1
|
Satyam S, Patra S. Xanthine oxidase driven bio-Fenton system for advanced pollutant degradation in sustainable wastewater treatment. Int J Biol Macromol 2025; 313:144323. [PMID: 40383322 DOI: 10.1016/j.ijbiomac.2025.144323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Advanced oxidation processes such as the Fenton reaction are critical for degrading recalcitrant pollutants in wastewater but face operational bottlenecks. The classical Fenton process relies on hazardous exogenous H₂O₂, inefficient Fe2+/Fe3+ cycling, and stringent acidic pH, limiting scalability. To address these limitations, this study introduces a sustainable hybrid system integrating human xanthine oxidase (Hu-XO) with Fenton chemistry, enabling self-sufficient H₂O₂ generation, Fe redox cycling, and pH modulation. The Hu-XO-driven hypoxanthine/xanthine oxidation produced H₂O₂ and superoxide radicals, synergizing with Fe2+ to amplify hydroxyl radical generation. When optimized via response surface methodology (95 % model accuracy), the system achieved 91.8 % biochemical oxygen demand (BOD) and 86.0 % chemical oxygen demand (COD) reduction in tannery wastewater. The antimicrobial assay using Escherichia coli and Bacillus subtilis demonstrated a removal rate of up to 106 CFU/mL. Posttreatment toxicity assays revealed an 80 % decrease in Aliivibrio fischeri luminescence inhibition and restored seed germination rates for Vigna mungo, Vigna radiata, and Cicer arietinum. This work establishes a self-sustaining Fenton-based system that eliminates exogenous H₂O₂ dependence and strict pH requirements and integrates pollutant degradation with antimicrobial action, offering a scalable, eco-friendly strategy for industrial wastewater remediation.
Collapse
Affiliation(s)
- Satyam Satyam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Wang J, Xiang ZX, Luan MF, Gong JS, Su C, Li H, Xu ZH, Shi JS. High-level secretory expression of recombinant type III human-like collagen α1 in Pichia pastoris via multilevel systematic optimization. Int J Biol Macromol 2025; 313:144270. [PMID: 40381768 DOI: 10.1016/j.ijbiomac.2025.144270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Collagen is the main component that makes up the internal structure of animals and is extensively used in several industrial fields including food, materials, chemicals, and pharmaceuticals. Despite the variety of preparation methods available, there is significant potential for enhancing the yield of recombinant collagen produced through engineered Pichia pastoris (P. pastoris). Increasing the copy number of the recombinant type III human collagen α1 (hlCOLIII) gene to improve the level of expression of the recombinant protein and co-expression of molecular chaperones to alleviate the resulting endoplasmic reticulum stress further promotes hlCOLIII secretion. By optimizing transcription driven by the AOX1 promoter and improving translation efficiency, a strain of P. pastoris expressing hlCOLIII efficiently was constructed, achieving a yield of 10.3 g/L in a 5 L fermenter. Further, hlCOLIII demonstrated notable antioxidant capacity and performed well in bioactivity analyses, including cell proliferation, migration, and adhesion. This study lays a solid foundation for the scalable industrial production of recombinant collagen and opens new avenues for its exploration in advanced biomedical materials.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zhi-Xiang Xiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Meng-Fan Luan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
3
|
Ost KJ, Student M, Cord-Landwehr S, Moerschbacher BM, Ram AFJ, Dirks-Hofmeister ME. Cell walls of filamentous fungi - challenges and opportunities for biotechnology. Appl Microbiol Biotechnol 2025; 109:125. [PMID: 40411627 PMCID: PMC12103488 DOI: 10.1007/s00253-025-13512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/26/2025]
Abstract
The cell wall of filamentous fungi is essential for growth and development, both of which are crucial for fermentations that play a vital role in the bioeconomy. It typically has an inner rigid core composed of chitin and beta-1,3-/beta-1,6-glucans and a rather gel-like outer layer containing other polysaccharides and glycoproteins varying between and within species. Only a fraction of filamentous fungal species is used for the biotechnological production of enzymes, organic acids, and bioactive compounds such as antibiotics in large amounts on a yearly basis by precision fermentation. Most of these products are secreted into the production medium and must therefore pass through fungal cell walls at high transfer rates. Thus, cell wall mutants have gained interest for industrial enzyme production, although the causal relationship between cell walls and productivity requires further elucidation. Additionally, the extraction of valuable biopolymers like chitin and chitosan from spent fungal biomass, which is predominantly composed of cell walls, represents an underexplored opportunity for circular bioeconomy. Questions persist regarding the effective extraction of these biopolymers from the cell wall and their repurposing in valorization processes. This review aims to address these issues and promote further research on understanding the cell walls in filamentous fungi to optimize their biotechnological use. KEY POINTS: • The highly complex cell walls of filamentous fungi are important for biotechnology. • Cell wall mutants show promising potential to improve industrial enzyme secretion. • Recent studies revealed enhanced avenues for chitin/chitosan from fungal biomass.
Collapse
Affiliation(s)
- Katharina J Ost
- Laboratory for Food Biotechnology, Faculty of Agricultural Sciences and Landscape Architecture, Osnabrück University of Applied Sciences, Oldenburger Landstraße 62, 49090, Osnabrück, Germany
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Mounashree Student
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Stefan Cord-Landwehr
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Arthur F J Ram
- Fungal Genetics and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Mareike E Dirks-Hofmeister
- Laboratory for Food Biotechnology, Faculty of Agricultural Sciences and Landscape Architecture, Osnabrück University of Applied Sciences, Oldenburger Landstraße 62, 49090, Osnabrück, Germany.
| |
Collapse
|
4
|
Guo J, Sun X, Wang J, Hou Y, Yang M, Tan J, Zhang Z, Chen Y, Chen W. Precise modulation of protein refolding by rationally designed covalent organic frameworks. Nat Commun 2025; 16:4122. [PMID: 40316523 PMCID: PMC12048718 DOI: 10.1038/s41467-025-59368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 04/17/2025] [Indexed: 05/04/2025] Open
Abstract
Precisely regulating protein conformation (folding) for biomanufacturing and biomedicine is of great significance but remains challenging. In this work, we innovate a covalent organic framework (COF)-directed protein refolding strategy to modulate protein conformation by rationally designed covalent organic frameworks with adapted pore structures and customizable microenvironments. The conformation of denatured protein can be efficiently recovered through a simple one-step approach using covalent organic framework treatment in aqueous or buffer solutions. This strategy demonstrates high generality that can be applied to various proteins (for example, lysozyme, glucose oxidase, trypsin, nattokinase, and papain) and diverse covalent organic frameworks. An in-depth investigation of the refolding mechanism reveals that pore size and microenvironments such as hydrophobicity, π-π conjugation, and hydrogen bonding are critical to regulating protein conformation. Furthermore, we use this covalent organic framework platform to build up solid-phase columns for continuous protein recovery and achieved a ~ 100% refolding yield and excellent recycling performance (30 cycles), enabling an integrated process for the extracting and refolding denatured proteins (such as the harvest of protein in inclusion bodies). This study creates a highly efficient and customizable covalent organic framework platform for precisely regulating proteins refolding and enhancing their performance, opening up a new avenue for advanced protein manufacturing.
