1
|
Xu L, Xie Y, Liu A, Xie L, Miao X, Hou Z, Xiang L, Jiang T, Wu A, Lin J. Innovative Applications and Perspectives of Surface-Enhanced Raman Spectroscopy Technology in Biomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409698. [PMID: 39610172 DOI: 10.1002/smll.202409698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Indexed: 11/30/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become a revolutionary technique in the biomedical field, providing unparalleled sensitivity for the detection and characterization of biological samples. In this review, recent SERS innovations are comprehensively discussed, including advanced substrate materials, different SERS detection strategies, and multimodal approaches that combine SERS with other biotechnologies. Among them, the role of SERS in the accurate diagnosis of tumors is highlighted, which has promoted accurate molecular analysis and real-time monitoring of treatment effects. In addition, the growing potential of SERS in the treatment of chronic diseases such as cardiovascular disease, diabetes, and neurodegenerative diseases is discussed. Moreover, the integration with microfluidic chip systems for precise single-cell analysis is presented. To give a forward-looking view, the key challenges faced by SERS technology are also proposed, and possible solutions to overcome these obstacles are provided.
Collapse
Affiliation(s)
- Lei Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
- Department of Ultrasound Medicine, Affiliated Jinhua Hospital Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Yujiao Xie
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China
| | - Aochi Liu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Xinyu Miao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Zhiwei Hou
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China
| | - Lingchao Xiang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China
| | - Tianan Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, China
| |
Collapse
|
2
|
Yang Y, Cui J, Kumar A, Luo D, Murray J, Jones L, Chen X, Hülck S, Tripp RA, Zhao Y. Multiplex Detection and Quantification of Virus Co-Infections Using Label-free Surface-Enhanced Raman Spectroscopy and Deep Learning Algorithms. ACS Sens 2025; 10:1298-1311. [PMID: 39874586 PMCID: PMC11877629 DOI: 10.1021/acssensors.4c03209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.2 million SERS spectra are collected from 11 viruses, nine two-virus mixtures, and four three-virus mixtures at various concentrations in saliva. A deep learning model, MultiplexCR, is developed to simultaneously predict virus species and concentrations from SERS spectra. It achieves an impressive 98.6% accuracy in classifying virus coinfections and a mean absolute error of 0.028 for concentration regression. In blind tests, the model demonstrates consistent high accuracy and precise concentration predictions. This SERS-MultiplexCR platform completes the entire detection process in just 15 min, offering significant potential for rapid, point-of-care diagnostics in infection detection, as well as applications in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Yanjun Yang
- Department
of Physics and Astronomy, Franklin College of Arts and Sciences, The University of Georgia, Athens, Georgia 30602, United States
| | - Jiaheng Cui
- School
of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Amit Kumar
- Department
of Physics and Astronomy, Franklin College of Arts and Sciences, The University of Georgia, Athens, Georgia 30602, United States
| | - Dan Luo
- Department
of Statistics, Franklin College of Arts and Sciences, The University of Georgia, Athens, Georgia 30602, United States
| | - Jackelyn Murray
- Department
of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602, United States
| | - Les Jones
- Department
of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602, United States
| | - Xianyan Chen
- Department
of Epidemiology & Biostatistics, College of Public Health, The University of Georgia, Athens, Georgia 30602, United States
| | | | - Ralph A. Tripp
- Department
of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602, United States
| | - Yiping Zhao
- Department
of Physics and Astronomy, Franklin College of Arts and Sciences, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Fan M, Brolo AG. Factors that Affect Quantification in Surface-Enhanced Raman Scattering. ACS NANO 2025; 19:3969-3996. [PMID: 39855155 DOI: 10.1021/acsnano.4c15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS. However, even 50 years after its first observation, SERS is still perceived as an unreliable technique for quantification. This perception has precluded the application of SERS in laboratories that rely on consistent quantification (for regulatory purposes, for instance). In this review, we describe some of the aspects that lead to SERS intensity variations and how those challenges were addressed in the 50 years of the technique. The goal is to identify the sources of variations in SERS intensities and then demonstrate that, even with these pitfalls, the technique can be used for quantification when factors such as nature of the substrate, experimental conditions, sample preparation, surface chemistry, and data analysis are carefully considered and tailored for a particular application.
Collapse
Affiliation(s)
- Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
4
|
Ly NH, Choo J, Gnanasekaran L, Aminabhavi TM, Vasseghian Y, Joo SW. Recent Plasmonic Gold- and Silver-Assisted Raman Spectra for Advanced SARS-CoV-2 Detection. ACS APPLIED BIO MATERIALS 2025; 8:88-107. [PMID: 39665205 DOI: 10.1021/acsabm.4c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
COVID-19 has become one of the deadliest epidemics in the past years. In efforts to combat the deadly disease besides vaccines, drug therapies, and facemasks, significant focus has been on designing specific methods for the sensitive and accurate detection of SARS-CoV-2. Of these, surface-enhanced Raman scattering (SERS) is an attractive analytical tool for the identification of SARS-CoV-2. SERS is the phenomenon of enhancement of Raman intensity signals from molecular analytes anchored onto the surfaces of roughened plasmonic nanomaterials. This work gives an updated summary of plasmonic gold nanomaterials (AuNMs) and silver nanomaterials (AgNMs)-based SERS technologies to identify SARS-CoV-2. Due to extreme "hot spots" promoting higher electromagnetic fields on their surfaces, different shapes of AuNMs and AgNMs combined with Raman probes have been reviewed for enhancing Raman signals of probe molecules for quantifying the virus. It also reviews progress made recently in the design of certain specific Raman probe molecules capable of imparting characteristic SERS response/tags for SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam 13120, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | | | - Tejraj Malleshappa Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580031, India
- Korea University, Seoul 02841, South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| |
Collapse
|
5
|
Wang X, Tang X, Ji C, Wu L, Zhu Y. Advances and Future Trends in Nanozyme-Based SERS Sensors for Food Safety, Environmental and Biomedical Applications. Int J Mol Sci 2025; 26:709. [PMID: 39859423 PMCID: PMC11765993 DOI: 10.3390/ijms26020709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Nanozymes, a kind of nanoparticles with enzyme-mimicking activities, have attracted considerable attention due to their robust catalytic properties, ease of preparation, and resistance to harsh conditions. By combining nanozymes with surface-enhanced Raman spectroscopy (SERS) technology, highly sensitive and selective sensors have been developed. These sensors are capable of detecting a wide range of analytes, such as foodborne toxins, environmental pollutants, and biomedical markers. This review provides an overview of recent advancements in the synthesis and surface modification of nanozymes, highlighting their ability to mimic multiple enzymes and enhance catalytic performance. In addition, we explore the development and applications of nanozyme-based SERS sensors in food contaminants, environmental pollutants, and biomedical markers. The review concludes with perspectives and challenges facing the field, involving the need for deeper understanding of nanozyme principles and mechanisms, development of standardized systems for characterization, and the engineering of nanozymes with tailored properties for specific applications. Finally, we discuss the potential for integrating various techniques with nanozymes to create multi-modal detection platforms, paving the way for the next generation of analytical tools in the fields of food safety, environmental monitoring, and biomedical diagnostics.
