1
|
Elhawary EA, Gad ME, Hegazy MM, Mostafa RM, Gattan HS, Alruhaili MH, Selim AM, Mashlawi AM, Alkhaibari AM, Alasmari SM, Baz MM. Study of the effect of dryness and storage on Ceratonia siliqua L. stem extracts and evaluation of their insecticidal activity. Sci Rep 2025; 15:11123. [PMID: 40169725 PMCID: PMC11961609 DOI: 10.1038/s41598-025-93181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025] Open
Abstract
Vector-borne diseases continue to transmit many dangerous pathogens to humans. After decades of continuous use of insecticides, many types of vectors have shown the ability to build resistance to them. This has necessitated the development of more efficient and environmentally friendly alternatives in the form of bioinsecticides. Plants contain a wide range of phytochemicals with specific targeting, rapid biodegradability, environmental sustainability and a variety of medicinal properties, making them a valuable source of biologicals. Moreover, this has led to the development of highly effective new drugs. This study aimed to identify the active ingredients in Ceratonia siliqua L., gathered from two consecutive fruiting seasons which were then divided into C. siliqua fresh (CSF), dry (CSd), and old (stored) stem (CSO) extracts Ceratonia siliqua. Metabolomics profiling was performed using UPLC/MS and multivariate data analysis. The UPLC/MS study resulted in the tentative identification of 54 secondary metabolites. These compounds included flavonoids, phenolic acids, withanolides, terpenoids, phenylpropanoids, etc. CSd showed the highest number of identified components followed by CSO and CSF. The % identification was nearly equal in the negative ion mode for the three extracts while for the positive ion mode it followed the order of CSF > CSd > CSO. After several exposure periods, the plant methanol extracts in this research showed significant insecticidal activity against mosquito larvae, Cx. pipiens, and housefly larvae M. domestica. (CSd) demonstrated the highest insecticidal activity (100 MO%) against Cx. pipiens (LC50 = 0.09 and 0.07 mg/ml) following 24- and 48-hour post-treatments at 1.0 mg/ml. The (CSF) was the most effective on M. domestica larvae (LC50 = 2.32 and 1.80 mg/ml), 24 and 48 h post-treatment with 25 mg/ml concentration. Both CSd and CSF extracts were the most effective at killing mosquito and house fly larvae, followed by the CSO extract. Therefore, C. siliqua extracts may serve as an effective bio-agent for specific vector-borne infection control.
Collapse
Affiliation(s)
- Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
| | - Mohammed E Gad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Maysa M Hegazy
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Reham M Mostafa
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Abdelfattah M Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Abadi M Mashlawi
- Department of Biology, College of Science, Jazan University, 45142, Jazan, Kingdom of Saudi Arabia
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Saeed M Alasmari
- Department of Biology, Faculty of Science and Arts, Najran University, 1988, Najran, Saudi Arabia
| | - Mohamed M Baz
- Department of Biology, Faculty of Education and Arts, Sohar University, Sohar, 311, Oman.
- Entomology Department, Faculty of Science, Benha University, Benha 13518, Egypt.
| |
Collapse
|
2
|
Lim JS, Li X, Lee DY, Yao L, Yoo G, Kim Y, Eum SM, Cho YC, Yoon S, Park SJ. Antioxidant and Anti-Inflammatory Activities of Methanol Extract of Senna septemtrionalis (Viv.) H.S. Irwin & Barneby Through Nrf2/HO-1-Mediated Inhibition of NF-κB Signaling in LPS-Stimulated Mouse Microglial Cells. Int J Mol Sci 2025; 26:1932. [PMID: 40076558 PMCID: PMC11900505 DOI: 10.3390/ijms26051932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Botanical extracts are recognized in traditional medicine for their therapeutic potential and safety standards. Botanical extracts are viable and sustainable alternatives to synthetic drugs, being essential in drug discovery for various diseases. Senna septemtrionalis (Viv.) H.S. Irwin & Barneby is a medical plant traditionally used to treat inflammation. However, its antioxidant and anti-inflammatory properties and the molecular pathways activated in microglial cells require further investigation. Therefore, this study examines the antioxidant and anti-inflammatory properties of Senna septemtrionalis (Viv.) H.S. Irwin & Barneby methanol extracts (SMEs) in lipopolysaccharide (LPS)-stimulated mouse microglial cells. SMEs significantly inhibit LPS-induced nitric oxide (NO) and proinflammatory cytokine production, which are mediated through the dephosphorylation of mitogen-activated protein kinases and inhibition of nuclear factor kappa B (NF-κB) translocation into the nucleus. Additionally, SME treatment upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase (HO)-1, reducing oxidative stress, indicated by a decrease in reactive oxygen species and restoration of the total glutathione content in LPS-stimulated BV2 cells. The inhibitory effects of SMEs on inflammatory mediator production and NF-κB nuclear translocation were significantly reversed by Sn-protoporphyrin, a specific HO-1 inhibitor. These findings demonstrate that SME protects microglial cells by activating the Nrf2/HO-1 pathway and inhibiting NF-κB translocation.
Collapse
Affiliation(s)
- Jae Sung Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (X.L.); (L.Y.); (Y.K.); (Y.-C.C.)
| | - Xiangying Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (X.L.); (L.Y.); (Y.K.); (Y.-C.C.)
| | - Da Young Lee
- R&D Center, CUOME BIO Co., Ltd., Sandan-gil, Hwasun-eup, Hwasun-gun 58141, Jeollanam-do, Republic of Korea;
| | - Lulu Yao
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (X.L.); (L.Y.); (Y.K.); (Y.-C.C.)
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Republic of Korea;
| | - Yunyeong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (X.L.); (L.Y.); (Y.K.); (Y.-C.C.)
| | - Sang Mi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Daejeon 34141, Republic of Korea;
| | - Young-Chang Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (X.L.); (L.Y.); (Y.K.); (Y.-C.C.)
| | - Somy Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (X.L.); (L.Y.); (Y.K.); (Y.-C.C.)
| | - Su-Jin Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Republic of Korea
| |
Collapse
|
3
|
Floris S, Pintus F, Fais A, Era B, Raho N, Siguri C, Orrù G, Fais S, Tuberoso CIG, Olla S, Di Petrillo A. Biological Potential of Asphodelus microcarpus Extracts: α-Glucosidase and Antibiofilm Activities In Vitro. Molecules 2024; 29:5063. [PMID: 39519706 PMCID: PMC11547317 DOI: 10.3390/molecules29215063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes (T2D), characterized by insulin resistance and β-cell dysfunction, requires continuous advancements in management strategies, particularly in controlling postprandial hyperglycemia to prevent complications. Current antidiabetics, which have α-amylase and α-glucosidase inhibitory activities, have side effects, prompting the search for better alternatives. In addition, diabetes patients are particularly vulnerable to yeast infections because an unusual sugar concentration promotes the growth of Candida spp. in areas like the mouth and genitalia. Asphodelus microcarpus contains bioactive flavonoids with potential enzyme inhibitory properties. This study investigates α-amylase and α-glucosidase inhibitory activities and antioxidant and antimycotic capacity of ethanolic extracts from different parts of A. microcarpus. Results show that extracts significantly inhibit α-glucosidase, with the IC50 value being up to 25 times higher than for acarbose, while exerting low α-amylase activity. The extracts also demonstrated strong antioxidant properties and low cytotoxicity. The presence of phenolic compounds is likely responsible for the observed biological activities. Molecular docking analysis of 11 selected compounds identified emodin and luteolin as significant inhibitors of α-glucosidase. Additionally, the extracts demonstrated significant antibiofilm action against an MDR strain of Candida albicans. These findings suggest that A. microcarpus is a promising source of natural compounds for T2D management.
Collapse
Affiliation(s)
- Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Nicola Raho
- Gastroenterology Unit, Department of Medical Science and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (N.R.); (A.D.P.)
| | - Chiara Siguri
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), 09042 Monserrato, Italy;
| | - Germano Orrù
- Department of Surgical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.O.); (S.F.)
| | - Sara Fais
- Department of Surgical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.O.); (S.F.)
| | - Carlo Ignazio Giovanni Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Stefania Olla
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), 09042 Monserrato, Italy;
| | - Amalia Di Petrillo
- Gastroenterology Unit, Department of Medical Science and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (N.R.); (A.D.P.)
| |
Collapse
|
4
|
El-Hajjaji MA, Fikri-Benbrahim K, Soulo N, Nouioura G, Laaroussi H, Ferreira-Santos P, Lyoussi B, Benziane Ouaritini Z. Analgesic, Antioxidant, Anti-Inflammatory, and Wound-Treating Actions of Bitter Apricot Kernel Extract. Adv Pharmacol Pharm Sci 2024; 2024:5574259. [PMID: 39246415 PMCID: PMC11380719 DOI: 10.1155/2024/5574259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Apricot (Prunus armeniaca L.) kernels have been widely employed in phytomedicine for treating different ailments. This study aims to unveil the phytochemical composition by HPLC-ESI-MS, in vitro antioxidant activity, and examine certain pharmacological effects of the hydro-ethanolic extract from bitter apricot kernels (BAK). Obtained results indicated that the BAK extract presents a content of 4.58 ± 0.15 mg GAE/g extract of TPA and 1.68 ± 0.09 mg QUE/g extract of TFA, respectively. HPLC-ESI-MS analysis discovered the presence of 17 phenolic compounds including phenolic acids and flavonoids like 3,4-dihydroxybenzoic acid, gallic acid, caffeic acid, (+)-catechin, epicatechin, and others, with associated antioxidant power. Regarding the studied potential pharmacological effects, notable analgesic activity at a dosage of 100 mg/kg BW was recorded with 63.46% protection. In the anti-inflammatory test, significant inhibition was observed after 6 hours of treatment (77.4%) compared to untreated animals. Moreover, the daily application of ointment formulated with 10% BAK extract resulted in a remarkable healing of wounds and burns in rats. These findings underscore the increasing evidence supporting the potential use of apricot kernel extracts in treating various diseases.
Collapse
Affiliation(s)
- Mohamed Amine El-Hajjaji
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Kawtar Fikri-Benbrahim
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Najoua Soulo
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering Faculty of Science University of Vigo, As Lagoas, Ourense 32004, Spain
- IAA-Instituto de Agroecoloxía e Alimentación University of Vigo (Campus Auga), As Lagoas, Ourense 32004, Spain
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Zineb Benziane Ouaritini
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
5
|
Gutiérrez Rafael BJ, Zaca Moran O, Delgado Macuil RJ, Martínez Gutiérrez H, García Juárez M, Lopez Gayou V. Study of the Incorporation of Gel and Aloe vera Peel Extract in a Polymer Matrix Based on Polyvinylpyrrolidone. Polymers (Basel) 2024; 16:1998. [PMID: 39065315 PMCID: PMC11281014 DOI: 10.3390/polym16141998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The development of dressings based on electrospun membranes with polymers and plant extracts is an interesting approach to skin regeneration, providing elements to prevent contamination and a matrix that accelerates the healing process. We developed a membrane composed of polyvinylpyrrolidone (PVP), gel and Aloe vera peel extract via the electrospinning technique. Additionally, an optimal ratio of PVP/Av gel/Av skin extract was determined to facilitate membrane formation. Electrospun membranes were obtained with fiber diameters of 1403 ± 57.4 nm for the PVP and 189.2 ± 11.4 nm for PVP/Av gel/Av peel extract, confirming that the use of extracts generally reduced the fiber diameter. The incorporation of gel and peel extract of Aloe vera into the electrospun membrane was analyzed via FTIR and UV-Vis spectroscopies. FTIR revealed the presence of functional groups associated with phenolic compounds such as aloin, aloe-emodin, emodin and aloesin, which was confirmed by UV-Vis, revealing absorption bands corresponding to aloin, phenols and carbonyl groups. This finding provides evidence of the effective integration and prevalence of bioactive compounds of a phenolic and polysaccharide nature from the gel and the Av skin extract in the electrospun fibers, resulting in an advanced membrane that could improve and accelerate the healing process and protect the wound from bacterial infections.
