1
|
Lee D, Hwang H, Kim Y, Hwang Y, Youk K, Hinterdorfer P, Kim M, Ko K. Plant cross-fertilization for production of dual-specific antibodies targeting both Ebola virus-like particles and HER2 protein in F 1 plants. Genes Genomics 2025; 47:425-433. [PMID: 39849191 DOI: 10.1007/s13258-025-01616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND This study explores the cross-fertilization of transgenic tobacco plants to produce dual-specific monoclonal antibodies (mAbs) targeting Ebola virus-like particles and HER2 proteins. We generated F1 plants by hybridizing individual transgenic lines expressing the anti-HER2 breast cancer VHH mAb (HV) and the H-13F6 human anti-Ebola large single chain mAb (EL). OBJECTIVE Hybridizing transgenic plants to express dual-antibodies between different structures VHH and LSCK indicate the potential of transgenic plants as a cost-effective and scalable production system for dual targeting mAbs. METHODS We performed polymerase chain reaction (PCR) analysis to confirm the integration of EL and HV genes in the F1 progeny. The reverse-transcription (RT)-PCR and immunoblotting were performed to confirm the expression of transgenes. Indirect enzyme-linked immunosorbent assay was conducted to confirm the functionality of purified EL and HV mAb. RESULTS A PCR analysis confirmed the successful integration of both EL and HV mAb genes in the F1 progeny. Additionally, (RT)-PCR and immunoblotting validated the expression of these transgenes, with EL and HV mAbs purified from the F1 plants. Indirect enzyme-linked immunosorbent assay (ELISA) demonstrated that EL × HV mAb proteins maintained binding activity to Ebola virus-specific antigens, comparable to that of the EL mAb protein, while also exhibiting binding activity against HER2 proteins similar to that of the HV mAb. CONCLUSION This study indicates the potential for transgenic plants to produce dually targeting mAbs, suggesting a promising application in enabling the co-expression of antibodies targeting two different diseases in a single plant.
Collapse
MESH Headings
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/antagonists & inhibitors
- Nicotiana/genetics
- Nicotiana/metabolism
- Ebolavirus/immunology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/biosynthesis
- Humans
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/genetics
- Hemorrhagic Fever, Ebola/immunology
Collapse
Affiliation(s)
- Daehwan Lee
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Hyunjoo Hwang
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Yerin Kim
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Yejin Hwang
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Keunbeom Youk
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Peter Hinterdorfer
- Department of Applied Experimental Biophysics, Johannes Kepler University Linz, Linz, 4040, Austria
| | - Mikyung Kim
- Department of Pathology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea.
| | - Kisung Ko
- Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea.
| |
Collapse
|
2
|
Huckauf J, Weisenfeld U, Broer I. From the lab to the field and closer to the market: Production of the biopolymer cyanophycin in plants. N Biotechnol 2025; 87:S1871-6784(25)00022-6. [PMID: 40024522 DOI: 10.1016/j.nbt.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
A range of studies has investigated the production of biopolymers in plants but a comprehensive assessment of feasibility and environmental safety and consumer acceptance is lacking. This review delivers such an assessment. It describes the establishment of the production in tobacco and potato, the analysis of lead events in the greenhouse and in the field, the establishment and upscaling of effective isolation processes and storage conditions, taking the cyanobacterial storage peptide cyanophycin (CGP) as an example. The paper lists several industrial and medical applications of CGP and its building blocks Arg-Asp-dipeptides. This production is especially interesting because the CGP content can exceed 10% of the dry weight (dw) in the greenhouse and still deliver 4 gram per plant in the field. Furthermore, risk assessment of CGP production in potatoes in vitro, in vivo, in the greenhouse, and in the field showed no relevant differences concerning environment or consumer safety compared with the near isogenic control. A consumer choice analysis in four European countries showed a preference for biodegradable CGP in food-wrapping materials over conventional plastic wrapping. Although data on economic feasibility is lacking, CGP as a renewable, biodegradable and CO2-neutrally produced compound, is preferable over fossil fuels in many applications.
Collapse
Affiliation(s)
- Jana Huckauf
- Agrobiotechnology, University of Rostock, Rostock, Germany.
| | - Ursula Weisenfeld
- Institute of Management & Organisation (IMO), Leuphana University Lüneburg, Lüneburg, Germany
| | - Inge Broer
- Agrobiotechnology, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Sangprasat K, Bulaon CJI, Rattanapisit K, Srisangsung T, Jirarojwattana P, Wongwatanasin A, Phoolcharoen W. Production of monoclonal antibodies against botulinum neurotoxin in Nicotiana benthamiana. Hum Vaccin Immunother 2024; 20:2329446. [PMID: 38525945 PMCID: PMC10965107 DOI: 10.1080/21645515.2024.2329446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
Botulism is a fatal neurologic disease caused by the botulinum toxin (BoNT) produced by Clostridium botulinum. It is a rare but highly toxic disease with symptoms, such as cramps, nausea, vomiting, diarrhea, dysphagia, respiratory failure, muscle weakness, and even death. Currently, two types of antitoxin are used: equine-derived heptavalent antitoxin and human-derived immunoglobulin (BabyBIG®). However, heptavalent treatment may result in hypersensitivity, whereas BabyBIG®, has a low yield. The present study focused on the development of three anti-BoNT monoclonal antibodies (mAbs), 1B18, C25, and M2, in Nicotiana benthamiana. The plant-expressed mAbs were purified and examined for size, purity and integrity by SDS-PAGE, western blotting and size-exclusion chromatography. Analysis showed that plant-produced anti-BoNT mAbs can fully assemble in plants, can be purified in a single purification step, and mostly remain as monomeric proteins. The efficiency of anti-BoNT mAbs binding to BoNT/A and B was then tested. Plant-produced 1B18 retained its ability to recognize both mBoNT/A1 and ciBoNT/B1. At the same time, the binding specificities of two other mAbs were determined: C25 for mBoNT/A1 and M2 for ciBoNT/B1. In conclusion, our results confirm the use of plants as an alternative platform for the production of anti-BoNT mAbs. This plant-based technology will serve as a versatile system for the development botulism immunotherapeutics.
Collapse
Affiliation(s)
- Kornchanok Sangprasat
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Program in Research for Enterprise, Chulalongkorn University, Bangkok, Thailand
| | | | - Kaewta Rattanapisit
- Department of Research and Development, Baiya Phytopharm Co. Ltd, Bangkok, Thailand
| | - Theerakarn Srisangsung
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Program in Research for Enterprise, Chulalongkorn University, Bangkok, Thailand
| | - Perawat Jirarojwattana
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Guo Y, Liu G, Li S, Chen N, Zhang Z, Zhang P, Gao L. Co-production of plant- and microbial- proteins from waste tobacco leaves by optimizing alkaline extraction and strengthening pectin bioconversion. BIORESOURCE TECHNOLOGY 2024; 412:131370. [PMID: 39209229 DOI: 10.1016/j.biortech.2024.131370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The production of alternative proteins is of great significance in the mitigation of food problems. This study proposes an integrated approach including protein extraction, enzymatic hydrolysis, and fermentation to produce both plant proteins and single-cell proteins as alternative proteins from tobacco leaves, a highly-abundant and protein-rich agricultural waste. Alkaline extraction of proteins before polysaccharide hydrolysis was found to be preferable for increasing the yields of plant proteins and mono-sugars. The combined use of pectinase-rich enzymes from Aspergillus brunneoviolaceus and hemicellulase-rich enzymes from Penicillium oxalicum achieved the release of 80.7 % of the sugars after 72 h. Cutaneotrichosporon cutaneum could simultaneously utilize multiple sugars, including galacturonic acid, in the enzymatic hydrolysate to produce single-cell proteins. Via this approach, 43.54 g crude proteins of high protein contents and rich in essential amino acids can be produced from 100.00 g waste tobacco leaves, providing a promising strategy for its valorization.
Collapse
Affiliation(s)
- Yingjie Guo
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Sulei Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Na Chen
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Peng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Liwei Gao
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
5
|
Song SJ, Diao HP, Guo YF, Hwang I. Advances in Subcellular Accumulation Design for Recombinant Protein Production in Tobacco. BIODESIGN RESEARCH 2024; 6:0047. [PMID: 39206181 PMCID: PMC11350518 DOI: 10.34133/bdr.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Plants and their use as bioreactors for the generation of recombinant proteins have become one of the hottest topics in the field of Plant Biotechnology and Plant Synthetic Biology. Plant bioreactors offer superior engineering potential compared to other types, particularly in the realm of subcellular accumulation strategies for increasing production yield and quality. This review explores established and emerging strategies for subcellular accumulation of recombinant proteins in tobacco bioreactors, highlighting recent advancements in the field. Additionally, the review provides reference to the crucial initial step of selecting an optimal subcellular localization for the target protein, a design that substantially impacts production outcomes.
