1
|
Li N, Deshmukh MV, Sahin F, Hafza N, Ammanath AV, Ehnert S, Nüssler A, Weber ANR, Jin T, Götz F. Staphylococcus aureus thermonuclease NucA is a key virulence factor in septic arthritis. Commun Biol 2025; 8:598. [PMID: 40210969 PMCID: PMC11986129 DOI: 10.1038/s42003-025-07920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/11/2025] [Indexed: 04/12/2025] Open
Abstract
Septic arthritis, primarily caused by Staphylococcus aureus, poses a significant risk of both mortality and morbidity due to its aggressive nature. The nuc1-encoded thermonuclease NucA of S. aureus degrades extracellular DNA/RNA, allowing the pathogen to escape neutrophil extracellular traps (NETs) and maintain the infection unabated. Here we show that in the mouse model for hematogenous septic arthritis, the Δnuc1 mutant is much less pathogenic and the severity of clinical septic arthritis is markedly reduced, including decreased weight loss, lower kidney bacterial load, reduced bone erosion, and much less IL-6 production. In vitro, S. aureus genomic DNA induces a robust TNF-α response in macrophage-like RAW 264.7 cells abrogated when the DNA is degraded by NucA. Moreover, the wild type induces high levels of TNF-α, IL-10, and IL-6 in neutrophils and osteoblast-like SAOS-2 cells, respectively. NucA exacerbates septic arthritis by increasing extracellular and intracellular survival of bacteria.
Collapse
Affiliation(s)
- Ningna Li
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Meghshree Vinod Deshmukh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Filiz Sahin
- Siegfried Weller Institute for trauma research, BG Unfallklinik Tübingen, University of Tübingen, Tübingen, Germany
| | - Nourhane Hafza
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | | | - Sabrina Ehnert
- Siegfried Weller Institute for trauma research, BG Unfallklinik Tübingen, University of Tübingen, Tübingen, Germany
| | - Andreas Nüssler
- Siegfried Weller Institute for trauma research, BG Unfallklinik Tübingen, University of Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Interfaculty Institute for Cell Biology, Department of Immunology, Section Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Friedrich Götz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Sipprell SE, Krueger QA, Mills EL, Marriott I, Johnson MB. Substance P Augments Chemokine Production by Staphylococcus aureus Infected Murine Osteoclasts. Inflammation 2025:10.1007/s10753-025-02280-x. [PMID: 40056352 DOI: 10.1007/s10753-025-02280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Staphylococcal osteomyelitis is a serious infection of the bone and joints characterized by progressive inflammatory tissue damage and leukocyte recruitment leading to net bone loss. Resident bone cells are capable of recognizing Staphylococcus aureus and initiating an inflammatory immune response that recruits leukocytes and alters bone homeostasis. Importantly, bone tissue is richly innervated with substance P containing nerve fibers and we have previously shown that this neuropeptide can augment the inflammatory responses of both osteoblasts and osteoclasts to S. aureus infection via neurokinin-1 receptors (NK-1R). Here, we have extended these studies by demonstrating that pharmacological inhibition of NK-1R ameliorates disease severity in a mouse model of staphylococcal osteomyelitis. This effect was associated with a significant reduction in leukocyte-attracting chemokine production following infection and reduced local levels of osteoclast and neutrophil activity. We then assessed the effect of S. aureus infection on bone-marrow derived osteoclast gene expression in the absence or presence of substance P. We determined that infection upregulates osteoclast expression of mRNAs encoding inflammatory mediators that include the neutrophil-attracting chemokines identified in vivo. Importantly, we found that, while substance P has no effect on chemokine mRNA expression in infected cells, this neuropeptide significantly increases the release of these chemokines by S. aureus challenged osteoclasts but not osteoblasts. Together, these data further support the ability of substance P to exacerbate inflammatory damage in staphylococcal osteomyelitis and indicate that this effect may be due, in part, to an augmentation of osteoclast immune responses that promote leukocyte recruitment.
Collapse
Affiliation(s)
- Sophie E Sipprell
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Quinton A Krueger
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Computational Intelligence for Predicting Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Erin L Mills
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
3
|
Galliera E, Massaccesi L, Suardi V, de Vecchi E, Villa F, Yi Z, Suo G, Lovati AB, Logoluso N, Corsi Romanelli MM, Pellegrini AV. sCD14-ST and Related Osteoimmunological Biomarkers: A New Diagnostic Approach to Osteomyelitis. Diagnostics (Basel) 2024; 14:1588. [PMID: 39125464 PMCID: PMC11312423 DOI: 10.3390/diagnostics14151588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Osteomyelitis (OM) is a major challenge in orthopedic surgery. The diagnosis of OM is based on imaging and laboratory tests, but it still presents some limitations. Therefore, a deeper comprehension of the pathogenetic mechanisms could enhance diagnostic and treatment approaches. OM pathogenesis is based on an inflammatory response to pathogen infection, leading to bone loss. The present study aims to investigate the potential diagnostic role of a panel of osteoimmunological serum biomarkers in the clinical approach to OM. The focus is on the emerging infection biomarker sCD14-ST, along with osteoimmunological and inflammatory serum biomarkers, to define a comprehensive biomarker panel for a multifaced approach to OM. The results, to our knowledge, demonstrate for the first time the diagnostic and early prognostic role of sCD14-ST in OM patients, suggesting that this biomarker could address the limitations of current laboratory tests, such as traditional inflammatory markers, in diagnosing OM. In addition, the study highlights a relevant diagnostic role of SuPAR, the chemokine CCL2, the anti-inflammatory cytokine IL-10, the Wnt inhibitors DKK-1 and Sclerostin, and the RANKL/OPG ratio. Moreover, CCL2 and SuPAR also exhibited early prognostic value.
Collapse
Affiliation(s)
- Emanuela Galliera
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20122 Milan, Italy; (L.M.); (M.M.C.R.)
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy;
| | - Luca Massaccesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20122 Milan, Italy; (L.M.); (M.M.C.R.)
- Laboratorio Sperimentale Ricerche Biomarcatori Danno d’Organo, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Virginia Suardi
- Chirurgia Ricostruttiva e delle Infezioni Osteoarticolari (C.R.I.O.), IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy (A.V.P.)
| | - Elena de Vecchi
- Laboratorio di Analisi Chimico Cliniche e Microbiologiche, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy
| | - Francesca Villa
- Laboratorio di Analisi Chimico Cliniche e Microbiologiche, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy
| | - Zhang Yi
- Immunoassay Reagent Rand Department, Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen 211111, China (G.S.)
| | - Guorui Suo
- Immunoassay Reagent Rand Department, Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen 211111, China (G.S.)
| | - Arianna B. Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy;
| | - Nicola Logoluso
- Chirurgia Ricostruttiva e delle Infezioni Osteoarticolari (C.R.I.O.), IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy (A.V.P.)
| | - Massimiliano M. Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20122 Milan, Italy; (L.M.); (M.M.C.R.)
