1
|
Mansour A, Eldin MH, El-Sherbiny IM. Metallic nanomaterials in Parkinson's disease: a transformative approach for early detection and targeted therapy. J Mater Chem B 2025; 13:3806-3830. [PMID: 40029109 DOI: 10.1039/d4tb02428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by substantial loss of dopaminergic neurons in the substantia nigra, leading to both motor and non-motor symptoms that significantly impact quality of life. The prevalence of PD is expected to increase with the aging population, affecting millions globally. Current detection techniques, including clinical assays and neuroimaging, lack the sensitivity and specificity to sense PD in its earliest stages. Despite extensive research, there is no cure for PD, and available treatments primarily focus on symptomatic relief rather than halting disease progression. Conventional treatments, such as levodopa and dopamine agonists, provide limited and often temporary relief, with long-term use associated with significant side effects and diminished efficacy. Nanotechnology, particularly the use of metallic-based nanomaterials (MNMs), offers a promising approach to overcome these limitations. MNMs, due to their unique physicochemical properties, can be engineered to target specific cellular and molecular mechanisms involved in PD. These MNMs can improve drug delivery, enhance imaging and biosensing techniques, and provide neuroprotective effects. For example, gold and silver nanoparticles have shown potential in crossing the blood-brain barrier, providing real-time imaging for early diagnosis and delivering therapeutic agents directly to the affected neurons. This review aims to reveal the current advancements in the use of MNMs for the detection and treatment of PD. It will provide a comprehensive overview of the limitations of conventional detection techniques and therapies, followed by a detailed discussion on how nanotechnology can address these challenges. The review will also highlight recent preclinical research and examine the potential toxicity of MNMs. By emphasizing the potential of MNMs, this review article aims to underscore the transformative impact of nanotechnology in revolutionizing the detection and treatment of PD.
Collapse
Affiliation(s)
- Amira Mansour
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt.
| | - Mariam Hossam Eldin
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt.
| | - Ibrahim M El-Sherbiny
- Nanomedicine Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578 Giza, Egypt.
| |
Collapse
|
2
|
Camargo M, Muñoz M, Patiño LH, Ramírez JD. Strengthening molecular testing capacity in Colombia: Challenges and opportunities. Diagn Microbiol Infect Dis 2025; 111:116716. [PMID: 39894004 DOI: 10.1016/j.diagmicrobio.2025.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
The COVID-19 pandemic has accelerated efforts to enhance pathogen detection using molecular biology techniques. This study examines the expansion of molecular testing capacity in Colombia, identifying strengths and areas for improvement in the existing infrastructure. The study began with the creation of a database inventorying laboratories based on publicly available data from government entities and active web searches. Ten laboratories were selected for detailed characterization. Structured surveys assessed their testing capacity and progress in implementing molecular-based diagnostic tests for various infectious diseases. The strategy for identifying laboratories showed a total of 311 laboratories. Of these, 65 % (n = 202) are private and 21 % (n = 65) are state-owned, mainly public health laboratories, and the remaining 14 % (n = 44) are affiliated with academic institutions. The highest concentration of these labs is in Bogotá, Antioquia, and Valle del Cauca, primarily in urban areas. Key limitations affecting testing laboratories in Colombia include: i) infrastructure (26.2 %), highlighting the need for standardized facility guidelines; ii) quality and documentation (16.7 %), requiring stronger quality management systems; iii) biosafety (14.3 %), emphasizing the need for continuous waste management, especially in public labs; and iv) human talent (10.7 %), needing better policies for staff retention, particularly in government institutions. Strengthening laboratories can establish a comprehensive national molecular testing system. Integrating molecular tests into health system diagnostic algorithms and implementing sustainable laboratory strategies will address human health challenges and support the "One Health" approach for animal and environmental health.
Collapse
Affiliation(s)
- Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá D.C., 112111, Colombia; Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Funza, Cundinamarca, 250027, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá D.C., 112111, Colombia; Instituto de Biotecnología -UN (IBUN), Universidad Nacional de Colombia, Bogotá D.C., 111321, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá D.C., 112111, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá D.C., 112111, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
3
|
Vo DK, Trinh KTL. Polymerase Chain Reaction Chips for Biomarker Discovery and Validation in Drug Development. MICROMACHINES 2025; 16:243. [PMID: 40141854 PMCID: PMC11944077 DOI: 10.3390/mi16030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025]
Abstract
Polymerase chain reaction (PCR) chips are advanced, microfluidic platforms that have revolutionized biomarker discovery and validation because of their high sensitivity, specificity, and throughput levels. These chips miniaturize traditional PCR processes for the speed and precision of nucleic acid biomarker detection relevant to advancing drug development. Biomarkers, which are useful in helping to explain disease mechanisms, patient stratification, and therapeutic monitoring, are hard to identify and validate due to the complexity of biological systems and the limitations of traditional techniques. The challenges to which PCR chips respond include high-throughput capabilities coupled with real-time quantitative analysis, enabling researchers to identify novel biomarkers with greater accuracy and reproducibility. More recent design improvements of PCR chips have further expanded their functionality to also include digital and multiplex PCR technologies. Digital PCR chips are ideal for quantifying rare biomarkers, which is essential in oncology and infectious disease research. In contrast, multiplex PCR chips enable simultaneous analysis of multiple targets, therefore simplifying biomarker validation. Furthermore, single-cell PCR chips have made it possible to detect biomarkers at unprecedented resolution, hence revealing heterogeneity within cell populations. PCR chips are transforming drug development, enabling target identification, patient stratification, and therapeutic efficacy assessment. They play a major role in the development of companion diagnostics and, therefore, pave the way for personalized medicine, ensuring that the right patient receives the right treatment. While this tremendously promising technology has exhibited many challenges regarding its scalability, integration with other omics technologies, and conformity with regulatory requirements, many still prevail. Future breakthroughs in chip manufacturing, the integration of artificial intelligence, and multi-omics applications will further expand PCR chip capabilities. PCR chips will not only be important for the acceleration of drug discovery and development but also in raising the bar in improving patient outcomes and, hence, global health care as these technologies continue to mature.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea;
| | - Kieu The Loan Trinh
- Bionano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Lafi Z, Ata T, Asha S. CRISPR in clinical diagnostics: bridging the gap between research and practice. Bioanalysis 2025; 17:281-290. [PMID: 39902531 DOI: 10.1080/17576180.2025.2459520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) has transformed molecular biology through its precise gene-editing capabilities. Beyond its initial applications in genetic modification, CRISPR has emerged as a powerful tool in diagnostics and biosensing. This review explores its transition from genome editing to innovative detection methods, including nucleic acid identification, single nucleotide polymorphism (SNP) analysis, and protein sensing. Advanced technologies such as SHERLOCK and DETECTR demonstrate CRISPR's potential for point-of-care diagnostics, enabling rapid and highly sensitive detection. The integration of chemical modifications, CRISPR-Chip technology, and enzymatic systems like Cas12a and Cas13a enhances signal amplification and detection efficiency. These advancements promise decentralized, real-time diagnostic solutions with significant implications for global healthcare. Furthermore, the fusion of CRISPR with artificial intelligence and digital health platforms is paving the way for more accessible, cost-effective, and scalable diagnostic approaches, ultimately revolutionizing precision medicine.
Collapse
Affiliation(s)
- Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Tha'er Ata
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Sherine Asha
- School of Medicine, University of Jordan, Amman, Jordan
| |
Collapse
|
5
|
Yadav A, Yadav K. Portable solutions for plant pathogen diagnostics: development, usage, and future potential. Front Microbiol 2025; 16:1516723. [PMID: 39959158 PMCID: PMC11825793 DOI: 10.3389/fmicb.2025.1516723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
The increasing prevalence of plant pathogens presents a critical challenge to global food security and agricultural sustainability. While accurate, traditional diagnostic methods are often time-consuming, resource-intensive, and unsuitable for real-time field applications. The emergence of portable diagnostic tools represents a paradigm shift in plant disease management, offering rapid, on-site detection of pathogens with high accuracy and minimal technical expertise. This review explores portable diagnostic technologies' development, deployment, and future potential, including handheld analyzers, smartphone-integrated systems, microfluidics, and lab-on-a-chip platforms. We examine the core technologies underlying these devices, such as biosensors, nucleic acid amplification techniques, and immunoassays, highlighting their applicability to detect bacterial, viral, and fungal pathogens in diverse agricultural settings. Furthermore, the integration of these devices with digital technologies, including the Internet of Things (IoT), artificial intelligence (AI), and machine learning (ML), is transforming disease surveillance and management. While portable diagnostics have clear advantages in speed, cost-effectiveness, and user accessibility, challenges related to sensitivity, durability, and regulatory standards remain. Innovations in nanotechnology, multiplex detection platforms, and personalized agriculture promise to further enhance the efficacy of portable diagnostics. By providing a comprehensive overview of current technologies and exploring future directions, this review underscores the critical role of portable diagnostics in advancing precision agriculture and mitigating the impact of plant pathogens on global food production.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, C. P. College of Agriculture, Sardarkrushinagar Dantiwada Agricultural University, Banaskantha, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
6
|
Afzal M, Agarwal S, Elshaikh RH, Babker AMA, Osman EAI, Choudhary RK, Jaiswal S, Zahir F, Prabhakar PK, Abbas AM, Shalabi MG, Sah AK. Innovative Diagnostic Approaches and Challenges in the Management of HIV: Bridging Basic Science and Clinical Practice. Life (Basel) 2025; 15:209. [PMID: 40003618 PMCID: PMC11856619 DOI: 10.3390/life15020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Human Immunodeficiency Virus (HIV) remains a major public health challenge globally. Recent innovations in diagnostic technology have opened new pathways for early detection, ongoing monitoring, and more individualized patient care, yet significant barriers persist in translating these advancements into clinical settings. This review highlights the cutting-edge diagnostic methods emerging from basic science research, including molecular assays, biosensors, and next-generation sequencing, and discusses the practical and logistical challenges involved in their implementation. By analyzing current trends in diagnostic techniques and management strategies, we identify critical gaps and propose integrative approaches to bridge the divide between laboratory innovation and effective clinical application. This work emphasizes the need for comprehensive education, supportive infrastructure, and multi-disciplinary collaborations to enhance the utility of these diagnostic innovations in improving outcomes in patients with HIV.