Collapse
Affiliation(s)
- Shi-Jian Song
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
- Beijing Life Science Academy (BLSA), Beijing, China
| | - Hai-Ping Diao
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yong-Feng Guo
- Tobacco Research Institute,
Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Inhwan Hwang
- Department of Life Science,
Pohang University of Science and Technology, Pohang, Republic of Korea
- BioApplications Inc., Pohang, Republic of Korea
| |
Collapse
|
6
|
Liu J, Wang J, Du Y, Yan N, Han X, Zhang J, Dou Y, Liu Y. Application and Evaluation of the Antifungal Activities of Glandular Trichome Secretions from Air/Sun-Cured Tobacco Germplasms against Botrytis cinerea. PLANTS (BASEL, SWITZERLAND) 2024; 13:1997. [PMID: 39065524 PMCID: PMC11280957 DOI: 10.3390/plants13141997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
The secretions of the glandular trichomes of tobacco leaves and flowers contain abundant secondary metabolites of different compounds, such as cebradanes, labdanes, and saccharide esters. These secondary metabolites have shown interesting biological properties, such as antimicrobial, insecticidal, and antioxidant activity. In this study, 81 air/sun-cured tobacco germplasms were used as experimental materials. Quantitative and qualitative analyses of the glandular secretion components were conducted using ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF MS) and gas chromatography-mass spectrometry (GC-MS). The ethanol extracts of glandular trichomes from tobacco leaves and flowers were evaluated for antifungal activity against the fungus Botrytis cinerea using the mycelial growth rate method. Orthogonal Partial Least Squares (OPLS) analysis was then performed to determine the relationship between the trichome secretion components and their anti-fungal activity. The results showed significant differences among the antifungal activities of the tested ethanol extracts of tobacco glandular trichomes. The inhibition rates of the upper leaves and flower extracts against B. cinerea were significantly higher than those of the middle and lower leaves, and 59 germplasms (73.75% of the tested resources) showed antifungal rates higher than 50%, with four germplasms achieving a 95% antifungal rate at the same fresh weight concentration (10 mg/mL). The OPLS analysis revealed that the antifungal activity was primarily associated with alpha-cembratriene-diol (α-CBT-diol (Peak7)) and beta-cembratriene-diol (β-CBT-diol (Peak8)), followed by sucrose esters III (SE(III)) and cembratriene-diol oxide. These findings help identify excellent tobacco germplasms for the development and utilization of botanical pesticides against fungi and provide a theoretical reference for the multipurpose utilization of tobacco germplasms.
Collapse
Affiliation(s)
- Jing Liu
- Plant Functional Ingredient Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 11 Keyuanjingsi Road, Laoshan, Qingdao 266101, China; (J.L.); (Y.D.); (N.Y.); (X.H.)
| | - Jiao Wang
- School of Life Sciences, Ludong University, Yantai 264025, China;
| | - Yongmei Du
- Plant Functional Ingredient Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 11 Keyuanjingsi Road, Laoshan, Qingdao 266101, China; (J.L.); (Y.D.); (N.Y.); (X.H.)
| | - Ning Yan
- Plant Functional Ingredient Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 11 Keyuanjingsi Road, Laoshan, Qingdao 266101, China; (J.L.); (Y.D.); (N.Y.); (X.H.)
| | - Xiao Han
- Plant Functional Ingredient Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 11 Keyuanjingsi Road, Laoshan, Qingdao 266101, China; (J.L.); (Y.D.); (N.Y.); (X.H.)
| | - Jianhui Zhang
- Tobacco Science Institute of Sichuan Province, Chengdu 610094, China;
| | - Yuqing Dou
- Plant Functional Ingredient Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 11 Keyuanjingsi Road, Laoshan, Qingdao 266101, China; (J.L.); (Y.D.); (N.Y.); (X.H.)
| | - Yanhua Liu
- Plant Functional Ingredient Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 11 Keyuanjingsi Road, Laoshan, Qingdao 266101, China; (J.L.); (Y.D.); (N.Y.); (X.H.)
| |
Collapse
|
7
|
Khalifeh-Kandy AS, Nayeri FD, Ahmadabadi M. Production of functional recombinant roseltide rT1 antimicrobial peptide in tobacco plants. J Biotechnol 2024; 381:49-56. [PMID: 38181983 DOI: 10.1016/j.jbiotec.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Plant-derived peptides represent a promising group of natural compounds with broad industrial and pharmaceutical applications. Low-efficiency production level is the major obstacle to the commercial production of such bioactive peptides. Today, recombinant techniques have been developed for fast and cost-effective production of high-quality peptides for various applications in the chemical and food industries. The roseltide rT1 is a plant peptide with different antimicrobial properties and therapeutic applications in the prevention and treatment of inflammatory lung diseases by inhibiting human neutrophil elastases. Here, we report the expression of functional recombinant roseltide rT1 peptide in tobacco plants. Transgenic plants were generated by the Agrobacterium-mediated transformation method followed by molecular analysis of transgenic plants to demonstrate successful integration and expression of recombinant rT1 peptide. Protein extracts of transgenic plants expressing a single-copy rT1 gene showed efficient antimicrobial properties as verified by growth inhibition of different bacterial strains. Our results illustrate that plant-derived recombinant rT1 peptide is a promising alternative for rapid and cost-effective production of this important antimicrobial peptide for application in therapeutic and food industries.
Collapse
Affiliation(s)
- Amin Sahandi Khalifeh-Kandy
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, 35 km Tabriz-Maraqeh Road, Tabriz, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, 35 km Tabriz-Maraqeh Road, Tabriz, Iran.
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran.
| |
Collapse
|
8
|
Zhang Y, Alqazlan N, Meng Z, Zhao J, Liu N, Zhang Y, Feng M, Ma S, Wang A. A novel approach to achieving more efficient production of the mature form of human IL-37 in plants. Transgenic Res 2023; 32:279-291. [PMID: 37266895 DOI: 10.1007/s11248-023-00351-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Interleukin-37 is a newly discovered cytokine that plays a pivotal role in suppressing innate inflammation and acquired immunity. We have recently expressed both the mature(mat-) and pro-forms of human IL-37b in plants and demonstrated that while both forms of the plant-made hIL-37b are functional, pmat-hIL37b exhibited significantly greater activity than ppro-IL-37b. Compared to ppro-hIL-37b, on the other hand, the expression level of pmat-hIL-37b was substantially lower (100.5 µg versus 1.05 µg/g fresh leaf mass or 1% versus 0.01% TSP). Since the difference between ppro-hIL-37b and pmat-hIL-37b is that ppro-hIL-37b contains a signal sequence not cleavable by plant cells, we reasoned that this signal sequence would play a key role in stabilizing the ppro-hIL-37b protein. Here, we describe a novel approach to enhancing pmat-hIL-37b production in plants based on incorporation of a gene sequence encoding tobacco etch virus (TEV) protease between the signal peptide and the mature hIL-37b, including a TEV cleavage site at the C-termini of TEV protease. The rationale is that when expressed as a sp-TEV-matIL-37b fusion protein, the stabilizing properties of the signal peptide of pro-hIL-37b will be awarded to its fusion partners, resulting in increased yield of target proteins. The fusion protein is then expected to cleave itself in vivo to yield a mature pmat-hIL-37b. Indeed, when a sp-TEV-matIL-37b fusion gene was expressed in stable-transformed plants, a prominent band corresponding to dimeric pmat-hIL-37b was detected, with expression yields reaching 42.5 µg/g fresh leaf mass in the best expression lines. Bioassays demonstrated that plant-made mature pmat-hIL-37b is functional.
Collapse
Affiliation(s)
- Yao Zhang
- College of Horticulture and Landscape Architecture and College of Life Sciences, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Nadiyah Alqazlan
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Zihe Meng
- College of Horticulture and Landscape Architecture and College of Life Sciences, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Jingyao Zhao
- College of Hortculture and Lanscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Nan Liu
- College of Hortculture and Lanscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Yuxin Zhang
- College of Hortculture and Lanscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Mingfeng Feng
- College of Horticulture and Landscape Architecture and College of Life Sciences, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China
| | - Shengwu Ma
- Department of Biology, University of Western Ontario, London, ON, Canada.
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture and College of Life Sciences, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China.
- College of Hortculture and Lanscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
9
|
Zhang X, Johnson C, Reed D. Diversity of Pythium Species Recovered from Float-Bed Tobacco Transplant Production Greenhouses. PLANT DISEASE 2023:PDIS06221438RE. [PMID: 36475744 DOI: 10.1094/pdis-06-22-1438-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pythium diseases are common in hydroponic crop production and often threaten the greenhouse production of cucumber, tomato, lettuce, and other crops. In tobacco transplant production, where float-bed hydroponic greenhouses are commonly used, Pythium diseases can cause up to 70% seedling loss. However, there have been few comprehensive studies on the composition and diversity of Pythium communities in tobacco greenhouses. In a 2017 survey, 360 Pythium isolates were collected from 41 tobacco greenhouses across four states (VA, MD, GA, and PA). Samples were collected from one to seven sites within each greenhouse. Twelve described Pythium species were identified (P. adhaerens, P. aristosporum, P. attrantheridium, P. catenulatum, P. coloratum, P. dissotocum, P. inflatum, P. irregulare, P. myriotylum, P. pectinolyticum, P. porphyrae, and P. torulosum) among the isolates obtained. Approximately 80% of the surveyed greenhouses harbored Pythium in at least one of four sites (bay water, tobacco seedlings, weeds, and center walkways) within the greenhouse. The structure of Pythium communities was diverse among the surveyed greenhouses: multiple Pythium species coexisted in the same sample, and multiple species were present within the same greenhouse at different sites. This diversity appeared to be influenced by the sampling sites within the surveyed tobacco greenhouses, sample type, and sampling time. Intraspecific variation may also exist among the P. dissotocum populations found in this study. These results uncovered the complexity and diversity of the Pythium communities within float tobacco transplant greenhouses, which could play a role in the variation in Pythium diseases observed in these production systems.