Collapse
Affiliation(s)
- Britania Janet Gutiérrez Rafael
- Departamento de Nanobiotecnología y Biosensores, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Santa Inés Tecuexcomac 90700, Tlaxcala, Mexico; (B.J.G.R.); (O.Z.M.); (R.J.D.M.)
| | - Orlando Zaca Moran
- Departamento de Nanobiotecnología y Biosensores, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Santa Inés Tecuexcomac 90700, Tlaxcala, Mexico; (B.J.G.R.); (O.Z.M.); (R.J.D.M.)
| | - Raúl Jacobo Delgado Macuil
- Departamento de Nanobiotecnología y Biosensores, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Santa Inés Tecuexcomac 90700, Tlaxcala, Mexico; (B.J.G.R.); (O.Z.M.); (R.J.D.M.)
| | - Hugo Martínez Gutiérrez
- Centro de Nanociencias y Micro y Nanotecnologías CNMN IPN, Av. Luis Enrique Erro s/n, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México 07738, Mexico;
| | - Marcos García Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Plaza Hidalgo Ote. 9, Cuarto Barrio, Panotla 90140, Tlaxcala, Mexico;
| | - Valentin Lopez Gayou
- Departamento de Nanobiotecnología y Biosensores, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN-CIBA), Santa Inés Tecuexcomac 90700, Tlaxcala, Mexico; (B.J.G.R.); (O.Z.M.); (R.J.D.M.)
| |
Collapse
|
6
|
El Khodary YA, Ayoub IM, Pério P, Bourgeade-Delmas S, Ibrahim N, El-Ahmady SH. A comparative untargeted metabolomic analysis and assessment of antiplasmodial potential of nine Albizia species. Arch Pharm (Weinheim) 2024; 357:e2300543. [PMID: 38412461 DOI: 10.1002/ardp.202300543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
The genus Albizia is one of the richest genera in phenolics besides other classes of secondary metabolites including saponins, terpenes, and alkaloids with promising medicinal applications. In the current study, UHPLC-PDA-ESI-MS/MS-based metabolic profiling of leaves of Albizia lebbeck, Albizia julibrissin, Albizia odoratissima, Albizia procera, Albizia anthelmintica, Albizia guachapele, Albizia myriophylla, Albizia richardiana, and Albizia lucidior resulted in the tentative identification of 64 metabolites, mainly flavonoids, phenolic acids, saponins, and alkaloids. Some metabolites were identified in Albizia for the first time and could be used as species-specific chemotaxonomic markers, including: apigenin 7-O-dihydroferuloyl hexoside isomers, apigenin 7-O-pentosyl hexoside, quercetin 3-O-rutinoside 7-O-deoxyhexoside, quercetin 3,7-di-O-hexoside deoxyhexoside, quercetin 7-O-feruloyl hexoside, methyl myricetin 7-O-deoxyhexoside, kaempferol di-3-O-di-deoxyhexoside-7-O-hexoside, and kaempferol 3-O-neohesperidoside 7-O-hexoside. Comparative untargeted metabolomic analysis was undertaken to discriminate between species and provide a chemotaxonomic clue that can be used together with morphological and genetic analyses for more accurate classification within this genus. Moreover, the in vitro antiplasmodial activity was assessed and correlated to the metabolic profile of selected species. This was followed by a molecular docking study and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction of the identified budmunchiamine alkaloids, revealing promising interactions with the active site of lactate dehydrogenase of Plasmodium falciparum and good pharmacokinetics and pharmacodynamics, which could help in designing novel antimalarial drugs.
Collapse
Affiliation(s)
- Yosra A El Khodary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Pierre Pério
- Faculte des Sciences Pharmaceutiques, Pharma-Dev, UMR 152, Université de Toulouse III-Paul Sabatier, IRD, UPS, Toulouse, France
| | - Sandra Bourgeade-Delmas
- Faculte des Sciences Pharmaceutiques, Pharma-Dev, UMR 152, Université de Toulouse III-Paul Sabatier, IRD, UPS, Toulouse, France
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Sherweit H El-Ahmady
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
7
|
El-Mouty Raslan MA, Kassem IAA, Ghaly NS, El-Manawaty MA, Melek FR, Nabil M. Aloe juvenna Brandham & S.Carter as α-Amylase Inhibitor and Hypoglycaemic Agent with Anti-inflammatory Properties for Diabetes Management. Chem Biodivers 2024; 21:e202400245. [PMID: 38436134 DOI: 10.1002/cbdv.202400245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/05/2024]
Abstract
Despite Aloe's traditional use, Aloe juvenna Brandham & S.Carter is poorly characterized. Other Aloes are known for their antidiabetic activity. This study describes the antidiabetic potentials and phytoconstituents of the A. juvenna leaves methanolic extract (AJME). Twenty-six phytoconstituents of AJME were described using HPLC/MS-MS. Lupeol and vitexin were isolated using column chromatography. The antidiabetic activity of AJME was investigated using an in vivo high-fat diet/streptozotocin-induced diabetic rat model and in vitro α-glucosidase and α-amylase inhibitory activity assays. AJME demonstrated its α-amylase inhibitory activity (IC50=313±39.9 ppm) with no effect on α-glucosidase. In vivo, AJME dose-dependently improved hyperglycaemia in a high-fat diet/streptozotocin-induced diabetic rat model. Notably, the higher dose (1600 mg/kg) of AJME significantly downregulated serum interleukin-6, tumor necrosis factor-α, and matrix metalloproteinase-1 genes, suggesting its anti-inflammatory effect. These findings indicate AJME's potential as a significant antidiabetic agent through its α-amylase inhibition, hypoglycaemic, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Mona Abd El-Mouty Raslan
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Iman AbdelKhalek AbdelKhalek Kassem
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Neveen Sabry Ghaly
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - May Aly El-Manawaty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Farouk Rasmy Melek
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Marian Nabil
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| |
Collapse
|
8
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
9
|
El-Tabakh MAM, Elhawary EA, Hwihy HM, Darweesh KF, Shaapan RM, Ghazala EA, Mokhtar MM, Waheeb HO, Emam DEM, Bakr NA, Shehata AZI. UPLC/ESI/MS profiling of red algae Galaxaura rugosa extracts and its activity against malaria mosquito vector, Anopheles pharoensis, with reference to Danio rerio and Daphnia magna as bioindicators. Malar J 2023; 22:368. [PMID: 38041142 PMCID: PMC10691061 DOI: 10.1186/s12936-023-04795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Anopheles pharoensis has a major role in transmitting several human diseases, especially malaria, in Egypt?. Controlling Anopheles is considered as an effective strategy to eliminate the spread of malaria worldwide. Galaxaura rugosa is a species of red algae found in tropical to subtropical marine environments. The presence of G. rugosa is indicative of the ecosystem's overall health. The current work aims to investigate UPLC/ESI/MS profile of G. rugosa methanol and petroleum ether extracts and its activity against An. pharoensis and non-target organisms, Danio rerio and Daphnia magna. METHODS Galaxaura rugosa specimens have been identified using DNA barcoding for the COI gene and verified as G. rugosa. The UPLC/ESI/MS profiling of G. rugosa collected from Egypt was described. The larvicidal and repellent activities of G. rugosa methanol and petroleum ether extracts against An. pharoensis were evaluated, as well as the toxicity of tested extracts on non-target organisms, Dan. rerio and Dap. magna. RESULTS The UPLC/ESI/MS analysis of methanol and petroleum ether extracts led to the tentative identification of 57 compounds belonging to different phytochemical classes, including flavonoids, tannins, phenolic acids, phenyl propanoids. Larval mortality was recorded at 93.33% and 90.67% at 80 and 35 ppm of methanol and petroleum ether extracts, respectively, while pupal mortality recorded 44.44 and 22.48% at 35 and 30 ppm, respectively. Larval duration was recorded at 5.31 and 5.64 days by methanol and petroleum ether extracts at 80 and 35 ppm, respectively. A decrease in acetylcholinesterase (AChE) level and a promotion in Glutathione-S-transferase (GST) level of An. pharoensis 3rd instar larvae were recorded by tested extracts. The petroleum ether extract was more effective against An. pharoensis starved females than methanol extract. Also, tested extracts recorded LC50 of 1988.8, 1365.1, and 11.65, 14.36 µg/mL against Dan. rerio, and Dap. magna, respectively. CONCLUSIONS Using red algae derivatives in An. pharoensis control could reduce costs and environmental impact and be harmless to humans and other non-target organisms.
Collapse
Affiliation(s)
| | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Hossam M Hwihy
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, 11651, Egypt
| | - Kareem F Darweesh
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, 11651, Egypt
| | - Raafat M Shaapan
- Department of Zoonosis, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Emad A Ghazala
- EEAA, Ras Muhammed National Park, Qesm Sharm Ash Sheikh, South Sina, Egypt
| | - Mostafa M Mokhtar
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, 11651, Egypt
| | - Hassan O Waheeb
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, 11651, Egypt
| | - Deyaa E M Emam
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, 11651, Egypt
| | - Nader A Bakr
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, 11651, Egypt
| | - Ahmed Z I Shehata
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, 11651, Egypt
| |
Collapse
|
10
|
Elferjane MR, Jovanović AA, Milutinović V, Čutović N, Jovanović Krivokuća M, Marinković A. From Aloe vera Leaf Waste to the Extracts with Biological Potential: Optimization of the Extractions, Physicochemical Characterization, and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:2744. [PMID: 37514358 PMCID: PMC10386512 DOI: 10.3390/plants12142744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In the study, the optimization of the extraction from Aloe vera leaf waste was performed via varying solid-to-solvent ratio, solvent type, extraction time, and technique (maceration, heat-, ultrasound-, and microwave-assisted extractions-HAE, UAE, and MAE, respectively). The optimal extraction conditions for achieving the highest polyphenol content are a 1:30 ratio, 70% ethanol, and 30 min of HAE. Total flavonoid and protein contents were significantly higher in the extract from MAE, while total condensed tannin content was the highest in HAE. LC-MS analysis quantified 13 anthraquinone and chromone compounds. The variations in the FT-IR spectra of the extracts obtained by different extraction procedures are minor. The influence of extraction conditions on the antioxidant ability of the extracts depended on applied antioxidant assays. The extracts possessed medium inhibition properties against Staphylococcus aureus and weak inhibitory activity against Enterococcus feacalis. The extracts had stimulative effect on HaCaT cell viability. Regarding the extraction yield, there was a significant difference between the used extraction techniques (MAE > HAE > maceration and UAE). The presented study is an initial step in the production of polyphenol-rich extracts from A. vera leaf waste aimed to be used for the potential preparation of pharmaceutical and cosmetic formulations for the skin.