Collapse
Affiliation(s)
- Jinbiao Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Yimiao Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Mingfang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Junjie Tan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin, China
- Nankai University & Cangzhou Bohai New Area Institute of Green Chemical Engineering, Cangzhou, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China.
- Haihe Laboratory of Synthetic Biology, Tianjin, China.
| | - Wen Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Wang X, Zhang X, Zhang J, Zhou Y, Wang F, Wang Z, Li X. Advances in microbial production of geraniol: from metabolic engineering to potential industrial applications. Crit Rev Biotechnol 2025; 45:727-742. [PMID: 39266251 DOI: 10.1080/07388551.2024.2391881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Geraniol, an acyclic monoterpene alcohol, has significant potential applications in various fields, including: food, cosmetics, biofuels, and pharmaceuticals. However, the current sources of geraniol mainly include plant tissue extraction or chemical synthesis, which are unsustainable and suffer severely from high energy consumption and severe environmental problems. The process of microbial production of geraniol has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Escherichia coli (13.2 g/L) and Saccharomyces cerevisiae (5.5 g/L) laid a solid foundation for the microbial production of geraniol. In this review, recent advances in the development of geraniol-producing strains, including: metabolic pathway construction, key enzyme improvement, genetic modification strategies, and cytotoxicity alleviation, are critically summarized. Furthermore, the key challenges in scaling up geraniol production and future perspectives for the development of robust geraniol-producing strains are suggested. This review provides theoretical guidance for the industrial production of geraniol using microbial cell factories.
Collapse
Affiliation(s)
- Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yujunjie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Besleaga M, Ebner K, Glieder A, Spadiut O, Kopp J. Chances and drawbacks of derepressed recombinant enzyme production in continuous cultivations with Komagataella phaffii. Front Bioeng Biotechnol 2025; 13:1523037. [PMID: 40129455 PMCID: PMC11931149 DOI: 10.3389/fbioe.2025.1523037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Utilizing Komagataella phaffii (K. phaffii) as a host, methanol-dependent fed-batch cultivations remain state-of-the-art for recombinant protein production. Recently, however, derepressible promoters have emerged as a valuable methanol-free alternative, especially for the expression of complex target proteins. In this study, we investigated the expression of a recombinant model enzyme (UPO) using a derepressible bi-directionalized promoter system in continuous cultivations. According to the literature, low growth rates required for derepression might result in pseudohyphae growth in chemostat cultivations with K. phaffii. This phenotype would be highly undesired as pseudohyphae growth is referred to decreasing productivity. Still, literature on derepressible promoter systems used in continuous cultivations is scarce. Hence, we aim to investigate pseudohyphae growth in a derepressible bi-directionalized promoter system. Several chemostats and a decelerostat screening were performed to identify the effect of the specific growth rate on pseudohyphae growth in continuous cultivations whilst monitoring the productivity of the recombinant target enzyme. Based on the experimental screening data, derepression was still achieved at a growth rate of 0.11 h-1, whilst no pseudohyphae growth was observed. However, verifying these conditions for an extended timeframe of more than five residence times triggered pseudohyphae formation. Hence, the results of this study indicate that pseudohyphae growth in chemostats with derepressible promoter systems in K. phaffii is both growth-rate and time-dependent, thus limiting the potential of continuous cultivations for recombinant production of UPO. Despite the observed limitations, we still propose decelerostat cultivations as a proper screening tool to determine suitable production conditions in continuous systems for derepressed promotors.
Collapse
Affiliation(s)
- Mihail Besleaga
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Vienna, Austria
| | | | | | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Vienna, Austria
| | - Julian Kopp
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Vienna, Austria
| |
Collapse
|
7
|
Liu M, Xiao R, Li X, Zhao Y, Huang J. A comprehensive review of recombinant technology in the food industry: Exploring expression systems, application, and future challenges. Compr Rev Food Sci Food Saf 2025; 24:e70078. [PMID: 39970011 DOI: 10.1111/1541-4337.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 02/21/2025]
Abstract
Biotechnology has significantly advanced the production of recombinant proteins (RPs). This review examines the latest advancements in protein production technologies, including CRISPR, genetic engineering, vector integration, and fermentation, and their implications for the food industry. This review delineates the merits and shortcomings of prevailing host systems for RP production, underscoring molecular and process strategies pivotal for amplifying yields and purity. It traverses the spectrum of RP applications, challenges, and burgeoning trends, highlighting the imperative of employing robust hosts and cutting-edge genetic engineering to secure high-quality, high-yield outputs while circumventing protein aggregation and ensuring correct folding for enhanced activity. Recombinant technology has paved the way for the food industry to produce alternative proteins like leghemoglobin and cytokines, along with enzyme preparations such as proteases and lipases, and to modify microbial pathways for synthesizing beneficial compounds, including pigments, terpenes, flavonoids, and functional sugars. However, scaling microbial production to industrial scales presents economic, efficiency, and environmental challenges that demand innovative solutions, including high-throughput screening and CRISPR/Cas9 systems, to bolster protein yield and quality. Although recombinant technology holds much promise, it must navigate high costs and scalability to satisfy the escalating global demand for RPs in therapeutics and food. The variability in ethical and regulatory hurdles across regions further complicates market acceptance, underscoring an urgent need for robust regulatory frameworks for genetically modified organisms. These frameworks are essential for safeguarding the production process, ensuring product safety, and upholding the efficacy of RPs in industrial applications.