Collapse
Affiliation(s)
- Xuemei Zhang
- Virginia Tech Southern Piedmont Agricultural Research and Extension Center, Blackstone, VA 23824
| | - Charles Johnson
- Virginia Tech Southern Piedmont Agricultural Research and Extension Center, Blackstone, VA 23824
| | - David Reed
- Virginia Tech Southern Piedmont Agricultural Research and Extension Center, Blackstone, VA 23824
| |
Collapse
|
10
|
Peng R, Zhang W, Wang Y, Deng Y, Wang B, Gao J, Li Z, Wang L, Fu X, Xu J, Han H, Tian Y, Yao Q. Genetic engineering of complex feed enzymes into barley seed for direct utilization in animal feedstuff. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:560-573. [PMID: 36448454 PMCID: PMC9946151 DOI: 10.1111/pbi.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Currently, feed enzymes are primarily obtained through fermentation of fungi, bacteria, and other microorganisms. Although the manufacturing technology for feed enzymes has evolved rapidly, the activities of these enzymes decline during the granulating process and the cost of application has increased over time. An alternative approach is the use of genetically modified plants containing complex feed enzymes for direct utilization in animal feedstuff. We co-expressed three commonly used feed enzymes (phytase, β-glucanase, and xylanase) in barley seeds using the Agrobacterium-mediated transformation method and generated a new barley germplasm. The results showed that these enzymes were stable and had no effect on the development of the seeds. Supplementation of the basal diet of laying hens with only 8% of enzyme-containing seeds decreased the quantities of indigestible carbohydrates, improved the availability of phosphorus, and reduced the impact of animal production on the environment to an extent similar to directly adding exogenous enzymes to the feed. Feeding enzyme-containing seeds to layers significantly increased the strength of the eggshell and the weight of the eggs by 10.0%-11.3% and 5.6%-7.7% respectively. The intestinal microbiota obtained from layers fed with enzyme-containing seeds was altered compared to controls and was dominated by Alispes and Rikenella. Therefore, the transgenic barley seeds produced in this study can be used as an ideal feedstuff for use in animal feed.
Collapse
Affiliation(s)
- Ri‐He Peng
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Wen‐Hui Zhang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Yu Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Yong‐Dong Deng
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Bo Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Jian‐Jie Gao
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Zhen‐Jun Li
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Li‐Juan Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Xiao‐Yan Fu
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Jing Xu
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Hong‐Juan Han
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Yong‐Sheng Tian
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Quan‐Hong Yao
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| |
Collapse
|
11
|
Mathew M, Thomas J. Tobacco-Based Vaccines, Hopes, and Concerns: A Systematic Review. Mol Biotechnol 2022:10.1007/s12033-022-00627-5. [PMID: 36528727 PMCID: PMC9759281 DOI: 10.1007/s12033-022-00627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Emerging infectious diseases have vigorously devastated the global economy and health sector; cost-effective plant-based vaccines (PBV) can be the potential solution to withstand the current health economic crisis. The prominent role of tobacco as an efficient expression system for PBV has been well-established for decades, through this review we highlight the importance of tobacco-based vaccines (TBV) against evolving infectious diseases in humans. Studies focusing on the use of TBV for human infectious diseases were searched in PubMed, Google Scholar, and science direct from 1995 to 2021 using the keywords Tobacco-based vaccines OR transgenic tobacco OR Nicotiana benthamiana vaccines AND Infectious diseases or communicable diseases. We carried out a critical review of the articles and studies that fulfilled the eligibility criteria and were included in this review. Of 976 studies identified, only 63 studies fulfilling the eligibility criteria were included, which focused on either the in vitro, in vivo, or clinical studies on TBV for human infectious diseases. Around 43 in vitro studies of 23 different infectious pathogens expressed in tobacco-based systems were identified and 23 in vivo analysis studies were recognized to check the immunogenicity of vaccine candidates while only 10 of these were subjected to clinical trials. Viral infectious pathogens were studied more than bacterial pathogens. From our review, it was evident that TBV can be an effective health strategy to combat the emerging viral infectious diseases which are very difficult to manage with the current health facilities. The timely administration of cost-effective TBV can prevent the outburst of viral infections, thereby can protect the global healthcare system to a greater extent.
Collapse
Affiliation(s)
- Mintu Mathew
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, Kerala India
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, Kerala India
| |
Collapse
|
12
|
Gaobotse G, Venkataraman S, Mmereke KM, Moustafa K, Hefferon K, Makhzoum A. Recent Progress on Vaccines Produced in Transgenic Plants. Vaccines (Basel) 2022; 10:1861. [PMID: 36366370 PMCID: PMC9698746 DOI: 10.3390/vaccines10111861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 01/15/2024] Open
Abstract
The development of vaccines from plants has been going on for over two decades now. Vaccine production in plants requires time and a lot of effort. Despite global efforts in plant-made vaccine development, there are still challenges that hinder the realization of the final objective of manufacturing approved and safe products. Despite delays in the commercialization of plant-made vaccines, there are some human vaccines that are in clinical trials. The novel coronavirus (SARS-CoV-2) and its resultant disease, coronavirus disease 2019 (COVID-19), have reminded the global scientific community of the importance of vaccines. Plant-made vaccines could not be more important in tackling such unexpected pandemics as COVID-19. In this review, we explore current progress in the development of vaccines manufactured in transgenic plants for different human diseases over the past 5 years. However, we first explore the different host species and plant expression systems during recombinant protein production, including their shortcomings and benefits. Lastly, we address the optimization of existing plant-dependent vaccine production protocols that are aimed at improving the recovery and purification of these recombinant proteins.
Collapse
Affiliation(s)
- Goabaone Gaobotse
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Kamogelo M. Mmereke
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Khaled Moustafa
- The Arabic Preprint Server/Arabic Science Archive (ArabiXiv)
| | - Kathleen Hefferon
- Department of Microbiology, Cornell University, Ithaca, NY 14850, USA
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| |
Collapse
|
13
|
Klocko AL. Genetic Containment for Molecular Farming. PLANTS (BASEL, SWITZERLAND) 2022; 11:2436. [PMID: 36145835 PMCID: PMC9501302 DOI: 10.3390/plants11182436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022]
Abstract
Plant molecular farming can provide humans with a wide variety of plant-based products including vaccines, therapeutics, polymers, industrial enzymes, and more. Some of these products, such as Taxol, are produced by endogenous plant genes, while many others require addition of genes by artificial gene transfer. Thus, some molecular farming plants are transgenic (or cisgenic), while others are not. Both the transgenic nature of many molecular farming plants and the fact that the products generated are of high-value and specific in purpose mean it is essential to prevent accidental cross-over of molecular farming plants and products into food or feed. Such mingling could occur either by gene flow during plant growth and harvest or by human errors in material handling. One simple approach to mitigate possible transfer would be to use only non-food non-feed species for molecular farming purposes. However, given the extent of molecular farming products in development, testing, or approval that do utilize food or feed crops, a ban on use of these species would be challenging to implement. Therefore, other approaches will need to be considered for mitigation of cross-flow between molecular farming and non-molecular-farming plants. This review summarized some of the production systems available for molecular farming purposes and options to implement or improve plant containment.
Collapse
Affiliation(s)
- Amy L Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
14
|
Yao X, Wuzhang K, Peng B, Chen T, Zhang Y, Liu H, Li L, Fu X, Tang K. Engineering the expression of plant secondary metabolites-genistein and scutellarin through an efficient transient production platform in Nicotiana benthamiana L. FRONTIERS IN PLANT SCIENCE 2022; 13:994792. [PMID: 36147222 PMCID: PMC9485999 DOI: 10.3389/fpls.2022.994792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Plant natural products (PNPs) are active substances indispensable to human health with a wide range of medical and commercial applications. However, excessive population growth, overexploitation of natural resources, and expensive total chemical synthesis have led to recurrent supply shortages. Despite the fact that the microbial production platform solved these challenges, the platform still has drawbacks such as environmental pollution, high costs, and non-green production. In this study, an efficient platform for the production of PNPs based on the transient expression system of Nicotiana benthamiana L. combined with synthetic biology strategies was developed. Subsequently, the feasibility of the platform was verified by a simple "test unit." This platform was used to synthesize two high-value PNPs: genistein (5.51 nmol g-1 FW) and scutellarin (11.35 nmol g-1 FW). Importantly, this is the first report on the synthesis of scutellarin in heterologous plants. The platform presented here will possibly be adopted for the heterologous production of genistein and scutellarin in tobacco plants as a novel and sustainable production strategy.
Collapse
|
15
|
Oinam L, Hayashi R, Hiemori K, Kiyoi K, Sage-Ono K, Miura K, Ono M, Tateno H. Quantitative evaluation of glycan-binding specificity of recombinant concanavalin A produced in lettuce (Lactuca sativa). Biotechnol Bioeng 2022; 119:1781-1791. [PMID: 35394653 DOI: 10.1002/bit.28099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
Concanavalin A (ConA), a mannose (Man)-specific leguminous lectin isolated from the jack bean (Canavalia ensiformis) seed extracts, was discovered over a century ago. Although ConA has been extensively applied in various life science research, recombinant mature ConA expression has not been fully established. Here, we aimed to produce recombinant ConA (rConA) in lettuce (Lactuca sativa) using an Agrobacterium tumefaciens-mediated transient expression system. rConA could be produced as a fully active form from soluble fractions of lettuce leaves and purified by affinity chromatography. From 12 g wet weight of lettuce leaves, 0.9 mg rConA could be purified. The glycan-binding properties of rConA were then compared with that of the native ConA isolated from jack bean using glycoconjugate microarray and frontal affinity chromatography. rConA demonstrated a glycan-binding specificity similar to nConA. Both molecules bound to N-glycans containing a terminal Man residue. Consistent with previous reports, terminal Manα1-6Man was found to be an essential unit for the high-affinity binding of rConA and nConA, while bisecting GlcNAc diminished the binding of rConA and nConA to Manα1-6Man-terminated N-glycans. These results demonstrate that the fully active rConA could be produced using the A. tumefaciens-mediated transient expression system and used as a recombinant substitute for nConA.
