1
|
Song Y, Zhang J, Zhu L, Zhang H, Wu G, Liu T. Recent advances in nanodelivery systems of resveratrol and their biomedical and food applications: a review. Food Funct 2024; 15:8629-8643. [PMID: 39140384 DOI: 10.1039/d3fo03892k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Resveratrol is a non-flavonoid polyphenolic compound with numerous functional properties, such as anticancer, anti-inflammation, anti-oxidation, anti-obesity and more. However, resveratrol's poor solubility within aqueous media and low stability usually lead to compromised bioavailability, ultimately limiting its uptake and applications. Nanodelivery technologies have been studied intensively due to their potential in effectively improving resveratrol properties, thereby providing promising solutions for enhancing the bioavailability of resveratrol. Thus, this article aimed to review the recent advances of resveratrol nanodelivery systems, specifically on the types of nanodelivery systems, the corresponding preparation principles, advantages, as well as potential limitations associated. Meanwhile, studies have also found that coupled with nanodelivery systems, the functional properties of resveratrol could trigger apoptosis in cancer cells and inflammatory cells through various signaling pathways. Therefore, this article will also lead into discussions on the application aspects of resveratrol nanodelivery systems, emphasizing toward the fields of biomedical and food sciences. Potential pitfalls of resveratrol nanodelivery systems, such as issues with toxicity and target release, as well as outlooks regarding resveratrol nanodelivery systems are included in the Conclusion section, in the hope to provide insights for relevant future research.
Collapse
Affiliation(s)
- Yanan Song
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Junjia Zhang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Tongtong Liu
- Binzhou Zhongyu Food Company Limited, Key Laboratory of Wheat Processing, Ministry of Agriculture and Rural Affairs, National Industry Technical Innovation Center for Wheat Processing, Bohai Advanced Technology Institute, Binzhou 256600, China
| |
Collapse
|
2
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
3
|
Jeon D, Jo M, Lee Y, Park SH, Phan HTL, Nam JH, Namkung W. Inhibition of ANO1 by Cis- and Trans-Resveratrol and Their Anticancer Activity in Human Prostate Cancer PC-3 Cells. Int J Mol Sci 2023; 24:ijms24021186. [PMID: 36674697 PMCID: PMC9862168 DOI: 10.3390/ijms24021186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Anoctamin1 (ANO1), a calcium-activated chloride channel, is involved in the proliferation, migration, and invasion of various cancer cells including head and neck squamous cell carcinoma, lung cancer, and prostate cancer. Inhibition of ANO1 activity or downregulation of ANO1 expression in these cancer cells is known to exhibit anticancer effects. Resveratrol, a natural polyphenol abundant in wines, grapes, berries, soybeans, and peanuts, shows a wide variety of biological effects including anti-inflammatory, antioxidant, and anticancer activities. In this study, we investigated the effects of two stereoisomers of resveratrol on ANO1 activity and found that cis- and trans-resveratrol inhibited ANO1 activity with different potencies. Cis- and trans-resveratrol inhibited ANO1 channel activity with IC50 values of 10.6 and 102 μM, respectively, and had no significant effect on intracellular calcium signaling at 10 and 100 μM, respectively. In addition, cis-resveratrol downregulated mRNA and protein expression levels of ANO1 more potently than trans-resveratrol in PC-3 prostate cancer cells. Cis- and trans-resveratrol significantly reduced cell proliferation and cell migration in an ANO1-dependent manner, and both resveratrol isomers strongly increased caspase-3 activity, PARP cleavage, and apoptotic sub-G1 phase ratio in PC-3 cells. These results revealed that cis-resveratrol is a potent inhibitor of ANO1 and exhibits ANO1-dependent anticancer activity against human metastatic prostate cancer PC-3 cells.