- Department of Experimental and Clinical Pathology, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Antonio V. Pellegrini
- Chirurgia Ricostruttiva e delle Infezioni Osteoarticolari (C.R.I.O.), IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy (A.V.P.)
| |
Collapse
|
4
|
Sipprell SE, Johnson MB, Leach W, Suptela SR, Marriott I. Staphylococcus aureus Infection Induces the Production of the Neutrophil Chemoattractants CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by Murine Osteoblasts. Infect Immun 2023; 91:e0001423. [PMID: 36880752 PMCID: PMC10112169 DOI: 10.1128/iai.00014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Staphylococcus aureus is the principal causative agent of osteomyelitis, a serious bacterial infection of bone that is associated with progressive inflammatory damage. Bone-forming osteoblasts have increasingly been recognized to play an important role in the initiation and progression of detrimental inflammation at sites of infection and have been demonstrated to release an array of inflammatory mediators and factors that promote osteoclastogenesis and leukocyte recruitment following bacterial challenge. In the present study, we describe elevated bone tissue levels of the potent neutrophil-attracting chemokines CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 in a murine model of posttraumatic staphylococcal osteomyelitis. RNA sequencing (RNA-Seq) gene ontology analysis of isolated primary murine osteoblasts showed enrichment in differentially expressed genes involved in cell migration and chemokine receptor binding and chemokine activity following S. aureus infection, and a rapid increase in the expression of mRNA encoding CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7, in these cells. Importantly, we have confirmed that such upregulated gene expression results in protein production with the demonstration that S. aureus challenge elicits the rapid and robust release of these chemokines by osteoblasts and does so in a bacterial dose-dependent manner. Furthermore, we have confirmed the ability of soluble osteoblast-derived chemokines to elicit the migration of a neutrophil-like cell line. As such, these studies demonstrate the robust production of CXCL1, CXCL2, CXCL3, CXCL5, CCL3, and CCL7 by osteoblasts in response to S. aureus infection, and the release of such neutrophil-attracting chemokines provides an additional mechanism by which osteoblasts could drive the inflammatory bone loss associated with staphylococcal osteomyelitis.
Collapse
Affiliation(s)
- Sophie E. Sipprell
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Whitney Leach
- Department of Molecular Biology, Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Samantha R. Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
5
|
Johnson MB, Suptela SR, Sipprell SE, Marriott I. Substance P Exacerbates the Inflammatory and Pro-osteoclastogenic Responses of Murine Osteoclasts and Osteoblasts to Staphylococcus aureus. Inflammation 2023; 46:256-269. [PMID: 36040535 PMCID: PMC10314328 DOI: 10.1007/s10753-022-01731-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/05/2022]
Abstract
Staphylococcus aureus infections of bone tissue are associated with inflammatory bone loss. Resident bone cells, including osteoblasts and osteoclasts, can perceive S. aureus and produce an array of inflammatory and pro-osteoclastogenic mediators, thereby contributing to such damage. The neuropeptide substance P (SP) has been shown to exacerbate microbially induced inflammation at sites such as the gut and the brain and has previously been shown to affect bone cell differentiation and activity. Here we demonstrate that the interaction of SP with its high affinity receptor, neurokinin-1 receptor (NK-1R), expressed on murine osteoblasts and osteoclasts, augments the inflammatory responses of these cells to S. aureus challenge. Additionally, SP alters the production of pro- and anti-osteoclastogenic factors by bacterially challenged bone cells and their proteolytic functions in a manner that would be anticipated to exacerbate inflammatory bone loss at sites of infection. Furthermore, we have demonstrated that the clinically approved NK-1R antagonist, aprepitant, attenuates local inflammatory and pro-osteoclastogenic mediator expression in an in vivo mouse model of post-traumatic staphylococcal osteomyelitis. Taken together, these results indicate that SP/NK-1R interactions could play a significant role in the initiation and/or progression of damaging inflammation in S. aureus bone infections and suggest that the repurposing of currently approved NK-1R antagonists might represent a promising new adjunct therapy for such conditions.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Samantha R Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Sophie E Sipprell
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA.
| |
Collapse
|
6
|
Lee S, Seo YJ, Choi JY, Che X, Kim HJ, Eum SY, Hong MS, Lee SK, Cho DC. Effect of teriparatide on drug treatment of tuberculous spondylitis: an experimental study. Sci Rep 2022; 12:21667. [PMID: 36522387 PMCID: PMC9755294 DOI: 10.1038/s41598-022-25174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Tuberculous spondylitis often develops catastrophic bone destruction with uncontrolled inflammation. Because anti-tuberculous drugs do not have a role in bone formation, a combination drug therapy with a bone anabolic agent could help in fracture prevention and promote bone reconstruction. This study aimed to investigate the influence of teriparatide on the effect of anti-tuberculous drugs in tuberculous spondylitis treatment. We used the virulent Mycobacterium tuberculosis (Mtb) H37Rv strain. First, we investigated the interaction between teriparatide and anti-tuberculosis drugs (isoniazid and rifampin) by measuring the minimal inhibitory concentration (MIC) against H37Rv. Second, we evaluated the therapeutic effect of anti-tuberculosis drugs and teriparatide on our previously developed in vitro tuberculous spondylitis model of an Mtb-infected MG-63 osteoblastic cell line using acid-fast bacilli staining and colony-forming unit counts. Selected chemokines (interleukin [IL]-8, interferon γ-induced protein 10 kDa [IP-10], monocyte chemoattractant protein [MCP]-1, and regulated upon activation, normal T cell expressed and presumably secreted [RANTES]) and osteoblast proliferation (alkaline phosphatase [ALP] and alizarin red S [ARS] staining) were measured. Teriparatide did not affect the MIC of isoniazid and rifampin. In the Mtb-infected MG-63 spondylitis model, isoniazid and rifampin treatment significantly reduced Mtb growth, and cotreatment with teriparatide did not change the anti-tuberculosis effect of isoniazid (INH) and rifampin (RFP). IP-10 and RANTES levels were significantly increased by Mtb infection, whereas teriparatide did not affect all chemokine levels as inflammatory markers. ALP and ARS staining indicated that teriparatide promoted osteoblastic function even with Mtb infection. Cotreatment with teriparatide and the anti-tuberculosis drugs activated bone formation (ALP-positive area increased by 705%, P = 0.0031). Teriparatide was effective against Mtb-infected MG63 cells without the anti-tuberculosis drugs (ARS-positive area increased by 326%, P = 0.0037). Teriparatide had no effect on the efficacy of anti-tuberculosis drugs and no adverse effect on the activity of Mtb infection in osteoblasts. Furthermore, regulation of representative osteoblastic inflammatory chemokines was not changed by teriparatide treatment. In the in vitro Mtb-infected MG-63 cell model of tuberculous spondylitis, cotreatment with the anti-tuberculosis drugs and teriparatide increased osteoblastic function.