Collapse
Affiliation(s)
- Lalhaba Oinam
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Ryoma Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiko Hiemori
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kayo Kiyoi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Kimiyo Sage-Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michiyuki Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Andriūnaitė E, Rugienius R, Tamošiūnė I, Haimi P, Vinskienė J, Baniulis D. Enhanced Carbonylation of Photosynthetic and Glycolytic Proteins in Antibiotic Timentin-Treated Tobacco In Vitro Shoot Culture. PLANTS 2022; 11:plants11121572. [PMID: 35736723 PMCID: PMC9228549 DOI: 10.3390/plants11121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/26/2022]
Abstract
Antibiotics are used in plant in vitro tissue culture to eliminate microbial contamination or for selection in genetic transformation. Antibiotic timentin has a relatively low cytotoxic effect on plant tissue culture; however, it could induce an enduring growth-inhibiting effect in tobacco in vitro shoot culture that persists after tissue transfer to a medium without antibiotic. The effect is associated with an increase in oxidative stress injury in plant tissues. In this study, we assessed changes of reactive oxygen species accumulation, protein expression, and oxidative protein modification response associated with enduring timentin treatment-induced growth suppression in tobacco (Nicotiana tabacum L.) in vitro shoot culture. The study revealed a gradual 1.7 and 1.9-fold increase in superoxide (O2•−) content at the later phase of the propagation cycle for treatment control (TC) and post-antibiotic treatment (PA) shoots; however, the O2•− accumulation pattern was different. For PA shoots, the increase in O2•− concentration occurred several days earlier, resulting in 1.2 to 1.4-fold higher O2•− concentration compared to TC during the period following the first week of cultivation. Although no protein expression differences were detectable between the TC and PA shoots by two-dimensional electrophoresis, the increase in O2•− concentration in PA shoots was associated with a 1.5-fold increase in protein carbonyl modification content after one week of cultivation, and protein carbonylation analysis revealed differential modification of 26 proteoforms involved in the biological processes of photosynthesis and glycolysis. The results imply that the timentin treatment-induced oxidative stress might be implicated in nontranslational cellular redox balance regulation, accelerates the development of senescence of the shoot culture, and contributes to the shoot growth-suppressing effect of antibiotic treatment.
Collapse
|
17
|
Biotechnological Approaches for Production of Artemisinin, an Anti-Malarial Drug from Artemisia annua L. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27093040. [PMID: 35566390 PMCID: PMC9103073 DOI: 10.3390/molecules27093040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Artemisinin is an anti-malarial sesquiterpene lactone derived from Artemisia annua L. (Asteraceae family). One of the most widely used modes of treatment for malaria is an artemisinin-based combination therapy. Artemisinin and its associated compounds have a variety of pharmacological qualities that have helped achieve economic prominence in recent years. So far, research on the biosynthesis of this bioactive metabolite has revealed that it is produced in glandular trichomes and that the genes responsible for its production must be overexpressed in order to meet demand. Using biotechnological applications such as tissue culture, genetic engineering, and bioreactor-based approaches would aid in the upregulation of artemisinin yield, which is needed for the future. The current review focuses on the tissue culture aspects of propagation of A. annua and production of artemisinin from A. annua L. cell and organ cultures. The review also focuses on elicitation strategies in cell and organ cultures, as well as artemisinin biosynthesis and metabolic engineering of biosynthetic genes in Artemisia and plant model systems.
Collapse
|
18
|
Tamošiūnė I, Andriūnaitė E, Vinskienė J, Stanys V, Rugienius R, Baniulis D. Enduring Effect of Antibiotic Timentin Treatment on Tobacco In Vitro Shoot Growth and Microbiome Diversity. PLANTS (BASEL, SWITZERLAND) 2022; 11:832. [PMID: 35336713 PMCID: PMC8954828 DOI: 10.3390/plants11060832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Plant in vitro cultures initiated from surface-sterilized explants often harbor complex microbial communities. Antibiotics are commonly used to decontaminate plant tissue culture or during genetic transformation; however, the effect of antibiotic treatment on the diversity of indigenous microbial populations and the consequences on the performance of tissue culture is not completely understood. Therefore, the aim of this study was to assess the effect of antibiotic treatment on the growth and stress level of tobacco (Nicotiana tabacum L.) shoots in vitro as well as the composition of the plant-associated microbiome. The study revealed that shoot cultivation on a medium supplemented with 250 mg L-1 timentin resulted in 29 ± 4% reduced biomass accumulation and a 1.2-1.6-fold higher level of oxidative stress injury compared to the control samples. Moreover, the growth properties of shoots were only partially restored after transfer to a medium without the antibiotic. Microbiome analysis of the shoot samples using multivariable region-based 16S rRNA gene sequencing revealed a diverse microbial community in the control tobacco shoots, including 59 bacterial families; however, it was largely dominated by Mycobacteriaceae. Antibiotic treatment resulted in a decline in microbial diversity (the number of families was reduced 4.5-fold) and increased domination by the Mycobacteriaceae family. These results imply that the diversity of the plant-associated microbiome might represent a significant factor contributing to the efficient propagation of in vitro tissue culture.
Collapse
|
19
|
Xie H, Bai G, Lu P, Li H, Fei M, Xiao BG, Chen XJ, Tong ZJ, Wang ZY, Yang DH. Exogenous citric acid enhances drought tolerance in tobacco (Nicotiana tabacum). PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:333-343. [PMID: 34879179 DOI: 10.1111/plb.13371] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Organic acids play a pivotal role in improving plant response to long-term drought stress. External application of organic acids has been reported to improve drought resistance in several species. However, whether organic acids have similar effects in tobacco remains unknown. A screening study of the protective function of organic acids in tobacco and understanding the underlying molecular mechanism would be useful in developing a strategy for drought tolerance. Several physiological and molecular adaptations to drought including abscisic acid, stomatal closure, reactive oxygen species homeostasis, amino acid accumulation, and drought-responsive gene expression were observed by exogenous citric acid in tobacco plants. Exogenous application of 50 mm citric acid to tobacco plants resulted in higher chlorophyll content, net photosynthesis, relative water content, abscisic acid content and lower stomatal conductance, transpiration and water loss under drought conditions. Moreover, reactive oxygen species homeostasis was better maintained through increasing activity of antioxidant enzymes and decreasing hydrogen peroxide content after citric acid pretreatment under drought. Amino acids involved in the TCA cycle accumulated after external application of citric acid under drought stress. Furthermore, several drought stress-responsive genes also dramatically changed after application of citric acid. These data support the idea that external application of citric acid enhances drought resistance by affecting physiological and molecular regulation in tobacco. This study provides clear insights into mechanistic details of regulation of amino acid and stress-responsive gene expression by citric acid in tobacco in response to drought, which is promising for minimizing growth inhibition in agricultural fields.
Collapse
Affiliation(s)
- H Xie
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - G Bai
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - P Lu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
| | - H Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
| | - M Fei
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - B-G Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - X-J Chen
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Z-J Tong
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Z-Y Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang, China
- Zhanjiang Sugarcane Research Center, Guangzhou Sugarcane Industry Research Institute, Zhanjiang, China
| | - D-H Yang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| |
Collapse
|
20
|
Abstract
Plant systems have been used as biofactories to produce recombinant proteins since 1983. The huge amount of data, collected so far in this framework, suggests that plants display several key advantages over existing traditional platforms when they are intended for therapeutic uses, including safety, scalability, and the speed in obtaining the final product.Here, we describe a method that could be applied for the expression and production of a candidate subunit vaccine in Nicotiana benthamiana plants by transient expression, defining all the protocols starting from plant cultivation to target recombinant protein purification.
Collapse
Affiliation(s)
- Mattia Santoni
- Department of Biotechnology, University of Verona, Verona, Italy
- Diamante srl, Verona, Italy
| | | | | | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
21
|
Lobato Gómez M, Huang X, Alvarez D, He W, Baysal C, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennasser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Abreu IA, Balamurugan S, Bock R, Buyel J, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Ramalingam SK, Lacorte C, Lomonossoff GP, Luís IM, Ma JK, McDonald KA, Murad A, Nandi S, O’Keefe B, Oksman‐Caldentey K, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JCM, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Capell T, Christou P. Contributions of the international plant science community to the fight against human infectious diseases - part 1: epidemic and pandemic diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1901-1920. [PMID: 34182608 PMCID: PMC8486245 DOI: 10.1111/pbi.13657] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.
Collapse
Affiliation(s)
- Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Amaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennasser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andera Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes.F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Sathish Kumar Ramalingam
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen. A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keefe
- Molecular Targets ProgramCenter for Cancer Research, National Cancer Institute, and Natural Products BranchDevelopmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer Institute, NIHFrederickMDUSA
| | | | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
- Department of Biological ChemistryJohn Innes CentreNorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Julio C. M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityCoimbatoreIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in BiologyParque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| |
Collapse
|
22
|
McNulty MJ, Kelada K, Paul D, Nandi S, McDonald KA. Introducing uncertainty quantification to techno-economic models of manufacturing field-grown plant-made products. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Ramos-Vega A, Monreal-Escalante E, Dumonteil E, Bañuelos-Hernández B, Angulo C. Plant-made vaccines against parasites: bioinspired perspectives to fight against Chagas disease. Expert Rev Vaccines 2021; 20:1373-1388. [PMID: 33612044 DOI: 10.1080/14760584.2021.1893170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Three decades of evidence have demonstrated that plants are an affordable platform for biopharmaceutical production and delivery. For instance, several plant-made recombinant proteins have been approved for commercialization under good manufacturing practice (GMP). Thus far, plant-based vaccine prototypes have been evaluated at pre- and clinical levels. Particularly, plant-made vaccines against parasitic diseases, such as malaria, cysticercosis, and toxoplasmosis have been successfully produced and orally delivered with promising outcomes in terms of immunogenicity and protection. The experience on several approaches and technical strategies over 30 years accounts for their potential low-cost, high scalability, and easy administration.Areas covered: This platform is an open technology to fight against Chagas disease, one of the most important neglected tropical diseases worldwide.Expert opinion: This review provides a perspective for the potential use of plants as a production platform and delivery system of Trypanosoma cruzi recombinant antigens, analyzing the advantages and limitations with respect to plant-made vaccines produced for other parasitic diseases. Plant-made vaccines are envisioned to fight against Chagas disease and other neglected tropical diseases in those countries suffering endemic prevalence.