Collapse
Affiliation(s)
- Muna Rajab Elferjane
- Faculty of Nursing and Health Sciences, University of Misurata, Alshowahda Park, 3rd Ring Road, Misurata 2478, Libya
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Aleksandra A Jovanović
- Institute for the Application of the Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Violeta Milutinović
- Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Natalija Čutović
- Institute for Medicinal Plant Research "Dr Josif Pančić", Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- Institute for the Application of the Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Aleksandar Marinković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
11
|
Wagdy R, Abdel-Kader RM, El-Khatib AH, Linscheid MW, Handoussa H, Hamdi N. Origanum majorana L. protects against neuroinflammation-mediated cognitive impairment: a phyto-pharmacological study. BMC Complement Med Ther 2023; 23:165. [PMID: 37210483 DOI: 10.1186/s12906-023-03994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Neuroinflammation and oxidative stress are critical players in the pathogenesis of numerous neurodegenerative diseases, such as Alzheimer's disease (AD) which is responsible for most cases of dementia in the elderly. With the lack of curative treatments, natural phenolics are potential candidates to delay the onset and progression of such age-related disorders due to their potent antioxidant and anti-inflammatory effects. This study aims at assessing the phytochemical characteristics of Origanum majorana L. (OM) hydroalcohol extract and its neuroprotective activities in a murine neuroinflammatory model. METHODS OM phytochemical analysis was done by HPLC/PDA/ESI-MSn. Oxidative stress was induced in vitro by hydrogen peroxide and cell viability was measured using WST-1 assay. Swiss albino mice were injected intraperitoneally with OM extract at a dose of 100 mg/kg for 12 days and with 250 μg/kg LPS daily starting from day 6 to induce neuroinflammation. Cognitive functions were assessed by novel object recognition and Y-maze behavioral tests. Hematoxylin and eosin staining was used to assess the degree of neurodegeneration in the brain. Reactive astrogliosis and inflammation were assessed by immunohistochemistry using GFAP and COX-2 antibodies, respectively. RESULTS OM is rich in phenolics, with rosmarinic acid and its derivatives being major constituents. OM extract and rosmarinic acid significantly protected microglial cells against oxidative stress-induced cell death (p < 0.001). OM protected against the LPS-induced alteration of recognition and spatial memory in mice (p < 0.001) and (p < 0.05), respectively. Mice that received OM extract prior to the induction of neuroinflammation showed comparable histology to control brains, with no overt neurodegeneration. Furthermore, OM pre-treatment decreased the immunohistochemistry profiler score of GFAP from positive to low positive and COX-2 from low positive to negative in the brain tissue, compared to the LPS group. CONCLUSION These findings highlight the potential preventive effects of OM phenolics against neuroinflammation and pave the way toward drug discovery and development for neurodegenerative disorders.
Collapse
Affiliation(s)
- Reham Wagdy
- Department of Pharmaceutical Biology, German University in Cairo, Cairo, Egypt
| | - Reham M Abdel-Kader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, 11835, Egypt
| | - Ahmed H El-Khatib
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Chemistry, Humboldt-Universität Zu Berlin, Berlin, Germany
| | | | - Heba Handoussa
- Department of Pharmaceutical Biology, German University in Cairo, Cairo, Egypt
| | - Nabila Hamdi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, 11835, Egypt.
| |
Collapse
|
12
|
Devanesan S, Elankathirselvan K, AlSalhi A, AlSalhi MS, Asemi NN, Aldawsari M, Jhanani GK. UPLC‒ESI‒MS/MS profiling of active polyphenolics in Morinda coreia leaf extract and in vitro antioxidant and antibacterial activity. CHEMOSPHERE 2023; 323:138179. [PMID: 36849022 DOI: 10.1016/j.chemosphere.2023.138179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/04/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
In this study, aqueous and methanol extracts of Morinda coreia (MC) leaves were tested for antioxidant and antibacterial activity under in vitro conditions. Phytochemical analysis using UPLC-ESI-MS revealed the presence of phenolics, flavonoids, alkaloids, glycosides, amino acids, proteins, saponins, and tannins. Under in vitro conditions, antioxidant test using DPPH, ABTS, and reducing power demonstrated that the plant leaves play a crucial role in antioxidant activity compared to the commercial antioxidant butylated hydroxytoluene (BHT). The ABTS and DPPH free radical scavenging activities showed that the IC50 values of the M. coreia methanol extract were 26.35 μg/mL and 200.23 μg/mL, respectively. The methanol extract of M. coreia contained higher levels of total phenols and flavonoids and higher free radical scavenging capacity than the aqueous extract. FTIR analysis of the methanol extract showed a substantial number of phenols in the functional groups of M. coreia leaves. The well diffusion assay using the methanolic extract of M. coreia (200 μg/mL) leaves showed antibacterial activity against Pseudomonas aeruginosa (19 ± 0.85 mm), Proteus sp. (20 ± 0.97 mm), Streptococcus sp. (21 ± 1.29 mm), and Enterobacter sp. (17 ± 0.2 mm). Thus, the present study revealed that the antibacterial and antioxidant activity of M. coreia leaf extract was due to the presence of 18 unknown and 15 primary known polyphenols.
Collapse
Affiliation(s)
- Sandhanasamy Devanesan
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia.
| | - Kasber Elankathirselvan
- Department of Chemistry, Tiruvallur University, Serkkadu, Vellore, 632 115, Tamil Nadu, India
| | - Abdulaziz AlSalhi
- Department of Dermatology, College of Medicine, King Saud University, P.O. Box: 7361, Riyadh, 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Nassar N Asemi
- Research Chair in Laser Diagnosis of Cancers, Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Majdoleen Aldawsari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
13
|
Nonato CDFA, de Melo EVS, Camilo CJ, Ferreira MKA, de Meneses JEA, da Silva AW, dos Santos HS, Ribeiro-Filho J, Paolla Raimundo e Silva J, Tavares JF, de Menezes IRA, Coutinho HDM, Kowalska G, Baj T, Kowalski R, da Costa JGM. Antibacterial Activity and Anxiolytic Effect in Adult Zebrafish of Genus Lippia L. Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:1675. [PMID: 37111898 PMCID: PMC10142117 DOI: 10.3390/plants12081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/02/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Species belonging to the genus Lippia are used worldwide as foods, beverages, and seasonings. Studies have demonstrated that these species have antioxidant, sedative, analgesic, anti-inflammatory, and antipyretic activities. This work aimed to evaluate the antibacterial activity and anxiolytic effect by different pathways of essential oils and ethanolic extracts of three species of Lippia (Lippia alba, Lippia sidoides, and Lippia gracilis). The ethanolic extracts were characterized by HPLC-DAD-ESI-MSn and their phenolics were quantified. The antibacterial activity was evaluated by determining the minimal inhibitory concentration and modulation of antibiotic activity, and toxic and anxiolytic effects were evaluated in the zebrafish model. The extracts showed compositions with a low ratio and shared compounds. L. alba and L. gracilis showed higher amounts of phenols and flavonoids, respectively. All extracts and essential oils presented antibacterial activity, especially those obtained from L. sidoides. On the other hand, L. alba extract presented the most significant antibiotic-enhancing effect. The samples were not toxic after 96 h of exposure, but showed an anxiolytic effect through modulation of the GABAA receptor, while L. alba extract acted via modulation of the 5-HT receptor. This new pharmacological evidence opens horizons for therapeutic approaches targeting anxiolytic and antibacterial therapies and food conservation using these species and their constituents.
Collapse
Affiliation(s)
- Carla de Fatima Alves Nonato
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Emerson Vinicius Silva de Melo
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Cicera Janaine Camilo
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | | | - Jane Eire Alencar de Meneses
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza 60714-903, CE, Brazil
| | - Antonio Wlisses da Silva
- Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil
| | - Hélcio Silva dos Santos
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza 60714-903, CE, Brazil
- Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza 60714-903, CE, Brazil
| | - Jaime Ribeiro-Filho
- General Coordination, Oswaldo Cruz Foundation (FIOCRUZ), Eusébio 61773-270, CE, Brazil
| | | | - Josean Fechine Tavares
- Multiuser Laboratory of Characterization and Analysis, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Irwin Rose Alencar de Menezes
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | - José Galberto Martins da Costa
- Postgraduate Program in Biological Chemistry, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Research Laboratory of Natural Products, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil
- Postgraduate Program in Biotechnology, Northeast Biotechnology Network, State University of Ceará, Fortaleza 60714-903, CE, Brazil
| |
Collapse
|
14
|
Jeon G, Hun Lee S, Kwon YS, Beak JH, Lee H, Ma CJ. Cognitive Enhancing Activity of Fermented Aloe arborescens Extract on Scopolamine-induced Memory Impairment in Mice. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221137408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a type of dementia that leads to loss of memory and learning ability. Aloe arborescens is a traditional medicinal plant in Europe and Africa. It has been reported that A. arborescens showed anti-inflammatory, anti-cancer, antioxidant, and anti-obesity effects. Previously, we reported that fermented A. arborescens extract had neuroprotective activity in glutamate-insulted HT22 cells. Materials and Methods In this study, we evaluated its cognitive enhancing activity by using scopolamine-induced memory impairment in mice as a model system. Morris water maze test was carried out to evaluate spatial memory enhancing activity and a passive avoidance test was performed to evaluate an effect on learning memory. A. arborescens was extracted with methanol in an ultrasonic extraction device and fermented with Lactobacillus brevis. Fermented A. arborescens extract was treated to scopolamine-insulted Institute of Cancer Research (ICR) mice at a concentration of 100, 200, and 300 mg/kg, respectively. Results The fermented A. arborescens extract significantly improved the scopolamine-insulted memory impairment. Fermented A. arborescens extract inhibited acetylcholine esterase activity and boosted brain-derived neurotrophic factor and phosphorylated cAMP-response element-binding protein (p-CREB) expression. These results showed that fermented AA extract improved memory impairment through the increase of the BDNF and p-CREB signal pathway. Conclusion According to these results, we considered that the fermented A. arborescens extract can be a useful candidate for new nutraceuticals for improving memory impairment.
Collapse
Affiliation(s)
- GiBeom Jeon
- R&DB Center, Beauty Science Ltd, Sejong, South Korea
| | | | | | | | - Hyeon Lee
- R&DB Center, Beauty Science Ltd, Sejong, South Korea
| | - Choong Je Ma
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
15
|
Criollo-Mendoza MS, Contreras-Angulo LA, Leyva-López N, Gutiérrez-Grijalva EP, Jiménez-Ortega LA, Heredia JB. Wound Healing Properties of Natural Products: Mechanisms of Action. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020598. [PMID: 36677659 PMCID: PMC9867334 DOI: 10.3390/molecules28020598] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
A wound is the loss of the normal integrity, structure, and functions of the skin due to a physical, chemical, or mechanical agent. Wound repair consists of an orderly and complex process divided into four phases: coagulation, inflammation, proliferation, and remodeling. The potential of natural products in the treatment of wounds has been reported in numerous studies, emphasizing those with antioxidant, anti-inflammatory, and antimicrobial properties, e.g., alkaloids, saponins, terpenes, essential oils, and polyphenols from different plant sources, since these compounds can interact in the various stages of the wound healing process. This review addresses the most current in vitro and in vivo studies on the wound healing potential of natural products, as well as the main mechanisms involved in this activity. We observed sufficient evidence of the activity of these compounds in the treatment of wounds; however, we also found that there is no consensus on the effective concentrations in which the natural products exert this activity. For this reason, it is important to work on establishing optimal treatment doses, as well as an appropriate route of administration. In addition, more research should be carried out to discover the possible side effects and the behavior of natural products in clinical trials.