Collapse
Affiliation(s)
- Subum Lee
- Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ye-Jin Seo
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongduk-Ro, Jung-Gu, Daegu, Republic of Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Ju Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seok-Yong Eum
- Division of Immunopathology and Cellular Immunology, International Tuberculosis Research Center, Gyeongsangnam-Do, Changwon-Si, Republic of Korea
| | - Min-Sun Hong
- Division of Immunopathology and Cellular Immunology, International Tuberculosis Research Center, Gyeongsangnam-Do, Changwon-Si, Republic of Korea
| | - Sun-Kyoung Lee
- Division of Immunopathology and Cellular Immunology, International Tuberculosis Research Center, Gyeongsangnam-Do, Changwon-Si, Republic of Korea
| | - Dae-Chul Cho
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, 130 Dongduk-Ro, Jung-Gu, Daegu, Republic of Korea.
| |
Collapse
|
7
|
Johnson MB, Furr KH, Suptela SR, Leach W, Marriott I. Induction of protective interferon-β responses in murine osteoblasts following Staphylococcus aureus infection. Front Microbiol 2022; 13:1066237. [PMID: 36532419 PMCID: PMC9757064 DOI: 10.3389/fmicb.2022.1066237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction The refractory and recurrent nature of chronic staphylococcal osteomyelitis may be due, at least in part, to the ability of Staphylococcus aureus to invade and persist within bone-forming osteoblasts. However, osteoblasts are now recognized to respond to S. aureus infection and produce numerous immune mediators and bone regulatory factors that can shape the host response. Type I interferons (IFNs) are best known for their antiviral effects, but it is becoming apparent that they impact host susceptibility to a wide range of pathogens including S. aureus. Methods Here, we have assessed the local expression of IFN-β by specific capture ELISA in an established in vivo mouse model of staphylococcal osteomyelitis. RNA Tag-Seq analysis, specific capture ELISAs, and/or immunoblot analyses, were then used to assess the expression of type I IFNs and select IFN stimulated genes (ISGs) in S. aureus infected primary murine osteoblasts. The effect of IFN-β on intracellular S. aureus burden was assessed in vitro following recombinant cytokine treatment by serial colony counts of liberated bacteria. Results We report the presence of markedly elevated IFN-β levels in infected bone tissue in a mouse model of staphylococcal osteomyelitis. RNA Tag-Seq analysis of S. aureus infected osteoblasts showed enrichment of genes associated with type I IFN signaling and ISGs, and elevated expression of mRNA encoding IFN-β and ISG products. IFN-β production was confirmed with the demonstration that S. aureus induces its rapid and robust release by osteoblasts in a dose-dependent manner. Furthermore, we showed increased protein expression of the ISG products IFIT1 and IFIT3 by infected osteoblasts and demonstrate that this occurs secondary to the release of IFN-β by these cells. Finally, we have determined that exposure of S. aureus-infected osteoblasts to IFN-β markedly reduces the number of viable bacteria harbored by these cells. Discussion Together, these findings indicate an ability of osteoblasts to respond to bacteria by producing IFN-β that can act in an autocrine and/or paracrine manner to elicit ISG expression and mitigate S. aureus infection.
Collapse
Affiliation(s)
- M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Kelli H. Furr
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Samantha R. Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Whitney Leach
- Department of Molecular Biology, Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
8
|
Granata V, Possetti V, Parente R, Bottazzi B, Inforzato A, Sobacchi C. The osteoblast secretome in Staphylococcus aureus osteomyelitis. Front Immunol 2022; 13:1048505. [PMID: 36483565 PMCID: PMC9723341 DOI: 10.3389/fimmu.2022.1048505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
Osteomyelitis (OM) is an infectious disease of the bone predominantly caused by the opportunistic bacterium Staphylococcus aureus (S. aureus). Typically established upon hematogenous spread of the pathogen to the musculoskeletal system or contamination of the bone after fracture or surgery, osteomyelitis has a complex pathogenesis with a critical involvement of both osteal and immune components. Colonization of the bone by S. aureus is traditionally proposed to induce functional inhibition and/or apoptosis of osteoblasts, alteration of the RANKL/OPG ratio in the bone microenvironment and activation of osteoclasts; all together, these events locally subvert tissue homeostasis causing pathological bone loss. However, this paradigm has been challenged in recent years, in fact osteoblasts are emerging as active players in the induction and orientation of the immune reaction that mounts in the bone during an infection. The interaction with immune cells has been mostly ascribed to osteoblast-derived soluble mediators that add on and synergize with those contributed by professional immune cells. In this respect, several preclinical and clinical observations indicate that osteomyelitis is accompanied by alterations in the local and (sometimes) systemic levels of both pro-inflammatory (e.g., IL-6, IL-1α, TNF-α, IL-1β) and anti-inflammatory (e.g., TGF-β1) cytokines. Here we revisit the role of osteoblasts in bacterial OM, with a focus on their secretome and its crosstalk with cellular and molecular components of the bone microenvironment and immune system.
Collapse
Affiliation(s)
- Valentina Granata
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Milan Unit, National Research Council - Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Valentina Possetti
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | | | | | - Antonio Inforzato
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Rozzano, Italy,Milan Unit, National Research Council - Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy,*Correspondence: Cristina Sobacchi,
| |
Collapse
|
9
|
Yoshimoto T, Kittaka M, Doan AAP, Urata R, Prideaux M, Rojas RE, Harding CV, Henry Boom W, Bonewald LF, Greenfield EM, Ueki Y. Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection. Nat Commun 2022; 13:6648. [PMID: 36333322 PMCID: PMC9636212 DOI: 10.1038/s41467-022-34352-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The impact of bone cell activation on bacterially-induced osteolysis remains elusive. Here, we show that matrix-embedded osteocytes stimulated with bacterial pathogen-associated molecular patterns (PAMPs) directly drive bone resorption through an MYD88-regulated signaling pathway. Mice lacking MYD88, primarily in osteocytes, protect against osteolysis caused by calvarial injections of bacterial PAMPs and resist alveolar bone resorption induced by oral Porphyromonas gingivalis (Pg) infection. In contrast, mice with targeted MYD88 restoration in osteocytes exhibit osteolysis with inflammatory cell infiltration. In vitro, bacterial PAMPs induce significantly higher expression of the cytokine RANKL in osteocytes than osteoblasts. Mechanistically, activation of the osteocyte MYD88 pathway up-regulates RANKL by increasing binding of the transcription factors CREB and STAT3 to Rankl enhancers and by suppressing K48-ubiquitination of CREB/CREB binding protein and STAT3. Systemic administration of an MYD88 inhibitor prevents jawbone loss in Pg-driven periodontitis. These findings reveal that osteocytes directly regulate inflammatory osteolysis in bone infection, suggesting that MYD88 and downstream RANKL regulators in osteocytes are therapeutic targets for osteolysis in periodontitis and osteomyelitis.