Collapse
Affiliation(s)
- Abel Ramos-Vega
- Grupo de Inmunología & Vacunología. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.c.s. C.p., México
| | - Elizabeth Monreal-Escalante
- Grupo de Inmunología & Vacunología. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.c.s. C.p., México.,CONACYT- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.c.s. C.p, México
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Bernardo Bañuelos-Hernández
- Facultad de Agronomía Y Veterinaria, Universidad de La Salle Bajio, Avenida Universidad 602, Lomas del Campestre, León Guanajuato, México
| | - Carlos Angulo
- Grupo de Inmunología & Vacunología. Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.c.s. C.p., México
| |
Collapse
|
24
|
Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev 2021; 170:71-82. [PMID: 33421475 PMCID: PMC7788321 DOI: 10.1016/j.addr.2021.01.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
With the COVID-19 pandemic now ongoing for close to a year, people all over the world are still waiting for a vaccine to become available. The initial focus of accelerated global research and development efforts to bring a vaccine to market as soon as possible was on novel platform technologies that promised speed but had limited history in the clinic. In contrast, recombinant protein vaccines, with numerous examples in the clinic for many years, missed out on the early wave of investments from government and industry. Emerging data are now surfacing suggesting that recombinant protein vaccines indeed might offer an advantage or complement to the nucleic acid or viral vector vaccines that will likely reach the clinic faster. Here, we summarize the current public information on the nature and on the development status of recombinant subunit antigens and adjuvants targeting SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Jeroen Pollet
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America.
| | - Wen-Hsiang Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| |
Collapse
|
25
|
Potential of Pre-Harvest Wastes of Tobacco (Nicotiana tabacum L.) Crops, Grown for Smoke Products, as Source of Bioactive Compounds (Phenols and Flavonoids). SUSTAINABILITY 2021. [DOI: 10.3390/su13042087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tobacco cultivation is characterized by high amounts of waste biomasses whose disposal frequently represents a complex and expensive problem. A study was conducted to evaluate thepotential of pre-harvest light air-cured (Burley) and dark fire-cured (Kentucky) tobacco waste biomasses as a source of bioactive compounds (nutraceutical ingredients) such as polyphenols. Pre-harvest waste materials (topping fresh materials and residual stalks at final harvest) were collected to determine dry matter, total polyphenols content (TPC; Folin assay), and DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,20-azino-bis(3-ethylbenzothiazoline-60-sulfonic acid) diammonium salt) antioxidant capacity. Polyphenols quali-quantitative profiles obtained by Orbitrap Q Exactive of both tobacco types were also determined. Total pre-harvest waste biomass amounted to 3956.9 and 1304.4 kg d.w. ha−1 in light air-cured (Burley) and dark fire-cured (Kentucky) tobacco types, respectively. Polyphenols content, expressed as g kg−1 dry weight (d.w.), ranged between 4.6 and 15.7 g kg−1 d.w. and was generally greater in leaves than in stalks. Considering both leaves and stalks, the light air-cured (Burley) tobacco crop yielded 22.1 kg ha−1 of polyphenols, while the dark fire-cured (Kentucky) tobacco yielded 12.0 kg ha−1. DPPH and ABTS were significantly greater in leaves than in stalks waste biomass in both types of tobacco. The most abundant components were quinic and chlorogenic acids, rutin, and luteolin rutinoside.
Collapse
|
26
|
Yang GL, Feng D, Liu YT, Lv SM, Zheng MM, Tan AJ. Research Progress of a Potential Bioreactor: Duckweed. Biomolecules 2021; 11:biom11010093. [PMID: 33450858 PMCID: PMC7828363 DOI: 10.3390/biom11010093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 02/01/2023] Open
Abstract
Recently, plant bioreactors have flourished into an exciting area of synthetic biology because of their product safety, inexpensive production cost, and easy scale-up. Duckweed is the smallest and fastest-growing aquatic plant, and has advantages including simple processing and the ability to grow high biomass in smaller areas. Therefore, duckweed could be used as a new potential bioreactor for biological products such as vaccines, antibodies, pharmaceutical proteins, and industrial enzymes. Duckweed has made a breakthrough in biosynthesis as a chassis plant and is being utilized for the production of plenty of biological products or bio-derivatives with multiple uses and high values. This review summarizes the latest progress on genetic background, genetic transformation system, and bioreactor development of duckweed, and provides insights for further exploration and application of duckweed.
Collapse
Affiliation(s)
- Gui-Li Yang
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Dan Feng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Yu-Ting Liu
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Shi-Ming Lv
- College of Animal Science, Guizhou University, Guiyang 550025, China;
| | - Meng-Meng Zheng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
| | - Ai-Juan Tan
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (D.F.); (Y.-T.L.); (M.-M.Z.)
- Key Laboratory of Conservation and Germplasm Innovation of Mountain Plant Resources, Ministry of Education, Guiyang 550025, China
- Correspondence: ; Tel.: +86-1376-513-6919
| |
Collapse
|
27
|
Sedaghati B, Haddad R, Bandehpour M. Transient expression of human serum albumin (HSA) in tobacco leaves. Mol Biol Rep 2020; 47:7169-7177. [PMID: 32642917 DOI: 10.1007/s11033-020-05640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Today, recombinant human proteins make up a considerable part of FDA-approved biotechnological drugs. The selection of proper expression platform for manufacturing recombinant protein is a vital factor in achieving the optimal yield and quality of a biopharmaceutical in a timely fashion. This experiment was aimed to compare the transient expression level of human serum albumin gene in different tobacco genotype. For this, the Agrobacterium tumefaciens strains LB4404 and GV3101 harboring pBI121-HSA binary vector were infiltered in leaves of three tobacco genotypes, including Nicotiana benthamiana and N. tabacum cv Xanthi and Samsun. The qRT-PCR, SDS-PAGE, western blotting and ELISA analysis were performed to evaluate the expression of HSA gene in transgenic plantlets. Our results illustrated that the expression level of rHSA in tobacco leaves was highly dependent on Agrobacterium strains, plant genotypes and harvesting time. The highest production of recombinant HSA protein was obtained in Samsun leaves infected with A. tumefaciens strain GV3101 after 3 days of infiltration.
Collapse
Affiliation(s)
- Behnam Sedaghati
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Muthusamy S, Vetukuri RR, Lundgren A, Ganji S, Zhu LH, Brodelius PE, Kanagarajan S. Transient expression and purification of β-caryophyllene synthase in Nicotiana benthamiana to produce β-caryophyllene in vitro. PeerJ 2020; 8:e8904. [PMID: 32377446 PMCID: PMC7194099 DOI: 10.7717/peerj.8904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
The sesquiterpene β-caryophyllene is an ubiquitous component in many plants that has commercially been used as an aroma in cosmetics and perfumes. Recent studies have shown its potential use as a therapeutic agent and biofuel. Currently, β-caryophyllene is isolated from large amounts of plant material. Molecular farming based on the Nicotiana benthamiana transient expression system may be used for a more sustainable production of β-caryophyllene. In this study, a full-length cDNA of a new duplicated β-caryophyllene synthase from Artemisia annua (AaCPS1) was isolated and functionally characterized. In order to produce β-caryophyllene in vitro, the AaCPS1 was cloned into a plant viral-based vector pEAQ-HT. Subsequently, the plasmid was transferred into the Agrobacterium and agroinfiltrated into N. benthamiana leaves. The AaCPS1 expression was analyzed by quantitative PCR at different time points after agroinfiltration. The highest level of transcripts was observed at 9 days post infiltration (dpi). The AaCPS1 protein was extracted from the leaves at 9 dpi and purified by cobalt–nitrilotriacetate (Co-NTA) affinity chromatography using histidine tag with a yield of 89 mg kg−1 fresh weight of leaves. The protein expression of AaCPS1 was also confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analyses. AaCPS1 protein uses farnesyl diphosphate (FPP) as a substrate to produce β-caryophyllene. Product identification and determination of the activity of purified AaCPS1 were done by gas chromatography–mass spectrometry (GC–MS). GC–MS results revealed that the AaCPS1 produced maximum 26.5 ± 1 mg of β-caryophyllene per kilogram fresh weight of leaves after assaying with FPP for 6 h. Using AaCPS1 as a proof of concept, we demonstrate that N. benthamiana can be considered as an expression system for production of plant proteins that catalyze the formation of valuable chemicals for industrial applications.
Collapse
Affiliation(s)
- Saraladevi Muthusamy
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anneli Lundgren
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Suresh Ganji
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Peter E Brodelius
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Selvaraju Kanagarajan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.,Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
29
|
Menary J, Hobbs M, Mesquita de Albuquerque S, Pacho A, Drake PMW, Prendiville A, Ma JKC, Fuller SS. Shotguns vs Lasers: Identifying barriers and facilitators to scaling-up plant molecular farming for high-value health products. PLoS One 2020; 15:e0229952. [PMID: 32196508 PMCID: PMC7083274 DOI: 10.1371/journal.pone.0229952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/18/2020] [Indexed: 01/03/2023] Open
Abstract
Plant molecular farming (PMF) is a convenient and cost-effective way to produce high-value recombinant proteins that can be used in the production of a range of health products, from pharmaceutical therapeutics to cosmetic products. New plant breeding techniques (NPBTs) provide a means to enhance PMF systems more quickly and with greater precision than ever before. However, the feasibility, regulatory standing and social acceptability of both PMF and NPBTs are in question. This paper explores the perceptions of key stakeholders on two European Union (EU) Horizon 2020 programmes-Pharma-Factory and Newcotiana-towards the barriers and facilitators of PMF and NPBTs in Europe. One-on-one qualitative interviews were undertaken with N = 20 individuals involved in one or both of the two projects at 16 institutions in seven countries (Belgium, France, Germany, Italy, Israel, Spain and the UK). The findings indicate that the current EU regulatory environment and the perception of the public towards biotechnology are seen as the main barriers to scaling-up PMF and NPBTs. Competition from existing systems and the lack of plant-specific regulations likewise present challenges for PMF developing beyond its current niche. However, respondents felt that the communication of the benefits and purpose of NPBT PMF could provide a platform for improving the social acceptance of genetic modification. The importance of the media in this process was highlighted. This article also uses the multi-level perspective to explore the ways in which NPBTs are being legitimated by interested parties and the systemic factors that have shaped and are continuing to shape the development of PMF in Europe.