Collapse
Affiliation(s)
- Mohd Afzal
- Department of Medical Laboratory Technology, Arogyam Institute of Paramedical & Allied Sciences (Affiliated to H.N.B.Uttarakhand Medical Education University), Roorkee 247661, Uttarakhand, India;
| | - Shagun Agarwal
- Shagun Agarwal, School of Allied Health Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India;
| | - Rabab H. Elshaikh
- Department of Medical Laboratory Sciences, College of Applied & Health Sciences, A’ Sharqiyah University, Ibra 400, Oman; (R.H.E.); (E.A.I.O.)
| | - Asaad M. A. Babker
- Department of Medical Laboratory Sciences, College of Health Sciences, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Einas Awad Ibrahim Osman
- Department of Medical Laboratory Sciences, College of Applied & Health Sciences, A’ Sharqiyah University, Ibra 400, Oman; (R.H.E.); (E.A.I.O.)
| | - Ranjay Kumar Choudhary
- Department of Medical Laboratory Technology, Amity Medical School, Amity University Haryana, Gurugram 122412, HR, India;
| | - Suresh Jaiswal
- School of Health & Allied Sciences, Pokhara University, Pokhara 33700, Nepal;
| | - Farhana Zahir
- Department of Biology, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Pranav Kumar Prabhakar
- Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Gujarat 391760, Vadodara, India;
| | - Anass M. Abbas
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (A.M.A.); (M.G.S.)
| | - Manar G. Shalabi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia; (A.M.A.); (M.G.S.)
| | - Ashok Kumar Sah
- Department of Medical Laboratory Sciences, College of Applied & Health Sciences, A’ Sharqiyah University, Ibra 400, Oman; (R.H.E.); (E.A.I.O.)
| |
Collapse
|
7
|
Chen Y, Wang P, Zhang FN, Dai H, Jiao XY, Wang XY, Yu QW, Kang M, Su S, Wang D. Sensors for surveillance of RNA viruses: a One Health perspective. THE LANCET. MICROBE 2024:101029. [PMID: 39681124 DOI: 10.1016/j.lanmic.2024.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 12/18/2024]
Abstract
RNA viruses, especially those capable of cross-species transmission, pose a serious threat to human, animal, and environmental health, as exemplified by the 2024 outbreak of the highly pathogenic avian influenza H5N1 virus in cattle, unpasteurised milk, and workers on dairy farms in the USA. This escalating risk of a new RNA virus pandemic highlights the urgent need to implement One Health strategies. However, the centralised virus detection systems currently in use fall short of meeting the required level of virus surveillance and infection diagnosis, particularly in resource-limited regions. In this context, the latest advancements in RNA virus-sensing technologies offer promising solutions. Through interdisciplinary collaboration, these sensors can achieve sensitivity and reliability similar to that of standard laboratory equipment and offer several advantages, such as compact size, affordability, and operational simplicity. In this Review, we highlight the latest advances in sensing technologies for detecting different biomarkers of viral infections (RNA, antigens, and antibodies). We further compare the sensing principles and performances of these technologies and discuss the possibility of deployment of these sensors in the One Health approach and the challenges expected in this pursuit. In conclusion, the widespread use of RNA virus sensors is expected to enhance the effectiveness of surveillance systems for infectious diseases.
Collapse
Affiliation(s)
- Ye Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Peng Wang
- Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China
| | - Fen-Ni Zhang
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xin-Yi Jiao
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xin-Yu Wang
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Qi-Wen Yu
- Research Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, China
| | - Mei Kang
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China; Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Su
- Department of Epidemiology, School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Di Wang
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China; Research Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou, China.
| |
Collapse
|
8
|
Santos-Ramirez JMDL, Martinez-Gonzalez VG, Mendiola-Escobedo CA, Cotera-Sarabia JM, Gallo-Villanueva RC, Martinez-Duarte R, Perez-Gonzalez VH. Short Communication: Ultralow Voltage Electrokinetic Particle Trapping in DC-iEK Devices Using 9 V Alkaline Batteries as Power Supply. Electrophoresis 2024. [PMID: 39607317 DOI: 10.1002/elps.202400141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/18/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
This contribution describes direct current insulator-based electrokinetic (DC-iEK) microfluidic devices stimulated by 9 V alkaline batteries for the trapping of 2-µm diameter fluorescent polystyrene particles. These devices featured two triangular insulating posts within the fluidic channel. Particle trapping was clearly observed at 18 V (two 9 V batteries connected in series), but only intermittent particle trapping was observed with a single 9 V battery. Particle trapping was determined by measuring the increase in relative fluorescence intensity at the gap region between the single pair of triangular posts. Results demonstrate that the use of low stimulating voltages (deemed as ultralow) in DC-iEK systems may be more suitable for accurate and precise electrokinetic characterization of particles-by exhibiting a very well-localized trapping region with negligible particle oscillations therein, respectively-than for high-performance and high-throughput particle manipulation (i.e., concentration, separation, filtering, or isolation).
Collapse
Affiliation(s)
| | | | | | - Jose M Cotera-Sarabia
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | | | - Rodrigo Martinez-Duarte
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, USA
| | | |
Collapse
|
9
|
Yin S, Li Z. A handheld fluorescent platform integrated with a Sm(III)-CdTe quantum dot-based ratiometric nanoprobe for point-of-use determination of phosphate. NANOSCALE 2024; 16:21147-21154. [PMID: 39469792 DOI: 10.1039/d4nr03497j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Phosphate (Pi) is crucial for various physiological processes and aquatic environments, which emphasizes the need for a simple, on-site sensor to promptly detect Pi for human health and environmental conservation. In this study, we propose a dual-emission ratiometric fluorescence sensor for highly sensitive and visual Pi detection. The sensor employs samarium ions (Sm3+) as a core component, with cadmium telluride quantum dots (CdTe QDs) and ofloxacin (OFL) serving as signal carriers. The CdTe-Sm(III)-OFL nanoprobe emits a purple fluorescence resulting from the red fluorescence of CdTe QDs and the blue-green fluorescence of OFL. The fluorescence of OFL is quenched by Sm3+ through fluorescence resonance energy transfer (FRET). Upon Pi interaction, the FRET process is disrupted due to the competitive Pi-Sm3+ binding, which leads to the fluorescence recovery of OFL while the red fluorescence of CdTe remains steady. This enables the construction of a ratiometric fluorescent sensor for Pi detection, manifesting as a color change from purple to blue. The sensor demonstrated a linear response for Pi detection within the range of 0.1-75 μM, with a low detection limit of 17.0 nM. By utilizing the distinct fluorescence responses of various physiological phosphates and employing chemometrics, this innovative dual-emission sensor accurately distinguishes among different physiological phosphates. Furthermore, a portable lab-on-paper device based on CdTe-Sm(III)-OFL, coupled with a smartphone-integrated mini-device, is developed for swift Pi detection using an ordinary smartphone. Analytical performance validated on environmental and biological samples demonstrates the sensor's excellent robustness and adaptability. This study introduces a pioneering approach to fabricate ratiometric fluorescence sensors and customize portable, cost-effective mini-devices for precise target detection, thus opening avenues for advanced sensing strategies in various applications.
Collapse
Affiliation(s)
- Shengnan Yin
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Zheng Li
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| |
Collapse
|
10
|
Lu Y, Hua MZ, Luo Y, Lu X, Liu Q. Hybrid paper/PDMS microfluidic device integrated with RNA extraction and recombinase polymerase amplification for detection of norovirus in foods. Appl Environ Microbiol 2024; 90:e0120824. [PMID: 39377590 PMCID: PMC11577789 DOI: 10.1128/aem.01208-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024] Open
Abstract
Human norovirus (HuNoV) is recognized as the leading causative agent of foodborne outbreaks of epidemic gastroenteritis. Consequently, there is a high demand for developing point-of-care testing for HuNoV. We developed an origami microfluidic device that facilitates rapid detection of murine norovirus 1 (MNV-1), a surrogate for HuNoV, encompassing the entire process from sample preparation to result visualization. This process includes RNA absorption via a paper strip, RNA amplification using recombinase polymerase amplification (RPA), and a lateral flow assay for signal readout. The on-chip detection of MNV-1 was completed within 35 min, demonstrating 100% specificity to MNV-1 in our settings. The detection limit of this microfluidic device for MNV-1 was 200 PFU/mL, comparable to the in-tube RPA reaction. It also successfully detected MNV-1 in lettuce and raspberries at concentrations of 170 PFU/g and 230 PFU/g, respectively, without requiring extra concentration steps. This device demonstrates high compatibility with isothermal nucleic acid amplification and holds significant potential for detecting foodborne viruses in agri-food products in remote and resource-limited settings. IMPORTANCE HuNoV belongs to the family of Caliciviridae and is a leading cause of acute gastroenteritis that can be transmitted through contaminated foods. HuNoV causes around one out of five cases of acute gastroenteritis that lead to diarrhea and vomiting, placing a substantial burden on the healthcare system worldwide. HuNoV outbreaks can occur when food is contaminated at the source (e.g., wild mussels exposed to polluted water), on farms (e.g., during crop cultivation, harvesting, or livestock handling), during packaging, or at catered events. The research outcomes of this study expand the approaches of HuNoV testing, adding value to the framework for routine testing of food products. This microfluidic device can facilitate the monitoring of HuNoV outbreaks, reduce the economic loss of the agri-food industry, and enhance food safety.
Collapse
Affiliation(s)
- Yuxiao Lu
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Marti Z. Hua
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Yuhang Luo
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Qian Liu
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- McGill Centre for Viral Diseases, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Liang H, Wang R, Luo T, Yuan M, He X, Jin R, Zhao Y, Tong R, Nie Y. Operation-friendly and accurate naked-eye observation assay for fast zoonotic echinococcosis and pulmonary tuberculosis monitoring in clinics. Anal Chim Acta 2024; 1314:342769. [PMID: 38876513 DOI: 10.1016/j.aca.2024.342769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Echinococcosis and tuberculosis are two common zoonotic diseases that can cause severe pulmonary infections. Early screening and treatment monitoring are of great significance, especially in areas with limited medical resources. Herein, we designed an operation-friendly and rapid magnetic enrichment-silver acetylene chromogenic immunoassay (Me-Sacia) to monitor the antibody. The main components included secondary antibody-modified magnetic nanoparticles (MNP-Ab2) as capture nanoparticles, specific peptide (EG95 or CFP10)-modified silver nanoparticles (AgNP-PTs) as detection nanoparticles, and alkyne-modified gold nanoflowers as chromogenic nanoparticles. Based on the magnetic separation and plasma luminescence techniques, Me-Sacia could completely replace the colorimetric assay of biological enzymes. It reduced the detection time to approximately 1 h and simplified the labor-intensive and equipment-intensive processes associated with conventional ELISA. Meanwhile, the Me-Sacia showed universality for various blood samples and intuitive observation with the naked eye. Compared to conventional ELISA, Me-Sacia lowered the detection limit by approximately 96.8 %, increased the overall speed by approximately 15 times, and improved sensitivity by approximately 7.2 %, with a 100 % specificity and a coefficient of variation (CV) of less than 15 %.
Collapse
Affiliation(s)
- Hong Liang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Ruohan Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610041, China
| | - Tianying Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610041, China
| | - Mengying Yuan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xia He
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610041, China
| | - Yangyang Zhao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610041, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yu Nie
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Gui F, Foerster R, Wieduwilt T, Zeisberger M, Kim J, Schmidt MA. Capillary-assisted flat-field formation: a platform for advancing nanoparticle tracking analysis in an integrated on-chip optofluidic environment. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3135-3145. [PMID: 39634944 PMCID: PMC11501659 DOI: 10.1515/nanoph-2024-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/07/2024] [Indexed: 12/07/2024]
Abstract
Here, we present the concept of flat-field capillary-assisted nanoparticle tracking analysis for the characterization of fast diffusing nano-objects. By combining diffusion confinement and spatially invariant illumination, i.e., flat-fields, within a fiber-interfaced on-chip environment, ultra-long trajectories of fast diffusing objects within large microchannels have been measured via diffraction-limited imaging. Our study discusses the design procedure, explains potential limitations, and experimentally confirms flat-field formation by tracking gold nanospheres. The presented concept enables generating flat-fields in a novel on-chip optofluidic platform for the characterization of individual nano-objects for fundamental light/matter investigations or applications in bioanalytics and nanoscale material science.