Collapse
Affiliation(s)
- Tetsuya Yoshimoto
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Mizuho Kittaka
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Andrew Anh Phuong Doan
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Rina Urata
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | | | - Clifford V Harding
- Department of Pathology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
| | - W Henry Boom
- Department of Pathology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
- Department of Medicine, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Edward M Greenfield
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA.
| |
Collapse
|
10
|
Yu KE, Kwon HK, Dussik CM, Cahill SV, Back J, Alder KD, Lee FY. Enhancement of Impaired MRSA-Infected Fracture Healing by Combinatorial Antibiotics and Modulation of Sustained Inflammation. J Bone Miner Res 2022; 37:1352-1365. [PMID: 35616626 DOI: 10.1002/jbmr.4570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/19/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
Fracture healing is impaired in the setting of infection, which begets protracted inflammation. The most problematic causative agent of musculoskeletal infection is methicillin-resistant Staphylococcus aureus (MRSA). We hypothesized that modulation of excessive inflammation combined with cell-penetrating antibiotic treatments facilitates fracture healing in a murine MRSA-infected femoral fracture model. Sterile and MRSA-contaminated open transverse femoral osteotomies were induced in 10-week-old male C57BL/6 mice and fixed via intramedullary nailing. In the initial therapeutic cohort, empty, vancomycin (V), rifampin (R), vancomycin-rifampin (VR), or vancomycin-rifampin-trametinib (VRT) hydrogels were applied to the fracture site intraoperatively. Rifampin was included because of its ability to penetrate eukaryotic cells to target intracellular bacteria. Unbiased screening demonstrated ERK activation was upregulated in the setting of MRSA infection. As such, the FDA-approved mitogen-activated protein kinase kinase (MEK)1-pERK1/2 inhibitor trametinib was evaluated as an adjunctive therapeutic agent to selectively mitigate excessive inflammation after infected fracture. Two additional cohorts were created mimicking immediate and delayed postoperative antibiotic administration. Systemic vancomycin or VR was administered for 2 weeks, followed by 2 weeks of VRT hydrogel or oral trametinib therapy. Hematologic, histological, and cytokine analyses were performed using serum and tissue isolates obtained at distinct postoperative intervals. Radiography and micro-computed tomography (μCT) were employed to assess fracture healing. Pro-inflammatory cytokine levels remained elevated in MRSA-infected mice with antibiotic treatment alone, but increasingly normalized with trametinib therapy. Impaired callus formation and malunion were consistently observed in the MRSA-infected groups and was partially salvaged with systemic antibiotic treatment alone. Mice that received VR alongside adjuvant MEK1-pERK1/2 inhibition displayed the greatest restoration of bone and osseous union. A combinatorial approach involving adjuvant cell-penetrating antibiotic treatments alongside mitigation of excessive inflammation enhanced healing of infected fractures. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kristin E Yu
- Department of Orthopaedics and Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Hyuk-Kwon Kwon
- Department of Orthopaedics and Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Christopher M Dussik
- Department of Orthopaedics and Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Sean V Cahill
- Department of Orthopedic Surgery, Washington University, School of Medicine, St. Louis, MO, USA
| | - Jungho Back
- Department of Orthopaedics and Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Kareme D Alder
- Department of Orthopaedics and Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Francis Y Lee
- Department of Orthopaedics and Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| |
Collapse
|
11
|
Massaccesi L, Galliera E, Pellegrini A, Banfi G, Corsi Romanelli MM. Osteomyelitis, Oxidative Stress and Related Biomarkers. Antioxidants (Basel) 2022; 11:antiox11061061. [PMID: 35739958 PMCID: PMC9220672 DOI: 10.3390/antiox11061061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/30/2022] Open
Abstract
Bone is a very dynamic tissue, subject to continuous renewal to maintain homeostasis through bone remodeling, a process promoted by two cell types: osteoblasts, of mesenchymal derivation, are responsible for the deposition of new material, and osteoclasts, which are hematopoietic cells, responsible for bone resorption. Osteomyelitis (OM) is an invasive infectious process, with several etiological agents, the most common being Staphylococcus aureus, affecting bone or bone marrow, and severely impairing bone homeostasis, resulting in osteolysis. One of the characteristic features of OM is a strong state of oxidative stress (OS) with severe consequences on the delicate balance between osteoblastogenesis and osteoclastogenesis. Here we describe this, analyzing the effects of OS in bone remodeling and discussing the need for new, easy-to-measure and widely available OS biomarkers that will provide valid support in the management of the disease.
Collapse
Affiliation(s)
- Luca Massaccesi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.G.); (M.M.C.R.)
- Correspondence: ; Tel.: +39-0250316027
| | - Emanuela Galliera
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.G.); (M.M.C.R.)
- IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy;
| | - Antonio Pellegrini
- Centre for Reconstructive Surgery and Osteoarticular Infections, IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy;
| | - Giuseppe Banfi
- IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy;
| | - Massimiliano Marco Corsi Romanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy; (E.G.); (M.M.C.R.)
- Service of Laboratory Medicine1-Clinical Pathology, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| |
Collapse
|
12
|
Mo M, Guilak F, Elward A, Quayle K, Thompson D, Brouillet K, Luhmann SJ. The Use of Biomarkers in the Early Diagnosis of Septic Arthritis and Osteomyelitis-A Pilot Study. J Pediatr Orthop 2022; 42:e526-e532. [PMID: 35405729 DOI: 10.1097/bpo.0000000000002052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The diagnosis of septic arthritis (SA) and osteomyelitis (OM) has remained challenging in the pediatric population, often accompanied by delays and requiring invasive interventions. The purpose of this pilot study is to identify a novel panel of biomarkers and cytokines that can accurately differentiate SA and OM at initial presentation using serum alone. METHODS Twenty patients below 18 years old whose working diagnosis included SA (n=10) and OM (n=10) were identified. Serum was collected at initial evaluation. Each sample underwent seven ELISA [C1-C2, COMP, CS-846, hyaluronan, procalcitonin, PIIANP, C-terminal telopeptide of type II collagen (CTX-II)] and 65-plex cytokine panels. Principal component and Lasso regression analysis were performed to identify a limited set of predictive biomarkers. RESULTS Mean age was 4.7 and 9.5 years in SA and OM patients, respectively (P=0.029). 50% of SA patients presented within 24 hours of symptom onset, compared with 0% of OM patients (P=0.033). 30% of SA patients were discharged home with an incorrect diagnosis and re-presented to the emergency department days later. At time of presentation: temperature ≥38.5°C was present in 10% of SA and 40% of OM patients (P=0.12), mean erythrocyte sedimentation rate (mm/h) was 51.6 in SA and 44.9 in OM patients (P=0.63), mean C-reactive protein (mg/dL) was 55.8 in SA and 71.8 in OM patients (P=0.53), and mean white blood cells (K/mm3) was 12.5 in SA and 10.4 in OM patients (P=0.34). 90% of SA patients presented with ≤2 of the Kocher criteria. 100% of SA and 40% of OM patients underwent surgery. 70% of SA cultures were culture negative, 10% MSSA, 10% Kingella, and 10% Strep pyogenes. 40% of OM cultures were culture negative, 50% MSSA, and 10% MRSA. Four biomarkers [CTx-II, transforming growth factor alpha (TGF-α), monocyte chemoattractant protein 1 (MCP-1), B cell-attracting chemokine 1] were identified that were able to classify and differentiate 18 of the 20 SA and OM cases correctly, with 90% sensitivity and 80% specificity. CONCLUSIONS This pilot study identifies a panel of biomarkers that can differentiate between SA and OM at initial presentation using serum alone. LEVEL OF EVIDENCE Level II-diagnostic study.