Collapse
Affiliation(s)
- Ming Liu
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Ran Xiao
- College of Agriculture, Henan University, Kaifeng, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Xiaolin Li
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Yingyu Zhao
- College of Grain and Food Science, Henan University of Technology, Zhengzhou, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
| | - Jihong Huang
- College of Agriculture, Henan University, Kaifeng, Henan, P. R. China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, Henan, P. R. China
- School of Food and Pharmacy, Xuchang University, Xuchang, Henan, P. R. China
| |
Collapse
|
8
|
Zhang W, Zheng R, Geng W, Wu X, Gao X, Zhou L, An Z, Liu C, Song Z, Ji H, Yang H, Wu X. Functional Characterization of an Aldol Condensation Synthase PheG for the Formation of Hispidin from Phellinus Igniarius. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413192. [PMID: 39874205 PMCID: PMC11924017 DOI: 10.1002/advs.202413192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/05/2025] [Indexed: 01/30/2025]
Abstract
Hispidin (1) is a polyphenolic compound with a wide range of pharmacological activities that is distributed in both plants and fungi. In addition to natural extraction, hispidin can be obtained by chemical or enzymatic synthesis. In this study, the identification and characterization of an undescribed enzyme, PheG, from Phellinus igniarius (P. igniarius), which catalyzes the construction of a key C─C bond in the enzymatic synthesis of hispidin are reported. It is demonstrated in vitro that PheG generates hispidin by catalyzing C─C bond formation in the aldol condensation reaction. Based on these results, a plausible pathway for hispidin biosynthesis is proposed by utilizing the primary triacetic acid lactone (TAL, 2) and 3,4-dihydroxybenzaldehyde (3). The mechanisms for the aldol condensation reaction of PheG are investigated using molecular dynamics (MD) simulations, molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy calculations, density functional theory, and site-specific mutations. The locations of the key amino acid residues that catalyze the conversion of substrates 2 and 3 to hispidin at the active site of PheG-1 are identified. This study provides a new method for preparing hispidin with high efficiency and low cost.
Collapse
Affiliation(s)
- Wanting Zhang
- College of PharmacyKey Laboratory of ProtectionDevelopment and Utilization of Medicinal Resources in Liupanshan AreaMinistry of EducationNingxia Medical UniversityYinchuan750004P.R. China
| | - Ruliang Zheng
- College of PharmacyKey Laboratory of ProtectionDevelopment and Utilization of Medicinal Resources in Liupanshan AreaMinistry of EducationNingxia Medical UniversityYinchuan750004P.R. China
| | - Weiling Geng
- College of PharmacyKey Laboratory of ProtectionDevelopment and Utilization of Medicinal Resources in Liupanshan AreaMinistry of EducationNingxia Medical UniversityYinchuan750004P.R. China
| | - Xinyuan Wu
- College of PharmacyKey Laboratory of ProtectionDevelopment and Utilization of Medicinal Resources in Liupanshan AreaMinistry of EducationNingxia Medical UniversityYinchuan750004P.R. China
| | - Xiaojuan Gao
- College of PharmacyKey Laboratory of ProtectionDevelopment and Utilization of Medicinal Resources in Liupanshan AreaMinistry of EducationNingxia Medical UniversityYinchuan750004P.R. China
| | - Li Zhou
- College of PharmacyKey Laboratory of ProtectionDevelopment and Utilization of Medicinal Resources in Liupanshan AreaMinistry of EducationNingxia Medical UniversityYinchuan750004P.R. China
| | - Zhenyu An
- College of PharmacyKey Laboratory of ProtectionDevelopment and Utilization of Medicinal Resources in Liupanshan AreaMinistry of EducationNingxia Medical UniversityYinchuan750004P.R. China
| | - Cheng Liu
- College of PharmacyKey Laboratory of ProtectionDevelopment and Utilization of Medicinal Resources in Liupanshan AreaMinistry of EducationNingxia Medical UniversityYinchuan750004P.R. China
| | - Zhijun Song
- College of PharmacyKey Laboratory of ProtectionDevelopment and Utilization of Medicinal Resources in Liupanshan AreaMinistry of EducationNingxia Medical UniversityYinchuan750004P.R. China
| | - Hongyan Ji
- Department of PharmaceuticsGeneral Hospital of Ningxia Medical UniversityYinchuan750004P. R. China
| | - Hao Yang
- College of PharmacyKey Laboratory of ProtectionDevelopment and Utilization of Medicinal Resources in Liupanshan AreaMinistry of EducationNingxia Medical UniversityYinchuan750004P.R. China
| | - Xiuli Wu
- College of PharmacyKey Laboratory of ProtectionDevelopment and Utilization of Medicinal Resources in Liupanshan AreaMinistry of EducationNingxia Medical UniversityYinchuan750004P.R. China
| |
Collapse
|
9
|
Khalid K, Ahmad F, Anwar A, Ong SK. A Bibliometric Analysis on Multi-epitope Vaccine Development Against SARS-CoV-2: Current Status, Development, and Future Directions. Mol Biotechnol 2025:10.1007/s12033-024-01358-5. [PMID: 39789401 DOI: 10.1007/s12033-024-01358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs. The development of multi-epitope vaccines against SARS-CoV-2 based on in silico identification of highly conserved and immunogenic epitopes is a promising strategy for future SARS-CoV-2 vaccine development. Considering the evolving landscape of the COVID-19 pandemic, we have conducted a bibliometric analysis to consolidate current findings and research trends in multi-epitope vaccine development to provide insights for future vaccine development strategies. Analysis of 102 publications on multi-epitope vaccine development against SARS-CoV-2 revealed significant growth and global collaboration, with India leading in the number of publications, along with an identification of the most prolific authors. Key journals included the Journal of Biomolecular Structure and Dynamics, while top collaborations involved Pakistan-China and India-USA. Keyword analysis showed a prominent focus on immunoinformatics, epitope prediction, and spike glycoprotein. Advances in immunoinformatics, including AI-driven epitope prediction, offer promising avenues for the development of safe and effective multi-epitope vaccines. Immunogenicity may be further improved through nanoparticle-based systems or the use of adjuvants along with real-time genomic surveillance to tailor vaccines against emerging variants.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
| | - Fiaz Ahmad
- Department of Economics and Finance, Sunway Business School, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
10
|
Ojima-Kato T. Advances in recombinant protein production in microorganisms and functional peptide tags. Biosci Biotechnol Biochem 2024; 89:1-10. [PMID: 39479788 DOI: 10.1093/bbb/zbae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/13/2024] [Indexed: 12/24/2024]
Abstract
Recombinant protein production in prokaryotic and eukaryotic cells is a fundamental technology for both research and industry. Achieving efficient protein synthesis is key to accelerating the discovery, characterization, and practical application of proteins. This review focuses on recent advances in recombinant protein production and strategies for more efficient protein production, especially using Escherichia coli and Saccharomyces cerevisiae. Additionally, this review summarizes the development of various functional peptide tags that can be employed for protein production, modification, and purification, including translation-enhancing peptide tags developed by our research group.