Collapse
Affiliation(s)
- Jonathan Menary
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Matthew Hobbs
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | | | - Agata Pacho
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Pascal M. W. Drake
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Alison Prendiville
- London College of Communication, University of the Arts, London, United Kingdom
| | - Julian K-C. Ma
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| | - Sebastian S. Fuller
- Institute for Infection and Immunity, St George’s University of London, Tooting, London, United Kingdom
| |
Collapse
|
30
|
Temporini C, Colombo R, Calleri E, Tengattini S, Rinaldi F, Massolini G. Chromatographic tools for plant-derived recombinant antibodies purification and characterization. J Pharm Biomed Anal 2020; 179:112920. [DOI: 10.1016/j.jpba.2019.112920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 01/13/2023]
|
31
|
Molecular farming - The slope of enlightenment. Biotechnol Adv 2020; 40:107519. [PMID: 31954848 DOI: 10.1016/j.biotechadv.2020.107519] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
Abstract
Molecular farming can be defined as the use of plants to produce recombinant protein products. The technology is now >30 years old. The early promise of molecular farming was based on three perceived advantages: the low costs of growing plants, the immense scalability of agricultural production, and the inherent safety of plants as hosts for the production of pharmaceuticals. This resulted in a glut of research publications in which diverse proteins were expressed in equally diverse plant-based systems, and numerous companies were founded hoping to commercialize the new technology. There was a moderate degree of success for companies producing non-pharmaceutical proteins, but in the pharmaceutical sector the anticipation raised by promising early research was soon met by the cold hard reality of industrial pragmatism. Plants did not have a track record of success in pharmaceutical protein manufacturing, lacked a regulatory framework, and did not perform as well as established industry platforms. Negative attitudes towards genetically modified plants added to the mix. By the early 2000s, major industry players started to lose interest and pharmaceutical molecular farming fell from a peak of expectation into a trough of disillusionment, just as predicted by the Gartner hype cycle. But many of the pioneers of molecular farming have refocused their activities and have worked to address the limitations that hampered the first generation of technologies. The field has now consolidated around a smaller number of better-characterized platforms and has started to develop standardized methods and best practices, mirroring the evolution of more mature industry sectors. Likewise, attention has turned from proof-of-principle studies to realistic techno-economic modeling to capture significant niche markets, replicating the success of the industrial molecular farming sector. Here we argue that these recent developments signify that pharmaceutical molecular farming is now climbing the slope of enlightenment and will soon emerge as a mature technology.
Collapse
|
32
|
Tsekoa TL, Singh AA, Buthelezi SG. Molecular farming for therapies and vaccines in Africa. Curr Opin Biotechnol 2019; 61:89-95. [PMID: 31786432 DOI: 10.1016/j.copbio.2019.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Local manufacturing of protein-based vaccines and therapies in Africa is limited and contributes to a trade deficit, security of supply concerns and poor access to biopharmaceuticals by the poor. Plant molecular farming is a potential technology solution that has received growing adoption by African scientists attracted by the potential for the competitive cost of goods, safety and efficacy. Plant-made pharmaceutical technologies for veterinary and human vaccination and treatment of non-communicable and infectious diseases are available at different stages of development in Africa. There is also growth in the translation of these technologies to commercial operations. Africa is poised to benefit from the real-world impact of molecular farming in the next few years.
Collapse
Affiliation(s)
- Tsepo L Tsekoa
- NextGen Health and Future Production: Chemistry Clusters, Council for Scientific and Industrial Research, Pretoria, South Africa.
| | - Advaita Acarya Singh
- NextGen Health and Future Production: Chemistry Clusters, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Sindisiwe G Buthelezi
- NextGen Health and Future Production: Chemistry Clusters, Council for Scientific and Industrial Research, Pretoria, South Africa
| |
Collapse
|
33
|
Scott IM, Zhu H, Schieck K, Follick A, Reynolds LB, Menassa R. Non-target Effects of Hyperthermostable α-Amylase Transgenic Nicotiana tabacum in the Laboratory and the Field. FRONTIERS IN PLANT SCIENCE 2019; 10:878. [PMID: 31354758 PMCID: PMC6630089 DOI: 10.3389/fpls.2019.00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Thermostable α-amylases are important enzymes used in many industrial processes. The expression of recombinant Pyrococcus furiosus α-amylase (PFA) in Nicotiana tabacum has led to the accumulation of high levels of recombinant protein in transgenic plants. The initial steps to registering the transgenic tobacco at a commercial production scale and growing it in the field requires a risk assessment of potential non-target effects. The objective of this study was to assess the effect of feeding on transgenic tobacco with 2 indigenous insect species commonly associated with wild and commercial tobacco involving plants grown and evaluated under laboratory and field conditions. The highest levels of PFA ranged from 1.3 to 2.7 g/kg leaf fresh weight produced in the field-grown cultivars Con Havana and Little Crittenden, respectively. These two cultivars also had the highest nicotine (ranging from 4.6 to 10.9 mg/g), but there was little to no negative effect for either tobacco hornworm Manduca sexta L. or aphid Myzus nicotianae (Blackman). Both laboratory and field trials determined no short term (5 days) decrease in the survival or fecundity of the tobacco aphid after feeding on PFA transgenic tobacco compared to non-transgenic plants. In the field, tobacco hornworm larvae showed no differences in survival, final larval weights or development time to adult stage between transgenic lines of four cultivars and their corresponding wild type controls. Laboratory studies confirmed the field trial results indicating the low risk association of PFA expressed in tobacco leaves with tobacco hornworms and aphids that would feed on the transgenic plants.
Collapse
|
34
|
Alqazlan N, Diao H, Jevnikar AM, Ma S. Production of functional human interleukin 37 using plants. PLANT CELL REPORTS 2019; 38:391-401. [PMID: 30659328 DOI: 10.1007/s00299-019-02377-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE We demonstrate for the first time that a fully bioactive human IL-37, a newly discovered cytokine acting as a fundamental inhibitor of innate immunity, can be recombinantly produced in plant cells. Interleukin 37 (IL-37), a newly discovered member of the interleukin (IL)-1 family of cytokines, plays a pivotal role in limiting innate inflammation and suppressing acquired immune responses, thus holding high potential for treating a wide array of human inflammatory and autoimmune disorders. In this study, we have developed transgenic plants as a novel expression platform for production of human IL-37 (IL-37). Plant transformation vectors synthesizing various forms of the b isoform of IL-37, including an unprocessed full-length precursor form (proIL-37b), a mature form (matIL-37b) and an IL-37 fusion protein in which IL-37b was fused to soybean agglutinin (SBA-IL-37b), have been constructed and introduced into tobacco plants. The expression of all forms of IL-37b was driven by a strong constitutive 35S promoter. Transgenic tobacco plants were generated with each of these constructs. Depending on the form of IL-37b being produced, the expression level of proIL-37b reached approximately 1% of TSP, while matIL-37b expression was substantially lower (0.01% TSP). Fusion to SBA substantially increased the expression of matIL-37b, with the expression level of fusion protein accounting for 1% of TSP. Functional analysis using a cell-based in vitro assay showed that plant-made matIL-37b and proIL-37b are both biologically active, but plant-made matIL-37b exhibited significantly greater biological activity than proIL-37b. These results demonstrate that plants have great potential of being a green bioreactor for low-cost, large-scale production of biologically active IL-37.
Collapse
Affiliation(s)
- Nadiyah Alqazlan
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Hong Diao
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, Canada
| | - Anthony M Jevnikar
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, Canada
| | - Shengwu Ma
- Department of Biology, University of Western Ontario, London, ON, Canada.
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, London, Canada.
- Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
35
|
Yin JL, Wong WS. Production of santalenes and bergamotene in Nicotiana tabacum plants. PLoS One 2019; 14:e0203249. [PMID: 30608920 PMCID: PMC6319812 DOI: 10.1371/journal.pone.0203249] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
Terpenes play an important role in plant-insect relationships, and these relationships can potentially be modified by altering the profile of terpenes emitted from plants using metabolic engineering methods. Transgenic plants generated by employing such methods offer the prospect of low-cost sustainable pest management; in this regard, we used chloroplast targeting and cytosolic mevalonic acid pathway enhancement in this study to investigate the interaction of santalenes and bergamotene with insects. The santalene- and bergamotene-emitting transgenic tobacco plants thus generated were utilized to study host preference in the green peach aphid (Myzus persicae (Sulzer)). The results showed that co-expression of either 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) or truncated HMGR with santalene synthase led to the production of higher amounts of santalenes and bergamotene in transgenic tobacco plants, and that these santalene- and bergamotene-emitting plants were attractive to green peach aphids. We accordingly propose that such transgenic plants may have potential application in pest management as a trap crop to prevent green peach aphid infestation of wild-type tobacco plants.
Collapse
Affiliation(s)
- Jun-Lin Yin
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, China
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, Singapore
| | - Woon-Seng Wong
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, Singapore
| |
Collapse
|
36
|
Georgiev V, Slavov A, Vasileva I, Pavlov A. Plant cell culture as emerging technology for production of active cosmetic ingredients. Eng Life Sci 2018; 18:779-798. [PMID: 32624872 DOI: 10.1002/elsc.201800066] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022] Open
Abstract
Plants have always been the main source for active cosmetic ingredients, having proven health beneficial effects on human, such as anti-aging, antioxidant, anti-inflammatory, UV-protective, anti-cancer, anti-wrinkle, skin soothing, whitening, moisturizing, etc. Extracts from herbal, aromatic and/or medicinal plants have been widely used as effective active ingredients in cosmeceuticals or nutricosmetics, especially in products for topical application and skin-care formulations. However, over the past decade, there has been an increasing interest to plant cell culture - derived active cosmetic ingredients. These are "new generation" of high quality natural products, produced by the modern plan biotechnology methods, which usually showed stronger activities than the plant extracts obtained by the classical methods. In this review, the advantages and the current progress in plant cell culture technology for the production of active cosmetic ingredients have been summarized, and discussed in details within a presented case study for calendula stem cell product development.