Collapse
Affiliation(s)
| | - Farshid Guilak
- Departments of Orthopedic Surgery
- Shriners Hospitals for Children, St. Louis, MO
| | | | - Kimberly Quayle
- Emergency Medicine, Washington University School of Medicine, Saint Louis Children's Hospital
| | - Dominic Thompson
- Departments of Orthopedic Surgery
- Shriners Hospitals for Children, St. Louis, MO
| | | | | |
Collapse
|
13
|
Wen H, Chen Z, Cui Y, Xu Y. LncRNA NONHSAT009968 inhibits the osteogenic differentiation of hBMMSCs in SA-induced inflammation via Wnt3a. Biochem Biophys Res Commun 2021; 577:24-31. [PMID: 34492499 DOI: 10.1016/j.bbrc.2021.08.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022]
Abstract
Osteomyelitis is one of the most challenging diseases in the field of orthopedics for its complex pathogenesis and unsatisfactory treatment. The mechanism underlying its occurrence and development is still unclear. In our previous study, we found that long non-coding RNA (lncRNA) NONHSAT009968 inhibited the ability of osteogenic differentiation in staphylococcal protein A (SPA)-treated human bone marrow mesenchymal stem cells (hBMMSCs), but the underlying mechanism remains unclear. The current study was aimed at elucidating the possible mechanism of NONHSAT009968 in regulating osteogenic differentiation and bone defect repairability of hBMMSCs under infection. It was revealed that Wnt3a played a key role in promoting osteogenic differentiation of hBMMSCs treated with SPA in vitro. In addition, NONHSAT009968 inhibited osteogenic differentiation of hBMMSCs treated with SPA via Wnt3a, both in vivo and in vitro. In sum, the results suggested that lncNONHSAT009968 inhibited osteogenic differentiation of hBMMSCs in SA-induced inflammation through Wnt3a, which may have affected the occurrence and development of osteomyelitis. This study might provide novel insights regarding osteomyelitis and infectious bone defects.
Collapse
Affiliation(s)
- Hongjie Wen
- Department of Orthopaedic and Traumatic Surgery, The Second People's Hospital of Yunnan Province, Kunming, China; Department of Orthopaedic and Traumatic Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Zhong Chen
- Department of Orthopaedic and Traumatic Surgery, The Second People's Hospital of Yunnan Province, Kunming, China; Department of Orthopaedic and Traumatic Surgery, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Yi Cui
- Department of Orthopaedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China.
| | - Yongqing Xu
- Department of Orthopaedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China.
| |
Collapse
|
14
|
Abstract
Obesity and obesity-related diseases like type 2 diabetes (T2D) are prominent global health issues; therefore, there is a need to better understand the mechanisms underlying these conditions. The onset of obesity is characterized by accumulation of proinflammatory cells, including Ly6chi monocytes (which differentiate into proinflammatory macrophages) and neutrophils, in metabolic tissues. This shift toward chronic, low-grade inflammation is an obese-state hallmark and highly linked to metabolic disorders and other obesity comorbidities. The mechanisms that induce and maintain increased inflammatory myelopoiesis are of great interest, with a recent focus on how obesity affects more primitive hematopoietic cells. The hematopoietic system is constantly replenished by proper regulation of hematopoietic stem and progenitor (HSPC) pools in the BM. While early research suggests that chronic obesity promotes expansion of myeloid-skewed HSPCs, the involvement of the hematopoietic stem cell (HSC) niche in regulating obesity-induced myelopoiesis remains undefined. In this review, we explore the role of the multicellular HSC niche in hematopoiesis and inflammation, and the potential contribution of this niche to the hematopoietic response to obesity. This review further aims to summarize the potential HSC niche involvement as a target of obesity-induced inflammation and a driver of obesity-induced myelopoiesis.
Collapse
|
15
|
Thompson K, Freitag L, Styger U, Camenisch K, Zeiter S, Arens D, Richards RG, Moriarty TF, Stadelmann VA. Impact of low bone mass and antiresorptive therapy on antibiotic efficacy in a rat model of orthopedic device-related infection. J Orthop Res 2021; 39:415-425. [PMID: 33325074 DOI: 10.1002/jor.24951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/05/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
A significant proportion of orthopedic devices are implanted in osteoporotic patients, but it is currently unclear how estrogen deficiency and/or exposure to antiresorptive bisphosphonates (BPs) influence orthopedic device-related infection (ODRI), or response to therapy. The aim of this study is to characterize the bone changes resulting from Staphylococcus epidermidis infection in a rodent ODRI model and to determine if ovariectomy (OVX) or BP treatment influences the infection or the success of antibiotic therapy. A sterile or S. epidermidis-contaminated screw was implanted into the proximal tibia of skeletally mature female Wistar rats (n = 6-9 per group). Bone changes were monitored over 28 days using in vivo micro-computed tomography scanning. OVX was performed 12 weeks before screw implantation. The BP zoledronic acid (ZOL) was administered 4 days before screw insertion. A combination antibiotic regimen (rifampin plus cefazolin) was administered from Days 7-21. In skeletally healthy animals, S. epidermidis induced marked changes in bone, with peak osteolysis occurring at Day 9 and woven bone deposition and periosteal mineralization from Day 14 onwards. Antibiotic therapy cleared the infection in the majority of animals (2/9 infected) but did not affect bone responses. OVX did not affect the pattern of infection-induced changes in bone, nor bacterial load, but reduced antibiotic efficacy (5/9 infected). ZOL treatment did not protect from osteolysis in OVX animals, or further affect antibiotic efficacy (5/9 infected) but did significantly increase the bacterial load. This study suggests that both BPs and OVX can influence host responses to bone infections involving S. epidermidis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Vincent A Stadelmann
- AO Research Institute Davos, Davos, Switzerland.,Department of Teaching, Research and Development, Schulthess Clinic, Zürich, Switzerland
| |
Collapse
|
16
|
Yu KE, Alder KD, Morris MT, Munger AM, Lee I, Cahill SV, Kwon HK, Back J, Lee FY. Re-appraising the potential of naringin for natural, novel orthopedic biotherapies. Ther Adv Musculoskelet Dis 2020; 12:1759720X20966135. [PMID: 33343723 PMCID: PMC7727086 DOI: 10.1177/1759720x20966135] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/22/2020] [Indexed: 01/03/2023] Open
Abstract
Naringin is a naturally occurring flavonoid found in plants of the Citrus genus that has historically been used in traditional Chinese medical regimens for the treatment of osteoporosis. Naringin modulates signaling through numerous molecular pathways critical to musculoskeletal development, cellular differentiation, and inflammation. Administration of naringin increases in vitro expression of bone morphogenetic proteins (BMPs) and activation of the Wnt/β-catenin and extracellular signal-related kinase (Erk) pathways, thereby promoting osteoblastic proliferation and differentiation from stem cell precursors for bone formation. Naringin also inhibits osteoclastogenesis by both modifying RANK/RANKL interactions and inducing apoptosis in osteoclasts in vitro. In addition, naringin acts on the estrogen receptor in bone to mimic the native bone-preserving effects of estrogen, with few systemic side effects on other estrogen-sensitive tissues. The efficacy of naringin therapy in reducing the osteolysis characteristic of common musculoskeletal pathologies such as osteoporosis, degenerative joint disease, and osteomyelitis, as well as inflammatory conditions affecting bone such as diabetes mellitus, has been extensively demonstrated in vitro and in animal models. Naringin thus represents a naturally abundant, cost-efficient agent whose potential for use in novel musculoskeletal biotherapies warrants re-visiting and further exploration through human studies. Here, we review the cellular mechanisms of action that have been elucidated regarding the action of naringin on bone resident cells and the bone microenvironment, in vivo evidence of naringin’s osteostimulative and chondroprotective properties in the setting of osteolytic bone disease, and current limitations in the development of naringin-containing translational therapies for common musculoskeletal conditions.