Collapse
Affiliation(s)
- Marilyn S. Criollo-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - Laura A. Contreras-Angulo
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - Nayely Leyva-López
- Post-Doc. CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Col. Campo El Diez, Culiacán CP 80110, SI, Mexico
| | - Erick P. Gutiérrez-Grijalva
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Col. Campo El Diez, Culiacán CP 80110, SI, Mexico
| | - Luis Alfonso Jiménez-Ortega
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - J. Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
- Correspondence:
| |
Collapse
|
16
|
LC-MS Based Phytochemical Profiling towards the Identification of Antioxidant Markers in Some Endemic Aloe Species from Mascarene Islands. Antioxidants (Basel) 2022; 12:antiox12010050. [PMID: 36670912 PMCID: PMC9854647 DOI: 10.3390/antiox12010050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Aloe plant species have been used for centuries in traditional medicine and are reported to be an important source of natural products. However, despite the large number of species within the Aloe genus, only a few have been investigated chemotaxonomically. A Molecular Network approach was used to highlight the different chemical classes characterizing the leaves of five Aloe species: Aloe macra, Aloe vera, Aloe tormentorii, Aloe ferox, and Aloe purpurea. Aloe macra, A. tormentorii, and A. purpurea are endemic from the Mascarene Islands comprising Reunion, Mauritius, and Rodrigues. UHPLC-MS/MS analysis followed by a dereplication process allowed the characterization of 93 metabolites. The newly developed MolNotator algorithm was usedfor molecular networking and allowed a better exploration of the Aloe metabolome chemodiversity. The five species appeared rich in polyphenols (anthracene derivatives, flavonoids, phenolic acids). Therefore, the total phenolic content and antioxidant activity of the five species were evaluated, and a DPPH-On-Line-HPLC assay was used to determine the metabolites responsible for the radical scavenging activity. The use of computational tools allowed a better description of the comparative phytochemical profiling of five Aloe species, which showed differences in their metabolite composition, both qualitative and quantitative. Moreover, the molecular network approach combined with the On-Line-HPLC assay allowed the identification of 9 metabolites responsible for the antioxidant activity. Two of them, aloeresin A and coumaroylaloesin, could be the principal metabolites responsible for the activity. From 374 metabolites calculated by MolNator, 93 could be characterized. Therefore, the Aloe species can be a rich source of new chemical structures that need to be discovered.
Collapse
|
17
|
The Ultrasound-Assisted Extraction of Polyphenols from Mexican Firecracker ( Hamelia patens Jacq.): Evaluation of Bioactivities and Identification of Phytochemicals by HPLC-ESI-MS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248845. [PMID: 36557976 PMCID: PMC9785907 DOI: 10.3390/molecules27248845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
The objective of the present work was to optimize the extraction of phytochemicals from Hamelia patens Jacq. by ultrasound-assisted extraction. Taguchi L9 orthogonal array was used to evaluate the factors solid/liquid ratio (1:8, 1:12, and 1:16), extraction time (10, 20, and 30 min), and ethanol concentration (0, 35, and 70%). Total polyphenols were the response variable. Chromatographic fractionation using Amberlite XAD-16 was carried out and the total polyphenols, flavonoids, and condensed tannins were quantified. The redox potential, the reduction of the 2,2-diphenyl-1-picrylhydrazyl (DPPH), and the lipid oxidation inhibition were determined. Anti-bacterial activity was evaluated. The phytochemicals were identified by liquid chromatography coupled to mass spectrometry. Optimal extraction conditions were a solid/liquid ratio of 1:16, ethanol of 35%, and 10 min of ultrasound-assisted extraction. Maximum polyphenol content in the crude extract was 1689.976 ± 86.430 mg of gallic acid equivalents (GAE)/100 g of dried plant material. The purified fraction showed a total polyphenols content of 3552.84 ± 7.25 mg of GAE, flavonoids 1316.17 ± 0.27 mg of catechin equivalents, and condensed tannins 1694.87 ± 22.21 mg of procyanidin B1 equivalents, all per 100 g of purified fraction. Its redox potential was 553.93 ± 1.22 mV, reducing 63.08 ± 0.42% of DPPH radical and inhibiting 77.78 ± 2.78% of lipid oxidation. The polyphenols demonstrated antibacterial activity against Escherichia coli, Klebsiella pneumonia, and Enterococcus faecalis. The HPLC-ESI-MS analysis revealed the presence of coumarins, hydroxycinnamic acids, and flavonoids.
Collapse
|
18
|
Mass Spectrometric Methods for Non-Targeted Screening of Metabolites: A Future Perspective for the Identification of Unknown Compounds in Plant Extracts. SEPARATIONS 2022. [DOI: 10.3390/separations9120415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phyto products are widely used in natural products, such as medicines, cosmetics or as so-called “superfoods”. However, the exact metabolite composition of these products is still unknown, due to the time-consuming process of metabolite identification. Non-target screening by LC-HRMS/MS could be a technique to overcome these problems with its capacity to identify compounds based on their retention time, accurate mass and fragmentation pattern. In particular, the use of computational tools, such as deconvolution algorithms, retention time prediction, in silico fragmentation and sophisticated search algorithms, for comparison of spectra similarity with mass spectral databases facilitate researchers to conduct a more exhaustive profiling of metabolic contents. This review aims to provide an overview of various techniques and tools for non-target screening of phyto samples using LC-HRMS/MS.
Collapse
|
19
|
Ibrahim TA, Hassen A, Apostolides Z. The Antimethanogenic Potentials of Plant Extracts: Their Yields and Phytochemical Compositions as Affected by Extractive Solvents. PLANTS (BASEL, SWITZERLAND) 2022; 11:3296. [PMID: 36501339 PMCID: PMC9737672 DOI: 10.3390/plants11233296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Plant phytochemicals are an important area of study in ruminant nutrition, primarily due to their antimethanogenic potentials. Plant extract yields, their bioactive compounds and antimethanogenic properties are largely dependent on the nature of the extractive solvents. This study evaluated the yields and phytochemical constituents of four plant extracts, as affected by the aqueous-methanolic (H2O-CH3OH) extraction and their antimethanogenic properties on the in vitro methane production. The plant extracts included Aloe vera, Jatropha curcas, Moringa oleifera, and Piper betle leaves with three levels of extractions (70, 85, and 100% CH3OH). The crude plant extract yields increased with the increasing amount of water. M. oleifera crude extracts yields (g/10 g) increased from 3.24 to 3.92, A. vera, (2.35 to 3.11) J. curcas (1.77 to 2.26), and P. betle (2.42 to 3.53). However, the identified and quantified metabolites showed differing degrees of solubility unique to their plant leaves in which they exist, while some of the metabolites were unaffected by the extraction solvents. The methane mitigating potentials of these extracts were evaluated as additives on Eragrostis curvula hay at a recommended rate of 50 mg kg−1 DM. The plant extracts exhibited antimethanogenic properties to various degrees, reducing (p < 0.05) in vitro methane production in the tested hay, A. vera, J. curcas, M. oleifera and P. betle reduced methane emission by 6.37−7.55%, 8.02−11.56%, 12.26−12.97, and 5.66−7.78 respectively compared to the control treatment. However, the antimethanogenic efficacy, gas production and organic matter digestibility of the plant extracts were unaffected by the extraction solvents. Metabolites, such as aloin A, aloin B and kaempferol (in A. vera), apigenin, catechin, epicatechin, kaempferol, tryptophan, procyanidins, vitexin-7-olate and isovitexin-7-olate (in J. curcas), alkaloid, kaempferol, quercetin, rutin and neochlorogenic acid (in M. oleifera) and apigenin-7,4′-diglucoside, 3-p-coumaroylquinic acid, rutin, 2-methoxy-4-vinylphenol, dihydrocaffeic acid, and dihydrocoumaric acid (in P. betle) exhibited a methane reducing potential and hence, additional studies may be conducted to test the methane reducing properties of the individual metabolites as well as their combined forms. Plant extracts could be more promising, and hence, further study is necessary to explore other extraction methods, as well as the encapsulation of extracts for the improved delivery of core materials to the target sites and to enhance methane reducing properties. Furthermore, the use of 70% aqueous extraction on M. oleifera leaf is recommended for practical use due to the reduced cost of extractive solvents, the lower cost and availability of Moringa plants in South Africa, especially in Gauteng Province. Furthermore, 70% aqueous-methanolic extractions of A. vera, J. curcas, and P. betle are recommended for practical use in regions where they exist in abundance and are cost effective.
Collapse
Affiliation(s)
- Taofik Adam Ibrahim
- Department of Animal Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Abubeker Hassen
- Department of Animal Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Zeno Apostolides
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
20
|
Jeon KB, Lee SH, Kwon YS, Beak JH, Lee H, Ma CJ. Protective effect of fermented aloe extract on glutamate-induced cytotoxicity in HT22 cells. Anim Cells Syst (Seoul) 2022; 26:318-327. [PMID: 36605589 PMCID: PMC9809408 DOI: 10.1080/19768354.2022.2147584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Excessive glutamate can cause oxidative stress in neuronal cells and this can significantly contribute to the etiology of neurodegenerative disease. The present study mainly aims to investigate that aloe extract (AE) and fermented aloe extract (FAE) could protect against glutamate-induced cytotoxicity by modulating oxidative stress. In this study, both AE and FAE showed potent neuroprotective activity by inhibiting ROS and Ca2+ concentration, increasing mitochondria membrane potential, and activating glutathione-related enzymes against glutamate-insulted neurotoxicity in HT22 cells. In addition, the neuroprotective activity of FAE was more potent than that of AE. HPLC analysis reveals that the chemical composition of FAE is different from that of AE. Especially, the contents of aloin A, aloin B and aloenin were higher in FAE than in AE. In conclusion, this study indicates that both AE and FAE may have effective neuroprotective activity in glutamate-insulted pathological conditions such as Alzheimer's disease by managing oxidative stress.
Collapse
Affiliation(s)
- Ki Beom Jeon
- R&DB Center, Beauty Science, Ltd., Sejong, Korea
| | | | | | | | - Hyeon Lee
- R&DB Center, Beauty Science, Ltd., Sejong, Korea
| | - Choong Je Ma
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, South Korea,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, South Korea, Choong Je Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, South Korea. Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
21
|
Mssillou I, Bakour M, Slighoua M, Laaroussi H, Saghrouchni H, Ez-Zahra Amrati F, Lyoussi B, Derwich E. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115663. [PMID: 36038091 DOI: 10.1016/j.jep.2022.115663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The human skin constitutes a biological barrier against external stress and wounds can reduce the role of its physiological structure. In medical sciences, wounds are considered a major problem that requires urgent intervention. For centuries, medicinal plants have been used in the Mediterranean countries for many purposes and against wounds. AIM OF THIS REVIEW Provides an outlook on the Mediterranean medicinal plants used in wound healing. Furthermore, the wound healing effect of polyphenolic compounds and their chemical structures are also summarized. Moreover, we discussed the wound healing process, the structure of the skin, and the current therapies in wound healing. MATERIALS AND METHODS The search was performed in several databases such as ScienceDirect, PubMed, Google Scholar, Scopus, and Web of Science. The following Keywords were used individually and/or in combination: the Mediterranean, wound healing, medicinal plants, phenolic compounds, composition, flavonoid, tannin. RESULTS The wound healing process is distinguished by four phases, which are respectively, hemostasis, inflammation, proliferation, and remodeling. The Mediterranean medicinal plants are widely used in the treatment of wounds. The finding showed that eighty-nine species belonging to forty families were evaluated for their wound-healing effect in this area. The Asteraceae family was the most reported family with 12 species followed by Lamiaceae (11 species). Tunisia, Egypt, Morocco, and Algeria were the countries where these plants are frequently used in wound healing. In addition to medicinal plants, results showed that nineteen phenolic compounds from different classes are used in wound treatment. Tyrosol, hydroxytyrosol, curcumin, luteolin, chrysin, rutin, kaempferol, quercetin, icariin, morin, epigallocatechin gallate, taxifolin, silymarin, hesperidin, naringin, isoliquiritin, puerarin, genistein, and daidzein were the main compounds that showed wound-healing effect. CONCLUSION In conclusion, medicinal plants and polyphenolic compounds provide therapeutic evidence in wound healing and for the development of new drugs in this field.