Collapse
Affiliation(s)
- Dongkyu Jeon
- College of Pharmacy and Yonsei, Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Minjae Jo
- College of Pharmacy and Yonsei, Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Yechan Lee
- College of Pharmacy and Yonsei, Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - So-Hyeon Park
- College of Pharmacy and Yonsei, Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Hong Thi Lam Phan
- Department of Physiology, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center (CRC), College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center (CRC), College of Medicine, Dongguk University, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| | - Wan Namkung
- College of Pharmacy and Yonsei, Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Correspondence:
| |
Collapse
|
4
|
Thermosensitive Hydrogels Loaded with Resveratrol Nanoemulsion: Formulation Optimization by Central Composite Design and Evaluation in MCF-7 Human Breast Cancer Cell Lines. Gels 2022; 8:gels8070450. [PMID: 35877535 PMCID: PMC9318454 DOI: 10.3390/gels8070450] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 02/01/2023] Open
Abstract
The second most common cause of mortality among women is breast cancer. A variety of natural compounds have been demonstrated to be beneficial in the management of various malignancies. Resveratrol is a promising anticancer polyphenolic compound found in grapes, berries, etc. Nevertheless, its low solubility, and hence its low bioavailability, restrict its therapeutic potential. Therefore, in our study, we developed a thermosensitive hydrogel formulation loaded with resveratrol nanoemulsion to enhance its bioavailability. Initially, resveratrol nanoemulsions were formulated and optimized utilizing a central composite-face-centered design. The independent variables for optimization were surfactant level, homogenization speed, and time, while the size and zeta potential were the dependent variables. The optimized nanoemulsion formulation was converted into a sensitive hydrogel using poloxamer 407. Rheological studies proved the formation of gel consistency at physiological temperature. Drug loading efficiency and in vitro drug release from gels were also analyzed. The drug release mechanisms from the gels were assessed using various mathematical models. The effect of the optimized thermosensitive resveratrol nanoemulsion hydrogel on the viability of human breast cancer cells was tested using MCF-7 cancer cell lines. The globule size of the selected formulation was 111.54 ± 4.16 nm, with a zeta potential of 40.96 ± 3.1 mV. Within 6 h, the in vitro release profile demonstrated a release rate of 80%. According to cell line studies, the produced hydrogel of resveratrol nanoemulsion was cytotoxic to breast cancer cells. Overall, the results proved the developed nanoemulsion-loaded thermosensitive hydrogel is a promising platform for the effective delivery of resveratrol for the management of breast cancer.
Collapse
|
5
|
Structure-Activity Relationship of Hydroxycinnamic Acid Derivatives for Cooperating with Carnosic Acid and Calcitriol in Acute Myeloid Leukemia Cells. Biomedicines 2021; 9:biomedicines9111517. [PMID: 34829746 PMCID: PMC8615284 DOI: 10.3390/biomedicines9111517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
Plant phenolic compounds have shown the ability to cooperate with one another at low doses in producing enhanced anticancer effects. This may overcome the limitations (e.g., poor bioavailability and high-dose toxicity) in developing these agents as cancer medicines. We have previously reported that the hydroxycinnamic acid derivative (HCAD) methyl-4-hydroxycinnamate and the phenolic diterpene carnosic acid (CA) can synergistically induce massive calcium-dependent apoptosis in acute myeloid leukemia (AML) at non-cytotoxic concentrations of each agent. Here, we explored the chemical nature of the synergy between HCADs and either CA, in inducing cytotoxicity, or the active metabolite of vitamin D (calcitriol), in enhancing the differentiation of AML cells. This was done by determining the structure–activity relationship of a series of hydroxycinnamic acids and their derivatives (methyl hydroxycinnamates and hydroxybenzylideneacetones) in combination with CA or calcitriol. The HCAD/CA synergy required the following critical structural elements of an HCAD molecule: (a) the para-hydroxyl on the phenolic ring, (b) the carbon C7–C8 double bond, and (c) the methyl-esterified carboxyl. Thus, the only HCADs capable of synergizing with CA were found to be methyl-4-hydroxycinnamate and methyl ferulate, which also most potently enhanced calcitriol-induced cell differentiation. Notably, the C7–C8 double bond was the major requirement for this HCAD/calcitriol cooperation. Our findings may contribute to the rational design of novel synergistically acting AML drugs based on prototype combinations of HCADs with other agents studied here.