Collapse
Affiliation(s)
- Teruyo Ojima-Kato
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Wu W, Ali A, Shen J, Ren M, Cai Y, He L. Cell Penetrating Peptide Enhances the Aphidicidal Activity of Spider Venom-Derived Neurotoxin. Toxins (Basel) 2024; 16:358. [PMID: 39195768 PMCID: PMC11360749 DOI: 10.3390/toxins16080358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
HxTx-Hv1h, a neurotoxic peptide derived from spider venom, has been developed for use in commercial biopesticide formulations. Cell Penetrating Peptides (CPPs) are short peptides that facilitate the translocation of various biomolecules across cellular membranes. Here, we evaluated the aphidicidal efficacy of a conjugated peptide, HxTx-Hv1h/CPP-1838, created by fusing HxTx-Hv1h with CPP-1838. Additionally, we aimed to establish a robust recombinant expression system for HxTx-Hv1h/CPP-1838. We successfully achieved the secretory production of HxTx-Hv1h, its fusion with Galanthus nivalis agglutinin (GNA) forming HxTx-Hv1h/GNA and HxTx-Hv1h/CPP-1838 in yeast. Purified HxTx-Hv1h exhibited contact toxicity against Megoura crassicauda, with a 48 h median lethal concentration (LC50) of 860.5 μg/mL. Fusion with GNA or CPP-1838 significantly enhanced its aphidicidal potency, reducing the LC50 to 683.5 μg/mL and 465.2 μg/mL, respectively. The aphidicidal efficacy was further improved with the addition of surfactant, decreasing the LC50 of HxTx-Hv1h/CPP-1838 to 66.7 μg/mL-over four times lower compared to HxTx-Hv1h alone. Furthermore, we engineered HxTx-Hv1h/CPP-1838 multi-copy expression vectors utilizing the BglBrick assembly method and achieved high-level recombinant production in laboratory-scale fermentation. This study is the first to document a CPP fusion strategy that enhances the transdermal aphidicidal activity of a natural toxin like HxTx-Hv1h and opens up the possibility of exploring the recombinant production of HxTx-Hv1h/CPP-1838 for potential applications.
Collapse
Affiliation(s)
- Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (W.W.); (M.R.)
| | - Abid Ali
- Department of Entomology, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 310000, China;
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (W.W.); (M.R.)
| | - Yi Cai
- College of Life Science, Sichuan Agricultural University, Ya’an 625000, China
| | - Limei He
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (W.W.); (M.R.)
| |
Collapse
|
12
|
Resende CAA, Ribeiro AJ, Gandra IB, Silva KA, Lopes LDS, Barcelos ICDS, Couto CAP, de Faria MT, Pereira SP, Xavier SR, Machado JM, da Paz MC, Chaves AT, Coelho EAF, Giunchetti RC, Chávez-Fumagalli MA, Dutra WO, Gonçalves AAM, Galdino AS. Recombinant proteins as promising antigens applied to the immunodiagnosis of Chagas disease: a scoping review. Front Microbiol 2024; 15:1420226. [PMID: 39139374 PMCID: PMC11319188 DOI: 10.3389/fmicb.2024.1420226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is an important public health problem, occurring mainly in Latin America. The disease has a major social and economical effect, negatively impacting the life of the infected individuals, and bringing great costs to public health. An early and accurate diagnosis is essential for administration of early treatment. In addition, prognostic tests may aid disease management, decreasing hospitalization costs. However, the serological diagnostic scenario for CD still faces several challenges, making the development of new diagnostic kits a pressing matter. Facing this scenario, several researchers have expanded efforts in developing and testing new antigens, such as recombinant proteins and recombinant multiepitope proteins, with promising results. These recombinant antigens offer several advantages, such as improved sensitivity and specificity, in addition to facilitated scaling. Also, it has been possible to observe a rising number of studies using ELISA and point-of-care platforms, employing these antigens in the past few years. Among them, recombinant proteins were the most applied antigens, demonstrating great capacity to discriminate between positive and negative samples. Although fewer in number, recombinant multiepitope proteins also demonstrated an improved diagnostic performance. Indeed, a great number of studies employing these antigens showed sensitivity and specificity values above 90%, greatly impacting diagnostic accuracy. Nevertheless, despite the good results found, it is still possible to observe some bottlenecks in the development of new antigens, such as the scarcity of tests with sera from the acute phase and the variability of results in different geographic areas. In this sense, aiming to contribute to control and health programs, the continuous search for a more accurate serological diagnosis is essential, both for the acute and chronic phases of the disease.