Collapse
Affiliation(s)
- Xingyu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Xuemei Tang
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chengzhen Ji
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Long Wu
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, School of Food Science and Engineering, Hainan University, Haikou 570228, China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| |
Collapse
|
6
|
Zolotareva M, Cascalheira F, Caneiras C, Bárbara C, Caetano DM, Teixeira MC. In the flow of molecular miniaturized fungal diagnosis. Trends Biotechnol 2024; 42:1628-1643. [PMID: 38987118 DOI: 10.1016/j.tibtech.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
The diagnosis of fungal infections presents several challenges and limitations, stemming from the similarities in symptomatology, diversity of underlying pathogenic species, complexity of fungal biology, and scarcity of rapid, affordable, and point-of-care approaches. In this review, we assess technological advances enabling the conversion of cutting-edge laboratory molecular diagnostic methods to cost-effective microfluidic devices. The most promising strategies toward the design of DNA sequence-based fungal diagnostic systems, capable of capturing and deciphering the highly informative DNA of the pathogen and adapted for resource-limited settings, are discussed, bridging fungal biology, molecular genetics, microfluidics, and biosensors.
Collapse
Affiliation(s)
- Maria Zolotareva
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias, INESC-, MN, 1000-029 Lisboa, Portugal; iBB - Institute for Bioengineering and Biosciences, Associate Laboratory Institute for Health and Bioeconomy - i4HB, 1049-001 Lisboa, Portugal
| | - Francisco Cascalheira
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias, INESC-, MN, 1000-029 Lisboa, Portugal; iBB - Institute for Bioengineering and Biosciences, Associate Laboratory Institute for Health and Bioeconomy - i4HB, 1049-001 Lisboa, Portugal
| | - Cátia Caneiras
- Environmental Health Institute (ISAMB), Faculdade de Medicina, Universidade de Lisboa, 1649-026 Lisboa, Portugal; Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, 1649-026 Lisboa, Portugal; Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal; Institute of Preventive Medicine and Public Health, Universidade de Lisboa, 1649-026 Lisboa, Portugal
| | - Cristina Bárbara
- Environmental Health Institute (ISAMB), Faculdade de Medicina, Universidade de Lisboa, 1649-026 Lisboa, Portugal; Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, 1649-026 Lisboa, Portugal; Centro Hospitalar Universitário Lisboa Norte, 1600-190, Lisboa, Portugal
| | - Diogo Miguel Caetano
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias, INESC-, MN, 1000-029 Lisboa, Portugal; Department of Electrical and Computer Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal.
| | - Miguel Cacho Teixeira
- iBB - Institute for Bioengineering and Biosciences, Associate Laboratory Institute for Health and Bioeconomy - i4HB, 1049-001 Lisboa, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal.
| |
Collapse
|
7
|
Gu X, Zhang J, Liang J, Liu X, He X, Jin X, Yan C, Wang L, Song C. CRISPR/Cas13a Trans-Cleavage and Catalytic Hairpin Assembly Cascaded Signal Amplification Powered SERS Aptasensor for Ultrasensitive Detection of Gastric Cancer-Derived Exosomes. Anal Chem 2024; 96:18681-18689. [PMID: 39552005 DOI: 10.1021/acs.analchem.4c03063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Cancer-derived exosomes carry a large number of specific molecular profiles from cancer cells and have emerged as ideal biomarkers for early cancer diagnosis. Accurate detection of ultralow-abundance exosomes in complex biological samples remains a great challenge. Herein, a novel SERS aptasensor powered by cascaded signal amplification of CRISPR/Cas13a trans-cleavage and catalytic hairpin assembly (CHA) was proposed for ultrasensitive detection of gastric cancer-derived exosomes, which included hairpin-structured recognition aptamers (MUC1-apt), cascaded signal amplification (i.e., CRISPR/Cas13a trans-cleavage and CHA), SERS tags, and silver nanorods (AgNRs) sensing chip. In the presence of SGC-7901 cell-derived exosomes, MUC1-apt specifically bound to MUC1 proteins highly expressed on exosomes via its contained MUC1 aptamer with its exposed RNA fragments activating the CRISPR/Cas13a trans-cleavage to cleave the uracil-modified hairpin reporter, and the cleavage products further triggered the downstream CHA reaction to form numerous duplexes, which can, in turn, capture a large number of SERS tags onto the AgNRs sensing chip to generate a significantly enhanced Raman signal. The proposed SERS aptasensor exhibits good performance on analysis of exosomes, i.e., rapid response within 60 min, single-particle sensitive detection from a 2 μL biological sample, good specificity in distinguishing SGC-7901 cell-derived exosomes against other exosomes, good uniformity, excellent repeatability, and satisfactory recoveries in human serum, and good universality to expand the detection of multiplex exosomes, which indicates that the SERS aptasensor provides a valuable reference for clinical diagnosis of early cancer.