Collapse
|
6
|
Zhang Z, Xie L, Ju Y, Dai Y. Recent Advances in Metal-Phenolic Networks for Cancer Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100314. [PMID: 34018690 DOI: 10.1002/smll.202100314] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Nanomedicine integrates different functional materials to realize the customization of carriers, aiming at increasing the cancer therapeutic efficacy and reducing the off-target toxicity. However, efforts on developing new drug carriers that combine precise diagnosis and accurate treatment have met challenges of uneasy synthesis, poor stability, difficult metabolism, and high cytotoxicity. Metal-phenolic networks (MPNs), making use of the coordination between phenolic ligands and metal ions, have emerged as promising candidates for nanomedicine, most notably through the service as multifunctional theranostic nanoplatforms. MPNs present unique properties, such as rapid preparation, negligible cytotoxicity, and pH responsiveness. Additionally, MPNs can be further modified and functionalized to meet specific application requirements. Here, the classification of polyphenols is first summarized, followed by the introduction of the properties and preparation strategies of MPNs. Then, their recent advances in biomedical sciences including bioimaging and anti-tumor therapies are highlighted. Finally, the main limitations, challenges, and outlooks regarding MPNs are raised and discussed.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Lisi Xie
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Yi Ju
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| |
Collapse
|
7
|
Ren B, Kwah MXY, Liu C, Ma Z, Shanmugam MK, Ding L, Xiang X, Ho PCL, Wang L, Ong PS, Goh BC. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett 2021; 515:63-72. [PMID: 34052324 DOI: 10.1016/j.canlet.2021.05.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene) has been expected to ameliorate cancer and foster breakthroughs in cancer therapy. Despite thousands of preclinical studies on the anticancer activity of resveratrol, little progress has been made in translational research and clinical trials. Most studies have focused on its anticancer effects, cellular mechanisms, and signal transduction pathways in vitro and in vivo. In this review, we aimed to discern the causes that prevent resveratrol from being used in cancer treatment. Among the various limitations, poor pharmacokinetics and low potency seem to be the two main bottlenecks of resveratrol. In addition, resveratrol-induced nephrotoxicity in multiple myeloma patients hinders its further development as an anticancer drug. New insights and strategies have been proposed to accelerate the conversion of resveratrol from bench to bedside. In the interim, the most promising approach is to enhance the bioavailability of resveratrol with new formulations. Alternatively, more potent analogues of resveratrol could be developed to augment its anticancer potency. Given all the gaps mentioned, much work remains to be done. However, if remarkable progress can be made, resveratrol may finally be used for cancer therapy.
Collapse
Affiliation(s)
- Boxu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Marabeth Xin-Yi Kwah
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Cuiliu Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Lingwen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Paul Chi-Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Pei Shi Ong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119228, Singapore.
| |
Collapse
|
8
|
The Use of Micro- and Nanocarriers for Resveratrol Delivery into and across the Skin in Different Skin Diseases-A Literature Review. Pharmaceutics 2021; 13:pharmaceutics13040451. [PMID: 33810552 PMCID: PMC8066164 DOI: 10.3390/pharmaceutics13040451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, polyphenols have been extensively studied due to their antioxidant, anticancer, and anti-inflammatory properties. It has been shown that anthocyanins, flavonols, and flavan-3-ols play an important role in the prevention of bacterial infections, as well as vascular or skin diseases. Particularly, resveratrol, as a multi-potent agent, may prevent or mitigate the effects of oxidative stress. As the largest organ of the human body, skin is an extremely desirable target for the possible delivery of active substances. The transdermal route of administration of active compounds shows many advantages, including avoidance of gastrointestinal irritation and the first-pass effect. Moreover, it is non-invasive and can be self-administered. However, this delivery is limited, mainly due to the need to overpassing the stratum corneum, the possible decomposition of the substances in contact with the skin surface or in the deeper layers thereof. In addition, using resveratrol for topical and transdermal delivery faces the problems of its low solubility and poor stability. To overcome this, novel systems of delivery are being developed for the effective transport of resveratrol across the skin. Carriers in the micro and nano size were demonstrated to be more efficient for safe and faster topical and transdermal delivery of active substances. The present review aimed to discuss the role of resveratrol in the treatment of skin abnormalities with a special emphasis on technologies enhancing transdermal delivery of resveratrol.