Collapse
Affiliation(s)
- Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Slighoua
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Balcalı/Sarıçam, Adana, Turkey
| | - Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
22
|
Phytochemical Analysis, Antibacterial and Antibiofilm Activities of Aloe vera Aqueous Extract against Selected Resistant Gram-Negative Bacteria Involved in Urinary Tract Infections. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In bacterial infections, including urinary tract infections (UTIs), the gap between the development of new antimicrobials and antimicrobial resistance is dramatically increasing, especially in Gram-negative (Gram–) bacteria. All healthy products that can be used per se or that may be sources of antibacterial compounds should be considered in the fight against this major public health threat. In the present study, the phytochemical composition of Aloe vera extract was investigated by HPLC–MS/MS, and we further evaluated its antibacterial and antibiofilm formation activity against selected resistant Gram– bacteria involved in UTIs, namely, Achromobacter xylosoxidans 4892, Citrobacter freundii 426, Escherichia coli 1449, Klebsiella oxytoca 3003, Moraxella catarrhalis 4222, Morganella morganii 1543, Pseudomonas aeruginosa 3057, and a reference strain E. coli ATCC 25922. Inhibition zones (IZs) of the extract were determined using the well diffusion method, minimum inhibitory (MIC), and bactericidal (MBC) concentration by the two-fold serial microdilution assay, and antibiofilm formation activity by the crystal violet attachment assay. Aloe-emodin and its derivatives were the major constituent (75.74%) of A. vera extract, the most important of them being aloesin (30.22%), aloe-emodin-diglucoside (12.58%), and 2′-p-methoxycoumaroylaloeresin B (9.64%). The minerals found in the extract were sulfur (S), silicon (Si), chlorine (Cl), potassium (K), and bromine (Br). Except for the clinical strain E. coli 1449, which was totally non-susceptible, A. vera demonstrated noteworthy antibacterial activity with MIC and MBC values ranging from 0.625 to 5 mg/mL and 5 to 10 mg/mL, respectively. A. vera also demonstrated dose-dependent antibacterial effects, and the reference strain E. coli ATCC 25922 was the most susceptible with MIC = 0.625 and IZ = 19 mm at 20 mg/mL. The antibiofilm formation potential of A. vera extract was strong at 2MIC and MIC (93–100% of biofilm formation inhibition), moderate at MIC/2 (32–41%), weak at MIC/4 (14–21%), and nil at MIC/8.
Collapse
|
23
|
Awasthi A, Vishwas S, Gulati M, Corrie L, Kaur J, Khursheed R, Alam A, Alkhayl FF, Khan FR, Nagarethinam S, Kumar R, Arya K, Kumar B, Chellappan DK, Gupta G, Dua K, Singh SK. Expanding arsenal against diabetic wounds using nanomedicines and nanomaterials: Success so far and bottlenecks. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Razia S, Park H, Shin E, Shim KS, Cho E, Kang MC, Kim SY. Synergistic effect of Aloe vera flower and Aloe gel on cutaneous wound healing targeting MFAP4 and its associated signaling pathway: In-vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115096. [PMID: 35182666 DOI: 10.1016/j.jep.2022.115096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aloe vera (L.) Burm. f. (Liliaceae family) is a well-known traditional medicinal plant, that has been used to treat a variety of illnesses, for decades ranging from cancer to skin disorders including wounds. It has been included in the traditional and herbal healthcare systems of many cultures around the world, as well as the pharmacopeia of different countries. Several in vitro and in vivo studies have also confirmed its potential antioxidant, anti-inflammatory, and wound-healing activities, etc. in the consistency of its historical and traditional uses. However, most studies to date are based on the A. vera gel and latex including its wound-healing effects. Very few studies have been focused on its flower, and rarely with its effects on cutaneous wound healing and its molecular mechanism. AIM OF THE STUDY To the best of our knowledge, this is the first study to report on the synergistic effect of the A. vera flower (AVF) and Aloe gel (PAG) on cutaneous wound-healing, as well as revealing its molecular mechanism targeting microfibril-associated glycoprotein 4 (MFAP4) and its associated signaling pathway. METHODS To investigate the synergistic effect of A. vera flower and Aloe gel in cutaneous wound healing, cell viability, and cell migration, as well proliferation assay was performed. This was followed by quantitative real-time polymerase chain reaction and Western blot analyses in wounded conditions to check the effects of this mixture on protein and mRNA levels in normal human dermal fibroblast (NHDF) cells. Moreover, small interfering RNA (siRNA) -mediated knockdown of MFAP4 in NHDF cells was performed followed by migration assay and cell cycle analysis, to confirm its role in cutaneous wound healing. Additionally, HaCaT cells were included in this study to evaluate its migratory and anti-inflammatory effects. RESULTS Based on our obtained results, the PAG and AVF mixture synergistically induced the proliferation, migration, and especially ECM formation of NHDF cells by enhancing the expression of MFAP4. Other extracellular components associated with MFAP4 signaling pathway, such as fibrillin, collagen, elastin, TGF β, and α-SMA, also increased at both the protein and mRNA levels. Subsequently, this mixture initiated the phosphorylation of the extracellular signal-regulated kinase (ERK) and AKT signaling pathways, and the S-phase of the cell cycle was also slightly modified. Also, the mixture induced the migration of HaCaT cells along with the suppression of inflammatory cytokines. Moreover, the siRNA-mediated knockdown highlighted the crucial role of MFAP4 in cutaneous wound healing in NHDF cells. CONCLUSION This study showed that the mixture of PAG and AVF has significant wound healing effects targeting MFAP4 and its associated signaling pathway. Additionally, MFAP4 was recognized as a new potential biomarker of wound healing, which can be confirmed by further in vivo studies.
Collapse
Affiliation(s)
- Sultana Razia
- Department of Life Science, University of Seoul, Seoul, 02504, South Korea; Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul, 02504, South Korea
| | - Eunju Shin
- Univera Co., Ltd., Seoul, 04782, Republic of Korea
| | - Kyu-Suk Shim
- Univera Co., Ltd., Seoul, 04782, Republic of Korea
| | - Eunae Cho
- Univera Co., Ltd., Seoul, 04782, Republic of Korea
| | - Min Chol Kang
- College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, South Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, South Korea.
| |
Collapse
|
25
|
Novel Bio-Functional Aloe vera Beverages Fermented by Probiotic Enterococcus faecium and Lactobacillus lactis. Molecules 2022; 27:molecules27082473. [PMID: 35458671 PMCID: PMC9029818 DOI: 10.3390/molecules27082473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Aloe vera has been medicinally used for centuries. Its bioactive compounds have been shown to be very effective in the treatment of numerous diseases. In this work, a novel functional beverage was developed and characterized to combine the health benefits of probiotic bacteria with the Aloe vera plant itself. Two Aloe vera juices were obtained by fermentation either by a novel isolated Enterococcus faecium or a commercial Lactococcus lactis. The extraction of Aloe vera biocompounds for further fermentation was optimized. Extraction with water plus cellulase enhanced the carbohydrates and phenolic compounds in the obtained extracts. The biotransformation of the bioactive compounds from the extracts during fermentation was assessed. Both probiotic bacteria were able to grow on the Aloe vera extract. Lactic acid and short-chain fatty acids (SCFA) together with fourteen individual phenolic compounds were quantified in the produced Aloe vera juice, mainly epicatechin, aloin, ellagic acid, and hesperidin. The amount of total phenolic compounds was maintained through fermentation. The antioxidant activity was significantly increased in the produced juice by the ABTS method. The novel produced Aloe vera juice showed great potential as a functional beverage containing probiotics, prebiotics, SCFA, and phenolic compounds in its final composition.
Collapse
|
26
|
Yao Y, Yu YC, Cai MR, Zhang ZQ, Bai J, Wu HM, Li P, Zhao TT, Ni J, Yin XB. UPLC-MS/MS method for the determination of the herb composition of Tangshen formula and the in vivo pharmacokinetics of its metabolites in rat plasma. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:402-426. [PMID: 34907611 DOI: 10.1002/pca.3098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Tangshen formula (TSF) is a traditional Chinese medicine composed of seven medicinal herbs including Astragalus membranaceus, Rehmannia glutinosa Libosch, Citrus aurantium L., etc. which is used to treat diabetic nephropathy III, IV qi and yin deficiency and stasis syndrome. Most of the studies on TSF are pharmacological and pharmacodynamic experiments. There are few basic studies on its chemical substances, and the effective constituents are not clear. OBJECTIVE To analyse the main chemical components of TSF and the absorbed components in rat plasma following oral administration based on liquid chromatography tandem mass spectrometry (LC-MS/MS). Moreover, providing a rapid and valid analytical strategy for simultaneous determination of six components in rat plasma and use it in pharmacokinetic studies. RESULTS A total of 132 components were identified in TSF, and 44 components were identified in rat plasma after oral TSF, 35 of which were prototype components and nine were metabolic components. A sensitive and reliable LC-MS/MS method was developed for simultaneous determination of six components in rat plasma. The intra-day and inter-day precision relative standard deviation (RSD) was lower than 15%; the accuracy of low, medium and high concentrations ranged from 80% to 120%. The recovery met the requirements and the RSD of the recoveries was less than 15%. CONCLUSION A total of 132 components were identified in TSF. The LC-MS/MS quantitative method for the simultaneous determination of morroniside, loganin, notoginsenoside R1 , ginsenoside Re, ginsenoside Rb1 and astragaloside IV in rat plasma was established for the first time. The pharmacokinetic parameters are clarified, which can guide the clinical medication of TSF.
Collapse
Affiliation(s)
- Yu Yao
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Ying-Chao Yu
- Medical Department, Yujiawu Community Healthcare Center, Beijing, China
| | - Meng-Ru Cai
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Qin Zhang
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Bai
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Hui-Min Wu
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ting-Ting Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jian Ni
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| | - Xing-Bin Yin
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
27
|
UPLC MS/MS Profile and Antioxidant Activities from Nonpolar Fraction of Patiwala (Lantana camara) Leaves Extract. SEPARATIONS 2022. [DOI: 10.3390/separations9030075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the plants used in Indonesian traditional medicine, namely, Patiwala (Lantana camara), is traditionally used to treat some diseases, including itching, wounds, ulcers, swelling, eczema, tetanus, malaria, tumors, rheumatism, and headaches. This study aimed to characterize the compound nonpolar fraction of Patiwala leaf capable of scavenging free radicals. The characterization of compound was carried out using the Ultra-Performance Liquid Chromatography–tandem Mass Spectrometry (UPLC-MS/MS) with positive ion method, while the antioxidant testing was carried out using the radical DPPH (2,2-diphenyl-1-picrylhidrazyl) and FRAP (ferric reducing antioxidant power) methods. The results showed that the nonpolar fraction of the methanol extract of L. camara leaves was very strong toward DPPH radicals (IC50 34.65 ± 1.26 μg/mL and 40.23 ± 0.18 μg/mL), and FRAP radical (IC50 4.93 ± 0.22 μg/mL and 12.79 ± 0.09 μg/mL). Nineteen compounds identified by UPLC-MS/MS method were Resveratrol dimer, iso-humolones, oleuropein glucoside, quercetin-3-O-glycoside, myricetin, oleuropein, 12-deoxy-16-hydroxy-phorbol, aloeresin A, humulones, ursolic acid, viniferin, Epicatechin, oleanolic acid, 5-hydroxy-3′,4′,7-trimerthoxy-flavanone, Apigenin-6,8-di-C-β-D-glucoside, procyanidin A2, caffeoyl-O-hexoside, tansihnone IIA, and phillyrin. The methanolic extract of L. camara leaves can be developed as a source of antioxidants from natural ingredients.