Collapse
Affiliation(s)
- Xinyue Gu
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theragnostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theragnostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jing Liang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theragnostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinyu Liu
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theragnostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiyu He
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theragnostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiaoyuhao Jin
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theragnostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Chenlong Yan
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theragnostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theragnostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Smart Biomaterials and Theragnostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
8
|
Kant K, Beeram R, Cao Y, Dos Santos PSS, González-Cabaleiro L, García-Lojo D, Guo H, Joung Y, Kothadiya S, Lafuente M, Leong YX, Liu Y, Liu Y, Moram SSB, Mahasivam S, Maniappan S, Quesada-González D, Raj D, Weerathunge P, Xia X, Yu Q, Abalde-Cela S, Alvarez-Puebla RA, Bardhan R, Bansal V, Choo J, Coelho LCC, de Almeida JMMM, Gómez-Graña S, Grzelczak M, Herves P, Kumar J, Lohmueller T, Merkoçi A, Montaño-Priede JL, Ling XY, Mallada R, Pérez-Juste J, Pina MP, Singamaneni S, Soma VR, Sun M, Tian L, Wang J, Polavarapu L, Santos IP. Plasmonic nanoparticle sensors: current progress, challenges, and future prospects. NANOSCALE HORIZONS 2024; 9:2085-2166. [PMID: 39240539 PMCID: PMC11378978 DOI: 10.1039/d4nh00226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Plasmonic nanoparticles (NPs) have played a significant role in the evolution of modern nanoscience and nanotechnology in terms of colloidal synthesis, general understanding of nanocrystal growth mechanisms, and their impact in a wide range of applications. They exhibit strong visible colors due to localized surface plasmon resonance (LSPR) that depends on their size, shape, composition, and the surrounding dielectric environment. Under resonant excitation, the LSPR of plasmonic NPs leads to a strong field enhancement near their surfaces and thus enhances various light-matter interactions. These unique optical properties of plasmonic NPs have been used to design chemical and biological sensors. Over the last few decades, colloidal plasmonic NPs have been greatly exploited in sensing applications through LSPR shifts (colorimetry), surface-enhanced Raman scattering, surface-enhanced fluorescence, and chiroptical activity. Although colloidal plasmonic NPs have emerged at the forefront of nanobiosensors, there are still several important challenges to be addressed for the realization of plasmonic NP-based sensor kits for routine use in daily life. In this comprehensive review, researchers of different disciplines (colloidal and analytical chemistry, biology, physics, and medicine) have joined together to summarize the past, present, and future of plasmonic NP-based sensors in terms of different sensing platforms, understanding of the sensing mechanisms, different chemical and biological analytes, and the expected future technologies. This review is expected to guide the researchers currently working in this field and inspire future generations of scientists to join this compelling research field and its branches.
Collapse
Affiliation(s)
- Krishna Kant
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, UP, India
| | - Reshma Beeram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Yi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Paulo S S Dos Santos
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
| | | | - Daniel García-Lojo
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Siddhant Kothadiya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Marta Lafuente
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Yong Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Yiyi Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sree Satya Bharati Moram
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sonia Maniappan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Daniel Quesada-González
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Divakar Raj
- Department of Allied Sciences, School of Health Sciences and Technology, UPES, Dehradun, 248007, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Luis C C Coelho
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- FCUP, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - José M M M de Almeida
- INESC TEC-Institute for Systems and Computer Engineering, Technology and Science, Rua Dr Alberto Frias, 4200-465 Porto, Portugal
- Department of Physics, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Sergio Gómez-Graña
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Pablo Herves
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - Jatish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517 507, India
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona, 08010, Spain
| | - José Luis Montaño-Priede
- Centro de Física de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia San-Sebastián, Spain
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Reyes Mallada
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Jorge Pérez-Juste
- CINBIO, Department of Physical Chemistry, Universidade de Vigo, 36310 Vigo, Spain.
| | - María P Pina
- Department of Chemical & Environmental Engineering, Campus Rio Ebro, C/Maria de Luna s/n, 50018 Zaragoza, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia - Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad 500046, Telangana, India
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | | | | |
Collapse
|
9
|
Sitjar J, Liao JD, Lee H, Tsai HP, Wang JR. Innovative and versatile surface-enhanced Raman spectroscopy-inspired approaches for viral detection leading to clinical applications: A review. Anal Chim Acta 2024; 1325:342917. [PMID: 39244310 DOI: 10.1016/j.aca.2024.342917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 09/09/2024]
Abstract
The evolution of analytical techniques has opened the possibilities of accurate analyte detection through a straightforward method and short acquisition time, leading towards their applicability to identify medical conditions. Surface-enhanced Raman spectroscopy (SERS) has long been proven effective for rapid detection and relies on SERS spectra that are unique to each specific analyte. However, the complexity of viruses poses challenges to SERS and hinders further progress in its practical applications. The principle of SERS revolves around the interaction among substrate, analyte, and Raman laser, but most studies only emphasize the substrate, especially label-free methods, and the synergy among these factors is often ignored. Therefore, issues related to reproducibility and consistency of results, which are crucial for medical diagnosis and are the main highlights of this review, can be understood and largely addressed when considering these interactions. Viruses are composed of multiple surface components and can be detected by label-free SERS, but the presence of non-target molecules in clinical samples interferes with the detection process. Appropriate spectral data processing workflow also plays an important role in the interpretation of results. Furthermore, integrating machine learning into data processing can account for changes brought about by the presence of non-target molecules when analyzing spectral features to accurately group the data, for example, whether the sample corresponds to a positive or negative patient, and whether a virus variant or multiple viruses are present in the sample. Subsequently, advances in interdisciplinary fields can bring SERS closer to practical applications.