Collapse
Affiliation(s)
- Fengji Gui
- The Department of Fiber Photonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, 07745Jena, Germany
| | - Ronny Foerster
- The Department of Fiber Photonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, 07745Jena, Germany
| | - Torsten Wieduwilt
- The Department of Fiber Photonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, 07745Jena, Germany
| | - Matthias Zeisberger
- The Department of Fiber Photonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, 07745Jena, Germany
| | - Jisoo Kim
- The Department of Fiber Photonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, 07745Jena, Germany
| | - Markus A. Schmidt
- The Department of Fiber Photonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, 07745Jena, Germany
- Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743Jena, Germany
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743Jena, Germany
| |
Collapse
|
13
|
Shen Q, Qian L, Chen Y, Bao Y, Wang J, Wang X, Liu Y, Yang S, Ji L, Shan T, Li H, Zhang W. Development of a label-free photoelectrochemical immunosensor for novel astrovirus detection. Mikrochim Acta 2024; 191:422. [PMID: 38922459 DOI: 10.1007/s00604-024-06514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Since 2017, an infectious goose gout disease characterized by urate precipitation in viscera, mainly caused by novel goose astrovirus (GoAstV) infection, has emerged in the main goose-producing region of China. The current challenge in managing goose gout disease is largely due to the absence of a rapid and efficient detection method for the GoAstV pathogen. Notably, the potential application of immunosensors in detecting GoAstV has not yet been explored. Herein, a label-free PEC immunosensor was fabricated by using purchased TiO2 as the photoactive material and antibody against GoAstV P2 proteins as the specific recognition element. First, we successfully expressed the capsid spike domain P2 protein of ORF2 from GoAstV CHSH01 by using the pET prokaryotic expression system. Meanwhile, the polyclonal antibody against GoAstV capsid P2 protein was produced by purified protein. To our knowledge, this is the first establishment and preliminary application of the label-free photoelectrochemical immunosensor method in the detection of AstV. The PEC immunosensor had a linear range of 1.83 fg mL-1 to 3.02 ng mL-1, and the limit of detection (LOD) was as low as 0.61 fg mL-1. This immunosensor exhibited high sensitivity, great specificity, and good stability in detecting GoAstV P2 proteins. To evaluate the practical application of the immunosensor in real-world sample detection, allantoic fluid from goose embryos was collected as test samples. The results indicated that of the eight positive samples, one false negative result was detected, while both negative samples were accurately detected, suggesting that the constructed PEC immunosensor had good applicability and practical application value, providing a platform for the qualitative detection of GoAstV.
Collapse
Affiliation(s)
- Quan Shen
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Lingling Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yingying Bao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiangqiang Wang
- Intensive Care Unit, Jintan District Hospital of Traditional Chinese Medicine, Changzhou, 213299, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yuwei Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Henan Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Wen Zhang
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212002, China.
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
14
|
Argueta-Diaz V, Owens M, Al Ramadan A. Increasing Optical Path Lengths in Micro-Fluidic Devices Using a Multi-Pass Cell. MICROMACHINES 2024; 15:820. [PMID: 39064331 PMCID: PMC11278631 DOI: 10.3390/mi15070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
This study presents a novel absorption cell with a circular geometry that can be integrated into microfluidic devices for optical spectroscopy applications. The absorption cell is made of PDMS/SU8 and offers an optical path length that is 8.5 times its diameter, resulting in a significant increase in the sensitivity of the measurements. Overall, this design provides a reliable and efficient solution for optical spectroscopy in microfluidic systems, enabling the precise detection and analysis of small quantities of analytes.
Collapse
Affiliation(s)
| | - McKenna Owens
- College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | | |
Collapse
|
15
|
Sun A, Vopařilová P, Liu X, Kou B, Řezníček T, Lednický T, Ni S, Kudr J, Zítka O, Fohlerová Z, Pajer P, Zhang H, Neužil P. An integrated microfluidic platform for nucleic acid testing. MICROSYSTEMS & NANOENGINEERING 2024; 10:66. [PMID: 38784376 PMCID: PMC11111744 DOI: 10.1038/s41378-024-00677-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/30/2023] [Accepted: 01/07/2024] [Indexed: 05/25/2024]
Abstract
This study presents a rapid and versatile low-cost sample-to-answer system for SARS-CoV-2 diagnostics. The system integrates the extraction and purification of nucleic acids, followed by amplification via either reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or reverse transcription loop-mediated isothermal amplification (RT-LAMP). By meeting diverse diagnostic and reagent needs, the platform yields testing results that closely align with those of commercial RT-LAMP and RT‒qPCR systems. Notable advantages of our system include its speed and cost-effectiveness. The assay is completed within 28 min, including sample loading (5 min), ribonucleic acid (RNA) extraction (3 min), and RT-LAMP (20 min). The cost of each assay is ≈ $9.5, and this pricing is competitive against that of Food and Drug Administration (FDA)-approved commercial alternatives. Although some RNA loss during on-chip extraction is observed, the platform maintains a potential limit of detection lower than 297 copies. Portability makes the system particularly useful in environments where centralized laboratories are either unavailable or inconveniently located. Another key feature is the platform's versatility, allowing users to choose between RT‒qPCR or RT‒LAMP tests based on specific requirements.
Collapse
Affiliation(s)
- Antao Sun
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 P. R. China
| | - Petra Vopařilová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Xiaocheng Liu
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 P. R. China
| | - Bingqian Kou
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 P. R. China
| | - Tomáš Řezníček
- ITD Tech s.r.o, Osvoboditelů 1005, 735 81 Bohumín, Czech Republic
| | - Tomáš Lednický
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200 Czech Republic
| | - Sheng Ni
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiří Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Ondřej Zítka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic
| | - Zdenka Fohlerová
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, Brno, 61600 Czech Republic
| | - Petr Pajer
- Military Health Institute, U Vojenské nemocnice 1200, 16200 Praha 6, Czech Republic
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, 710049 P. R. China
| | - Pavel Neužil
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace; School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072 P. R. China
| |
Collapse
|
16
|
He K, Ye Y, Liu S, Yuan P, Sun W, Tang J. Polylevodopa nanoplatform for lateral flow immunochromatography assay of SARS-CoV-2 and influenza A virus. Biochem Biophys Res Commun 2024; 709:149821. [PMID: 38537597 DOI: 10.1016/j.bbrc.2024.149821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024]
Abstract
At the end of 2019, an unprecedented outbreak of novel coronavirus pneumonia ravaged the global landscape, inflicting profound harm upon society. Following numerous cycles of transmission, we find ourselves in an epoch where the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coexists alongside influenza viruses (Flu A). Swift and accurate diagnosis of SARS-CoV-2 and Flu A is imperative to stem the spread of these maladies and administer appropriate treatment. Presently, colloidal gold-based lateral flow immunoassays (Au-LFIAs) constructed through electrostatic adsorption are beset by challenges such as diminished sensitivity and feeble binding stability. In this context, we propose the adoption of black polylevodopa nanoparticles (PLDA NPs) featuring abundant carboxyl groups as labeling nanomaterials in LFIA to bolster the stability and sensitivity of SARS-CoV-2 antigens and influenza A virus identifications. The engineered PLDA-LFIAs exhibit the capacity to detect SARS-CoV-2 and Flu A within 30 min, boasting a detection threshold of 5 pg/ml for the SARS-CoV-2 antigen and 0.1 ng/ml for the Flu A H1N1 antigen, thereby underscoring their heightened sensitivity relative to Au-LFIAs. These PLDA-LFIAs hold promise for the early detection of SARS-CoV-2 and Flu A, underscoring the potential of PLDA NPs as a discerning labeling probe to heighten the sensitivity of LFIA across diverse applications.
Collapse
Affiliation(s)
- Kangsong He
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Yabing Ye
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Shang Liu
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Pengcheng Yuan
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing Sun
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart BioMaterials, College of Chemical and Biological Engineering, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Sytu MRC, Cho DH, Hahm JI. Self-Assembled Block Copolymers as a Facile Pathway to Create Functional Nanobiosensor and Nanobiomaterial Surfaces. Polymers (Basel) 2024; 16:1267. [PMID: 38732737 PMCID: PMC11085100 DOI: 10.3390/polym16091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Block copolymer (BCP) surfaces permit an exquisite level of nanoscale control in biomolecular assemblies solely based on self-assembly. Owing to this, BCP-based biomolecular assembly represents a much-needed, new paradigm for creating nanobiosensors and nanobiomaterials without the need for costly and time-consuming fabrication steps. Research endeavors in the BCP nanobiotechnology field have led to stimulating results that can promote our current understanding of biomolecular interactions at a solid interface to the never-explored size regimes comparable to individual biomolecules. Encouraging research outcomes have also been reported for the stability and activity of biomolecules bound on BCP thin film surfaces. A wide range of single and multicomponent biomolecules and BCP systems has been assessed to substantiate the potential utility in practical applications as next-generation nanobiosensors, nanobiodevices, and biomaterials. To this end, this Review highlights pioneering research efforts made in the BCP nanobiotechnology area. The discussions will be focused on those works particularly pertaining to nanoscale surface assembly of functional biomolecules, biomolecular interaction properties unique to nanoscale polymer interfaces, functionality of nanoscale surface-bound biomolecules, and specific examples in biosensing. Systems involving the incorporation of biomolecules as one of the blocks in BCPs, i.e., DNA-BCP hybrids, protein-BCP conjugates, and isolated BCP micelles of bioligand carriers used in drug delivery, are outside of the scope of this Review. Looking ahead, there awaits plenty of exciting research opportunities to advance the research field of BCP nanobiotechnology by capitalizing on the fundamental groundwork laid so far for the biomolecular interactions on BCP surfaces. In order to better guide the path forward, key fundamental questions yet to be addressed by the field are identified. In addition, future research directions of BCP nanobiotechnology are contemplated in the concluding section of this Review.
Collapse
Affiliation(s)
- Marion Ryan C. Sytu
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| | - David H. Cho
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | - Jong-in Hahm
- Department of Chemistry, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA
| |
Collapse
|
18
|
Liu B, Cheng Y, Pan X, Yang W, Li X, Wang L, Ye H, Pan T. Multicolor-Assay-on-a-Chip Processed by Robotic Operation (MACpro) with Improved Diagnostic Accuracy for Field-Deployable Detection. Anal Chem 2024; 96:6634-6642. [PMID: 38622069 DOI: 10.1021/acs.analchem.3c05918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The ability to deploy decentralized laboratories with autonomous and reliable disease diagnosis holds the potential to deliver accessible healthcare services for public safety. While microfluidic technologies provide precise manipulation of small fluid volumes with improved assay performance, their limited automation and versatility confine them to laboratories. Herein, we report the utility of multicolor assay-on-a-chip processed by robotic operation (MACpro), to address this unmet need. The MACpro platform comprises a robot-microfluidic interface and an eye-in-hand module that provides flexible yet stable actions to execute tasks in a programmable manner, such as the precise manipulation of the microfluidic chip along with different paths. Notably, MACpro shows improved detection performance by integrating the microbead-based antibody immobilization with enhanced target recognition and multicolor sensing via Cu2+-catalyzed plasmonic etching of gold nanorods for rapid and sensitive analyte quantification. Using interferon-gamma as an example, we demonstrate that MACpro completes a sample-to-answer immunoassay within 30 min and achieves a 10-fold broader dynamic range and a 10-fold lower detection limit compared to standard enzyme-linked immunosorbent assays (0.66 vs 5.2 pg/mL). MACpro extends the applications beyond traditional laboratories and presents an automated solution to expand diagnostic capacity in diverse settings.