Collapse
Affiliation(s)
- Kristin E Yu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 330 Cedar St, TMP 523 PO Box 208071, New Haven, CT 06520-8071, USA
| | - Kareme D Alder
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Montana T Morris
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Alana M Munger
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Inkyu Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA; Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Sean V Cahill
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Hyuk-Kwon Kwon
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - JungHo Back
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| | - Francis Y Lee
- Department of Orthopædics & Rehabilitation, Yale University, School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
A comprehensive review of bacterial osteomyelitis with emphasis on Staphylococcus aureus. Microb Pathog 2020; 148:104431. [PMID: 32801004 DOI: 10.1016/j.micpath.2020.104431] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis, a significant infection of bone tissue, gives rise to two main groups of infection: acute and chronic. These groups are further categorized in terms of the duration of infection. Usually, children and adults are more susceptible to acute and chronic infections, respectively. The aforementioned groups of osteomyelitis share almost 80% of the corresponding bacterial pathogens. Among all bacteria, Staphylococcus aureus (S. aureus) is a significant pathogen and is associated with a high range of osteomyelitis symptoms. S. aureus has many strategies for interacting with host cells including Small Colony Variant (SCV), biofilm formation, and toxin secretion. In addition, it induces an inflammatory response and causes host cell death by apoptosis and necrosis. However, any possible step to take in this respect is dependent on the conditions and host responses. In the absence of any immune responses and antibiotics, bacteria actively duplicate themselves; however, in the presence of phagocytic cell and harassing conditions, they turn into a SCV, remaining sustainable for a long time. SCV is characterized by notable advantages such as (a) intracellular life that mediates a dam against immune cells and (b) low ATP production that mediates resistance against antibiotics.
Collapse
|
18
|
Alsassa S, Lefèvre T, Laugier V, Stindel E, Ansart S. Modeling Early Stages of Bone and Joint Infections Dynamics in Humans: A Multi-Agent, Multi-System Based Model. Front Mol Biosci 2020; 7:26. [PMID: 32226790 PMCID: PMC7080862 DOI: 10.3389/fmolb.2020.00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/07/2020] [Indexed: 11/13/2022] Open
Abstract
Diagnosis and management of bone and joint infections (BJI) is a challenging task. The high intra and inter patient's variability in terms of clinical presentation makes it impossible to rely on a systematic description or classical statistical analysis for its diagnosis. Advances can be achieved through a better understanding of the system behavior that results from the interactions between the components at a micro-scale level, which is difficult to mastered using traditional methods. Multiple studies from the literature report factors and interactions that affect the dynamics of the BJI system. The objectives of this study were (i) to perform a systematic review to identify relevant interactions between agents (cells, pathogens) and parameters values that characterize agents and interactions, and (ii) to develop a two dimensional computational model of the BJI system based on the results of the systematic review. The model would simulate the behavior resulting from the interactions on the cellular and molecular levels to explore the BJI dynamics, using an agent-based modeling approach. The BJI system's response to different microbial inoculum levels was simulated. The model succeeded in mimicking the dynamics of bacteria, the innate immune cells, and the bone mass during the first stage of infection and for different inoculum levels in a consistent manner. The simulation displayed the destruction in bone tissue as a result of the alteration in bone remodeling process during the infection. The model was used to generate different patterns of system behaviors that could be analyzed in further steps. Simulations results suggested evidence for the existence of latent infections. Finally, we presented a way to analyze and synthesize massive simulated data in a concise and comprehensive manner based on the semi-supervised identification of ordinary differential equations (ODE) systems. It allows to use the known framework for temporal and structural ODE analyses and therefore summarize the whole simulated system dynamical behavior. This first model is intended to be validated by in vivo or in vitro data and expected to generate hypotheses to be challenged by real data. Step by step, it can be modified and complexified based on the test/validation iteration cycles.
Collapse
Affiliation(s)
- Salma Alsassa
- Laboratory of Medical Information Processing (LaTIM - UMR 1101 INSERM), IBRS, Université de Bretagne Occidentale, Department of Medicine, Brest, France
- Tekliko SARL, Paris, France
| | - Thomas Lefèvre
- Iris UMR 8156 CNRS - U997 Inserm - EHESS - UP 13, Paris, France
- AP-HP, Jean Verdier Teaching Hospital, Department of Legal and Social Medicine, Bondy, France
| | | | - Eric Stindel
- Laboratory of Medical Information Processing (LaTIM - UMR 1101 INSERM), IBRS, Université de Bretagne Occidentale, Department of Medicine, Brest, France
- La Cavale Blanche University Hospital, Infection Diseases Unit, Brest, France
| | - Séverine Ansart
- Laboratory of Medical Information Processing (LaTIM - UMR 1101 INSERM), IBRS, Université de Bretagne Occidentale, Department of Medicine, Brest, France
- La Cavale Blanche University Hospital, Infection Diseases Unit, Brest, France
| |
Collapse
|
19
|
Lüthje FL, Jensen LK, Jensen HE, Skovgaard K. The inflammatory response to bone infection - a review based on animal models and human patients. APMIS 2020; 128:275-286. [PMID: 31976582 DOI: 10.1111/apm.13027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Bone infections are difficult to diagnose and treat, especially when a prosthetic joint replacement or implant is involved. Bone loss is a major complication of osteomyelitis, but the mechanism behind has mainly been investigated in cell cultures and has not been confirmed in human settings. Inflammation is important in initiating an appropriate immune response to invading pathogens. However, many of the signaling molecules used by the immune system can also modulate bone remodeling and contribute to bone resorption during osteomyelitis. Our current knowledge of the inflammatory response relies heavily on animal models as research based on human samples is scarce. Staphylococcus aureus is one of the most common causes of bone infections and is the pathogen of choice in animal models. The regulation of inflammatory genes during prosthetic joint infections and implant-associated osteomyelitis has only been studied in rodent models. It is important to consider the validity of an animal model when results are extrapolated to humans, and both bone composition and the immune system of pigs has been shown to be more similar to humans, than to rodents. Here in vivo studies on the inflammatory response to prosthetic joint infections and implant-associated osteomyelitis are reviewed.