Collapse
Affiliation(s)
- Jaya Sitjar
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Jiunn-Der Liao
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Han Lee
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Jen-Ren Wang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
10
|
Li D, Yue W, He Q, Gao P, Gong T, Luo Y, Wang C, Luo X. Single-molecule detection of SARS-CoV-2 N protein on multilayered plasmonic nanotraps with surface-enhanced Raman spectroscopy. Talanta 2024; 278:126494. [PMID: 38955100 DOI: 10.1016/j.talanta.2024.126494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
The spread of the SARS-CoV-2 virus has had an unprecedented impact, both by posing a serious risk to human health and by amplifying the burden on the global economy. The rapid identification of the SARS-CoV-2 virus has been crucial to preventing and controlling the spread of SARS-CoV-2 infections. In this study, we propose a multilayered plasmonic nanotrap (MPNT) device for the rapid identification of single particles of SARS-CoV-2 virus in ultra-high sensitivity by surface-enhanced Raman scattering (SERS). The MPNT device is composed of arrays of concentric cylindrical cavities with Ag/SiO2/Ag multilayers deposited on the top and at the bottom. By varying the diameter of the cylinders and the thickness of the multilayers, the resonant optical absorption and local electric field were optimized. The SERS enhancement factors of the proposed device are of the order of 108, which enable the rapid identification of SARS-CoV-2 N protein in concentrations as low as 1.25 × 10-15-12.5 × 10-15 g mL-1 within 1 min. The developed MPNT SERS device provides a label-free and rapid detection platform for SARS-CoV-2 virus. The general nature of the device makes it equally suitable to detect other infectious viruses.
Collapse
Affiliation(s)
- Dongxian Li
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weisheng Yue
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiong He
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Gao
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China
| | - Tiancheng Gong
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfei Luo
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changtao Wang
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangang Luo
- Institute of Optics and Electronics, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, P.O. Box 350, Chengdu, 610209, China; School of Optoelectronics, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Huang Q, Zhou N, Peng J, Zeng X, Du L, Zhao Y, Luo X. Sensitivity-improved SERS detection of SARS-CoV-2 spike protein by Au NPs/COFs integrated with catalytic-hairpin-assembly amplification technology. Anal Chim Acta 2024; 1318:342924. [PMID: 39067931 DOI: 10.1016/j.aca.2024.342924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The COVID-19 pandemic, caused by the novel coronavirus, has had a profound impact on global health and economies worldwide. This unprecedented crisis has affected individuals, communities, and nations in diverse manners. Developing simple and accurate diagnostic methods is an imperative task for frequent testing to mitigate the spread of the virus. Among these methods, SARS-CoV-2 antigen tests in clinical specimens have emerged as a promising diagnostic method for COVID-19 due to their sensitive and accurate detection of spike (S) protein, which plays a crucial role in viral infection initiation. RESULTS In this work, a dual-signal amplification surface enhanced Raman scattering (SERS)-based S protein biosensor was constructed based on Au NPs/COFs and enzyme-free catalytic hairpin assembly (CHA) amplification method. The approach relies on a released free DNA sequence (T), which is generated from the competition reaction between Aptamer/T and Aptamer/S protein, to trigger a CHA reaction. Due to the high binding affinity and selectivity between the S protein and its aptamer, CHA process was triggered with the maximum SERS tags (H2-conjugated Au@4-mercaptobenzonitrile@Ag) anchored onto Au NPs/COFs substrate surface. This SERS platform could detect the S protein at concentrations with high sensitivity (limit of detection = 3.0 × 10-16 g/mL), wide detection range (1 × 10-16 to 1 × 10-11 g/mL), acceptable reproducibility (relative standard deviation = 7.01 %) and excellent specificity. The biosensor was also employed to detect S protein in artificial human salivas. SIGNIFICANCE Thus, this study not only developed a novel Au NPs/COFs substrate exhibiting strong SERS enhancement ability and high reproducibility, but also proposed a promising dual-signal amplification SERS-based diagnostic method for COVID-19, holding immense potential for the detection of a wide range of antigens and infectious diseases in future applications.
Collapse
Affiliation(s)
- Qiuwen Huang
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Na Zhou
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China; Food Microbiology, Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China
| | - Jiayi Peng
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Xuanjiang Zeng
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Lijuan Du
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu, 610039, Sichuan, China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu, 610039, Sichuan, China.
| |
Collapse
|
12
|
Zhao Q, Cheng X, Hu S, Zhao M, Chen J, Mu M, Yang Y, Liu H, Hu L, Zhao B, Song W. Bilateral efforts to improve SERS detection efficiency of exosomes by Au/Na 7PMo 11O 39 Combined with Phospholipid Epitope Imprinting. Biosens Bioelectron 2024; 258:116349. [PMID: 38705072 DOI: 10.1016/j.bios.2024.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
Detection of cancer-related exosomes in body fluids has become a revolutionary strategy for early cancer diagnosis and prognosis prediction. We have developed a two-step targeting detection method, termed PS-MIPs-NELISA SERS, for rapid and highly sensitive exosomes detection. In the first step, a phospholipid polar site imprinting strategy was employed using magnetic PS-MIPs (phospholipids-molecularly imprinted polymers) to selectively isolate and enrich all exosomes from urine samples. In the second step, a nanozyme-linked immunosorbent assay (NELISA) technique was utilized. We constructed Au/Na7PMo11O39 nanoparticles (NPs) with both surface-enhanced Raman scattering (SERS) property and peroxidase catalytic activity, followed by the immobilization of CD9 antibodies on the surface of Au/Na7PMo11O39 NPs. The Au/Na7PMo11O39-CD9 antibody complexes were then used to recognize CD9 proteins on the surface of exosomes enriched by magnetic PS-MIPs. Lastly, the high sensitivity detection of exosomes was achieved indirectly via the SERS activity and peroxidase-like activity of Au/Na7PMo11O39 NPs. The quantity of exosomes in urine samples from pancreatic cancer patients obtained by the PS-MIPs-NELISA SERS technique showed a linear relationship with the SERS intensity in the range of 6.21 × 107-2.81 × 108 particles/mL, with a limit of detection (LOD) of 5.82 × 107 particles/mL. The SERS signal intensity of exosomes in urine samples from pancreatic cancer patients was higher than that of healthy volunteers. This bidirectional MIPs-NELISA-SERS approach enables noninvasive, highly sensitive, and rapid detection of cancer, facilitating the monitoring of disease progression during treatment and opening up a new avenue for rapid early cancer screening.