Collapse
Affiliation(s)
- Binyao Liu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Yixin Cheng
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Xiang Pan
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
- Nano Science and Technology Institute, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Wen Yang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Xiangpeng Li
- College of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Lele Wang
- Shenzhen Shaanxi Coal Hi-tech Research Institute Co., Ltd, Shenzhen 518107, P.R. China
| | - Haihang Ye
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Tingrui Pan
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
19
|
Zhang Z, Ou X, Ma L, Li C, Yang Z, Duan J. A double methylene blue labeled single-stranded DNA and hairpin DNA coupling biosensor for the detection of Fusarium oxysporum f. sp. cubense race 4. Bioelectrochemistry 2024; 156:108612. [PMID: 38035486 DOI: 10.1016/j.bioelechem.2023.108612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
The DCL gene in Fusarium oxysporum f. sp. cubense Race 4 (Foc4) is a pivotal pathogenic factor causing banana fusarium wilt. Precise DCL detection is crucial for Foc4 containment. Here, we present a novel ssDNA-hDNA coupling electrochemical biosensor for highly specific DCL detection. The sensing interface was formed via electrodeposition of a composite containing reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) onto a carbon screen-printed electrode (SPE), followed by thiol-modified ssDNA functionalization. Additionally, the incorporation of hDNA, with methylene blue (MB) at both ends, binds to ssDNA through base complementarity, forming an ssDNA-hDNA coupling probe with bismethylene blue. This sensing strategy relies on DCL recognition by the hDNA probe, leading to DNA hairpin unfolding and detachment of hDNA bearing two MBs from ssDNA, generating a robust "on-off" signal. Empirical results demonstrate the sensor's amplified electrical signals, reduced background currents, and an extended detection range (6.02 × 106-3.01 × 1010 copies/μL) with a limit of detection (3.01 × 106 copies/μL) for DCL identification. We applied this sensor to analyze soil, banana leaves, and fruit samples, confirming its high specificity and stability. Moreover, post-sample detection, the sensor exhibits reusability, offering a cost-effective and rapid approach for banana wilt detection.
Collapse
Affiliation(s)
- Zhihong Zhang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Xiangying Ou
- College of Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Lizhe Ma
- College of Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Chunyu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Scienecs, Guangzhou 510642, China
| | - Zhou Yang
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jieli Duan
- College of Engineering, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
20
|
Geissler M, Brassard D, Adam N, Nasheri N, Pilar AVC, Tapp K, Clime L, Miville-Godin C, Mounier M, Nassif C, Lukic L, Malic L, Corneau N, Veres T. Centrifugal microfluidic system for colorimetric sample-to-answer detection of viral pathogens. LAB ON A CHIP 2024; 24:668-679. [PMID: 38226743 DOI: 10.1039/d3lc00904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
We describe a microfluidic system for conducting thermal lysis, polymerase chain reaction (PCR) amplification, hybridization, and colorimetric detection of foodborne viral organisms in a sample-to-answer format. The on-chip protocol entails 24 steps which are conducted by a centrifugal platform that allows for actuating liquids pneumatically during rotation and so facilitates automation of the workflow. The microfluidic cartridge is fabricated from transparent thermoplastic polymers and accommodates assay components along with an embedded micropillar array for detection and read-out. A panel of oligonucleotide primers and probes has been developed to perform PCR and hybridization assays that allows for identification of five different viruses, including pathogens such as norovirus and hepatitis A virus (HAV) in a multiplexed format using digoxigenin-labelled amplicons and immunoenzymatic conversion of a chromogenic substrate. Using endpoint detection, we demonstrate that the system can accurately and repetitively (n = 3) discriminate positive and negative signals for HAV at 350 genome copies per μL. As part of the characterization and optimization process, we show that the implementation of multiple (e.g., seven) micropillar arrays in a narrow fluidic pathway can lead to variation (up to 50% or more) in the distribution of colorimetric signal deriving from the assay. Numerical modeling of flow behaviour was used to substantiate these findings. The technology-by virtue of automation-can provide a pathway toward rapid detection of viral pathogens, shortening response time in food safety surveillance, compliance, and enforcement as well as outbreak investigations.
Collapse
Affiliation(s)
- Matthias Geissler
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Daniel Brassard
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Nadine Adam
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Neda Nasheri
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Ana Victoria C Pilar
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Kyle Tapp
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Liviu Clime
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Caroline Miville-Godin
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Maxence Mounier
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Christina Nassif
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Ljuboje Lukic
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Lidija Malic
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Nathalie Corneau
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Teodor Veres
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| |
Collapse
|
21
|
Albin D, Buecherl L, Kochavi E, Niehaus E, Novack S, Uragoda S, Myers CJ, Alistar M. PhageBox: An Open Source Digital Microfluidic Extension With Applications for Phage Discovery. IEEE Trans Biomed Eng 2024; 71:217-226. [PMID: 37450356 DOI: 10.1109/tbme.2023.3295418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Recent advancements demonstrate the significant role of digital microfluidics in automating laboratory work with DNA and on-site viral testing. However, since commercially available instruments are limited to droplet manipulation, our work addresses the need for accelerated integration of other components, such as temperature control, that can expand the application domain. METHODS We developed PhageBox-an accessible device that can be used as a biochip extension. At hardware level, PhageBox integrates temperature and electromagnetic control modules. At software level, PhageBox is controlled by embedded software containing a unique model for bio-protocol programming, and a graphical user interface for visual device feedback and operation. RESULTS To evaluate PhageBox's efficacy for biomedical applications, we performed functional testing. Similarly, we validated the temperature control using thermography, obtaining a range of ±0.2[Formula: see text]. The electromagnets produced a magnetic force of 15 milliTesla, demonstrating precise immobilization of magnetic beads. We show the potential of PhageBox for bacteriophage research through three initial protocols: a universal framework for PCR, T7 bacteriophage restriction enzyme digestion, and concentrating ϕX174 RF genomic DNA. CONCLUSION Our work presents an open-source hardware and software extension for digital microfluidics devices. This extension integrates temperature and electromagnetic modules, demonstrating efficacy in biomedical applications and potential for bacteriophage research. SIGNIFICANCE We developed PhageBox to be accessible: the components are off-the-shelf at a low cost ( ≤ $200), and the hardware designs and software code are open-source. With the long aim of ensuring reproducibility and accelerating collaboration, we also provide a DIY-build document.
Collapse
|
22
|
Muñoz-Urtubia N, Vega-Muñoz A, Estrada-Muñoz C, Salazar-Sepúlveda G, Contreras-Barraza N, Salinas-Martínez N, Méndez-Celis P, Carmelo-Adsuar J. Wearable biosensors for human health: A bibliometric analysis from 2007 to 2022. Digit Health 2024; 10:20552076241256876. [PMID: 38882252 PMCID: PMC11179482 DOI: 10.1177/20552076241256876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Objective This study aimed to determine the status of scientific production on biosensor usage for human health monitoring. Methods We used bibliometrics based on the data and metadata retrieved from the Web of Science between 2007 and 2022. Articles unrelated to health and medicine were excluded. The databases were processed using the VOSviewer software and auxiliary spreadsheets. Data extraction yielded 275 articles published in 161 journals, mainly concentrated on 13 journals and 881 keywords plus. Results The keywords plus of high occurrences were estimated at 27, with seven to 30 occurrences. From the 1595 identified authors, 125 were consistently connected in the coauthorship network in the total set and were grouped into nine clusters. Using Lotka's law, we identified 24 prolific authors, and Hirsch index analysis revealed that 45 articles were cited more than 45 times. Crosses were identified between 17 articles in the Hirsch index and 17 prolific authors, highlighting the presence of a large set of prolific authors from various interconnected clusters, a triad, and a solitary prolific author. Conclusion An exponential trend was observed in biosensor research for health monitoring, identifying areas of innovation, collaboration, and technological challenges that can guide future research on this topic.
Collapse
Affiliation(s)
- Nicolás Muñoz-Urtubia
- International Graduate School, University of Extremadura, Caceres, Spain
- Instituto de Ciencias de la Educación, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Vega-Muñoz
- Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- Facultad de Ciencias Empresariales, Universidad Arturo Prat, Iquique, Chile
| | - Carla Estrada-Muñoz
- Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Guido Salazar-Sepúlveda
- Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Facultad de Ingeniería y Negocios, Universidad de Las Américas, Concepción, Chile
| | | | - Nicolás Salinas-Martínez
- Facultad de Ciencias Económicas, Administrativas y Contables, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | | | | |
Collapse
|
23
|
Dallinger A, Steinwender F, Gritzner M, Greco F. Different Roles of Surface Chemistry and Roughness of Laser-Induced Graphene: Implications for Tunable Wettability. ACS APPLIED NANO MATERIALS 2023; 6:16201-16211. [PMID: 37772265 PMCID: PMC10526650 DOI: 10.1021/acsanm.3c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 09/30/2023]
Abstract
The control of surface wettability is a technological key aspect and usually poses considerable challenges connected to high cost, nanostructure, and durability, especially when aiming at surface patterning with high and extreme wettability contrast. This work shows a simple and scalable approach by using laser-induced graphene (LIG) and a locally inert atmosphere to continuously tune the wettability of a polyimide/LIG surface from hydrophilic to superhydrophobic (Φ ∼ 160°). This is related to the reduced amount of oxygen on the LIG surface, influenced by the local atmosphere. Furthermore, the influence of the roughness pattern of LIG on the wettability is investigated. Both approaches are combined, and the influence of surface chemistry and roughness is discussed. Measurements of the roll-off angle show that LIG scribed in an inert atmosphere with a low roughness has the highest droplet mobility with a roll-off angle of ΦRO = (1.7 ± 0.3)°. The superhydrophobic properties of the samples were maintained for over a year and showed no degradation after multiple uses. Applications of surfaces with extreme wettability contrast in millifluidics and fog basking are demonstrated. Overall, the proposed processing allows for the continuous tuning and patterning of the surface properties of LIG in a very accessible fashion useful for "lab-on-chip" applications.