Collapse
|
9
|
Rodríguez-García A, García-Vicente R, Morales ML, Ortiz-Ruiz A, Martínez-López J, Linares M. Protein Carbonylation and Lipid Peroxidation in Hematological Malignancies. Antioxidants (Basel) 2020; 9:E1212. [PMID: 33271863 PMCID: PMC7761105 DOI: 10.3390/antiox9121212] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
Among the different mechanisms involved in oxidative stress, protein carbonylation and lipid peroxidation are both important modifications associated with the pathogenesis of several diseases, including cancer. Hematopoietic cells are particularly vulnerable to oxidative damage, as the excessive production of reactive oxygen species and associated lipid peroxidation suppress self-renewal and induce DNA damage and genomic instability, which can trigger malignancy. A richer understanding of the clinical effects of oxidative stress might improve the prognosis of these diseases and inform therapeutic strategies. The most common protein carbonylation and lipid peroxidation compounds, including hydroxynonenal, malondialdehyde, and advanced oxidation protein products, have been investigated for their potential effect on hematopoietic cells in several studies. In this review, we focus on the most important protein carbonylation and lipid peroxidation biomarkers in hematological malignancies, their role in disease development, and potential treatment implications.
Collapse
Affiliation(s)
- Alba Rodríguez-García
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Roberto García-Vicente
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - María Luz Morales
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Alejandra Ortiz-Ruiz
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
| | - Joaquín Martínez-López
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
- Department of Medicine, Medicine School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| | - María Linares
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (i+12), Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC, ES 28041 Madrid, Spain; (A.R.-G.); (R.G.-V.); (M.L.M.); (A.O.-R.); (J.M.-L.)
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, ES 28040 Madrid, Spain
| |
Collapse
|
10
|
Chen CC, Chang ZY, Tsai FJ, Chen SY. Resveratrol Pretreatment Ameliorates Concanavalin A-Induced Advanced Renal Glomerulosclerosis in Aged Mice through Upregulation of Sirtuin 1-Mediated Klotho Expression. Int J Mol Sci 2020; 21:ijms21186766. [PMID: 32942691 PMCID: PMC7554923 DOI: 10.3390/ijms21186766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Aging kidneys are characterized by an increased vulnerability to glomerulosclerosis and a measurable decline in renal function. Evidence suggests that renal and systemic klotho and sirtuin 1 (SIRT1) deficiencies worsen kidney damage induced by exogenous stresses. The aim of this study was to explore whether resveratrol would attenuate concanavalin A (Con A)-induced renal oxidative stress and advanced glomerulosclerosis in aged mice. Aged male C57BL/6 mice were treated orally with resveratrol (30 mg/kg) seven times (12 h intervals) prior to the administration of a single tail-vein injection of Con A (20 mg/kg). The plasma and urinary levels of kidney damage markers were evaluated. The kidney histopathology, renal parameters, and oxidative stress levels were measured. Furthermore, klotho was downregulated in mouse kidney mesangial cells that were pretreated with 25 µM resveratrol followed by 20 µg/mL Con A. The urinary albumin/creatinine ratio, blood urea nitrogen, kidney mesangial matrix expansion, tubulointerstitial fibrosis, and renal levels of α-smooth muscle actin, transforming growth factor beta, fibronectin, procollagen III propeptide, and collagen type I significantly increased in Con A-treated aged mice. Aged mice kidneys also showed markedly increased levels of 8-hydroxydeoxyguanosine (8-OH-dG) and reactive oxygen species (ROS), with reduced superoxide dismutase activity and levels of glutathione, klotho, and SIRT1 after Con A challenge. Furthermore, in kidney mesangial cells, klotho silencing abolished the effects of resveratrol on the Con A-mediated elevation of the indices of oxidative stress and the expression of glomerulosclerosis-related factors. These findings suggest that resveratrol protects against Con A-induced advanced glomerulosclerosis in aged mice, ameliorating renal oxidative stress via the SIRT1-mediated klotho expression.
Collapse
Affiliation(s)
- Chin-Chang Chen
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-C.C.); (Z.-Y.C.)
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Zi-Yu Chang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 204, Taiwan; (C.-C.C.); (Z.-Y.C.)