Collapse
Affiliation(s)
- Qingnan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China; Harbin Medical University, Department Organic Chemistry, College of Pharmacy, Baojian Rd 157, Harbin, 150081, Heilongjiang, PR China
| | - Xianhui Cheng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, PR China
| | - Saizhen Hu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Menghan Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ming Mu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yumei Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, PR China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
13
|
Awad H, El-Brolossy TA, Abdallah T, Osman A, Negm S, Mansour OI, Girgis SA, Hafez HM, Zaki AM, Talaat H. Accurate and reliable surface-enhanced Raman spectroscopy assay for early detection of SARS-CoV-2 RNA with exceptional sensitivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124184. [PMID: 38608556 DOI: 10.1016/j.saa.2024.124184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/28/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
This research proposes a highly sensitive and simple surface-enhanced Raman spectroscopy (SERS) assay for the detection of SARS-CoV-2 RNA using suitably designed probes specific for RdRp and N viral genes attached to a Raman marker. The sensitivity of the assay was optimized through precise adjustments to the conditions of immobilization and hybridization processes of the target RNA, including modifications to factors such as time and temperature. The assay achieved a remarkable sensitivity down to 58.39 copies/mL, comparable to or lower than the sensitivities reported for commercial fluorescent polymerase chain reaction (PCR) based methods. It has good selectivity in discriminating SARS-CoV-2 RNA against other respiratory viruses, respiratory syncytial virus (RSV), and influenza A virus. The reliability of the assay was validated by testing 24 clinical samples, including 12 positive samples with varying cycle threshold (Ct) values and 12 negative samples previously tested using real-time PCR. The assay consistently predicted true results that were in line with the PCR results for all samples. Furthermore, the assay demonstrated a notable limit of detection (LOD) of Ct (38 for RdRp gene and 37.5 for N-gene), indicating its capability to detect low concentrations of the target analyte and potentially facilitating early detection of the pathogen.
Collapse
Affiliation(s)
- Hend Awad
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Tamer Abdallah
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed Osman
- Institute of Basic and Applied Science - Egpt-Japan University of Science and Technology (E-JUST), Egypt
| | - Sohair Negm
- Department of Physics and Mathematics, Banha University, Banha, Egypt
| | | | | | - Hala M Hafez
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ali M Zaki
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hassan Talaat
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Yang Y, Cui J, Luo D, Murray J, Chen X, Hülck S, Tripp RA, Zhao Y. Rapid Detection of SARS-CoV-2 Variants Using an Angiotensin-Converting Enzyme 2-Based Surface-Enhanced Raman Spectroscopy Sensor Enhanced by CoVari Deep Learning Algorithms. ACS Sens 2024; 9:3158-3169. [PMID: 38843447 PMCID: PMC11217934 DOI: 10.1021/acssensors.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and quantify SARS-CoV-2 variants is developed based on an angiotensin-converting enzyme 2 (ACE2)-functionalized AgNR@SiO2 array SERS sensor. SERS spectra with concentrations of different variants were collected using a portable Raman system. After appropriate spectral preprocessing, a deep learning algorithm, CoVari, is developed to predict both the viral variant species and concentrations. Using a 10-fold cross-validation strategy, the model achieves an average accuracy of 99.9% in discriminating between different virus variants and R2 values larger than 0.98 for quantifying viral concentrations of the three viruses, demonstrating the high quality of the detection. The limit of detection of the ACE2 SERS sensor is determined to be 10.472, 11.882, and 21.591 PFU/mL for SARS-CoV-2, SARS-CoV-2 B1, and CoV-NL63, respectively. The feature importance of virus classification and concentration regression in the CoVari algorithm are calculated based on a permutation algorithm, which showed a clear correlation to the biochemical origins of the spectra or spectral changes. In an unknown specimen test, classification accuracy can achieve >90% for concentrations larger than 781 PFU/mL, and the predicted concentrations consistently align with actual values, highlighting the robustness of the proposed algorithm. Based on the CoVari architecture and the output vector, this algorithm can be generalized to predict both viral variant species and concentrations simultaneously for a broader range of viruses. These results demonstrate that the SERS + CoVari strategy has the potential for rapid and quantitative detection of virus variants and potentially point-of-care diagnostic platforms.