Collapse
|
28
|
Bioactive compounds of parsley (Petroselinum crispum), chives (Allium schoenoprasum L) and their mixture (Brazilian cheiro-verde) as promising antioxidant and anti-cholesterol oxidation agents in a food system. Food Res Int 2022; 151:110864. [PMID: 34980400 DOI: 10.1016/j.foodres.2021.110864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/15/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022]
Abstract
This study determined the bioactive composition and antioxidant potential of parsley, chives and their mixture (Brazilian cheiro-verde). Additionally, the effect of these herbs against cholesterol oxidation in grilled sardines (Sardinella brasiliensis) was also investigated. Ultra-high Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (UHPLC-ESI-MS) analyses revealed the presence of phenolic acids (caffeic, chlorogenic, and ferulic acids) and flavonoids (apigenin, kaempferol, catechin) in the herbs. Higher levels of phenolics (2.10 ± 0.02 mg GAE/g) and carotenoids (205.95 ± 0.17 µg/g) were determined in parsley extracts. Moreover, parsley also presented higher antioxidant capacity by DPPH (59.21 ± 0.07 %) and ORAC (109.94 ± 18.7 µM TE/g) than the other herbs. In vivo analyses demonstrated that the herbs' extracts decreased the damage on Saccharomyces cerevisiae cells exposed to H2O2, except the chives extract at 10 μg/mL. Higher levels of cholesterol oxidation products (COPs) were determined after grilling. The total COPs increased from 61.8 ± 0.7 (raw fish) to 139.7 ± 10.1 µg/g (control). However, the addition of herbs effectively reduced cholesterol oxides formation, this effect was more pronounced in fish containing 4% parsley and 4% cheiro-verde. Promising results were found for cheiro-verde; however, it did not present synergic antioxidant effects.
Collapse
|
29
|
Sharma S, Joshi R, Kumar D. Metabolomics insights and bioprospection of Polygonatum verticillatum: An important dietary medicinal herb of alpine Himalaya. Food Res Int 2021; 148:110619. [DOI: 10.1016/j.foodres.2021.110619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
|
30
|
Nalimu F, Oloro J, Kahwa I, Ogwang PE. Review on the phytochemistry and toxicological profiles of Aloe vera and Aloe ferox. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:145. [PMID: 34307697 PMCID: PMC8294304 DOI: 10.1186/s43094-021-00296-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background Aloe vera and Aloe ferox have over the years been among the most sought-after Aloe species in the treatment of ailments worldwide. This review provides categorized literature on the phytochemical and scientifically proven toxicological profiles of A. vera and A. ferox to facilitate their exploitation in therapy. Main body of the abstract Original full-text research articles were searched in PubMed, ScienceDirect, Research gate, Google Scholar, and Wiley Online Library using specific phrases. Phenolic acids, flavonoids, tannins, and anthraquinones were the main phytochemical classes present in all the two Aloe species. Most of the phytochemical investigations and toxicity studies have been done on the leaves. Aloe vera and Aloe ferox contain unique phytoconstituents including anthraquinones, flavonoids, tannins, sterols, alkaloids, and volatile oils. Aloe vera hydroalcoholic leaf extract showed a toxic effect on Kabir chicks at the highest doses. The methanolic, aqueous, and supercritical carbon dioxide extracts of A. vera leaf gel were associated with no toxic effects. The aqueous leaf extract of A. ferox is well tolerated for short-term management of ailments but long-term administration may be associated with organ toxicity. Long-term administration of the preparations from A. vera leaves and roots was associated with toxic effects. Short conclusion This review provides beneficial information about the phytochemistry and toxicity of A. vera and A. ferox and their potential in the treatment of COVID-19 which up to date has no definite cure. Clinical trials need to be carried out to clearly understand the toxic effects of these species.
Collapse
Affiliation(s)
- Florence Nalimu
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmaceutical Sciences, Faculty of Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Joseph Oloro
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Ivan Kahwa
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
31
|
Kamal RM, Sabry MM, Aly ZY, Hifnawy MS. Phytochemical and In-Vivo Anti-Arthritic Significance of Aloe thraskii Baker in Combined Therapy with Methotrexate in Adjuvant-Induced Arthritis in Rats. Molecules 2021; 26:molecules26123660. [PMID: 34203991 PMCID: PMC8232661 DOI: 10.3390/molecules26123660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/13/2021] [Indexed: 01/10/2023] Open
Abstract
Unlike other widely known Aloe species used for treatment of rheumatoid arthritis, this species suffers from a lack of sufficient studies on its biological and chemical characters. This is what drove us to perform this work to evaluate the in vivo anti-arthritic potential of its leaf ethanolic extract. The in vivo anti-arthritic activity of the leaf ethanolic extract at 100 and 200 mg/kg/day b.wt. was evaluated alone and in combination with methotrexate (MTX) using complete Freund's adjuvant. Serum levels of rheumatoid factor, anti-cyclic citrullinated peptide (anti-CCP), cytokines pro-inflammatory marker, inflammatory mediator serum levels, and oxidative stress mediators were analyzed, in addition to liver function. Orientin, isoorientin, β-sitosterol, its palmitate and its glucoside were isolated. The combined therapy of MTX and the leaf ethanolic extract (especially at 200 mg/kg b.wt.) group showed better activity compared to MTX alone. Moreover, the combined therapy provided additional benefits in lowering the liver toxicity by comparison to MTX alone. We concluded that a synergetic combination of the leaf ethanolic extract and MTX is beneficial in the management of rheumatoid arthritis with fewer side effects on liver function, as well as the possibility of the leaf extract to stand alone as an effective natural anti-arthritic agent.
Collapse
Affiliation(s)
- Rania M. Kamal
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (R.M.K.); (M.S.H.)
| | - Manal M. Sabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (R.M.K.); (M.S.H.)
- Correspondence: ; Tel.: +20-201001918735
| | - Zeinab Y. Aly
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR), Giza 35521, Egypt;
| | - Mohamed S. Hifnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (R.M.K.); (M.S.H.)
| |
Collapse
|
32
|
Lei J, Zhu L, Zheng Y, Yu M, Li G, Zhang F, Linghu L, Yu J, Luo Y, Luo X, Gang W, Qin C. Homogenate-Ultrasound-Assisted Ionic Liquid Extraction of Total Flavonoids from Selaginella involven: Process Optimization, Composition Identification, and Antioxidant Activity. ACS OMEGA 2021; 6:14327-14340. [PMID: 34124456 PMCID: PMC8190928 DOI: 10.1021/acsomega.1c01087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/17/2023]
Abstract
In this paper, an efficient approach to extract total flavonoids (TFs) from Selaginella involvens (Sw.) Spring using homogenate-ultrasound-assisted ionic liquid (IL) extraction (HUA-ILE) was first developed. The results indicated that EPyBF4 was selected as the suitable extractant. According to the single factor experiment and response surface methodology, the IL concentration of 0.10 mol/L, the extraction time of 160 s, the liquid/solid ratio of 13:1 mL/g, and the extraction power of 300 W were concluded as the best conditions. A yield of 8.48 ± 0.27 mg/g TF content was obtained. Compared with HUA ethanol extraction, ultrasound-assisted IL extraction, and percolation extraction, the TF content obtained by the HUA-ILE method could be increased by 2 to 4 times, and the extraction time could be reduced by 100 times. Furthermore, 16 compounds of the TF extract were finally identified through ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry, among which 11 compounds were first discovered in S. involven. The contents of six biflavonoids in S. involven were determined simultaneously adopting high-performance liquid chromatography, including amentoflavone, hinokiflavone, bilobetin, ginkgetin, isoginkgetin, and heveaflavone. The TF extract in S. involven was proved to have potent antioxidant activity through the four antioxidant experiments. In conclusion, HUA-ILE was applied for the first time to exploit a green, efficient, and novel approach to extract TFs, and the research also provided promising prospects for applications of S. involven.
Collapse
Affiliation(s)
- Jie Lei
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Lei Zhu
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Yu Zheng
- Modern
Agriculture Department, Zunyi Vocational
and Technical College, Zunyi 563006, Guizhou, China
| | - Ming Yu
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Gang Li
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Feng Zhang
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Lang Linghu
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Jiaqi Yu
- The
Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yong Luo
- Modern
Agriculture Department, Zunyi Vocational
and Technical College, Zunyi 563006, Guizhou, China
| | - Xirong Luo
- Modern
Agriculture Department, Zunyi Vocational
and Technical College, Zunyi 563006, Guizhou, China
| | - Wang Gang
- School
of Pharmacy, Zunyi Medical University, Zunyi 563003, Guizhou, China
| | - Cheng Qin
- Modern
Agriculture Department, Zunyi Vocational
and Technical College, Zunyi 563006, Guizhou, China
| |
Collapse
|
33
|
Elmi A, Mohamed Abdoul-Latif F, Spina R, Dupire F, Philippot S, Marie-France C, Jacobs H, Laurain-Mattar D. Aloe djiboutiensis: Antioxidant Activity, Molecular Networking-Based Approach and In Vivo Toxicity of This Endemic Species in Djibouti. Molecules 2021; 26:3046. [PMID: 34065292 PMCID: PMC8161010 DOI: 10.3390/molecules26103046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
For the first time, the study of the antioxidant activity, the characterization of the phytoconstituants, and the evaluation of in vitro and in vivo toxicity of A. djiboutiensis leave and latex are performed. The antioxidant activity of both latex (ADL) and the methanolic extract of leaves (ADM) is determined using 1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) scavenging radical methods and ferric reducing/antioxidant power (FRAP) assay. The phytochemical study of latex is done using Liquid Chromatography-Mass Spectrometry (LC-MS/MS) and a molecular networking-based approach. The evaluation of in vivo toxicity is performed on mice by oral gavage with a suspension of ADL. Our results show that weak antioxidant activity of ADL and ADM in opposition to their high polyphenol, 83.01 mg and 46.4 mg expressed in gallic acid equivalent (GAE)/g of dry weight (DW), respectively, and flavonoid contents 13.12 mg and 4.25 mg expressed in quercetin equivalent (QE)/g dry weight (DW), respectively. Using the Global Natural Products Social Molecular Networking (GNPS) website, nine (9) anthraquinones derivatives, ten (10) chromones derivatives, two (2) flavonols/ chromones isomers are annotated in the molecular network. The treated mice do not display abnormalities in their general physical appearance and biochemistry parameters, compared to the controls. Only glucose and calcium levels are slightly higher in male treated mice compared to the vehicles.
Collapse
Affiliation(s)
- Abdirahman Elmi
- Université de Lorraine, CNRS, L2CM, 54000 Nancy, France; (A.E.); (R.S.); (F.D.); (S.P.)