Collapse
Affiliation(s)
- Carlos Ananias Aparecido Resende
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Anna Júlia Ribeiro
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Isadora Braga Gandra
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Kamila Alves Silva
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Lucas da Silva Lopes
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Isabelle Caroline dos Santos Barcelos
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Carolina Alves Petit Couto
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Mariana Teixeira de Faria
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Sabrina Paula Pereira
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Sandra Rodrigues Xavier
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Juliana Martins Machado
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Mariana Campos da Paz
- Laboratory of Bioactives and Nanobiotechnology, Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Ana Thereza Chaves
- Postgraduate Program in Health Sciences, Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Postgraduate Program in Health Sciences, Infectious Diseases and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, Department of Morphology, National Institute of Science and Technology on Tropical Diseases (INCT-T), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa, Peru
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cell Interactions, Department of Morphology, National Institute of Science and Technology on Tropical Diseases (INCT-T), Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Alice Maia Gonçalves
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| | - Alexsandro Sobreira Galdino
- Microorganism Biotechnology Laboratory, National Institute of Science and Technology on Industrial Biotechnology (INCT-BI), Federal University of São João Del-Rei, Divinópolis, Brazil
| |
Collapse
|
13
|
Zheng Y, Deng Y, Hu P, Wang S, Wu J, Luo S, Lei L, Yang J, Peng W. A convenient broad-host counterselectable system endowing rapid genetic manipulations of Kluyveromyces lactis and other yeast species. Microb Cell Fact 2024; 23:212. [PMID: 39061053 PMCID: PMC11282862 DOI: 10.1186/s12934-024-02488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Being generally regarded as safe, Kluyveromyces lactis has been widely taken for food, feed, and pharmaceutical applications, owing to its ability to achieve high levels of protein secretion and hence being suitable for industrial production of heterologous proteins. Production platform strains can be created through genetic engineering; while prototrophic cells without chromosomally accumulated antibiotics resistance genes have been generally preferred, arising the need for dominant counterselection. We report here the establishment of a convenient counterselection system based on a Frs2 variant, Frs2v, which is a mutant of the alpha-subunit of phenylalanyl-tRNA synthase capable of preferentially incorporating a toxic analog of phenylalanine, r-chloro-phenylalanine (4-CP), into proteins to bring about cell growth inhibition. We demonstrated that expression of Frs2v from an episomal plasmid in K. lactis could make the host cells sensitive to 2 mM 4-CP, and a Frs2v-expressing plasmid could be efficiently removed from the cells immediately after a single round of cell culturing in a 4-CP-contianing YPD medium. This Frs2v-based counterselection helped us attain scarless gene replacement in K. lactis without any prior engineering of the host cells. More importantly, counterselection with this system was proven to be functionally efficient also in Saccharomyces cerevisiae and Komagataella phaffii, suggestive of a broader application scope of the system in various yeast hosts. Collectively, this work has developed a strategy to enable rapid, convenient, and high-efficiency construction of prototrophic strains of K. lactis and possibly many other yeast species, and provided an important reference for establishing similar methods in other industrially important eukaryotic microbes.
Collapse
Affiliation(s)
- Yanli Zheng
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yuhui Deng
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Ping Hu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Shiqing Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Jiawen Wu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Siqi Luo
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China
| | - Lei Lei
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Jiangke Yang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, 430062, P.R. China.
| |
Collapse
|
14
|
Yi Y, Jin X, Chen M, Coldea TE, Zhao H. Surfactant-mediated bio-manufacture: A unique strategy for promoting microbial biochemicals production. Biotechnol Adv 2024; 73:108373. [PMID: 38704106 DOI: 10.1016/j.biotechadv.2024.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Biochemicals are widely used in the medicine and food industries and are more efficient and safer than synthetic chemicals. The amphipathic surfactants can interact with the microorganisms and embed the extracellular metabolites, which induce microbial metabolites secretion and biosynthesis, performing an attractive prospect of promoting the biochemical production. However, the commonness and differences of surfactant-mediated bio-manufacture in various fields are largely unexplored. Accordingly, this review comprehensively summarized the properties of surfactants, different application scenarios of surfactant-meditated bio-manufacture, and the mechanism of surfactants increasing metabolites production. Various biochemical productions such as pigments, amino acids, and alcohols could be enhanced using the cloud point and the micelles of surfactants. Besides, the amphiphilicity of surfactants also promoted the utilization of fermentation substrates, especially lignocellulose and waste sludge, by microorganisms, indirectly increasing the metabolites production. The increase in target metabolites production was attributed to the surfactants changing the permeability and composition of the cell membrane, hence improving the secretion ability of microorganisms. Moreover, surfactants could regulate the energy metabolism, the redox state and metabolic flow in microorganisms, which induced target metabolites synthesis. This review aimed to broaden the application fields of surfactants and provide novel insights into the production of microbial biochemicals.
Collapse
Affiliation(s)
- Yunxin Yi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
15
|
Wang Y, Shang N, Huang Y, Gao B, Li P. The Progress of the Biotechnological Production of Class IIa Bacteriocins in Various Cell Factories and Its Future Challenges. Int J Mol Sci 2024; 25:5791. [PMID: 38891977 PMCID: PMC11172294 DOI: 10.3390/ijms25115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
Class IIa bacteriocins produced in lactic acid bacteria are short cationic peptides with antimicrobial activity. In the search for new biopreservation agents, class IIa bacteriocins are considered to be the best potential candidates, not only due to their large abundance but also because of their high biological activity and excellent thermal stability. However, regulated by the biosynthetic regulatory system, the natural class IIa bacteriocin yield is low, and the extraction process is complicated. The biotechnological production of class IIa bacteriocins in various cell factories has been attempted to improve this situation. In this review, we focus on the application of biotechnological routes for class IIa bacteriocin production. The drawbacks and improvements in the production of class IIa bacteriocins in various cell factories are discussed. Furthermore, we present the main challenge of class IIa bacteriocins, focusing on increasing their production by constructing suitable cell factories. Recombinant bacteriocins have made considerable progress from inclusion body formation, dissolved form and low antibacterial activity to yield recovery. The development of prospective cell factories for the biotechnological production of bacteriocins is still required, which may facilitate the application of bacteriocins in the food industry.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yueying Huang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Boya Gao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pinglan Li
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
16
|
Kang J, La TV, Kim MJ, Bae JH, Sung BH, Kim S, Sohn JH. Secretory Production of the Hericium erinaceus Laccase from Saccharomyces cerevisiae. J Microbiol Biotechnol 2024; 34:930-939. [PMID: 38314447 DOI: 10.4014/jmb.2312.12043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 02/06/2024]
Abstract
Mushroom laccases play a crucial role in lignin depolymerization, one of the most critical challenges in lignin utilization. Importantly, laccases can utilize a wide range of substrates, such as toxicants and antibiotics. This study isolated a novel laccase, named HeLac4c, from endophytic white-rot fungi Hericium erinaceus mushrooms. The cDNAs for this enzyme were 1569 bp in length and encoded a protein of 523 amino acids, including a 20 amino-acid signal peptide. Active extracellular production of glycosylated laccases from Saccharomyces cerevisiae was successfully achieved by selecting an optimal translational fusion partner. We observed that 5 and 10 mM Ca2+, Zn2+, and K+ increased laccase activity, whereas 5 mM Fe2+ and Al3+ inhibited laccase activity. The laccase activity was inhibited by the addition of low concentrations of sodium azide and L-cysteine. The optimal pH for the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt was 4.4. Guaiacylglycerol-β-guaiacyl ether, a lignin model compound, was polymerized by the HeLac4c enzyme. These results indicated that HeLac4c is a novel oxidase biocatalyst for the bioconversion of lignin into value-added products for environmental biotechnological applications.