Collapse
Affiliation(s)
- Yanjun Yang
- Department
of Physics and Astronomy, The University
of Georgia, Athens, Georgia 30602, United States
| | - Jiaheng Cui
- School
of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Dan Luo
- Department
of Statistics, The University of Georgia, Athens, Georgia 30602, United States
| | - Jackelyn Murray
- Department
of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602, United States
| | - Xianyan Chen
- Department
of Epidemiology & Biostatistics, College of Public Health, The University of Georgia, Athens, Georgia 30602, United States
| | | | - Ralph A. Tripp
- Department
of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602, United States
| | - Yiping Zhao
- Department
of Physics and Astronomy, The University
of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
15
|
Wang C, Zhao J, Gu C, Jiang T, Li X. Synergistic photoinduced charge transfer resonance from porous ZIF-67 decorated violet phosphorus array for SERS immunoassay of SARS-CoV-2 spike protein. Colloids Surf B Biointerfaces 2024; 237:113833. [PMID: 38484444 DOI: 10.1016/j.colsurfb.2024.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/12/2024] [Accepted: 03/03/2024] [Indexed: 04/08/2024]
Abstract
As a rapid, highly sensitive, and user-friendly technique, surface-enhanced Raman scattering (SERS) has an extraordinary appeal to home self-test of COVID-19 during the post pandemic era. However, most of the existing SERS substrates have been still criticized in stability, repeatability, and sample enrichment. To address these obstacles, a novel non-metallic SERS substrate with porous surfaces and array geometry was developed by in-situ growing ZIF-67 particles on two-dimensional violet phosphorus (VP) matrix. Chemical enhancement was prominently promoted by the synergistic photoinduced charge transfer resonance in the hybrid band structure of the ZIF-67@VP substrate, facilitating a noble metal-similar enhancement factor of 6.11 × 107. The biocompatible ZIF-67@VP porous array with attractive enhancement capability and high anchoring efficiency was further utilized to monitoring SARS-CoV-2 spike protein in practical saliva samples based on a sandwich immunostructure, achieving a limit of detection of 1.7 ng/mL assisted by black phosphorus nanosheets. This nonmetallic immunoassay strategy with exceptional sensitivity and specificity is predicted to extend the utilization of SERS obstacle in daily infectious disease screening.
Collapse
Affiliation(s)
- Chucheng Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jialong Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Chenjie Gu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Tao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| | - Xing Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
16
|
Xia L, Huang Y, Wang Q, Wang X, Wang Y, Wu J, Li Y. Deciphering biomolecular complexities: the indispensable role of surface-enhanced Raman spectroscopy in modern bioanalytical research. Analyst 2024; 149:2526-2541. [PMID: 38623605 DOI: 10.1039/d4an00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as an indispensable analytical tool in biomolecular research, providing unmatched sensitivity critical for the elucidation of biomolecular structures. This review presents a thorough examination of SERS, outlining its fundamental principles, cataloging its varied applications within the biomolecular sphere, and contemplating its future developmental trajectories. We begin with a detailed analysis of SERS's mechanistic principles, emphasizing both the phenomena of surface enhancement and the complexities inherent in Raman scattering spectroscopy. Subsequently, we delve into the pivotal role of SERS in the structural analysis of diverse biomolecules, including proteins, nucleic acids, lipids, carbohydrates, and biochromes. The remarkable capabilities of SERS extend beyond mere detection, offering profound insights into biomolecular configurations and interactions, thereby enriching our comprehension of intricate biological processes. This review also sheds light on the application of SERS in real-time monitoring of various bio-relevant compounds, from enzymes and coenzymes to metal ion-chelate complexes and cellular organelles, thereby providing a holistic view and empowering researchers to unravel the complexities of biological systems. We also address the current challenges faced by SERS, such as enhancing sensitivity and resolution, developing stable and reproducible substrates, and conducting thorough analyses in complex biological matrices. Nonetheless, the continual advancements in nanotechnology and spectroscopy solidify the standing of SERS as a formidable force in biomolecular research. In conclusion, the versatility and robustness of SERS not only deepen our understanding of biomolecular intricacies but also pave the way for significant developments in medical research, therapeutic innovation, and diagnostic approaches.
Collapse
Affiliation(s)
- Ling Xia
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yujiang Huang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Qiuying Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Xiaotong Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Yunpeng Wang
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
| | - Jing Wu
- School of Physics and Technology, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu, 226019, PR China
| | - Yang Li
- Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
- Department of Clinical Laboratory Diagnosis, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, Finland
| |
Collapse
|
17
|
Li J, Guan R, Wuethrich A, Yan M, Cheng J, Liu G, Zhan J, Trau M, Sun Y. High Accuracy of Clinical Verification of Electrohydrodynamic-Driven Nanobox-on-Mirror Platform for Molecular Identification of Respiratory Viruses. Anal Chem 2024; 96:4495-4504. [PMID: 38445954 DOI: 10.1021/acs.analchem.3c05120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The molecular detection of multiple respiratory viruses provides evidence for the rational use of drugs and effective health management. Herein, we developed and tested the clinical performance of an electrohydrodynamic-driven nanobox-on-mirror platform (E-NoM) for the parallel, accurate, and sensitive detection of four respiratory viral antigens. The E-NoM platform uses gold-silver alloy nanoboxes as the core material with the deposition of a silver layer as a shell on the core surfaces to amplify and enable a reproducible Raman signal readout that facilitates accurate detection. Additionally, the E-NoM platform employs gold microelectrode arrays as the mirror with electrohydrodynamics to manipulate the fluid flow and enhance molecular interactions for an improved biosensing response. The presence of viral antigens binds the nanobox-based core-shell nanostructure on the gold microelectrode and creates the nanocavity with extremely strong "hot spots" to benefit sensitive analysis. Significantly, in a large clinical cohort with 227 patients, the designed E-NoM platform demonstrates the capability of screening respiratory infection with achieved clinical specificity, sensitivity, and accuracy of 100.0, 96.48, and 96.91%, respectively. It is anticipated that the E-NoM platform can find a position in clinical usage for respiratory disease diagnosis.
Collapse
Affiliation(s)
- Junrong Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Rui Guan
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mingzhe Yan
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, P. R. China
| | - Jing Cheng
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430072, P. R. China
| | - Guorong Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jianbo Zhan
- Institute of Health Inspection and Testing Hubei Provincial Center for Disease Control and Prevention, Wuhan 430072, P. R. China
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
18
|
Lin B, Xiao F, Jiang J, Zhao Z, Zhou X. Engineered aptamers for molecular imaging. Chem Sci 2023; 14:14039-14061. [PMID: 38098720 PMCID: PMC10718180 DOI: 10.1039/d3sc03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Molecular imaging, including quantification and molecular interaction studies, plays a crucial role in visualizing and analysing molecular events occurring within cells or organisms, thus facilitating the understanding of biological processes. Moreover, molecular imaging offers promising applications for early disease diagnosis and therapeutic evaluation. Aptamers are oligonucleotides that can recognize targets with a high affinity and specificity by folding themselves into various three-dimensional structures, thus serving as ideal molecular recognition elements in molecular imaging. This review summarizes the commonly employed aptamers in molecular imaging and outlines the prevalent design approaches for their applications. Furthermore, it highlights the successful application of aptamers to a wide range of targets and imaging modalities. Finally, the review concludes with a forward-looking perspective on future advancements in aptamer-based molecular imaging.