- Centre d’Etudes et de Recherche de Djibouti, Medicinal Research Institute, IRM-CERD, Route de l’Aéroport, Haramous B.P. 486, Djibouti City, Djibouti;
| | - Fatouma Mohamed Abdoul-Latif
- Centre d’Etudes et de Recherche de Djibouti, Medicinal Research Institute, IRM-CERD, Route de l’Aéroport, Haramous B.P. 486, Djibouti City, Djibouti;
| | - Rosella Spina
- Université de Lorraine, CNRS, L2CM, 54000 Nancy, France; (A.E.); (R.S.); (F.D.); (S.P.)
| | - François Dupire
- Université de Lorraine, CNRS, L2CM, 54000 Nancy, France; (A.E.); (R.S.); (F.D.); (S.P.)
| | - Stéphanie Philippot
- Université de Lorraine, CNRS, L2CM, 54000 Nancy, France; (A.E.); (R.S.); (F.D.); (S.P.)
| | - Champy Marie-France
- PHENOMIN-ICS, Institut Clinique de la Souris, Université de Strasbourg, 67404 Illkirch, France; (C.M.-F.); (H.J.)
| | - Hugues Jacobs
- PHENOMIN-ICS, Institut Clinique de la Souris, Université de Strasbourg, 67404 Illkirch, France; (C.M.-F.); (H.J.)
| | | |
Collapse
|
34
|
Bendjedid S, Lekmine S, Tadjine A, Djelloul R, Bensouici C. Analysis of phytochemical constituents, antibacterial, antioxidant, photoprotective activities and cytotoxic effect of leaves extracts and fractions of Aloe vera. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Metabolite Profiling of Christia vespertilionis Leaf Metabolome via Molecular Network Approach. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Christia vespertilionis (L.f.) Bakh. f. is an ornamental plant with unique butterfly-shaped leaves, hence its vernacular name “butterfly wing” or “rerama” in Malay. In Malaysia, the green-leafed variety of this plant has gained popularity in recent years due to testimonial reports by local consumers of its medicinal uses, which include treatment for cancer. Despite these popular uses, there is very limited information on the phytochemistry of the leaf of this plant, presenting a significant gap in the cheminformatics of the plant species. Herein, we report a substantially detailed phytochemical profile of the leaf metabolome of the green-leafed variety of C. vespertilionis, obtained by deploying an untargeted tandem mass spectrometry-based molecular networking approach. The detailed inspection of the molecular network map generated for the leaf metabolome enabled the putative identification of 60 metabolites, comprising 13 phenolic acids, 20 flavonoids, 2 benzyltetrahydroisoquinoline-type alkaloids, 4 hydroxyjasmonic acid derivatives, 2 phenethyl derivatives, 3 monoacylglycerols, 4 fatty acid amides, 2 chlorophyll derivatives, 4 carotenoids, 2 organic acids, 1 nucleoside, and 3 amino acids. Flavonoids are the major class of metabolites that characterize the plant leaves. Employing a mass-targeted isolation approach, two new derivatives of apigenin-6-C-β-glucoside, the major constituents of the plant leaf, were successfully purified and spectroscopically characterized as apigenin-6-C-β-glucoside 4′-O-α-apiofuranoside (28) and apigenin-6-C-β-[(4″,6″-O-dimalonyl)-glucoside] 4′-O-α-apiofuranoside (47). This work provides further information on the chemical space of the plant leaf, which is a prerequisite to further research towards its valorization as a potential phytopharmaceutical product.
Collapse
|
36
|
Chen J, Gong S, Wan X, Gao X, Wang C, Zeng F, Zhao C, Liu B, Huang Y. Hypolipidemic properties of Chlorella pyrenoidosa organic acids via AMPK/HMGCR/SREBP-1c pathway in vivo. Food Sci Nutr 2021; 9:459-468. [PMID: 33473307 PMCID: PMC7802577 DOI: 10.1002/fsn3.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/03/2022] Open
Abstract
The aim of this study was to explore the effects and mechanisms of 95% ethanol extract of Chlorella pyrenoidosa (CPE95) on lipid metabolism in hyperlipidemic rats. For the sake of chemical composition analysis of CPE95, liquid chromatography-mass spectrometry (LC-MS) was used for determination. After treatment with CPE95, serum high-density lipoprotein cholesterol content of the hyperlipidemic rats was increased, while the contents of cholesterol, triglyceride, and low-density lipoprotein cholesterol were decreased strikingly. Moreover, the result of histopathology analysis showed that the accumulation and fatty deformation of the livers were relieved. Real-time quantitative PCR and Western blotting were used to determine the expression levels of lipid metabolism-related genes. The gene expression level of adenosine 5'-monophosphate-activated protein kinase was descended, and expressions of sterol regulatory element-binding protein-1c, acetyl-CoA carboxylase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase were all downregulated in the CPE95-treated rats. It suggested that CPE95 may effectively improve the hyperlipidemia in rats and would be potential for functional food component to reduce blood lipid.
Collapse
Affiliation(s)
- Jie Chen
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shiyu Gong
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xuzhi Wan
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaoxiang Gao
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Change Wang
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Feng Zeng
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
- National Engineering Research Center of JUNCAO TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Chao Zhao
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
- Engineering Research Center of Fujian‐Taiwan Special Marine Food Processing and NutritionMinistry of EducationFuzhouChina
- Key Laboratory of Marine Biotechnology of Fujian ProvinceInstitute of OceanologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Bin Liu
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ying Huang
- College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouChina
- National Engineering Research Center of JUNCAO TechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
37
|
Effect of Natural Preservatives on the Nutritional Profile, Chemical Composition, Bioactivity and Stability of a Nutraceutical Preparation of Aloe arborescens. Antioxidants (Basel) 2020; 9:antiox9040281. [PMID: 32225101 PMCID: PMC7222173 DOI: 10.3390/antiox9040281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 01/17/2023] Open
Abstract
Citric acid, quercetin, dried chestnut flowers and an aqueous extract of chestnut flowers were screened as candidates for preserving a drinkable nutraceutical preparation for 45 days. The assays encompassed antioxidant and antimicrobial activities, nutritional and chemical profiles, and individual profiles of fatty acids and mineral composition, all of which in comparison with a sodium benzoate, a synthetic preservative. The centesimal composition of the nutraceutical formulation was mainly composed of carbohydrates, followed by proteins and fat, with moisture levels between 66% and 71%. Palmitic and stearic acid were the most abundant fatty acids, while calcium and magnesium where the minerals in higher amount. Anthroquinones, followed by flavonoids where the most abundant groups of phenolic compounds. In terms of the preserving effects of the extracts, the chestnut flowers and the citric acid were the most effective natural preservatives, which better preserved phenolic compounds. Furthermore, these two ingredients also revealed the strongest capacity to control the microbial growth in the formulation by inhibiting the growth of food contaminants. In general, these ingredients revealed higher preservation capacity than sodium benzoate, while not altering the nutritional and fatty acid profile. The chestnut flowers and citric acid could be used to preserve foods, food supplements, and nutraceutical formulations after passing the required regulatory procedures for food additives.
Collapse
|
38
|
van Vuuren S, Frank L. Review: Southern African medicinal plants used as blood purifiers. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112434. [PMID: 31812645 DOI: 10.1016/j.jep.2019.112434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMALOGICAL RELEVANCE Blood purification practices, also referred to as blood cleansing or detoxification, is an ancient concept which is widespread amongst African traditional medicine, but for which no modern scientific basis exists. There prevails considerable ambiguity in defining what a blood purifier is. AIM OF THE STUDY The purpose of this review is to firstly define what a blood purifier is in the context of African traditional medicine and compare to other cultural and westernized interpretations. Thereafter, this study identifies traditionally used medicinal plants used as blood purifiers in southern Africa and correlates these species to scientific studies, which may support evidence for these "blood purifying plant species". MATERIALS AND METHODS Ethnobotanical books and review articles were used to identify medicinal plants used for blood purification. Databases such as Scopus, ScienceDirect, PubMed and Google Scholar were used to source scientific articles. An evaluation was made to try correlate traditional use to scientific value of the plant species. RESULTS One hundred and fifty nine plant species have been documented as traditional remedies for blood purification. Most of the plant species have some pharmacological activity, however, very little link to the traditional use for blood purification. There has been some justification of the link between blood purification and the use as an antimicrobial and this has been explored in many of the plant species identified as blood purifiers. Other pharmacological studies specifically pertaining to the blood require further attention. CONCLUSION Irrespective of the ambiguity of interpretation, medicinal plants used to "cleanse the blood", play an important holistic role in traditional medicine and this review with recommendations for further study provides some value of exploring this theme in the future.
Collapse
Affiliation(s)
- S van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| | - L Frank
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
39
|
Cunha LF, Costa CM, Barroso PR, Kato KC, Oliveira FD, Mendonça Filho CV, Grael CFF, Gregório LE, Campos FF, Oliveira PMD, Oliveira DBD, Ruela FA, Martins HR. Phytochemical screening and biological assays of ethanolic leaf extract of Senna rugosa. RODRIGUÉSIA 2020. [DOI: 10.1590/2175-7860202071051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract Senna rugosa (Fabaceae) is a common specie of the Brazilian territory, especially in the Cerrado biome. It is widely used in the popular medicine although not yet adequately investigated as to its phytoconstituents and pharmacological activities. In this study, the preliminary phytochemical analysis of ethanolic leaf extract of S. rugosa was performed and its cytotoxicity, antitumoral and antimicrobial activities (antibacterial, antifungal, anti-Trypanosoma and anti-Leishmania) were evaluated. The crude extract was analyzed in HPLC-DAD and fractions were also characterized using GC-MS and ESI-MS techniques. Results indicate phenolic compounds majority presence, including flavonol, anthraquinone and anthrones derivatives. Relative antimicrobial activities were detected against Staphylococcus aureus, Pseudomonas aeruginosa, Candida famata, Candida krusei and Candida tropicalis. As well as, a weak anti-trypanosomatids activity against M2269 strain and BH46 strain of Leishmania sp. A relative antitumoral activity was also identified but in counterpoint were also observed a toxicity in fibroblast cells (L929). Phytochemically, results provide evidence that phenolic compounds in S. rugosa leaves might be the responsible for its antimicrobial activity and cell toxicity inferred in our research.
Collapse
|
40
|
Añibarro-Ortega M, Pinela J, Barros L, Ćirić A, Silva SP, Coelho E, Mocan A, Calhelha RC, Soković M, Coimbra MA, Ferreira ICFR. Compositional Features and Bioactive Properties of Aloe vera Leaf (Fillet, Mucilage, and Rind) and Flower. Antioxidants (Basel) 2019; 8:E444. [PMID: 31581507 PMCID: PMC6826699 DOI: 10.3390/antiox8100444] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
This work aimed to characterize compositional and bioactive features of Aloe vera leaf (fillet, mucilage, and rind) and flower. The edible fillet was analysed for its nutritional value, and all samples were studied for phenolic composition and antioxidant, anti-inflammatory, antimicrobial, tyrosinase inhibition, and cytotoxic activities. Dietary fibre (mainly mannan) and available carbohydrates (mainly free glucose and fructose) were abundant macronutrients in fillet, which also contained high amounts of malic acid (5.75 g/100 g dw) and α-tocopherol (4.8 mg/100 g dw). The leaf samples presented similar phenolic profiles, with predominance of chromones and anthrones, and the highest contents were found in mucilage (131 mg/g) and rind (105 mg/g) extracts, which also revealed interesting antioxidant properties. On the other hand, the flower extract was rich in apigenin glycoside derivatives (4.48 mg/g), effective against Pseudomonas aeruginosa (MIC = 0.025 mg/mL and MBC = 0.05 mg/mL) and capable of inhibiting the tyrosinase activity (IC50 = 4.85 mg/mL). The fillet, rind, and flower extracts also showed a powerful antifungal activity against Aspergillus flavus, A. niger, Penicillium funiculosum, and Candida albicans, higher than that of ketoconazole. Thus, the studied Aloe vera samples displayed high potential to be exploited by the food or cosmetic industries, among others.
Collapse
Affiliation(s)
- Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ana Ćirić
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Soraia P Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Elisabete Coelho
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Cluj, Romania.