Collapse
Affiliation(s)
- Freja Lea Lüthje
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Louise Kruse Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
20
|
Abstract
The inflammation of bone tissue is called osteomyelitis, and most cases are caused by an infection with the bacterium Staphylococcus aureus. To date, the bone-building cells, osteoblasts, have been implicated in the progression of these infections, but not much is known about how the bone-resorbing cells, osteoclasts, participate. In this study, we show that S. aureus can infect osteoclasts and proliferate inside these cells, whereas bone-residing macrophages, immune cells related to osteoclasts, destroy the bacteria. These findings elucidate a unique role for osteoclasts to harbor bacteria during infection, providing a possible mechanism by which bacteria could evade destruction by the immune system. Osteomyelitis (OM), or inflammation of bone tissue, occurs most frequently as a result of bacterial infection and severely perturbs bone structure. OM is predominantly caused by Staphylococcus aureus, and even with proper treatment, OM has a high rate of recurrence and chronicity. While S. aureus has been shown to infect osteoblasts, it remains unclear whether osteoclasts (OCs) are also a target of intracellular infection. Here, we demonstrate the ability of S. aureus to intracellularly infect and divide within OCs. OCs were differentiated from bone marrow macrophages (BMMs) by exposure to receptor activator of nuclear factor kappa-B ligand (RANKL). By utilizing an intracellular survival assay and flow cytometry, we found that at 18 h postinfection the intracellular burden of S. aureus increased dramatically in cells with at least 2 days of RANKL exposure, while the bacterial burden decreased in BMMs. To further explore the signals downstream of RANKL, we manipulated factors controlling OC differentiation, NFATc1 and alternative NF-κB, and found that intracellular bacterial growth correlates with NFATc1 levels in RANKL-treated cells. Confocal and time-lapse microscopy in mature OCs showed a range of intracellular infection that correlated inversely with S. aureus-phagolysosome colocalization. The propensity of OCs to become infected, paired with their diminished bactericidal capacity compared to BMMs, could promote OM progression by allowing S. aureus to evade initial immune regulation and proliferate at the periphery of lesions where OCs are most abundant.
Collapse
|
21
|
Brylka LJ, Schinke T. Chemokines in Physiological and Pathological Bone Remodeling. Front Immunol 2019; 10:2182. [PMID: 31572390 PMCID: PMC6753917 DOI: 10.3389/fimmu.2019.02182] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
The bone matrix is constantly remodeled by bone-resorbing osteoclasts and bone-forming osteoblasts. These two cell types are fundamentally different in terms of progenitor cells, mode of action and regulation by specific molecules, acting either systemically or locally. Importantly, there is increasing evidence for an impact of cell types or molecules of the adaptive and innate immune system on bone remodeling. Understanding these influences is the major goal of a novel research area termed osteoimmunology, which is of key relevance in the context of inflammation-induced bone loss, skeletal metastases, and diseases of impaired bone remodeling, such as osteoporosis. This review article aims at summarizing the current knowledge on one particular aspect of osteoimmunology, namely the impact of chemokines on skeletal cells in order to regulate bone remodeling under physiological and pathological conditions. Chemokines have key roles in the adaptive immune system by controlling migration, localization, and function of immune cells during inflammation. The vast majority of chemokines are divided into two subgroups based on the pattern of cysteine residues. More specifically, there are 27 known C-C-chemokines, binding to 10 different C-C receptors, and 17 known C-X-C-chemokines binding to seven different C-X-C receptors. Three additional chemokines do not fall into this category, and only one of them, i.e., CX3CL1, has been shown to influence bone remodeling cell types. There is a large amount of published studies demonstrating specific effects of certain chemokines on differentiation and function of osteoclasts and/or osteoblasts. Chemokine signaling by skeletal cells or by other cells of the bone marrow niche regulates bone formation and resorption through autocrine and paracrine mechanisms. In vivo evidence from mouse deficiency models strongly supports the role of certain chemokine signaling pathways in bone remodeling. We will summarize these data in the present review with a special focus on the most established subsets of chemokines. In combination with the other review articles of this issue, the knowledge presented here confirms that there is a physiologically relevant crosstalk between the innate immune system and bone remodeling cell types, whose molecular understanding is of high clinical relevance.
Collapse
Affiliation(s)
- Laura J Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
22
|
Mödinger Y, Löffler B, Huber-Lang M, Ignatius A. Complement involvement in bone homeostasis and bone disorders. Semin Immunol 2018; 37:53-65. [DOI: 10.1016/j.smim.2018.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
23
|
Maltby S, Lochrin AJ, Bartlett B, Tay HL, Weaver J, Poulton IJ, Plank MW, Rosenberg HF, Sims NA, Foster PS. Osteoblasts Are Rapidly Ablated by Virus-Induced Systemic Inflammation following Lymphocytic Choriomeningitis Virus or Pneumonia Virus of Mice Infection in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:632-642. [PMID: 29212906 PMCID: PMC5760340 DOI: 10.4049/jimmunol.1700927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/07/2017] [Indexed: 11/19/2022]
Abstract
A link between inflammatory disease and bone loss is now recognized. However, limited data exist on the impact of virus infection on bone loss and regeneration. Bone loss results from an imbalance in remodeling, the physiological process whereby the skeleton undergoes continual cycles of formation and resorption. The specific molecular and cellular mechanisms linking virus-induced inflammation to bone loss remain unclear. In the current study, we provide evidence that infection of mice with either lymphocytic choriomeningitis virus (LCMV) or pneumonia virus of mice (PVM) resulted in rapid and substantial loss of osteoblasts from the bone surface. Osteoblast ablation was associated with elevated levels of circulating inflammatory cytokines, including TNF-α, IFN-γ, IL-6, and CCL2. Both LCMV and PVM infections resulted in reduced osteoblast-specific gene expression in bone, loss of osteoblasts, and reduced serum markers of bone formation, including osteocalcin and procollagen type 1 N propeptide. Infection of Rag-1-deficient mice (which lack adaptive immune cells) or specific depletion of CD8+ T lymphocytes limited osteoblast loss associated with LCMV infection. By contrast, CD8+ T cell depletion had no apparent impact on osteoblast ablation in association with PVM infection. In summary, our data demonstrate dramatic loss of osteoblasts in response to virus infection and associated systemic inflammation. Further, the inflammatory mechanisms mediating viral infection-induced bone loss depend on the specific inflammatory condition.
Collapse
Affiliation(s)
- Steven Maltby
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia;
| | - Alyssa J Lochrin
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia
| | - Bianca Bartlett
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia
| | - Jessica Weaver
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia
| | - Ingrid J Poulton
- St. Vincent's Institute of Medical Research, The Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia; and
| | - Maximilian W Plank
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, The Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia; and
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, New South Wales 2305, Australia;
| |
Collapse
|
24
|
Wagner JM, Jaurich H, Wallner C, Abraham S, Becerikli M, Dadras M, Harati K, Duhan V, Khairnar V, Lehnhardt M, Behr B. Diminished bone regeneration after debridement of posttraumatic osteomyelitis is accompanied by altered cytokine levels, elevated B cell activity, and increased osteoclast activity. J Orthop Res 2017; 35:2425-2434. [PMID: 28263017 DOI: 10.1002/jor.23555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/27/2017] [Indexed: 02/04/2023]
Abstract
Osteomyelitis is a frequent consequence of open fractures thus representing a common bone infection with subsequent alteration of bone regeneration. Impaired bone homeostasis provokes serious variations in the bone remodeling process, thereby involving multiple inflammatory cytokines to activate bone healing. Our previously established mouse model of posttraumatic osteomyelitis provides the chance to study regulation of selected cytokines after surgical debridement of osteomyelitis thus illustrating the course of initial infectious recovery. An inflammatory cytokine array revealed specifically upregulated cytokines in debrided animals after bone infection, that were verified by Western blot analysis, identifying increased levels of CCL2, CCL3, and CXCL2. Increased osteoclastogenesis after debridement of osteomyelitis was demonstrated by Calcitonin-receptor and RANKL detection via immunohistochemical and -fluorescence stainings. The substantial protein analysis was complemented by uncovering diminished osteogenesis and proliferation in debrided group, tracking Osteocalcin, RUNX2, and PCNA expression. Interestingly TNF-α expression seemed to have no effect on altered bone regeneration after bone infection. Additional flow cytometry analysis proved elevated B cell activity, subsequently increased osteoclast activity and accelerated bone resorption. Based on the variety of severely altered cytokines, we propose a RANKL-dependent osteoclastogenesis after debridement of osteomyelitis coinciding with elevated B cells and simultaneously decreased osteogenesis. A comprehensive understanding of these mechanisms provides new therapeutic options of osteomyelitis cure and is of great importance in prospective medical treatment. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2425-2434, 2017.