Collapse
Affiliation(s)
- Bingqian Lin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jinting Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Zhengjia Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
19
|
Vilcapoma J, Aliyeva A, Hayden A, Chandrasekaran AR, Zhou L, Punnoose JA, Yang D, Hansen C, Shiu SCC, Russell A, George KS, Wong WP, Halvorsen K. A non-enzymatic test for SARS-CoV-2 RNA using DNA nanoswitches. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.31.23290613. [PMID: 37398235 PMCID: PMC10312858 DOI: 10.1101/2023.05.31.23290613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The emergence of a highly contagious novel coronavirus in 2019 led to an unprecedented need for large scale diagnostic testing. The associated challenges including reagent shortages, cost, deployment delays, and turnaround time have all highlighted the need for an alternative suite of low-cost tests. Here, we demonstrate a diagnostic test for SARS-CoV-2 RNA that provides direct detection of viral RNA and eliminates the need for costly enzymes. We employ DNA nanoswitches that respond to segments of the viral RNA by a change in shape that is readable by gel electrophoresis. A new multi-targeting approach samples 120 different viral regions to improve the limit of detection and provide robust detection of viral variants. We apply our approach to a cohort of clinical samples, positively identifying a subset of samples with high viral loads. Since our method directly detects multiple regions of viral RNA without amplification, it eliminates the risk of amplicon contamination and renders the method less susceptible to false positives. This new tool can benefit the COVID-19 pandemic and future emerging outbreaks, providing a third option between amplification-based RNA detection and protein antigen detection. Ultimately, we believe this tool can be adapted both for low-resource onsite testing as well as for monitoring viral loads in recovering patients.
Collapse
Affiliation(s)
- Javier Vilcapoma
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Asmer Aliyeva
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Andrew Hayden
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | | | - Lifeng Zhou
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | | | - Darren Yang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Clinton Hansen
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Simon Chi-Chin Shiu
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| | - Alexis Russell
- Laboratory of Viral Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208
| | - Kirsten St. George
- Laboratory of Viral Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208
- Department of Biomedical Science, University at Albany, State University of New York, Albany, NY 12208
| | - Wesley P. Wong
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222
| |
Collapse
|
20
|
Choi HK, Yoon J. Nanotechnology-Assisted Biosensors for the Detection of Viral Nucleic Acids: An Overview. BIOSENSORS 2023; 13:208. [PMID: 36831973 PMCID: PMC9953881 DOI: 10.3390/bios13020208] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The accurate and rapid diagnosis of viral diseases has garnered increasing attention in the field of biosensors. The development of highly sensitive, selective, and accessible biosensors is crucial for early disease detection and preventing mortality. However, developing biosensors optimized for viral disease diagnosis has several limitations, including the accurate detection of mutations. For decades, nanotechnology has been applied in numerous biological fields such as biosensors, bioelectronics, and regenerative medicine. Nanotechnology offers a promising strategy to address the current limitations of conventional viral nucleic acid-based biosensors. The implementation of nanotechnologies, such as functional nanomaterials, nanoplatform-fabrication techniques, and surface nanoengineering, to biosensors has not only improved the performance of biosensors but has also expanded the range of sensing targets. Therefore, a deep understanding of the combination of nanotechnologies and biosensors is required to prepare for sanitary emergencies such as the recent COVID-19 pandemic. In this review, we provide interdisciplinary information on nanotechnology-assisted biosensors. First, representative nanotechnologies for biosensors are discussed, after which this review summarizes various nanotechnology-assisted viral nucleic acid biosensors. Therefore, we expect that this review will provide a valuable basis for the development of novel viral nucleic acid biosensors.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
21
|
Yang Y, Li H, Jones L, Murray J, Haverstick J, Naikare HK, Mosley YYC, Tripp RA, Ai B, Zhao Y. Rapid Detection of SARS-CoV-2 RNA in Human Nasopharyngeal Specimens Using Surface-Enhanced Raman Spectroscopy and Deep Learning Algorithms. ACS Sens 2023; 8:297-307. [PMID: 36563081 PMCID: PMC9797020 DOI: 10.1021/acssensors.2c02194] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
A rapid and cost-effective method to detect the infection of SARS-CoV-2 is fundamental to mitigating the current COVID-19 pandemic. Herein, a surface-enhanced Raman spectroscopy (SERS) sensor with a deep learning algorithm has been developed for the rapid detection of SARS-CoV-2 RNA in human nasopharyngeal swab (HNS) specimens. The SERS sensor was prepared using a silver nanorod array (AgNR) substrate by assembling DNA probes to capture SARS-CoV-2 RNA. The SERS spectra of HNS specimens were collected after RNA hybridization, and the corresponding SERS peaks were identified. The RNA detection range was determined to be 103-109 copies/mL in saline sodium citrate buffer. A recurrent neural network (RNN)-based deep learning model was developed to classify 40 positive and 120 negative specimens with an overall accuracy of 98.9%. For the blind test of 72 specimens, the RNN model gave a 97.2% accuracy prediction for positive specimens and a 100% accuracy for negative specimens. All the detections were performed in 25 min. These results suggest that the DNA-functionalized AgNR array SERS sensor combined with a deep learning algorithm could serve as a potential rapid point-of-care COVID-19 diagnostic platform.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Electrical and Computer Engineering, College
of Engineering, The University of Georgia, Athens,
Georgia30602, United States
| | - Hao Li
- School of Microelectronics and Communication
Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information
Processing, Chongqing University, Chongqing400044, P.