Collapse
Affiliation(s)
- Alexander Dallinger
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, 8010 Graz, Austria
| | - Felix Steinwender
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, 8010 Graz, Austria
| | - Matthias Gritzner
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, 8010 Graz, Austria
| | - Francesco Greco
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, 8010 Graz, Austria
- The
Biorobotics Institute, Scuola Superiore
Sant’Anna, Viale
R. Piaggio 34, 56025 Pontedera, Italy
- Department
of Excellence in Robotics & AI, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Interdisciplinary
Center on Sustainability and Climate, Scuola
Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| |
Collapse
|
24
|
Raj M K, Priyadarshani J, Karan P, Bandyopadhyay S, Bhattacharya S, Chakraborty S. Bio-inspired microfluidics: A review. BIOMICROFLUIDICS 2023; 17:051503. [PMID: 37781135 PMCID: PMC10539033 DOI: 10.1063/5.0161809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
Biomicrofluidics, a subdomain of microfluidics, has been inspired by several ideas from nature. However, while the basic inspiration for the same may be drawn from the living world, the translation of all relevant essential functionalities to an artificially engineered framework does not remain trivial. Here, we review the recent progress in bio-inspired microfluidic systems via harnessing the integration of experimental and simulation tools delving into the interface of engineering and biology. Development of "on-chip" technologies as well as their multifarious applications is subsequently discussed, accompanying the relevant advancements in materials and fabrication technology. Pointers toward new directions in research, including an amalgamated fusion of data-driven modeling (such as artificial intelligence and machine learning) and physics-based paradigm, to come up with a human physiological replica on a synthetic bio-chip with due accounting of personalized features, are suggested. These are likely to facilitate physiologically replicating disease modeling on an artificially engineered biochip as well as advance drug development and screening in an expedited route with the minimization of animal and human trials.
Collapse
Affiliation(s)
- Kiran Raj M
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Jyotsana Priyadarshani
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Celestijnenlaan 300, 3001 Louvain, Belgium
| | - Pratyaksh Karan
- Géosciences Rennes Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Soumya Bhattacharya
- Achira Labs Private Limited, 66b, 13th Cross Rd., Dollar Layout, 3–Phase, JP Nagar, Bangalore, Karnataka 560078, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
25
|
Lin C, Tang H, Hu X, Li G, Jiang T, Yang W, Xia Z, Zhu Y, Xu H, Zhou J, Shen J. A PCR-Reverse Dot Blot Hybridization Based Microfluidics Detection System for the Rapid Identification of 13 Fungal Pathogens Directly After Blood Cultures Over a Period of Time. Infect Drug Resist 2023; 16:5347-5357. [PMID: 37605759 PMCID: PMC10440108 DOI: 10.2147/idr.s424156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Introduction It is time-consuming to identify fungal pathogens from positive blood cultures using the standard culture-based method. And delayed diagnosis of bloodstream infection leads to significantly increased mortality. Methods We developed a PCR-reverse dot blot hybridization combined with microfluidic chip techniques to rapidly identify 13 fungal pathogens within 3-4 h using the sample of blood cultured over a period of time. Results We performed clinical validation using 43 blood culture-positive samples with a sensitivity of 96.7%, a specificity of 100%, and a concordance rate of 97.7%. Samples with different culture durations were evaluated using our approach, showing a detection rate of 85.2% at 16 h and 96.3% at 24 h; the platform could reach a detection limit of 103cfu/mL for the Candida spp. and 103 copies/mL for Aspergillus spp. Discussion The detection rate of the platform is much higher than the positive rates of concurrent blood cultures. This method bears substantial clinical application potential as it incorporates the microfluidic platform with low reagent consumption, automation, and low cost (about 10 dollars).
Collapse
Affiliation(s)
- Chunhui Lin
- Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Clinical Laboratory, Anhui Public Health Clinical Center Hefei, Hefei, People’s Republic of China
| | - Hao Tang
- Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Xinyi Hu
- Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Clinical Laboratory, Anhui Public Health Clinical Center Hefei, Hefei, People’s Republic of China
| | - Ge Li
- Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Clinical Laboratory, Anhui Public Health Clinical Center Hefei, Hefei, People’s Republic of China
| | - Tong Jiang
- Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Clinical Laboratory, Anhui Public Health Clinical Center Hefei, Hefei, People’s Republic of China
| | - Wensu Yang
- Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Clinical Laboratory, Anhui Public Health Clinical Center Hefei, Hefei, People’s Republic of China
| | - Zhaoxin Xia
- Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Clinical Laboratory, Anhui Public Health Clinical Center Hefei, Hefei, People’s Republic of China
| | - Yi Zhu
- Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Clinical Laboratory, Anhui Public Health Clinical Center Hefei, Hefei, People’s Republic of China
| | - Huaming Xu
- Clinical Laboratory, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Jing Zhou
- Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Clinical Laboratory, Anhui Public Health Clinical Center Hefei, Hefei, People’s Republic of China
| | - Jilu Shen
- Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Clinical Laboratory, Anhui Public Health Clinical Center Hefei, Hefei, People’s Republic of China
| |
Collapse
|
26
|
John P, Vasa NJ, Zam A. Optical Biosensors for the Diagnosis of COVID-19 and Other Viruses-A Review. Diagnostics (Basel) 2023; 13:2418. [PMID: 37510162 PMCID: PMC10378272 DOI: 10.3390/diagnostics13142418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The sudden outbreak of the COVID-19 pandemic led to a huge concern globally because of the astounding increase in mortality rates worldwide. The medical imaging computed tomography technique, whole-genome sequencing, and electron microscopy are the methods generally used for the screening and identification of the SARS-CoV-2 virus. The main aim of this review is to emphasize the capabilities of various optical techniques to facilitate not only the timely and effective diagnosis of the virus but also to apply its potential toward therapy in the field of virology. This review paper categorizes the potential optical biosensors into the three main categories, spectroscopic-, nanomaterial-, and interferometry-based approaches, used for detecting various types of viruses, including SARS-CoV-2. Various classifications of spectroscopic techniques such as Raman spectroscopy, near-infrared spectroscopy, and fluorescence spectroscopy are discussed in the first part. The second aspect highlights advances related to nanomaterial-based optical biosensors, while the third part describes various optical interferometric biosensors used for the detection of viruses. The tremendous progress made by lab-on-a-chip technology in conjunction with smartphones for improving the point-of-care and portability features of the optical biosensors is also discussed. Finally, the review discusses the emergence of artificial intelligence and its applications in the field of bio-photonics and medical imaging for the diagnosis of COVID-19. The review concludes by providing insights into the future perspectives of optical techniques in the effective diagnosis of viruses.
Collapse
Affiliation(s)
- Pauline John
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Nilesh J Vasa
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Azhar Zam
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
- Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
| |
Collapse
|
27
|
Yan J, Cheng Q, Liu H, Wang L, Yu K. Sensitive and rapid detection of influenza A virus for disease surveillance using dual-probe electrochemical biosensor. Bioelectrochemistry 2023; 153:108497. [PMID: 37393678 DOI: 10.1016/j.bioelechem.2023.108497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Influenza A virus (IAV) can cause influenza, a highly infectious zoonotic respiratory disease, and early detection is essential to prevent and control its rapid spread in the population. Given the limitations of traditional detection methods in clinical laboratories, we report a large surface TPB-DVA COFs (TPB: 1,3,5-Tris(4-aminophenyl) benzene, DVA: 1,4-Benzenedicarboxaldehyd, COFs: Covalent organic frameworks) nanomaterial modified electrochemical DNA biosensor, which has dual-probe specific recognition and signal amplification. The biosensor enables quantitative detection of influenza A viruses' complementary DNA (cDNA) from 10 fM to 1 × 103 nM (LOD = 5.42 fM) with good specificity and high selectivity. The reliability of the biosensor and portable device was verified by comparing the virus concentrations in animal tissues with those measured by digital droplet PCR (ddPCR) (P > 0.05). Moreover, the potential for influenza surveillance in this work was demonstrated by detecting the tissue samples from mice at different stages of infection. In summary, the good performance of this electrochemical DNA biosensor we proposed suggested it has the potential to be a rapid detection device for the influenza A virus, which could assist doctors or other professionals in obtaining rapid and accurate results for outbreak investigation and disease diagnosis.
Collapse
Affiliation(s)
- Jianhua Yan
- Medical College, Guangxi University, Guangxi Nanning 530004, China
| | - Qian Cheng
- Medical College, Guangxi University, Guangxi Nanning 530004, China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liwei Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
28
|
Ataide VN, Pradela-Filho LA, Ameku WA, Negahdary M, Oliveira TG, Santos BG, Paixão TRLC, Angnes L. Paper-based electrochemical biosensors for the diagnosis of viral diseases. Mikrochim Acta 2023; 190:276. [PMID: 37368054 DOI: 10.1007/s00604-023-05856-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Paper-based electrochemical analytical devices (ePADs) have gained significant interest as promising analytical units in recent years because they can be fabricated in simple ways, are low-cost, portable, and disposable platforms that can be applied in various fields. In this sense, paper-based electrochemical biosensors are attractive analytical devices since they can promote diagnose several diseases and potentially allow decentralized analysis. Electrochemical biosensors are versatile, as the measured signal can be improved by using mainly molecular technologies and nanomaterials to attach biomolecules, resulting in an increase in their sensitivity and selectivity. Additionally, they can be implemented in microfluidic devices that drive and control the flow without external pumping and store reagents, and improve the mass transport of analytes, increasing sensor sensitivity. In this review, we focus on the recent developments in electrochemical paper-based devices for viruses' detection, including COVID-19, Dengue, Zika, Hepatitis, Ebola, AIDS, and Influenza, among others, which have caused impacts on people's health, especially in places with scarce resources. Also, we discuss the advantages and disadvantages of the main electrode's fabrication methods, device designs, and biomolecule immobilization strategies. Finally, the perspectives and challenges that need to be overcome to further advance paper-based electrochemical biosensors' applications are critically presented.
Collapse
Affiliation(s)
- Vanessa N Ataide
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil.
| | - Lauro A Pradela-Filho
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Wilson A Ameku
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Thawan G Oliveira
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Berlane G Santos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Thiago R L C Paixão
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
29
|
de Olazarra AS, Wang SX. Advances in point-of-care genetic testing for personalized medicine applications. BIOMICROFLUIDICS 2023; 17:031501. [PMID: 37159750 PMCID: PMC10163839 DOI: 10.1063/5.0143311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Breakthroughs within the fields of genomics and bioinformatics have enabled the identification of numerous genetic biomarkers that reflect an individual's disease susceptibility, disease progression, and therapy responsiveness. The personalized medicine paradigm capitalizes on these breakthroughs by utilizing an individual's genetic profile to guide treatment selection, dosing, and preventative care. However, integration of personalized medicine into routine clinical practice has been limited-in part-by a dearth of widely deployable, timely, and cost-effective genetic analysis tools. Fortunately, the last several decades have been characterized by tremendous progress with respect to the development of molecular point-of-care tests (POCTs). Advances in microfluidic technologies, accompanied by improvements and innovations in amplification methods, have opened new doors to health monitoring at the point-of-care. While many of these technologies were developed with rapid infectious disease diagnostics in mind, they are well-suited for deployment as genetic testing platforms for personalized medicine applications. In the coming years, we expect that these innovations in molecular POCT technology will play a critical role in enabling widespread adoption of personalized medicine methods. In this work, we review the current and emerging generations of point-of-care molecular testing platforms and assess their applicability toward accelerating the personalized medicine paradigm.
