation(s)
- Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Zhuang
- Department of Orthopaedics, Rujing Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|