Collapse
Affiliation(s)
- Jin Kang
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Thuat Van La
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Mi-Jin Kim
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jung-Hoon Bae
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seonghun Kim
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- Cellapy Bio Inc., Daejeon 34141, Republic of Korea
| |
Collapse
|
17
|
Cardoso ACS, Azevedo RS, Brum RJ, Santos LO, Marins LF. Optimization of Recombinant Protein Production in Synechococcus elongatus PCC 7942: Utilizing Native Promoters and Magnetic Fields. Curr Microbiol 2024; 81:143. [PMID: 38627283 DOI: 10.1007/s00284-024-03672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
The cyanobacterium Synechococcus elongatus PCC 7942 holds significant potential as a biofactory for recombinant protein (RP) production due to its capacity to harness light energy and utilize CO2. This study aimed to enhance RP production by integration of native promoters and magnetic field application (MF) in S. elongatus PCC 7942. The psbA2 promoter, which responds to stress conditions, was chosen for the integration of the ZsGreen1 gene. Results indicated successful gene integration, affirming prior studies that showed no growth alterations in transgenic strains. Interestingly, exposure to 30 mT (MF30) demonstrated a increase in ZsGreen1 transcription under the psbA2 promoter, revealing the influence of MF on cyanobacterial photosynthetic machinery. This enhancement is likely attributed to stress-induced shifts in gene expression and enzyme activity. MF30 positively impacted photosystem II (PSII) without disrupting the electron transport chain, aligning with the "quantum-mechanical mechanism" theory. Notably, fluorescence levels and gene expression with application of 30 mT were significantly different from control conditions. This study showcases the efficacy of utilizing native promoters and MF for enhancing RP production in S. elongatus PCC 7942. Native promoters eliminate the need for costly exogenous inducers and potential cell stress. Moreover, the study expands the scope of optimizing RP production in photoautotrophic microorganisms, providing valuable insights for biotechnological applications.
Collapse
Affiliation(s)
- Arthur C S Cardoso
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Raíza S Azevedo
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Rayanne J Brum
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Lucielen O Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Luis F Marins
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil.
| |
Collapse
|
18
|
Kjeldsen T, Andersen AS, Hubálek F, Johansson E, Kreiner FF, Schluckebier G, Kurtzhals P. Molecular engineering of insulin for recombinant expression in yeast. Trends Biotechnol 2024; 42:464-478. [PMID: 37880066 DOI: 10.1016/j.tibtech.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Since the first administration of insulin to a person with diabetes in 1922, scientific contributions from academia and industry have improved insulin therapy and access. The pharmaceutical need for insulin is now more than 40 tons annually, half of which is produced by recombinant secretory expression in Saccharomyces cerevisiae. We discuss how, in this yeast species, adaptation of insulin precursors by removable structural elements is pivotal for efficient secretory expression. The technologies reviewed have been implemented at industrial scale and are seminal for the supply of human insulin and insulin analogues to people with diabetes now and in the future. Engineering of a target protein with removable structural elements may provide a general approach to yield optimisation.
Collapse
|
19
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Arch Microbiol 2024; 206:152. [PMID: 38472371 DOI: 10.1007/s00203-024-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
20
|
Shen Q, Cui J, Wang Y, Hu ZC, Xue YP, Zheng YG. Identification of a novel growth-associated promoter for biphasic expression of heterogenous proteins in Pichia pastoris. Appl Environ Microbiol 2024; 90:e0174023. [PMID: 38193674 PMCID: PMC10880622 DOI: 10.1128/aem.01740-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Pichia pastoris (P. pastoris) is one of the most popular cell factories for expressing exogenous proteins and producing useful chemicals. The alcohol oxidase 1 promoter (PAOX1) is the most commonly used strong promoter in P. pastoris and has the characteristic of biphasic expression. However, the inducer for PAOX1, methanol, has toxicity and poses risks in industrial settings. In the present study, analyzing transcriptomic data of cells collected at different stages of growth found that the formate dehydrogenase (FDH) gene ranked 4960th in relative expression among 5032 genes during the early logarithmic growth phase but rose to the 10th and 1st during the middle and late logarithmic growth phases, respectively, displaying a strict biphasic expression characteristic. The unique transcriptional regulatory profile of the FDH gene prompted us to investigate the properties of its promoter (PFDH800). Under single-copy conditions, when a green fluorescent protein variant was used as the expression target, the PFDH800 achieved 119% and 69% of the activity of the glyceraldehyde-3-phosphate dehydrogenase promoter and PAOX1, respectively. After increasing the copy number of the expression cassette in the strain to approximately four copies, the expression level of GFPuv driven by PFDH800 increased to approximately 2.5 times that of the strain containing GFPuv driven by a single copy of PAOX1. Our PFDH800-based expression system exhibited precise biphasic expression, ease of construction, minimal impact on normal cellular metabolism, and high strength. Therefore, it has the potential to serve as a new expression system to replace the PAOX1 promoter.IMPORTANCEThe alcohol oxidase 1 promoter (PAOX1) expression system has the characteristics of biphasic expression and high expression levels, making it the most widely used promoter in the yeast Pichia pastoris. However, PAOX1 requires methanol induction, which can be toxic and poses a fire hazard in large quantities. Our research has found that the activity of PFDH800 is closely related to the growth state of cells and can achieve biphasic expression without the need for an inducer. Compared to other reported non-methanol-induced biphasic expression systems, the system based on the PFDH800 offers several advantages, including high expression levels, simple construction, minimal impact on cellular metabolism, no need for an inducer, and the ability to fine-tune expression.