Collapse
Affiliation(s)
- A. S. de Olazarra
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - S. X. Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
30
|
Curulli A. Functional Nanomaterials Enhancing Electrochemical Biosensors as Smart Tools for Detecting Infectious Viral Diseases. Molecules 2023; 28:molecules28093777. [PMID: 37175186 PMCID: PMC10180161 DOI: 10.3390/molecules28093777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Electrochemical biosensors are known as analytical tools, guaranteeing rapid and on-site results in medical diagnostics, food safety, environmental protection, and life sciences research. Current research focuses on developing sensors for specific targets and addresses challenges to be solved before their commercialization. These challenges typically include the lowering of the limit of detection, the widening of the linear concentration range, the analysis of real samples in a real environment and the comparison with a standard validation method. Nowadays, functional nanomaterials are designed and applied in electrochemical biosensing to support all these challenges. This review will address the integration of functional nanomaterials in the development of electrochemical biosensors for the rapid diagnosis of viral infections, such as COVID-19, middle east respiratory syndrome (MERS), influenza, hepatitis, human immunodeficiency virus (HIV), and dengue, among others. The role and relevance of the nanomaterial, the type of biosensor, and the electrochemical technique adopted will be discussed. Finally, the critical issues in applying laboratory research to the analysis of real samples, future perspectives, and commercialization aspects of electrochemical biosensors for virus detection will be analyzed.
Collapse
Affiliation(s)
- Antonella Curulli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), 00161 Rome, Italy
| |
Collapse
|
31
|
Trinh KTL, Do HDK, Lee NY. Recent Advances in Molecular and Immunological Diagnostic Platform for Virus Detection: A Review. BIOSENSORS 2023; 13:490. [PMID: 37185566 PMCID: PMC10137144 DOI: 10.3390/bios13040490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an ongoing coronavirus disease (COVID-19) outbreak and a rising demand for the development of accurate, timely, and cost-effective diagnostic tests for SARS-CoV-2 as well as other viral infections in general. Currently, traditional virus screening methods such as plate culturing and real-time PCR are considered the gold standard with accurate and sensitive results. However, these methods still require sophisticated equipment, trained personnel, and a long analysis time. Alternatively, with the integration of microfluidic and biosensor technologies, microfluidic-based biosensors offer the ability to perform sample preparation and simultaneous detection of many analyses in one platform. High sensitivity, accuracy, portability, low cost, high throughput, and real-time detection can be achieved using a single platform. This review presents recent advances in microfluidic-based biosensors from many works to demonstrate the advantages of merging the two technologies for sensing viruses. Different platforms for virus detection are classified into two main sections: immunoassays and molecular assays. Moreover, available commercial sensing tests are analyzed.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
32
|
Hong SL, Zhang MF, Wang X, Liu H, Zhang N, Tang M, Li W. Magnetic-based Microfluidic Chip: A Powerful Tool for Pathogen Detection and Affinity Reagents Selection. Crit Rev Anal Chem 2023; 54:2658-2669. [PMID: 37004164 DOI: 10.1080/10408347.2023.2195940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The global outbreak of pathogen diseases has brought a huge risk to human lives and social development. Rapid diagnosis is the key strategy to fight against pathogen diseases. Development of detection methods and discovery of related affinity reagents are important parts of pathogen diagnosis. Conventional detection methods and affinity reagents discovery have some problems including much reagent consumption and labor intensity. Magnetic-based microfluidic chip integrates the unique advantages of magnetism and microfluidic technology, improving a powerful tool for pathogen detection and their affinity reagent discovery. This review provides a summary about the summary of pathogen detection through magnetic-based microfluidic chip, which refers to the pathogen nucleic acid detection (including extraction, amplification and signal acquisition), pathogen proteins and antibodies detection. Meanwhile, affinity reagents are served as the critical tool to specially capture pathogens. New affinity reagents are discovered to further facilitate the pathogen diagnosis. Microfluidic technology has also emerged as a powerful tool for affinity reagents discovery. Thus, this review further introduced the selection progress of aptamer as next generation affinity through the magnetic-based microfluidic technology. Using this selection technology shows great potential to improve selection performance, including integration and highly efficient selection. Finally, an outlook is given on how this field will develop on the basis of ongoing pathogen challenges.
Collapse
Affiliation(s)
- Shao-Li Hong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, People's Republic of China
| | - Meng-Fan Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Xuan Wang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Huihong Liu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Nangang Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Man Tang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, People's Republic of China
| |
Collapse
|
33
|
Zhang W, Du J, Wang K, Li Y, Chen C, Yang L, Kan Z, Dong B, Wang L, Xu L. Integrated dual-channel electrochemical immunosensor for early diagnosis and monitoring of periodontitis by detecting multiple biomarkers in saliva. Anal Chim Acta 2023; 1247:340878. [PMID: 36781246 DOI: 10.1016/j.aca.2023.340878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Periodontitis, as the sixth prevalence chronic inflammation worldwide, has inconspicuous and often-overlooked symptoms at early stage, eventually leading to permanent damage to the teeth and supporting tissues. The timely and accurate diagnosis of periodontitis and monitoring its progress appear to be particularly important for clinical treatment. Herein, a dual-channel electrochemical immunosensor was developed for the synchronized detection of two periodontitis-related biomarkers in saliva: interleukin-1β (IL-1β) and matrix metalloproteinase-8 (MMP-8). Owing to its miniaturization, detachability, and portability, this sensor has the potential to detect multiple biomarkers in a point-of-care manner for the early diagnosis and monitoring of periodontitis. The nanocomposites consisted of iridium oxide nanotubes and two-dimensional MXene nanosheets enhance the electrochemical performance of the sensor, achieving excellent sensitivity with wide detection ranges of 0.1-100 and 1-200 ng mL-1, low limits of detection of 0.014 and 0.13 ng mL-1, and relatively high correlation coefficients of 0.9911 and 0.9990 for IL-1β and MMP-8, respectively. Furthermore, this device possesses excellent selectivity in complex samples without cross-talk, as well as high recovery and accuracy in spiked artificial saliva. Importantly, the dual-channel device achieves higher diagnostic accuracy for different stages of periodontitis when MMP-8 and IL-1β were simultaneously monitored within clinicopathological saliva. This work proposes a considerable potential for early diagnosis and severity distinguishment of periodontitis in a point-of-care manner, which would be beneficial for progression prediction, treatment guidance, and prognosis assessment of periodontitis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Juanrui Du
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Kun Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yige Li
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Cong Chen
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Long Yang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China
| | - Zitong Kan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130021, China.
| |
Collapse
|
34
|
Zambry NS, Awang MS, Beh KK, Hamzah HH, Bustami Y, Obande GA, Khalid MF, Ozsoz M, Manaf AA, Aziah I. A label-free electrochemical DNA biosensor used a printed circuit board gold electrode (PCBGE) to detect SARS-CoV-2 without amplification. LAB ON A CHIP 2023; 23:1622-1636. [PMID: 36786757 DOI: 10.1039/d2lc01159j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) motivates continuous efforts to develop robust and accurate diagnostic tests to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Detection of viral nucleic acids provides the highest sensitivity and selectivity for diagnosing early and asymptomatic infection because the human immune system may not be active at this stage. Therefore, this work aims to develop a label-free electrochemical DNA biosensor for SARS-CoV-2 detection using a printed circuit board-based gold substrate (PCBGE). The developed sensor used the nucleocapsid phosphoprotein (N) gene as a biomarker. The DNA sensor-based PCBGE was fabricated by self-assembling a thiolated single-stranded DNA (ssDNA) probe onto an Au surface, which performed as the working electrode (WE). The Au surface was then treated with 6-mercapto-1-hexanol (MCH) before detecting the target N gene to produce a well-oriented arrangement of the immobilized ssDNA chains. The successful fabrication of the biosensor was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM). The DNA biosensor performances were evaluated using a synthetic SARS-CoV-2 genome and 20 clinical RNA samples from healthy and infected individuals through EIS. The developed DNA biosensor can detect as low as 1 copy per μL of the N gene within 5 minutes with a LOD of 0.50 μM. Interestingly, the proposed DNA sensor could distinguish the expression of SARS-CoV-2 RNA in a patient diagnosed with COVID-19 without any amplification technique. We believe that the proposed DNA sensor platform is a promising point-of-care (POC) device for COVID-19 viral infection since it offers a rapid detection time with a simple design and workflow detection system, as well as an affordable diagnostic assay.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Khi Khim Beh
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Godwin Attah Obande
- Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mehmet Ozsoz
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Turkey
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
35
|
Tzouvadaki I, Prodromakis T. Large-scale nano-biosensing technologies. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2023.1127363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Nanoscale technologies have brought significant advancements to modern diagnostics, enabling unprecedented bio-chemical sensitivities that are key to disease monitoring. At the same time, miniaturized biosensors and their integration across large areas enabled tessellating these into high-density biosensing panels, a key capability for the development of high throughput monitoring: multiple patients as well as multiple analytes per patient. This review provides a critical overview of various nanoscale biosensing technologies and their ability to unlock high testing throughput without compromising detection resilience. We report on the challenges and opportunities each technology presents along this direction and present a detailed analysis on the prospects of both commercially available and emerging biosensing technologies.
Collapse
|
36
|
Tao Y, Zhao Y, Wang L, Huang J, Chen Y, Huang Q, Song B, Li HY, Chen J, Liu H. Flexible Amperometric Immunosensor Based on Colloidal Quantum Dots for Detecting the Myeloperoxidase (MPO) Systemic Inflammation Biomarker. BIOSENSORS 2023; 13:255. [PMID: 36832021 PMCID: PMC9954662 DOI: 10.3390/bios13020255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Myeloperoxidase (MPO) has been demonstrated to be a biomarker of neutrophilic inflammation in various diseases. Rapid detection and quantitative analysis of MPO are of great significance for human health. Herein, an MPO protein flexible amperometric immunosensor based on a colloidal quantum dot (CQD)-modified electrode was demonstrated. The remarkable surface activity of CQDs allows them to bind directly and stably to the surface of proteins and to convert antigen-antibody specific binding reactions into significant currents. The flexible amperometric immunosensor provides quantitative analysis of MPO protein with an ultra-low limit of detection (LOD) (31.6 fg mL-1), as well as good reproducibility and stability. The detection method is expected to be applied in clinical examination, POCT (bedside test), community physical examination, home self-examination and other practical scenarios.