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Manuel A Coimbra
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
41
|
Deme P, Narasimhulu CA, Parthasarathy S. Evaluation of Anti-Inflammatory Properties of Herbal Aqueous Extracts and Their Chemical Characterization. J Med Food 2019; 22:861-873. [PMID: 31241395 PMCID: PMC6686693 DOI: 10.1089/jmf.2019.0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/29/2019] [Indexed: 01/30/2023] Open
Abstract
Plant extracts are gaining more attention as therapeutic agents against inflammation. In this study, four different widely used herbals were selected, such as holy basil leaf, sesame seed, long pepper, and cubeb pepper. We have evaluated the anti-inflammatory action of an aqueous extract from these herbs and tested their effects on monocyte-derived macrophages (MDMs). MDMs were pre-treated with these extracts individually for 2 h, followed by lipopolysaccharide (LPS) stimulation for 24 h and pro-inflammatory gene expression was analyzed. Also, we studied the effect of these extracts on the oxidation of low-density lipoprotein (LDL) by enzymatic (Myeloperoxidase) and non-enzymatic (copper) reactions. All extracts attenuated LPS-induced inflammation and also were able to inhibit the oxidation of LDL. These beneficial actions of extracts led us to identify molecules present in the extracts. A liquid chromatography-high resolution mass spectrometric analysis was performed to identify the chemical composition of extracts. Wide range of molecules were identified across all the extracts, short-chain organic acids, phenolic acids and derivatives, piperine and its structural homologues, eugenol, rosmarinic acid, flavonoids and their glucosides, and others. This study opens a door for future studies on non-pharmacological natural therapeutics that will be useful for consumers and producers, as well as industries utilizing bioactive compounds.
Collapse
Affiliation(s)
- Pragney Deme
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | | | - Sampath Parthasarathy
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
42
|
Chemical characterization and acaricidal activity of Drimia maritima (L) bulbs and Dittrichia viscosa leaves against Dermanyssus gallinae. Vet Parasitol 2019; 268:61-66. [PMID: 30981307 DOI: 10.1016/j.vetpar.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023]
Abstract
The emergence of resistance to chemical acaricides in Dermanyssus gallinae, together with their toxicity and high costs, has prompted investigations into the use of plant extracts as alternatives to chemical acaricidal treatments. Drimia maritima bulbs and Dittrichia viscosa (D. viscosa) leaf extracts were here characterized by HPLC-PDA-ESI-MS/MS, and their toxicity against D. gallinae was evaluated using contact methods. Twenty-nine compounds were identified in D. maritima extracts, with glucoscilliphaeoside derivatives (i.e., quercetin, kaempferol and bufadienolides) as the major components. Twenty-four phenolic compounds, mainly caffeic acid derivatives, were detected in D. viscosa extracts. D. maritima extracts displayed a significantly higher (p < 0.05) acaricidal activity than D. viscosa extracts, with 100% of D. gallinae mortality at a concentration of 100 mg/mL following 24 h exposure. The mortality rate of D. gallinae induced by D. viscosa extracts ranged from 25 to 45% following 48 h exposure at a concentration of 200 mg/mL. The acetonic extract of D. viscosa and D. maritima displayed the highest efficacy against D. gallinae. This study provides evidence of the diversity of bioactive compounds present in D. maritima bulbs and D. viscosa leaf extracts, which are both efficacious against D. gallinae. The higher efficacy of D. maritima bulb extracts might be linked to the presence of bufadienolides in its extracts.
Collapse
|
43
|
El-Askary H, Handoussa H, Badria F, El-Khatib AH, Alsayari A, Linscheid MW, Abdel Motaal A. Characterization of hepatoprotective metabolites from Artemisia annua and Cleome droserifolia using HPLC/PDA/ESI/MS–MS. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Chemical Composition and Antioxidant Activity of Aloe vera from the Pica Oasis (Tarapacá, Chile) by UHPLC-Q/Orbitrap/MS/MS. J CHEM-NY 2018. [DOI: 10.1155/2018/6123850] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chemical composition of Aloe vera growing in the small town of San Andrés de Pica, an oasis of warm waters and typical fruits, located in Tamarugal province in the Northern Chilean region of Tarapacá is reported. The chemical characterization was performed using liquid chromatography (UHPLC) coupled to PDA and high-resolution mass spectrometry (HESI-Q-Orbitrap®-MS) in four different plant parts of Aloe (peel, flowers, gel, and roots). Twenty-five phenolic compounds were identified, including cinnamic acids and other derivatives (e.g., caffeic and chlorogenic acids), chromones (e.g., aloesin and isoaloeresin D), anthracene compounds and derivatives (e.g., aloin A/B and emodin), and several C-flavonoids (e.g., orientin and isovitexin), among others. Total antioxidant activity of the ethanolic extracts of the peels, flowers, gel, and roots was measured as the capturing of the DPPH• and ABTS•+ radicals, while the iron-reducing antioxidant power (FRAP) was measured by spectroscopic methods. The peel had the highest antioxidant activity with values of 2.43 mM ET/g MF (DPPH•), 34.32 mM ET/g MF (ABTS•+), and 3.82 mM ET/g MF (FRAP). According to our results, the peel is the best part of the plant for the production of nutraceuticals or cosmetics products for its greatest number of bioactive compounds. This is a new and innovative finding since the only part used in traditional medicine is the gel of Aloe, and the peel is generally considered waste and discarded.
Collapse
|
45
|
Salehi B, Albayrak S, Antolak H, Kręgiel D, Pawlikowska E, Sharifi-Rad M, Uprety Y, Tsouh Fokou PV, Yousef Z, Amiruddin Zakaria Z, Varoni EM, Sharopov F, Martins N, Iriti M, Sharifi-Rad J. Aloe Genus Plants: From Farm to Food Applications and Phytopharmacotherapy. Int J Mol Sci 2018; 19:E2843. [PMID: 30235891 PMCID: PMC6163315 DOI: 10.3390/ijms19092843] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022] Open
Abstract
Aloe genus plants, distributed in Old World, are widely known and have been used for centuries as topical and oral therapeutic agents due to their health, beauty, medicinal, and skin care properties. Among the well-investigated Aloe species are A. arborescens, A. barbadensis, A. ferox, and A. vera. Today, they account among the most economically important medicinal plants and are commonly used in primary health treatment, where they play a pivotal role in the treatment of various types of diseases via the modulation of biochemical and molecular pathways, besides being a rich source of valuable phytochemicals. In the present review, we summarized the recent advances in botany, phytochemical composition, ethnobotanical uses, food preservation, and the preclinical and clinical efficacy of Aloe plants. These data will be helpful to provide future directions for the industrial and medicinal use of Aloe plants.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 88777539, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 22439789, Iran.
| | - Sevil Albayrak
- Department of Biology, Science Faculty, Erciyes University, Kayseri 38039, Turkey.
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Ewelina Pawlikowska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran.
| | - Yadav Uprety
- Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, P.O. Box 1030 Kirtipur, Kathmandu, Nepal.
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Annex Fac. Sci, P.O. Box 812 Yaounde, Cameroon.
| | - Zubaida Yousef
- Department of Botany, Lahore College for Women University, Jail Road Lahore 54000, Pakistan.
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia.
- Integrative Pharmacogenomics Institute (iPROMISE), Level 7, FF3 Building, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia.
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, via Beldiletto 1/3, 20100 Milan, Italy.
- National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Marcello Iriti
- National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada.
| |
Collapse
|
46
|
Muniandy K, Gothai S, Badran KMH, Suresh Kumar S, Esa NM, Arulselvan P. Suppression of Proinflammatory Cytokines and Mediators in LPS-Induced RAW 264.7 Macrophages by Stem Extract of Alternanthera sessilis via the Inhibition of the NF- κB Pathway. J Immunol Res 2018; 2018:3430684. [PMID: 30155492 PMCID: PMC6093060 DOI: 10.1155/2018/3430684] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/20/2018] [Indexed: 01/13/2023] Open
Abstract
Alternanthera sessilis, an edible succulent herb, has been widely used as herbal drug in many regions around the globe. Inflammation is a natural process of the innate immune system, accompanied with the increase in the level of proinflammatory mediators, for example, nitric oxide (NO) and prostaglandin (PGE2); cytokines such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor alpha (TNFα); and enzymes including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) via the activation and nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunit p65 due to the phosphorylation of inhibitory protein, IκBα. Inflammation over a short period of time is essential for its therapeutic effect. However, prolonged inflammation can be detrimental as it is related to many chronic diseases such as delayed wound healing, cardiovascular disease, arthritis, and autoimmune disorders. Therefore, ways to curb chronic inflammation have been extensively investigated. In line with that, in this present study, we attempted to study the suppression activity of the proinflammatory cytokines and mediators as a characteristic of anti-inflammatory action, by using stem extract of A. sessilis in the lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophage cell line. The results showed that the extract has significantly inhibited the production of the proinflammatory mediators including NO and PGE2; cytokines comprising IL-6, IL-1β, and TNFα; and enzymes covering the iNOS and COX-2 by preventing the IκBα from being degraded, to inhibit the nuclear translocation of NF-κB subunit p65 in order to hinder the inflammatory pathway activation. These results indicated that the stem extract of A. sessilis could be an effective candidate for ameliorating inflammatory-associated complications.
Collapse
Affiliation(s)
- Katyakyini Muniandy
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sivapragasam Gothai
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Khaleel M. H. Badran
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - S. Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Palanisamy Arulselvan
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Namakkal, Tamil Nadu 637408, India
- Scigen Research and Innovation Pvt. Ltd., Periyar Technology Business Incubator, Periyar Nagar, Thanjavur, Tamil Nadu 613403, India
| |
Collapse
|
47
|
Thabit S, Handoussa H, Roxo M, El Sayed NS, Cestari de Azevedo B, Wink M. Evaluation of antioxidant and neuroprotective activities of Cassia fistula (L.) using the Caenorhabditis elegans model. PeerJ 2018; 6:e5159. [PMID: 30023139 PMCID: PMC6047507 DOI: 10.7717/peerj.5159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/14/2018] [Indexed: 12/26/2022] Open
Abstract
Background Cassia fistula (L.) (Fabaceae) is a medicinal plant from tropical Asia. It is known for its marked antioxidant activity, which is attributed to its high phenolic content. The present study aims at testing both the antioxidant and neuroprotective effects of a hydroalcoholic extract from the aerial parts of Cassia fistula using the Caenorhabditis elegans model, which is widely used in this context. Methods Chemical profiling of secondary metabolites that seem to be responsible for both antioxidant and neuroprotective capacities was carried out by HPLC/PDA/ESI-MSn. Antioxidant activity was tested in vitro by CUPRAC and DPPH assays. In vivo antioxidant and neuroprotective activities were investigated using the C. elegans model. Results The Cassia extract improved the survival rate of the nematodes and protected them against oxidative stress. In addition, a decrease in the accumulation of reactive oxygen species (ROS) was observed. The important role of DAF-16/FOXO pathway was confirmed through an increased nuclear localization of the DAF-16 transcription factor, increased expression of SOD-3 stress response gene and decreased expression of HSP-16.2. Furthermore, the putative involvement of SKN-1/NRF2 pathway was demonstrated by a decrease in GST-4 levels. A neuroprotective activity of the Cassia extract was shown by a decline in polyglutamine (polyQ40) aggregate formation and a delay in paralysis caused by amyloid beta (Aβ1-42) accumulation. Discussion The Cassia extract exhibits substantial antioxidant and neuroprotective activities in vivo, which might provide a rich and novel source of natural antioxidants and neuroprotective compounds to be further studied for the use in various food and cosmetic industrial fields.
Collapse
Affiliation(s)
- Sara Thabit
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mariana Roxo
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Bruna Cestari de Azevedo
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.,Departmento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Michael Wink
- Department of Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
48
|
Marmitt DJ, Bitencourt S, Silva ADCE, Rempel C, Goettert MI. The healing properties of medicinal plants used in the Brazilian public health system: a systematic review. J Wound Care 2018; 27:S4-S13. [DOI: 10.12968/jowc.2018.27.sup6.s4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Diorge Jônatas Marmitt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | - Shanna Bitencourt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | | | - Claudete Rempel
- Programa de Pós-graduação em Ambiente e Desenvolvimento, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | - Márcia Inês Goettert
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| |
Collapse
|