Collapse
Affiliation(s)
- Vasil Georgiev
- Laboratory of Applied Biotechnology - Plovdiv The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences Plovdiv Bulgaria.,Department of Organic Chemistry and Inorganic Chemistry University of Food Technologies Plovdiv Bulgaria
| | - Anton Slavov
- Department of Organic Chemistry and Inorganic Chemistry University of Food Technologies Plovdiv Bulgaria
| | - Ivelina Vasileva
- Department of Organic Chemistry and Inorganic Chemistry University of Food Technologies Plovdiv Bulgaria
| | - Atanas Pavlov
- Laboratory of Applied Biotechnology - Plovdiv The Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences Plovdiv Bulgaria.,Department of Analytical Chemistry and Physicochemistry University of Food Technologies Plovdiv Bulgaria
| |
Collapse
|
37
|
Abstract
Plants and their rich variety of natural compounds are used to maintain and to improve health since the earliest stages of civilization. Despite great advances in synthetic organic chemistry, one fourth of present-day drugs have still a botanical origin, and we are currently living a revival of interest in new pharmaceuticals from plant sources. Modern biotechnology has defined the potential of plants to be systems able to manufacture not only molecules naturally occurring in plants but also newly engineered compounds, from small to complex protein molecules, which may originate even from non-plant sources. Among these compounds, pharmaceuticals such as vaccines, antibodies and other therapeutic or prophylactic entities can be listed. For this technology, the term plant molecular farming has been coined with reference to agricultural applications due to the use of crops as biofactories for the production of high-added value molecules. In this perspective, edible plants have also been thought as a tool to deliver by the oral route recombinant compounds of medical significance for new therapeutic strategies. Despite many hurdles in establishing regulatory paths for this “novel” biotechnology, plants as bioreactors deserve more attention when considering their intrinsic advantages, such as the quality and safety of the recombinant molecules that can be produced and their potential for large-scale and low-cost production, despite worrying issues (e.g. amplification and diffusion of transgenes) that are mainly addressed by regulations, if not already tackled by the plant-made products already commercialized. The huge benefits generated by these valuable products, synthesized through one of the safest, cheapest and most efficient method, speak for themselves. Milestone for plant-based recombinant protein production for human health use was the approval in 2012 by the US Food and Drug Administration of plant-made taliglucerase alfa, a therapeutic enzyme for the treatment of Gaucher’s disease, synthesized in carrot suspension cultures by Protalix BioTherapeutics. In this review, we will go through the various approaches and results for plant-based production of proteins and recent progress in the development of plant-made pharmaceuticals (PMPs) for the prevention and treatment of human diseases. An analysis on acceptance of these products by public opinion is also tempted.
Collapse
|
38
|
Chahardoli M, Fazeli A, Niazi A, Ghabooli M. Recombinant expression of LFchimera antimicrobial peptide in a plant-based expression system and its antimicrobial activity against clinical and phytopathogenic bacteria. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1451780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mahmood Chahardoli
- Department of Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Arash Fazeli
- Department of Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Mehdi Ghabooli
- Department of Agronomy, Faculty of Agriculture, Malayer University, Malayer, Iran
| |
Collapse
|
39
|
Abstract
Plant molecular farming depends on a diversity of plant systems for production of useful recombinant proteins. These proteins include protein biopolymers, industrial proteins and enzymes, and therapeutic proteins. Plant production systems include microalgae, cells, hairy roots, moss, and whole plants with both stable and transient expression. Production processes involve a narrowing diversity of bioreactors for cell, hairy root, microalgae, and moss cultivation. For whole plants, both field and automated greenhouse cultivation methods are used with products expressed and produced either in leaves or seeds. Many successful expression systems now exist for a variety of different products with a list of increasingly successful commercialized products. This chapter provides an overview and examples of the current state of plant-based production systems for different types of recombinant proteins.
Collapse
Affiliation(s)
| | - Thomas Bley
- Bioprocess Engineering, Institute of Food Technology and Bioprocess Engineering, TU Dresden, Dresden, Germany
| |
Collapse
|
40
|
Jassbi AR, Zare S, Asadollahi M, Schuman MC. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana. Chem Rev 2017; 117:12227-12280. [PMID: 28960061 DOI: 10.1021/acs.chemrev.7b00001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.
Collapse
Affiliation(s)
| | | | | | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology , Jena 07745, Germany
- German Centre for Integrative Biodiversity Research (iDiv) , Deutscher Platz 5e, Leipzig 04103, Germany
| |
Collapse
|
41
|
Ma S, We L, Yang H, Deng S, M. Jevnikar A. Emerging technologies to achieve oral delivery of GLP-1 and GLP-1 analogs for treatment of type 2 diabetes mellitus (T2DM). CANADIAN JOURNAL OF BIOTECHNOLOGY 2017. [DOI: 10.24870/cjb.2017-000107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
42
|
Nausch H, Hausmann T, Ponndorf D, Hühns M, Hoedtke S, Wolf P, Zeyner A, Broer I. Tobacco as platform for a commercial production of cyanophycin. N Biotechnol 2016; 33:842-851. [PMID: 27501906 DOI: 10.1016/j.nbt.2016.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/04/2016] [Accepted: 08/04/2016] [Indexed: 01/22/2023]
Abstract
Cyanophycin (CP) is a proteinogenic polymer that can be substituted for petroleum in the production of plastic compounds and can also serve as a source of valuable dietary supplements. However, because there is no economically feasible system for large-scale industrial production, its application is limited. In order to develop a low-input system, CP-synthesis was established in the two commercial Nicotiana tabacum (N. tabacum) cultivars 'Badischer Geudertheimer' (BG) and 'Virginia Golta' (VG), by introducing the cyanophycin-synthetase gene from Thermosynecchococcus elongatus BP-1 (CphATe) either via crossbreeding with transgenic N. tabacum cv. Petit Havana SR1 (PH) T2 individual 51-3-2 or by agrobacterium-mediated transformation. Both in F1 hybrids (max. 9.4% CP/DW) and T0 transformants (max. 8.8% CP/DW), a substantial increase in CP content was achieved in leaf tissue, compared to a maximum of 1.7% CP/DW in PH T0 transformants of Hühns et al. (2008). In BG CP, yields were homogenous and there was no substantial difference in the variation of the CP content between primary transformants (T0), clones of T0 individuals, T1 siblings and F1 siblings of hybrids. Therefore, BG meets the requirements for establishing a master seed bank for continuous and reliable CP-production. In addition, it was shown that the polymer is not only stable in planta but also during silage, which simplifies storage of the harvest prior to isolation of CP.
Collapse
Affiliation(s)
- Henrik Nausch
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Justus-von-Liebig Weg 8, Mecklenburg-Western Pomerania, 18059, Rostock, Germany.
| | - Tina Hausmann
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Justus-von-Liebig Weg 8, Mecklenburg-Western Pomerania, 18059, Rostock, Germany
| | - Daniel Ponndorf
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Justus-von-Liebig Weg 8, Mecklenburg-Western Pomerania, 18059, Rostock, Germany
| | - Maja Hühns
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Justus-von-Liebig Weg 8, Mecklenburg-Western Pomerania, 18059, Rostock, Germany
| | - Sandra Hoedtke
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Nutrition Physiology and Animal Nutrition, Justus-von-Liebig-Weg 6b, Mecklenburg-Western Pomerania, 18059, Rostock, Germany
| | - Petra Wolf
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Nutrition Physiology and Animal Nutrition, Justus-von-Liebig-Weg 6b, Mecklenburg-Western Pomerania, 18059, Rostock, Germany
| | - Annette Zeyner
- Martin-Luther-University Halle-Wittenberg, Institute for Agricultural and Nutritional Sciences, Chair of Animal Nutrition, Theodor-Lieser-Str. 11, 06120, Halle (Saale), Germany
| | - Inge Broer
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Department of Agrobiotechnology and Risk Assessment for Bio- und Gene Technology, Justus-von-Liebig Weg 8, Mecklenburg-Western Pomerania, 18059, Rostock, Germany
| |
Collapse
|
43
|
Szeja W, Grynkiewicz G, Rusin A. Isoflavones, their Glycosides and Glycoconjugates. Synthesis and Biological Activity. CURR ORG CHEM 2016; 21:218-235. [PMID: 28553156 PMCID: PMC5427819 DOI: 10.2174/1385272820666160928120822] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/20/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022]
Abstract
Glycosylation of small biologically active molecules, either of natural or synthetic origin, has a profound impact on their solubility, stability, and bioactivity, making glycoconjugates attractive compounds as therapeutic agents or nutraceuticals. A large proportion of secondary metabolites, including flavonoids, occur in plants as glycosides, which adds to the molecular diversity that is much valued in medicinal chemistry studies. The subsequent growing market demand for glycosidic natural products has fueled the development of various chemical and biotechnological methods of glycosides preparation. The review gives an extensive overview of the processes of the synthesis of isoflavones and discusses recently developed major routes towards isoflavone-sugar formation processes. Special attention is given to the derivatives of genistein, the main isoflavone recognized as a useful lead in several therapeutic categories, with particular focus on anticancer drug design. The utility of chemical glycosylations as well as glycoconjugates preparation is discussed in some theoretical as well as practical aspects. Since novel approaches to chemical glycosylations and glycoconjugations are abundant and many of them proved suitable for derivatization of polyphenols a new body of evidence has emerged, indicating that sugar moiety can play a much more significant role, when attached to a pharmacophore, then being a mere “solubilizer”. In many cases, it has been demonstrated that semisynthetic glycoconjugates are much more potent cytostatic and cytotoxic agents than reference isoflavones. Moreover, the newly designed glycosides or glycoside mimics can act through different mechanisms than the parent active molecule.