Collapse
Affiliation(s)
- Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Jie Cui
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yang Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Zhong-Ce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Sales‐Vallverdú A, Gasset A, Requena‐Moreno G, Valero F, Montesinos‐Seguí JL, Garcia‐Ortega X. Synergic kinetic and physiological control to improve the efficiency of Komagataella phaffii recombinant protein production bioprocesses. Microb Biotechnol 2024; 17:e14411. [PMID: 38376073 PMCID: PMC10877992 DOI: 10.1111/1751-7915.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
The yeast Komagataella phaffii (Pichia pastoris) is currently considered a versatile and highly efficient host for recombinant protein production (RPP). Interestingly, the regulated application of specific stress factors as part of bioprocess engineering strategies has proven potential for increasing the production of recombinant products. This study aims to evaluate the impact of controlled oxygen-limiting conditions on the performance of K. phaffii bioprocesses for RPP in combination with the specific growth rate (μ) in fed-batch cultivations. In this work, Candida rugosa lipase 1 (Crl1) production, regulated by the constitutive GAP promoter, growing at different nominal μ (0.030, 0.065, 0.100 and 0.120 h-1 ) under both normoxic and hypoxic conditions in carbon-limiting fed-batch cultures is analysed. Hypoxic fermentations were controlled at a target respiratory quotient (RQ) of 1.4, with excellent performance, using an innovative automated control based on the stirring rate as the manipulated variable developed during this study. The results conclude that oxygen limitation positively affects bioprocess efficiency under all growing conditions compared. The shift from respiratory to respiro-fermentative metabolism increases bioprocess productivity by up to twofold for the specific growth rates evaluated. Moreover, the specific product generation rate (qp ) increases linearly with μ, regardless of oxygen availability. Furthermore, this hypoxic boosting effect was also observed in the production of Candida antarctica lipase B (CalB) and pro-Rhizopus oryzae lipase (proRol), thus proving the synergic effect of kinetic and physiological stress control. Finally, the Crl1 production scale-up was conducted successfully, confirming the strategy's scalability and the robustness of the results obtained at the bench-scale level.
Collapse
Affiliation(s)
- Albert Sales‐Vallverdú
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - Arnau Gasset
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - Guillermo Requena‐Moreno
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - José Luis Montesinos‐Seguí
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - Xavier Garcia‐Ortega
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| |
Collapse
|
22
|
Abramczyk D, Del Carmen Sanchez Olmos M, Rojas AAR, Schindler D, Robertson D, McColm S, Marston AL, Barlow PN. A supernumerary synthetic chromosome in Komagataella phaffii as a repository for extraneous genetic material. Microb Cell Fact 2023; 22:259. [PMID: 38104077 PMCID: PMC10724962 DOI: 10.1186/s12934-023-02262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Komagataella phaffii (Pichia pastoris) is a methylotrophic commercially important non-conventional species of yeast that grows in a fermentor to exceptionally high densities on simple media and secretes recombinant proteins efficiently. Genetic engineering strategies are being explored in this organism to facilitate cost-effective biomanufacturing. Small, stable artificial chromosomes in K. phaffii could offer unique advantages by accommodating multiple integrations of extraneous genes and their promoters without accumulating perturbations of native chromosomes or exhausting the availability of selection markers. RESULTS Here, we describe a linear "nano"chromosome (of 15-25 kb) that, according to whole-genome sequencing, persists in K. phaffii over many generations with a copy number per cell of one, provided non-homologous end joining is compromised (by KU70-knockout). The nanochromosome includes a copy of the centromere from K. phaffii chromosome 3, a K. phaffii-derived autonomously replicating sequence on either side of the centromere, and a pair of K. phaffii-like telomeres. It contains, within its q arm, a landing zone in which genes of interest alternate with long (approx. 1-kb) non-coding DNA chosen to facilitate homologous recombination and serve as spacers. The landing zone can be extended along the nanochromosome, in an inch-worming mode of sequential gene integrations, accompanied by recycling of just two antibiotic-resistance markers. The nanochromosome was used to express PDI, a gene encoding protein disulfide isomerase. Co-expression with PDI allowed the production, from a genomically integrated gene, of secreted murine complement factor H, a plasma protein containing 40 disulfide bonds. As further proof-of-principle, we co-expressed, from a nanochromosome, both PDI and a gene for GFP-tagged human complement factor H under the control of PAOX1 and demonstrated that the secreted protein was active as a regulator of the complement system. CONCLUSIONS We have added K. phaffii to the list of organisms that can produce human proteins from genes carried on a stable, linear, artificial chromosome. We envisage using nanochromosomes as repositories for numerous extraneous genes, allowing intensive engineering of K. phaffii without compromising its genome or weakening the resulting strain.
Collapse
Affiliation(s)
| | | | | | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
| | - Daniel Robertson
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Paul N Barlow
- School of Chemistry, University of Edinburgh, Edinburgh, UK.
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
23
|
Li Y, Xiao C, Pan Y, Qin L, Zheng L, Zhao M, Huang M. Optimization of Protein Folding for Improved Secretion of Human Serum Albumin Fusion Proteins in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18414-18423. [PMID: 37966975 DOI: 10.1021/acs.jafc.3c05330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The successful expression and secretion of recombinant proteins in cell factories significantly depend on the correct folding of nascent peptides, primarily achieved through disulfide bond formation. Thus, optimizing cellular protein folding is crucial, especially for proteins with complex spatial structures. In this study, protein disulfide isomerases (PDIs) from various species were introduced into Saccharomyces cerevisiae to facilitate proper disulfide bond formation and enhance recombinant protein secretion. The impacts of these PDIs on recombinant protein production and yeast growth metabolism were evaluated by substituting the endogenous PDI1. Heterologous PDIs cannot fully compensate the endogenous PDI. Furthermore, protein folding mediators, PDI and ER oxidoreductase 1 (Ero1), from different species were used to increase the production of complex human serum albumin (HSA) fusion proteins. The validated folding mediators were then introduced into unfolded protein response (UPR)-optimized strains, resulting in a 7.8-fold increase in amylase-HSA and an 18.2-fold increase in albiglutide compared with the control strain. These findings provide valuable insights for optimizing protein folding and expressing HSA-based drugs.
Collapse
Affiliation(s)
- Yanling Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Ling Qin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
24
|
Willems T, Hectors W, Rombaut J, De Rop AS, Goegebeur S, Delmulle T, De Mol ML, De Maeseneire SL, Soetaert WK. An exploratory in silico comparison of open-source codon harmonization tools. Microb Cell Fact 2023; 22:227. [PMID: 37932726 PMCID: PMC10626681 DOI: 10.1186/s12934-023-02230-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Not changing the native constitution of genes prior to their expression by a heterologous host can affect the amount of proteins synthesized as well as their folding, hampering their activity and even cell viability. Over the past decades, several strategies have been developed to optimize the translation of heterologous genes by accommodating the difference in codon usage between species. While there have been a handful of studies assessing various codon optimization strategies, to the best of our knowledge, no research has been performed towards the evaluation and comparison of codon harmonization algorithms. To highlight their importance and encourage meaningful discussion, we compared different open-source codon harmonization tools pertaining to their in silico performance, and we investigated the influence of different gene-specific factors. RESULTS In total, 27 genes were harmonized with four tools toward two different heterologous hosts. The difference in %MinMax values between the harmonized and the original sequences was calculated (ΔMinMax), and statistical analysis of the obtained results was carried out. It became clear that not all tools perform similarly, and the choice of tool should depend on the intended application. Almost all biological factors under investigation (GC content, RNA secondary structures and choice of heterologous host) had a significant influence on the harmonization results and thus must be taken into account. These findings were substantiated using a validation dataset consisting of 8 strategically chosen genes. CONCLUSIONS Due to the size of the dataset, no complex models could be developed. However, this initial study showcases significant differences between the results of various codon harmonization tools. Although more elaborate investigation is needed, it is clear that biological factors such as GC content, RNA secondary structures and heterologous hosts must be taken into account when selecting the codon harmonization tool.