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Genetics Center, Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Medical Genetics, China Medical University Hospital, Taichung 404, Taiwan
| | - Shih-Yin Chen
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Genetics Center, Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Resveratrol Enhances mRNA and siRNA Lipid Nanoparticles Primary CLL Cell Transfection. Pharmaceutics 2020; 12:pharmaceutics12060520. [PMID: 32517377 PMCID: PMC7355647 DOI: 10.3390/pharmaceutics12060520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 11/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western populations. Therapies such as mRNA and siRNA encapsulated in lipid nanoparticles (LNPs) represent a clinically advanced platform and are utilized for a wide variety of applications. Unfortunately, transfection of RNA into CLL cells remains a formidable challenge and a bottleneck for developing targeted therapies for this disease. Therefore, we aimed to elucidate the barriers to efficient transfection of RNA-encapsulated LNPs into primary CLL cells to advance therapies in the future. To this end, we transfected primary CLL patient samples with mRNA and siRNA payloads encapsulated in an FDA-approved LNP formulation and characterized the transfection. Additionally, we tested the potential of repurposing caffeic acid, curcumin and resveratrol to enhance the transfection of nucleic acids into CLL cells. The results demonstrate that the rapid uptake of LNPs is required for successful transfection. Furthermore, we demonstrate that resveratrol enhances the delivery of both mRNA and siRNA encapsulated in LNPs into primary CLL patient samples, overcoming inter-patient heterogeneity. This study points out the important challenges to consider for efficient RNA therapeutics for CLL patients and advocates the use of resveratrol in combination with RNA lipid nanoparticles to enhance delivery into CLL cells.
Collapse
|
12
|
Zhao YN, Cao YN, Sun J, Liang Z, Wu Q, Cui SH, Zhi DF, Guo ST, Zhen YH, Zhang SB. Anti-breast cancer activity of resveratrol encapsulated in liposomes. J Mater Chem B 2020; 8:27-37. [PMID: 31746932 DOI: 10.1039/c9tb02051a] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Resveratrol (RES) is a naturally occurring and effective drug for tumor prevention and treatment. However, its low levels of aqueous solubility, stability, and poor bioavailability limit its application, especially when used as a free drug. In this study, RES was loaded into peptide and sucrose liposomes (PSL) to enhance the physico-chemical properties of RES and exploit RES delivery mediated by liposomes to effectively treat breast cancer. RES loaded PSL (the complex: PSL@RES) were stable, had a good RES encapsulation efficiency, and prolonged RES-release in vitro. PSL@RES was exceptionally efficient for inhibiting the growth of cancer cells, as the IC50 of PSL@RES in MCF-7 cells was found to be only 20.89 μmol L-1. The therapeutic efficacy of PSL@RES was evaluated in mice bearing breast cancer. The results showed that PSL@RES at a dosage of 5 mg kg-1 was more effective than 10 mg kg-1 free RES, and PSL@RES inhibited tumor growth completely at a dosage of 10 mg kg-1. PSL@RES induced apoptosis in breast tumor by upregulation of p53 expression. This then downregulated Bcl-2 and upregulated Bax, thereby inducing Caspase-3 activation. More importantly, encapsulation of RES within peptide liposomes greatly reduced the toxicity of free RES to mice. Overall, the simple formulation of liposomal nanocarriers of RES developed in this study produces satisfactory outcomes to encourage further applications of liposomal carriers for the treatment of breast cancer.
Collapse
Affiliation(s)
- Y N Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China.
| | - Y N Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China.
| | - J Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China.
| | - Z Liang
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Q Wu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China.
| | - S H Cui
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China.
| | - D F Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China.
| | - S T Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education and State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Y H Zhen
- College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - S B Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China.
| |
Collapse
|
13
|
Wen B, Gorycki P. Bioactivation of herbal constituents: mechanisms and toxicological relevance. Drug Metab Rev 2019; 51:453-497. [DOI: 10.1080/03602532.2019.1655570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bo Wen
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| | - Peter Gorycki
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Collegeville, PA, USA
| |
Collapse
|
14
|
Nakagami Y, Suzuki S, Espinoza JL, Vu Quang L, Enomoto M, Takasugi S, Nakamura A, Nakayama T, Tani H, Hanamura I, Takami A. Immunomodulatory and Metabolic Changes after Gnetin-C Supplementation in Humans. Nutrients 2019; 11:nu11061403. [PMID: 31234376 PMCID: PMC6628299 DOI: 10.3390/nu11061403] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Gnetin-C is a naturally occurring stilbene derived from the seeds of Gnetum gnemon L., an edible plant native to Southeast Asia that is called melinjo. Although the biological properties and safety of G. gnemon extract, which contains nearly 3% Gnetin-C, have been confirmed in various human studies, whether or not pure Gnetin-C is safe for humans is unclear at present. We conducted a randomized, double-blind, placebo-controlled trial. Healthy subjects were randomly divided into two groups. The interventional group (n = 6) was given Gnetin-C, and the control group (n = 6) was provided a placebo, for 14 days. Lipid profiles, biomarkers of oxidative stress and circulating blood cells were assessed before and after the intervention. All subjects completed the study, with no side effects reported across the study duration. Gnetin-C supplementation demonstrated a statistically significant increase in the absolute number of circulating natural killer (NK) cells expressing the activating receptors NKG2D and NKp46. NK cells derived from subjects who received Gnetin-C for two weeks showed higher cytotoxicity against K562 target cells than those before receiving Gnetin-C. In addition, Gnetin-C also resulted in a significant decrease in the absolute neutrophil count in the blood compared with the placebo. Furthermore, Gnetin-C significantly reduced the levels of uric acid, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total adiponectin, and high-molecular-weight adiponectin. These data indicate that Gnetin-C has biological effects of enhancing the NK activity on circulating human immune cells. The immunomodulatory effects are consistent with a putative improvement in cancer immunosurveillance via the upregulation of the NKG2D receptor. The study was registered with UMIN-CTR, number 000030364, on 12 December 2017.