Collapse
Affiliation(s)
- Wiesław Szeja
- Silesian Technical University, Department of Chemistry, Krzywoustego 4, 44-100 Gliwice, Poland
| | | | - Aleksandra Rusin
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze AK 15, 44-100 Gliwice, Poland
| |
Collapse
|
44
|
Shahid N, Daniell H. Plant-based oral vaccines against zoonotic and non-zoonotic diseases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2079-2099. [PMID: 27442628 PMCID: PMC5095797 DOI: 10.1111/pbi.12604] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/10/2023]
Abstract
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.
Collapse
Affiliation(s)
- Naila Shahid
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Production and immunogenicity of Actinobacillus pleuropneumoniae ApxIIA protein in transgenic rice callus. Protein Expr Purif 2016; 132:116-123. [PMID: 27215671 DOI: 10.1016/j.pep.2016.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 01/02/2023]
Abstract
Actinobacillus pleuropneumoniae is a major etiological agent that is responsible for swine pleuropneumonia, a highly contagious respiratory infection that causes severe economic losses in the swine production industry. ApxIIA is one of the virulence factors in A. pleuropneumoniae and has been considered as a candidate for developing a vaccine against the bacterial infection. A gene encoding an ApxIIA fragment (amino acids 439-801) was modified based on a plant-optimized codon and constructed into a plant expression vector under the control of a promoter and the 3' UTR of the rice amylase 3D gene. The plant expression vector was introduced into rice embryogenic callus (Oryza sativa L. cv. Dongjin) via particle bombardment-mediated transformation. The integration and transcription of the ApxIIA439-801 gene were confirmed by using genomic DNA PCR amplification and Northern blot analysis, respectively. The synthesis of ApxIIA439-801 antigen protein in transgenic rice callus was confirmed by western blot analysis. The concentration of antigen protein in lyophilized samples of transgenic rice callus was 250 μg/g. Immunizing mice with protein extracts from transgenic plants intranasally elicited secretory IgA. These results demonstrate the feasibility of using a transgenic plant to elicit immune responses against A. pleuropneumoniae.
Collapse
|
46
|
Burlakovskiy MS, Yemelyanov VV, Lutova LA. Plant Based Bioreactors of Recombinant Cytokines (Review). APPL BIOCHEM MICRO+ 2016; 52:121-137. [PMID: 32214409 PMCID: PMC7087682 DOI: 10.1134/s0003683816020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 01/16/2023]
Abstract
Cytokines are a family of signaling polypeptides involved in intercellular interactions in the process of the immune response, as well as in the regulation of a number of normal physiological functions. Cytokines are used in medicine for the treatment of cancer, immune disorders, viral infections, and other socially significant diseases, but the extent of their use is limited by the high production cost of the active agent. The development of this area of pharmacology is associated with the success of genetic engineering, which allows the production of significant amounts of protein by transgenic organisms. The review discusses the latest advances in the production of various cytokines with the use of genetically modified plants.
Collapse
Affiliation(s)
- M. S. Burlakovskiy
- Biology Faculty, St. Petersburg State University, St. Petersburg, 199034 Russia
| | - V. V. Yemelyanov
- Biology Faculty, St. Petersburg State University, St. Petersburg, 199034 Russia
| | - L. A. Lutova
- Biology Faculty, St. Petersburg State University, St. Petersburg, 199034 Russia
| |
Collapse
|
47
|
Santos RB, Abranches R, Fischer R, Sack M, Holland T. Putting the Spotlight Back on Plant Suspension Cultures. FRONTIERS IN PLANT SCIENCE 2016; 7:297. [PMID: 27014320 PMCID: PMC4786539 DOI: 10.3389/fpls.2016.00297] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/25/2016] [Indexed: 05/05/2023]
Abstract
Plant cell suspension cultures have several advantages that make them suitable for the production of recombinant proteins. They can be cultivated under aseptic conditions using classical fermentation technology, they are easy to scale-up for manufacturing, and the regulatory requirements are similar to those established for well-characterized production systems based on microbial and mammalian cells. It is therefore no surprise that taliglucerase alfa (Elelyso®)-the first licensed recombinant pharmaceutical protein derived from plants-is produced in plant cell suspension cultures. But despite this breakthrough, plant cells are still largely neglected compared to transgenic plants and the more recent plant-based transient expression systems. Here, we revisit plant cell suspension cultures and highlight recent developments in the field that show how the rise of plant cells parallels that of Chinese hamster ovary cells, currently the most widespread and successful manufacturing platform for biologics. These developments include medium optimization, process engineering, statistical experimental designs, scale-up/scale-down models, and process analytical technologies. Significant yield increases for diverse target proteins will encourage a gold rush to adopt plant cells as a platform technology, and the first indications of this breakthrough are already on the horizon.
Collapse
Affiliation(s)
- Rita B. Santos
- Plant Cell Biology Laboratory, Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António XavierOeiras, Portugal
| | - Rita Abranches
- Plant Cell Biology Laboratory, Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António XavierOeiras, Portugal
| | - Rainer Fischer
- Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie (IME), Integrated Production PlatformsAachen, Germany
- Biology VII, Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Markus Sack
- Biology VII, Institute for Molecular Biotechnology, RWTH Aachen UniversityAachen, Germany
| | - Tanja Holland
- Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie (IME), Integrated Production PlatformsAachen, Germany
- *Correspondence: Tanja Holland
| |
Collapse
|
48
|
Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv 2015; 33:1005-23. [DOI: 10.1016/j.biotechadv.2015.03.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 02/25/2015] [Accepted: 03/10/2015] [Indexed: 11/24/2022]
|
49
|
Xiao B, Tan Y, Long N, Chen X, Tong Z, Dong Y, Li Y. SNP-based genetic linkage map of tobacco (Nicotiana tabacum L.) using next-generation RAD sequencing. ACTA ACUST UNITED AC 2015; 22:11. [PMID: 26473145 PMCID: PMC4607152 DOI: 10.1186/s40709-015-0034-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/18/2015] [Indexed: 12/30/2022]
Abstract
Background Tobacco (Nicotiana tabacum L.) is an important model system, which has been widely used in plant physiological studies and it is particularly useful as a bioreactor. Despite its importance, only limited molecular marker resources are available for genome analysis, genetic mapping and breeding. Restriction-site associated DNA sequencing (RAD-seq) is a powerful new method for targeted sequencing across the genomes of many individuals. This approach has broad potential for genetic analysis through linkage mapping. Results We constructed a RAD library using genomic DNA from a BC1 backcross population. Sequencing of 196 individuals was performed on an Illumina HiSeq 2500. Two linkage maps were constructed, one with a reference genome and another, termed as de novo identification of single nucleotide polymorphism (SNP) by RAD-seq, without a reference genome. Overall, 4138 and 2162 SNP markers with a total length of 1944.74 and 2000.9 cM were mapped to 24 linkage groups in the genetic maps based on reference genome and without reference, respectively. Conclusions Using two different SNP discovery methods based on next generation RAD sequencing technology, we have respectively mapped 2162 and 4318 SNPs in our backcross population. This study gives an excellent example for high density linkage map construction, irrespective of genome sequence availability, and provides saturated information for downstream genetic investigations such as quantitative trait locus analyses or genomic selection (e.g. bioreactor suitable cultivars). Electronic supplementary material The online version of this article (doi:10.1186/s40709-015-0034-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bingguang Xiao
- Yunnan Academy of Tobacco Agricultural Science, Yuantong Street No. 33, Kunming, 650021 Yunnan China
| | - Yuntao Tan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, JingMing South Road No. 727, Kunming, 650500 Yunnan China
| | - Ni Long
- Faculty of Life Science and Technology, Kunming University of Science and Technology, JingMing South Road No. 727, Kunming, 650500 Yunnan China
| | - Xuejun Chen
- Yunnan Academy of Tobacco Agricultural Science, Yuantong Street No. 33, Kunming, 650021 Yunnan China
| | - Zhijun Tong
- Yunnan Academy of Tobacco Agricultural Science, Yuantong Street No. 33, Kunming, 650021 Yunnan China
| | - Yang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, JingMing South Road No. 727, Kunming, 650500 Yunnan China
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Science, Yuantong Street No. 33, Kunming, 650021 Yunnan China
| |
Collapse
|
50
|
Chan HT, Daniell H. Plant-made oral vaccines against human infectious diseases-Are we there yet? PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1056-70. [PMID: 26387509 PMCID: PMC4769796 DOI: 10.1111/pbi.12471] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 05/13/2023]
Abstract
Although the plant-made vaccine field started three decades ago with the promise of developing low-cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, this goal has not yet been achieved. Plants offer several major advantages in vaccine generation, including low-cost production by eliminating expensive fermentation and purification systems, sterile delivery and cold storage/transportation. Most importantly, oral vaccination using plant-made antigens confers both mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 years have made significant progress in expressing vaccine antigens in edible leaves (especially lettuce), processing leaves or seeds through lyophilization and achieving antigen stability and efficacy after prolonged storage at ambient temperatures. Bioencapsulation of antigens in plant cells protects them from the digestive system; the fusion of antigens to transmucosal carriers enhances efficiency of their delivery to the immune system and facilitates successful development of plant vaccines as oral boosters. However, the lack of oral priming approaches diminishes these advantages because purified antigens, cold storage/transportation and limited shelf life are still major challenges for priming with adjuvants and for antigen delivery by injection. Yet another challenge is the risk of inducing tolerance without priming the host immune system. Therefore, mechanistic aspects of these two opposing processes (antibody production or suppression) are discussed in this review. In addition, we summarize recent progress made in oral delivery of vaccine antigens expressed in plant cells via the chloroplast or nuclear genomes and potential challenges in achieving immunity against infectious diseases using cold-chain-free vaccine delivery approaches.
Collapse
Affiliation(s)
| | - Henry Daniell
- Correspondence (Tel 215 746 2563; fax 215 898 3695; )
| |
Collapse
|