Collapse
Affiliation(s)
- Thomas Willems
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Wim Hectors
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Jeltien Rombaut
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Anne-Sofie De Rop
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Stijn Goegebeur
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Tom Delmulle
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Maarten L De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium.
| | - Wim K Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| |
Collapse
|
25
|
Miranda J, Lefin N, Beltran JF, Belén LH, Tsipa A, Farias JG, Zamorano M. Enzyme Engineering Strategies for the Bioenhancement of L-Asparaginase Used as a Biopharmaceutical. BioDrugs 2023; 37:793-811. [PMID: 37698749 DOI: 10.1007/s40259-023-00622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Over the past few years, there has been a surge in the industrial production of recombinant enzymes from microorganisms due to their catalytic characteristics being highly efficient, selective, and biocompatible. L-asparaginase (L-ASNase) is an enzyme belonging to the class of amidohydrolases that catalyzes the hydrolysis of L-asparagine into L-aspartic acid and ammonia. It has been widely investigated as a biologic agent for its antineoplastic properties in treating acute lymphoblastic leukemia. The demand for L-ASNase is mainly met by the production of recombinant type II L-ASNase from Escherichia coli and Erwinia chrysanthemi. However, the presence of immunogenic proteins in L-ASNase sourced from prokaryotes has been known to result in adverse reactions in patients undergoing treatment. As a result, efforts are being made to explore strategies that can help mitigate the immunogenicity of the drug. This review gives an overview of recent biotechnological breakthroughs in enzyme engineering techniques and technologies used to improve anti-leukemic L-ASNase, taking into account the pharmacological importance of L-ASNase.
Collapse
Affiliation(s)
- Javiera Miranda
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Nicolás Lefin
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Jorge F Beltran
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Argyro Tsipa
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus
| | - Jorge G Farias
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile
| | - Mauricio Zamorano
- Chemical Engineering Department, Universidad de la Frontera, Francisco Salazar 1145, 4811230, Temuco, Región de la Araucanía, Chile.
| |
Collapse
|
26
|
Palma A, Rettenbacher LA, Moilanen A, Saaranen M, Pacheco-Martinez C, Gasser B, Ruddock L. Biochemical analysis of Komagataella phaffii oxidative folding proposes novel regulatory mechanisms of disulfide bond formation in yeast. Sci Rep 2023; 13:14298. [PMID: 37652992 PMCID: PMC10471769 DOI: 10.1038/s41598-023-41375-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
Oxidative protein folding in the endoplasmic reticulum (ER) is driven mainly by protein disulfide isomerase PDI and oxidoreductin Ero1. Their activity is tightly regulated and interconnected with the unfolded protein response (UPR). The mechanisms of disulfide bond formation have mainly been studied in human or in the yeast Saccharomyces cerevisiae. Here we analyze the kinetics of disulfide bond formation in the non-conventional yeast Komagataella phaffii, a common host for the production of recombinant secretory proteins. Surprisingly, we found significant differences with both the human and S. cerevisiae systems. Specifically, we report an inactive disulfide linked complex formed by K. phaffii Ero1 and Pdi1, similarly to the human orthologs, but not described in yeast before. Furthermore, we show how the interaction between K. phaffii Pdi1 and Ero1 is unaffected by the introduction of unfolded substrate into the system. This is drastically opposed to the previously observed behavior of the human pathway, suggesting a different regulation of the UPR and/or possibly different interaction mechanics between K. phaffii Pdi1 and Ero1.
Collapse
Affiliation(s)
- Arianna Palma
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Lukas A Rettenbacher
- School of Biosciences, University of Kent, Canterbury, UK
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Antti Moilanen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Mirva Saaranen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Brigitte Gasser
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.
- Austrian Centre of Industrial Biotechnology, Vienna, Austria.
| | - Lloyd Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
27
|
Dong X, Shan H, Wang S, Jiang Z, Wang S, Qin Z. High expression of antimicrobial peptides cathelicidin-BF in Pichia pastoris and verification of its activity. Front Microbiol 2023; 14:1153365. [PMID: 37362941 PMCID: PMC10288212 DOI: 10.3389/fmicb.2023.1153365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Antibacterial peptides are endogenous polypeptides produced by multicellular organisms to protect the host against pathogenic microbes, they show broad spectrum antimicrobial activities against various microorganisms and possess low propensity for developing resistance. The purpose of this study is to develop recombinant antibacterial peptide cathelicidin-BF by genetic engineering and protein engineering technology, and study its antibacterial activity in vitro and in vivo, so as to provide reference for the production and application of recombinant antibacterial peptide cathelicidin-BF. In this study, on account of Pichia pastoris eukaryotic expression system, we expressed and prepared antibacterial peptide cathelicidin-BF. Then, the minimum inhibitory concentration of antibacterial peptide cathelicidin-BF and the comparison with the antibacterial activity of antibiotics were determined through the antibacterial experiment in vitro. Chickens as infection model were used to verify the antibacterial peptide activity in vivo. The results show that the bacteriostatic ability of antibacterial peptide cathelicidin-BF is similar to that of antibiotics in certain concentration, and can reach the treatment level of antibiotics. Although the mode of administration of antibacterial peptide is still limited, this study can provide reference for the future research of antibacterial peptide.
Collapse
Affiliation(s)
- Xufeng Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Shubai Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhengjun Jiang
- Shandong Hwatson Biochem Co. Ltd, Weifang, Shandong, China
| | - Shaojuan Wang
- Shandong Hwatson Biochem Co. Ltd, Weifang, Shandong, China
| | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|