Collapse
Affiliation(s)
- Yanbing Tao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunong Zhao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Le Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan Chen
- CHINALLERGY Biotech Co., Ltd., Wuhan Institute of Biotechnology, 666 Gaoxin Road, Wuhan 430079, China
| | - Qing Huang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Boxiang Song
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hua-Yao Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
- Wenzhou Institute of Advanced Manufacturing Technology, Huazhong University of Science and Technology, Wenzhou 325000, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huan Liu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
37
|
Maryam S, Ul Haq I, Yahya G, Ul Haq M, Algammal AM, Saber S, Cavalu S. COVID-19 surveillance in wastewater: An epidemiological tool for the monitoring of SARS-CoV-2. Front Cell Infect Microbiol 2023; 12:978643. [PMID: 36683701 PMCID: PMC9854263 DOI: 10.3389/fcimb.2022.978643] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has prompted a lot of questions globally regarding the range of information about the virus's possible routes of transmission, diagnostics, and therapeutic tools. Worldwide studies have pointed out the importance of monitoring and early surveillance techniques based on the identification of viral RNA in wastewater. These studies indicated the presence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in human feces, which is shed via excreta including mucus, feces, saliva, and sputum. Subsequently, they get dumped into wastewater, and their presence in wastewater provides a possibility of using it as a tool to help prevent and eradicate the virus. Its monitoring is still done in many regions worldwide and serves as an early "warning signal"; however, a lot of limitations of wastewater surveillance have also been identified.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
| | - Ihtisham Ul Haq
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
- Department of Physical Chemistry and Polymers Technology, Silesian University of Technology, Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mehboob Ul Haq
- Department of Biosciences, The Commission on Science and Technology for Sustainable Development in the South (COMSATS) University Islamabad (CUI), Islamabad, Pakistan
| | - Abdelazeem M. Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
38
|
Integrated lab-on-a-chip devices: Fabrication methodologies, transduction system for sensing purposes. J Pharm Biomed Anal 2023; 223:115120. [DOI: 10.1016/j.jpba.2022.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
39
|
Kulabhusan PK, Pishva P, Çapkın E, Tambe P, Yüce M. Aptamer-based Emerging Tools for Viral Biomarker Detection: A Focus on SARS-CoV-2. Curr Med Chem 2023; 30:910-934. [PMID: 35156569 DOI: 10.2174/1568009622666220214101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Viral infections can cause fatal illnesses to humans as well as animals. Early detection of viruses is therefore crucial to provide effective treatment to patients. Recently, the Covid-19 pandemic has undoubtedly given an alarming call to develop rapid and sensitive detection platforms. The viral diagnostic tools need to be fast, affordable, and easy to operate with high sensitivity and specificity equivalent or superior to the currently used diagnostic methods. The present detection methods include direct detection of viral antigens or measuring the response of antibodies to viral infections. However, the sensitivity and quantification of the virus are still a significant challenge. Detection tools employing synthetic binding molecules like aptamers may provide several advantages over the conventional methods that use antibodies in the assay format. Aptamers are highly stable and tailorable molecules and are therefore ideal for detection and chemical sensing applications. This review article discusses various advances made in aptamer-based viral detection platforms, including electrochemical, optical, and colorimetric methods to detect viruses, specifically SARS-Cov-2. Considering the several advantages, aptamers could be game-changing in designing high-throughput biosensors for viruses and other biomedical applications in the future.
Collapse
Affiliation(s)
- Prabir Kumar Kulabhusan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Parsa Pishva
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Eda Çapkın
- Sabanci University, Faculty of Engineering and Natural Sciences, Istanbul, 34956, Turkey
| | - Prajakta Tambe
- Wellcome-- Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Meral Yüce
- Sabanci University, SUNUM Nanotechnology Research, and Application Centre, Istanbul, 34956, Turkey
| |
Collapse
|
40
|
Kim K, Lee WG. Portable, Automated and Deep-Learning-Enabled Microscopy for Smartphone-Tethered Optical Platform Towards Remote Homecare Diagnostics: A Review. SMALL METHODS 2023; 7:e2200979. [PMID: 36420919 DOI: 10.1002/smtd.202200979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Globally new pandemic diseases induce urgent demands for portable diagnostic systems to prevent and control infectious diseases. Smartphone-based portable diagnostic devices are significantly efficient tools to user-friendly connect personalized health conditions and collect valuable optical information for rapid diagnosis and biomedical research through at-home screening. Deep learning algorithms for portable microscopes also help to enhance diagnostic accuracy by reducing the imaging resolution gap between benchtop and portable microscopes. This review highlighted recent progress and continued efforts in a smartphone-tethered optical platform through portable, automated, and deep-learning-enabled microscopy for personalized diagnostics and remote monitoring. In detail, the optical platforms through smartphone-based microscopes and lens-free holographic microscopy are introduced, and deep learning-based portable microscopic imaging is explained to improve the image resolution and accuracy of diagnostics. The challenges and prospects of portable optical systems with microfluidic channels and a compact microscope to screen COVID-19 in the current pandemic are also discussed. It has been believed that this review offers a novel guide for rapid diagnosis, biomedical imaging, and digital healthcare with low cost and portability.
Collapse
Affiliation(s)
- Kisoo Kim
- Intelligent Optical Module Research Center, Korea Photonics Technology Institute (KOPTI), Buk-gu, Gwangju, 61007, Republic of Korea
| | - Won Gu Lee
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
41
|
Bannur Nanjunda S, Seshadri VN, Krishnan C, Rath S, Arunagiri S, Bao Q, Helmerson K, Zhang H, Jain R, Sundarrajan A, Srinivasan B. Emerging nanophotonic biosensor technologies for virus detection. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:5041-5059. [PMID: 39634299 PMCID: PMC11501160 DOI: 10.1515/nanoph-2022-0571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 12/07/2024]
Abstract
Highly infectious viral diseases are a serious threat to mankind as they can spread rapidly among the community, possibly even leading to the loss of many lives. Early diagnosis of a viral disease not only increases the chance of quick recovery, but also helps prevent the spread of infections. There is thus an urgent need for accurate, ultrasensitive, rapid, and affordable diagnostic techniques to test large volumes of the population to track and thereby control the spread of viral diseases, as evidenced during the COVID-19 and other viral pandemics. This review paper critically and comprehensively reviews various emerging nanophotonic biosensor mechanisms and biosensor technologies for virus detection, with a particular focus on detection of the SARS-CoV-2 (COVID-19) virus. The photonic biosensing mechanisms and technologies that we have focused on include: (a) plasmonic field enhancement via localized surface plasmon resonances, (b) surface enhanced Raman scattering, (c) nano-Fourier transform infrared (nano-FTIR) near-field spectroscopy, (d) fiber Bragg gratings, and (e) microresonators (whispering gallery modes), with a particular emphasis on the emerging impact of nanomaterials and two-dimensional materials in these photonic sensing technologies. This review also discusses several quantitative issues related to optical sensing with these biosensing and transduction techniques, notably quantitative factors that affect the limit of detection (LoD), sensitivity, specificity, and response times of the above optical biosensing diagnostic technologies for virus detection. We also review and analyze future prospects of cost-effective, lab-on-a-chip virus sensing solutions that promise ultrahigh sensitivities, rapid detection speeds, and mass manufacturability.
Collapse
Affiliation(s)
- Shivananju Bannur Nanjunda
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| | - Venkatesh N. Seshadri
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
- Department of Life Science, Indian Academy, Bangalore, India
| | - Chitra Krishnan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| | - Sweta Rath
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| | | | - Qiaoliang Bao
- Department of Materials Science and Engineering, and ARC Centre of Excellence in Future Low Energy Electronics Technologies (FLEET), Monash University, Clayton, VIC, Australia
| | - Kristian Helmerson
- School of Physics and Astronomy, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, VIC3800, Australia
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Ravi Jain
- Optical Science and Engineering Program, Center for High Technology Materials, Departments of ECE, Physics Astronomy, and Nanoscience Microsystems, University of New Mexico, Albuquerque, NM87106, USA
| | - Asokan Sundarrajan
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India
| | - Balaji Srinivasan
- Department of Electrical Engineering, Centre of Excellence in Biochemical Sensing and Imaging (CenBioSIm), Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
42
|
Chen S, Sun Y, Fan F, Chen S, Zhang Y, Zhang Y, Meng X, Lin JM. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Donia A, Furqan Shahid M, Hassan SU, Shahid R, Ahmad A, Javed A, Nawaz M, Yaqub T, Bokhari H. Integration of RT-LAMP and Microfluidic Technology for Detection of SARS-CoV-2 in Wastewater as an Advanced Point-of-Care Platform. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:364-373. [PMID: 35508752 PMCID: PMC9067896 DOI: 10.1007/s12560-022-09522-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/04/2022] [Indexed: 05/21/2023]
Abstract
Development of lab-on-a-chip (LOC) system based on integration of reverse transcription loop-mediated isothermal amplification (RT-LAMP) and microfluidic technology is expected to speed up SARS-CoV-2 diagnostics allowing early intervention. In the current work, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and RT-LAMP assays were performed on extracted RNA of seven wastewater samples from COVID-19 hotspots. RT‑LAMP assay was also performed on wastewater samples without RNA extraction. Current detection of SARS-CoV-2 is mainly by RT-qPCR of ORF (ORF1ab) and N genes so we targeted both to find the best target gene for SARS-CoV-2 detection. We also performed RT-LAMP with/without RNA extraction inside microfluidic device to target both genes. Positivity rates of RT-qPCR and RT-LAMP performed on extracted RNA were 100.0% (7/7) and 85.7% (6/7), respectively. RT-qPCR results revealed that all 7 wastewater samples were positive for N gene (Ct range 37-39), and negative for ORF1ab, suggesting that N gene could be the best target gene for SARS-CoV-2 detection. RT-LAMP of N and ORF (ORF1a) genes performed on wastewater samples without RNA extraction indicated that all 7 samples remains pink (negative). The color remains pink in all microchannels except microchannels which subjected to RT-LAMP for targeting N region after RNA extraction (yellow color) in 6 out of 7 samples. This study shows that SARS-CoV-2 was successfully detected from wastewater samples using RT-LAMP in microfluidic chips. This study brings the novelty involving the use of wastewater samples for detection of SARS-CoV-2 without previous virus concentration and with/without RNA extraction.
Collapse
Affiliation(s)
- Ahmed Donia
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Furqan Shahid
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sammer-ul Hassan
- Department of Mechanical Engineering, University of Hong Kong, Pok Fu Lam, Hong Kong, Hong Kong
| | - Ramla Shahid
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Aneela Javed
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Muhammad Nawaz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Habib Bokhari
- Department of Biosciences, Faculty of Science, COMSATS University Islamabad, Islamabad, Pakistan
- Kohsar University Murree, Murree, Pakistan
| |
Collapse
|
44
|
Iron Oxide Nanoparticle-Based Ferro-Nanofluids for Advanced Technological Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227931. [PMID: 36432031 PMCID: PMC9698664 DOI: 10.3390/molecules27227931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Iron oxide nanoparticle (ION)-based ferro-nanofluids (FNs) have been used for different technological applications owing to their excellent magneto-rheological properties. A comprehensive overview of the current advancement of FNs based on IONs for various engineering applications is unquestionably necessary. Hence, in this review article, various important advanced technological applications of ION-based FNs concerning different engineering fields are critically summarized. The chemical engineering applications are mainly focused on mass transfer processes. Similarly, the electrical and electronics engineering applications are mainly focused on magnetic field sensors, FN-based temperature sensors and tilt sensors, microelectromechanical systems (MEMS) and on-chip components, actuators, and cooling for electronic devices and photovoltaic thermal systems. On the other hand, environmental engineering applications encompass water and air purification. Moreover, mechanical engineering or magneto-rheological applications include dampers and sealings. This review article provides up-to-date information related to the technological advancements and emerging trends in ION-based FN research concerning various engineering fields, as well as discusses the challenges and future perspectives.