R. China
| | - Les Jones
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
| | - James Haverstick
- Department of Physics and Astronomy, The
University of Georgia, Athens, Georgia30602, United
States
| | - Hemant K. Naikare
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
- Tifton Veterinary Diagnostic and Investigational
Laboratory, The University of Georgia, Athens, Georgia30602,
United States
| | - Yung-Yi C. Mosley
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
- Tifton Veterinary Diagnostic and Investigational
Laboratory, The University of Georgia, Athens, Georgia30602,
United States
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary
Medicine, The University of Georgia, Athens, Georgia30602,
United States
| | - Bin Ai
- School of Microelectronics and Communication
Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information
Processing, Chongqing University, Chongqing400044, P.
R. China
| | - Yiping Zhao
- Department of Physics and Astronomy, The
University of Georgia, Athens, Georgia30602, United
States
| |
Collapse
|
22
|
Gu MM, Guan PC, Xu SS, Li HM, Kou YC, Lin XD, Kathiresan M, Song Y, Zhang YJ, Jin SZ, Li JF. Ultrasensitive detection of SARS-CoV-2 S protein with aptamers biosensor based on surface-enhanced Raman scattering. J Chem Phys 2023; 158:024203. [PMID: 36641419 DOI: 10.1063/5.0130011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A rapid and accurate diagnostic modality is essential to prevent the spread of SARS-CoV-2. In this study, we proposed a SARS-CoV-2 detection sensor based on surface-enhanced Raman scattering (SERS) to achieve rapid and ultrasensitive detection. The sensor utilized spike protein deoxyribonucleic acid aptamers with strong affinity as the recognition entity to achieve high specificity. The spherical cocktail aptamers-gold nanoparticles (SCAP) SERS substrate was used as the base and Au nanoparticles modified with the Raman reporter molecule that resonates with the excitation light and spike protein aptamers were used as the SERS nanoprobe. The SCAP substrate and SERS nanoprobes were used to target and capture the SARS-CoV-2 S protein to form a sandwich structure on the Au film substrate, which can generate ultra-strong "hot spots" to achieve ultrasensitive detection. Analysis of SARS-CoV-2 S protein was performed by monitoring changes in SERS peak intensity on a SCAP SERS substrate-based detection platform. This assay detects S protein with a LOD of less than 0.7 fg mL-1 and pseudovirus as low as 0.8 TU mL-1 in about 12 min. The results of the simulated oropharyngeal swab system in this study indicated the possibility of it being used for clinical detection, providing a potential option for rapid and accurate diagnosis and more effective control of SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Man-Man Gu
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Peng-Cheng Guan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Shan-Shan Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hong-Mei Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yi-Chuan Kou
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiao-Dong Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Murugavel Kathiresan
- Electro-Organic Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003, India
| | - Yanling Song
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Shang-Zhong Jin
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Jian-Feng Li
- Key Laboratory for Modern Measurement Technology and Instruments of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
23
|
Li Y, Qiao J, Han X, Zhao Z, Kou J, Zhang W, Man S, Ma L. Needs, Challenges and Countermeasures of SARS-CoV-2 Surveillance in Cold-Chain Foods and Packaging to Prevent Possible COVID-19 Resurgence: A Perspective from Advanced Detections. Viruses 2022; 15:120. [PMID: 36680157 PMCID: PMC9864631 DOI: 10.3390/v15010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The pandemic caused by SARS-CoV-2 has a huge impact on the global economy. SARS-CoV-2 could possibly and potentially be transmitted to humans through cold-chain foods and packaging (namely good-to-human), although it mainly depends on a human-to-human route. It is imperative to develop countermeasures to cope with the spread of viruses and fulfil effective surveillance of cold-chain foods and packaging. This review outlined SARS-CoV-2-related cold-chain food incidents and current methods for detecting SARS-CoV-2. Then the needs, challenges and practicable countermeasures for SARS-CoV-2 detection, specifically for cold-chain foods and packaging, were underlined. In fact, currently established detection methods for SARS-CoV-2 are mostly used for humans; thus, these may not be ideally applied to cold-chain foods directly. Therefore, it creates a need to develop novel methods and low-cost, automatic, mini-sized devices specifically for cold-chain foods and packaging. The review intended to draw people's attention to the possible spread of SARS-CoV-2 with cold-chain foods and proposed perspectives for futuristic cold-chain foods monitoring during the pandemic.
Collapse
Affiliation(s)
- Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin 300457, China
- Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiali Qiao
- State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin 300457, China
- Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiao Han
- State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin 300457, China
- Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhiying Zhao
- State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin 300457, China
- Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jun Kou
- State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin 300457, China
- Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenlu Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin 300457, China
- Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin 300457, China
- Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, China
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin 300457, China
- Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin 300457, China
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin 300457, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
24
|
Park DH, Choi MY, Choi JH. Recent Development in Plasmonic Nanobiosensors for Viral DNA/RNA Biomarkers. BIOSENSORS 2022; 12:bios12121121. [PMID: 36551088 PMCID: PMC9776357 DOI: 10.3390/bios12121121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 05/28/2023]
Abstract
Recently, due to the coronavirus pandemic, the need for early diagnosis of infectious diseases, including viruses, is emerging. Though early diagnosis is essential to prevent infection and progression to severe illness, there are few technologies that accurately measure low concentrations of biomarkers. Plasmonic nanomaterials are attracting materials that can effectively amplify various signals, including fluorescence, Raman, and other optical and electromagnetic output. In this review, we introduce recently developed plasmonic nanobiosensors for measuring viral DNA/RNA as potential biomarkers of viral diseases. In addition, we discuss the future perspective of plasmonic nanobiosensors for DNA/RNA detection. This review is expected to help the early diagnosis and pathological interpretation of viruses and other diseases.
Collapse
|