Collapse
Affiliation(s)
- Yuya Nakagami
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.
- Department of Clinical Laboratory, Aichi Medical University Hospital, Nagakute, Aichi 480-1195, Japan.
| | - Susumu Suzuki
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.
- Research Creation Support Center, Aichi Medical University, Nagakute, Aichi 480-1195, Japan.
| | - J Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Japan.
| | - Lam Vu Quang
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.
| | - Megumi Enomoto
- Department of Clinical Laboratory, Aichi Medical University Hospital, Nagakute, Aichi 480-1195, Japan.
| | - Souichi Takasugi
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.
| | - Ayano Nakamura
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.
| | - Takayuki Nakayama
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.
- Department of Clinical Laboratory, Aichi Medical University Hospital, Nagakute, Aichi 480-1195, Japan.
| | - Hiroya Tani
- Department of Clinical Laboratory, Aichi Medical University Hospital, Nagakute, Aichi 480-1195, Japan.
| | - Ichiro Hanamura
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.
| | - Akiyoshi Takami
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.
| |
Collapse
|
15
|
Breuss JM, Atanasov AG, Uhrin P. Resveratrol and Its Effects on the Vascular System. Int J Mol Sci 2019; 20:E1523. [PMID: 30934670 PMCID: PMC6479680 DOI: 10.3390/ijms20071523] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 12/18/2022] Open
Abstract
Resveratrol, the phenolic substance isolated initially from Veratrum grandiflorum and richly present in grapes, wine, peanuts, soy, and berries, has been attracting attention of scientists and medical doctors for many decades. Herein, we review its effects on the vascular system. Studies utilizing cell cultures and pre-clinical models showed that resveratrol alleviates oxidative stress and inflammation. Furthermore, resveratrol suppresses vascular smooth muscle cell proliferation, promotes autophagy, and has been investigated in the context of vascular senescence. Pre-clinical models unambiguously demonstrated numerous vasculoprotective effects of resveratrol. In clinical trials, resveratrol moderately diminished systolic blood pressure in hypertensive patients, as well as blood glucose in patients with diabetes mellitus. Yet, open questions remain, as exemplified by a recent report which states that the intake of resveratrol might blunt certain positive effects of exercise in older persons, and further research addressing the framework for long-term use of resveratrol as a food supplement, will stay in demand.
Collapse
Affiliation(s)
- Johannes M Breuss
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland.
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria.
| | - Pavel Uhrin
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
16
|
Patients age: so does wine. Bone Marrow Transplant 2019; 54:1725-1727. [PMID: 30809040 DOI: 10.1038/s41409-019-0490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 11/08/2022]
|
17
|
Vinayak M. Molecular Action of Herbal Antioxidants in Regulation of Cancer Growth: Scope for Novel Anticancer Drugs. Nutr Cancer 2018; 70:1199-1209. [DOI: 10.1080/01635581.2018.1539187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Manjula Vinayak
- Biochemistry & Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
18
|
McCann S. Antioxidants: good, bad or indifferent. Bone Marrow Transplant 2018; 54:1-2. [PMID: 30429538 DOI: 10.1038/s41409-018-0397-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Shaun McCann
- Trinity College, Haematology Emeritus, University of Dublin, Dublin, Ireland.
| |
Collapse
|