Collapse
|
45
|
Pennisi I, Moniri A, Miscourides N, Miglietta L, Moser N, Habgood-Coote D, Herberg JA, Levin M, Kaforou M, Rodriguez-Manzano J, Georgiou P. Discrimination of bacterial and viral infection using host-RNA signatures integrated in a lab-on-chip platform. Biosens Bioelectron 2022; 216:114633. [PMID: 36081245 DOI: 10.1016/j.bios.2022.114633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Abstract
The unmet clinical need for accurate point-of-care (POC) diagnostic tests able to discriminate bacterial from viral infection demands a solution that can be used both within healthcare settings and in the field, and that can also stem the tide of antimicrobial resistance. Our approach to solve this problem combine the use of host gene signatures with our Lab-on-a-Chip (LoC) technology enabling low-cost POC expression analysis to detect Infectious Disease. Transcriptomics have been extensively investigated as a potential tool to be implemented in the diagnosis of infectious disease. On the other hand, LoC technologies using ion-sensitive field-effect transistor (ISFET), in conjunction with isothermal chemistries, are offering a promising alternative to conventional amplification instruments, owing to their portable and affordable nature. Currently, the data analysis of ISFET arrays are restricted to established methods by averaging the output of every sensor to give a single time-series. This simple approach makes unrealistic assumptions, leading to insufficient performance for applications that require accurate quantification such as Host-Transcriptomics. In order to reliably quantify transcripts on our LoC platform enabling the classification of infectious disease on-chip, we propose a novel data-driven algorithm for extracting time-to-positive values from ISFET arrays. The algorithm proposed correctly outputs a time-to-positive for all the reactions, with a high correlation to RT-qLAMP (0.85, R2 = 0.98, p < 0.01), resulting in a classification accuracy of 100% (CI, 95-100%). This work aims to bridge the gap between translating assays from microarray analysis to ISFET arrays providing benefits on tackling infectious disease and diagnostic testing in hard-to-reach areas of the world.
Collapse
Affiliation(s)
- Ivana Pennisi
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, UK; Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Ahmad Moniri
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, UK
| | - Nicholas Miscourides
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, UK
| | - Luca Miglietta
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, UK; Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Nicolas Moser
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, UK
| | - Dominic Habgood-Coote
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Jethro A Herberg
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Michael Levin
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Myrsini Kaforou
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | | | - Pantelis Georgiou
- Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, UK
| |
Collapse
|
46
|
Ferrobotic swarms enable accessible and adaptable automated viral testing. Nature 2022; 611:570-577. [PMID: 36352231 PMCID: PMC9645323 DOI: 10.1038/s41586-022-05408-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022]
Abstract
Expanding our global testing capacity is critical to preventing and containing pandemics1–9. Accordingly, accessible and adaptable automated platforms that in decentralized settings perform nucleic acid amplification tests resource-efficiently are required10–14. Pooled testing can be extremely efficient if the pooling strategy is based on local viral prevalence15–20; however, it requires automation, small sample volume handling and feedback not available in current bulky, capital-intensive liquid handling technologies21–29. Here we use a swarm of millimetre-sized magnets as mobile robotic agents (‘ferrobots’) for precise and robust handling of magnetized sample droplets and high-fidelity delivery of flexible workflows based on nucleic acid amplification tests to overcome these limitations. Within a palm-sized printed circuit board-based programmable platform, we demonstrated the myriad of laboratory-equivalent operations involved in pooled testing. These operations were guided by an introduced square matrix pooled testing algorithm to identify the samples from infected patients, while maximizing the testing efficiency. We applied this automated technology for the loop-mediated isothermal amplification and detection of the SARS-CoV-2 virus in clinical samples, in which the test results completely matched those obtained off-chip. This technology is easily manufacturable and distributable, and its adoption for viral testing could lead to a 10–300-fold reduction in reagent costs (depending on the viral prevalence) and three orders of magnitude reduction in instrumentation cost. Therefore, it is a promising solution to expand our testing capacity for pandemic preparedness and to reimagine the automated clinical laboratory of the future. A handheld printed circuit board-based programmable platform using ferrobots can perform the complex, laboratory-equivalent procedures involved in multiplexed and pooled nucleic acid amplification testing, allowing for the decentralization of viral diagnostics.
Collapse
|
47
|
Sanchez D, Hawkins G, Hinnen HS, Day A, Woolley AT, Nordin GP, Munro T. 3D printing-enabled uniform temperature distributions in microfluidic devices. LAB ON A CHIP 2022; 22:4393-4408. [PMID: 36282069 PMCID: PMC9643673 DOI: 10.1039/d2lc00612j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Many microfluidic processes rely heavily on precise temperature control. Though internally-contained heaters have been developed using traditional fabrication methods, they are limited in their ability to isothermally heat a precisely defined volume. Advances in 3D printing have led to high resolution printers capable of using bio-compatible materials and achieving geometry resolutions near 20 μm. 3D printing's ability to create arbitrary 3D structures with an arbitrary 3D orientation as opposed to traditional microfluidic fabrication methods enables new three-dimensional heater geometries to be created. As examples, we demonstrate three new 3D heater geometries: a non-planar serpentine channel, a tapered helical channel, and a diamond channel. These new geometries are shown through finite element simulation to isothermally heat microfluidic channels of cross section 200 μm × 200 μm with a 0.1 °C temperature difference along up to 91% of a 10 mm length, compared to designs from the literature that are only able to have that same temperature distance over several μms. Finally, a set of design rules to create isothermal regions in 3D based on the desired temperature, heater pitch, heater gradient, and radial space around a target volume are detailed.
Collapse
Affiliation(s)
- Derek Sanchez
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA.
| | - Garrett Hawkins
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA.
| | - Hunter S Hinnen
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Alison Day
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA.
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Gregory P Nordin
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA
| | - Troy Munro
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
48
|
Khosravi H, Mehrdel P, Martínez JAL, Casals-Terré J. Porous Cellulose Substrate Study to Improve the Performance of Diffusion-Based Ionic Strength Sensors. MEMBRANES 2022; 12:1074. [PMID: 36363629 PMCID: PMC9699251 DOI: 10.3390/membranes12111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Microfluidic paper-based analytical devices (µPADs) are leading the field of low-cost, quantitative in-situ assays. However, understanding the flow behavior in cellulose-based membranes to achieve an accurate and rapid response has remained a challenge. Previous studies focused on commercial filter papers, and one of their problems was the time required to perform the test. This work studies the effect of different cellulose substrates on diffusion-based sensor performance. A diffusion-based sensor was laser cut on different cellulose fibers (Whatman and lab-made Sisal papers) with different structure characteristics, such as basis weight, density, pore size, fiber diameter, and length. Better sensitivity and faster response are found in papers with bigger pore sizes and lower basis weights. The designed sensor has been successfully used to quantify the ionic concentration of commercial wines with a 13.6 mM limit of detection in 30 s. The developed µPAD can be used in quantitative assays for agri-food applications without the need for any external equipment or trained personnel.
Collapse
Affiliation(s)
- Hamid Khosravi
- Mechanical Engineering Department—MicroTech Lab., Universitat Politècnica de Catalunya (UPC), C/Colom 7-11, 08222 Terrassa, Barcelona, Spain
| | - Pouya Mehrdel
- Mechanical Engineering Department—MicroTech Lab., Universitat Politècnica de Catalunya (UPC), C/Colom 7-11, 08222 Terrassa, Barcelona, Spain
| | - Joan Antoni López Martínez
- Department of Mining, Industrial and ICT Engineering (EMIT), Universitat Politècnica de Catalunya (UPC), AV. Bases de Manresa 61-73, 08240 Manresa, Barcelona, Spain
| | - Jasmina Casals-Terré
- Mechanical Engineering Department—MicroTech Lab., Universitat Politècnica de Catalunya (UPC), C/Colom 7-11, 08222 Terrassa, Barcelona, Spain
| |
Collapse
|
49
|
Gul I, Liu C, Yuan X, Du Z, Zhai S, Lei Z, Chen Q, Raheem MA, He Q, Hu Q, Xiao C, Haihui Z, Wang R, Han S, Du K, Yu D, Zhang CY, Qin P. Current and Perspective Sensing Methods for Monkeypox Virus. Bioengineering (Basel) 2022; 9:571. [PMID: 36290539 PMCID: PMC9598380 DOI: 10.3390/bioengineering9100571] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The outbreak of the monkeypox virus (MPXV) in non-endemic countries is an emerging global health threat and may have an economic impact if proactive actions are not taken. As shown by the COVID-19 pandemic, rapid, accurate, and cost-effective virus detection techniques play a pivotal role in disease diagnosis and control. Considering the sudden multicountry MPXV outbreak, a critical evaluation of the MPXV detection approaches would be a timely addition to the endeavors in progress for MPXV control and prevention. Herein, we evaluate the current MPXV detection methods, discuss their pros and cons, and provide recommended solutions to the problems. We review the traditional and emerging nucleic acid detection approaches, immunodiagnostics, whole-particle detection, and imaging-based MPXV detection techniques. The insights provided in this article will help researchers to develop novel techniques for the diagnosis of MPXV.
Collapse
Affiliation(s)
- Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Changyue Liu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhicheng Du
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shiyao Zhai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhengyang Lei
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qiuyue Hu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chufan Xiao
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhang Haihui
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Runming Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ke Du
- Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA;
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (I.G.); (C.L.); (X.Y.); (Z.D.); (S.Z.); (Z.L.); (Q.C.); (M.A.R.); (Q.H.); (Q.H.); (C.X.); (Z.H.); (R.W.); (S.H.)
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
50
|
Cai R, Chen X, Zhang Y, Wang X, Zhou N. Systematic bio-fabrication of aptamers and their applications in engineering biology. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2022; 3:223-245. [PMID: 38013802 PMCID: PMC9550155 DOI: 10.1007/s43393-022-00140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 10/27/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules that have high affinity and selectivity to bind to specific targets. Compared to antibodies, aptamers are easy to in vitro synthesize with low cost, and exhibit excellent thermal stability and programmability. With these features, aptamers have been widely used in biology and medicine-related fields. In the meantime, a variety of systematic evolution of ligands by exponential enrichment (SELEX) technologies have been developed to screen aptamers for various targets. According to the characteristics of targets, customizing appropriate SELEX technology and post-SELEX optimization helps to obtain ideal aptamers with high affinity and specificity. In this review, we first summarize the latest research on the systematic bio-fabrication of aptamers, including various SELEX technologies, post-SELEX optimization, and aptamer modification technology. These procedures not only help to gain the aptamer sequences but also provide insights into the relationship between structure and function of the aptamers. The latter provides a new perspective for the systems bio-fabrication of aptamers. Furthermore, on this basis, we review the applications of aptamers, particularly in the fields of engineering biology, including industrial biotechnology, medical and health engineering, and environmental and food safety monitoring. And the encountered challenges and prospects are discussed, providing an outlook for the future development of aptamers.
Collapse
Affiliation(s)
- Rongfeng Cai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|