Collapse
Affiliation(s)
- Johannes M Wagner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-camp Platz 1, 44789, Bochum, Germany
| | - Henriette Jaurich
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-camp Platz 1, 44789, Bochum, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-camp Platz 1, 44789, Bochum, Germany
| | - Stephanie Abraham
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-camp Platz 1, 44789, Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-camp Platz 1, 44789, Bochum, Germany
| | - Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-camp Platz 1, 44789, Bochum, Germany
| | - Kamran Harati
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-camp Platz 1, 44789, Bochum, Germany
| | - Vikas Duhan
- Institute of Immunology, University Hospital Essen, Essen, Germany
| | - Vishal Khairnar
- Institute of Immunology, University Hospital Essen, Essen, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-camp Platz 1, 44789, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-camp Platz 1, 44789, Bochum, Germany
| |
Collapse
|
25
|
Zhou Z, Pan C, Lu Y, Gao Y, Liu W, Yin P, Yu X. Combination of Erythromycin and Curcumin Alleviates Staphylococcus aureus Induced Osteomyelitis in Rats. Front Cell Infect Microbiol 2017; 7:379. [PMID: 28884090 PMCID: PMC5573719 DOI: 10.3389/fcimb.2017.00379] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022] Open
Abstract
Osteomyelitis is commonly caused by Staphylococcus aureus. Both erythromycin and curcumin can suppress S. aureus growth, but their roles in osteomyelitis are barely studied. We aim to explore the activities of erythromycin and curcumin against chronical osteomyelitis induced by methicillin-resistant S. aureus (MRSA). Chronicle implant-induced osteomyelitis was established by MRSA infection in male Wistar rats. Four weeks after bacterial inoculation, rats received no treatment, erythromycin monotherapy, curcumin monotherapy, or erythromycin plus curcumin twice daily for 2 weeks. Bacterial levels, bone infection status, inflammatory signals and side effects were evaluated. Rats tolerated all treatments well, with no death or side effects such as, diarrhea and weight loss. Two days after treatment completion, erythromycin monotherapy did not suppress bacterial growth and had no effect in bone infection, although it reduced serum pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6. Curcumin monotherapy slightly suppressed bacterial growth, alleviated bone infection and reduced TNF-α and IL-6. Erythromycin and curcumin combined treatment markedly suppressed bacterial growth, substantially alleviated bone infection and reduced TNF-α and IL-6. Combination of erythromycin and curcumin lead a much stronger efficiency against MRSA induced osteomyelitis in rats than monotherapy. Our study suggests that erythromycin and curcumin could be a new combination for treating MRSA induced osteomyelitis.
Collapse
Affiliation(s)
- Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai, China
| | - Chenhao Pan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai, China
| | - Ye Lu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai, China
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai, China
| | - Wei Liu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai, China
| | - Peipei Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai, China
| |
Collapse
|
26
|
Silva TA, Garlet GP, Fukada SY, Silva JS, Cunha FQ. Chemokines in Oral Inflammatory Diseases: Apical Periodontitis and Periodontal Disease. J Dent Res 2016; 86:306-19. [PMID: 17384024 DOI: 10.1177/154405910708600403] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The inflammatory oral diseases are characterized by the persistent migration of polymorphonuclear leukocytes, monocytes, lymphocytes, plasma and mast cells, and osteoblasts and osteoclasts. In the last decade, there has been a great interest in the mediators responsible for the selective recruitment and activation of these cell types at inflammatory sites. Of these mediators, the chemokines have received particular attention in recent years. Chemokine messages are decoded by specific receptors that initiate signal transduction events, leading to a multitude of cellular responses, including chemotaxis and activation of inflammatory and bone cells. However, little is known about their role in the pathogenesis of inflammatory oral diseases. The purpose of this review is to summarize the findings regarding the role of chemokines in periapical and periodontal tissue inflammation, and the integration, into experimental models, of the information about the role of chemokines in human diseases.
Collapse
Affiliation(s)
- T A Silva
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CEP 31.270-901, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | | | |
Collapse
|
27
|
In Vitro Co-Culture Models of Breast Cancer Metastatic Progression towards Bone. Int J Mol Sci 2016; 17:ijms17091405. [PMID: 27571063 PMCID: PMC5037685 DOI: 10.3390/ijms17091405] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/10/2016] [Accepted: 08/19/2016] [Indexed: 12/27/2022] Open
Abstract
Advanced breast cancer frequently metastasizes to bone through a multistep process involving the detachment of cells from the primary tumor, their intravasation into the bloodstream, adhesion to the endothelium and extravasation into the bone, culminating with the establishment of a vicious cycle causing extensive bone lysis. In recent years, the crosstalk between tumor cells and secondary organs microenvironment is gaining much attention, being indicated as a crucial aspect in all metastatic steps. To investigate the complex interrelation between the tumor and the microenvironment, both in vitro and in vivo models have been exploited. In vitro models have some advantages over in vivo, mainly the possibility to thoroughly dissect in controlled conditions and with only human cells the cellular and molecular mechanisms underlying the metastatic progression. In this article we will review the main results deriving from in vitro co-culture models, describing mechanisms activated in the crosstalk between breast cancer and bone cells which drive the different metastatic steps.
Collapse
|
28
|
Becker SC, Roach DR, Chauhan VS, Shen Y, Foster-Frey J, Powell AM, Bauchan G, Lease RA, Mohammadi H, Harty WJ, Simmons C, Schmelcher M, Camp M, Dong S, Baker JR, Sheen TR, Doran KS, Pritchard DG, Almeida RA, Nelson DC, Marriott I, Lee JC, Donovan DM. Triple-acting Lytic Enzyme Treatment of Drug-Resistant and Intracellular Staphylococcus aureus. Sci Rep 2016; 6:25063. [PMID: 27121552 PMCID: PMC4848530 DOI: 10.1038/srep25063] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
Multi-drug resistant bacteria are a persistent problem in modern health care, food safety and animal health. There is a need for new antimicrobials to replace over used conventional antibiotics. Here we describe engineered triple-acting staphylolytic peptidoglycan hydrolases wherein three unique antimicrobial activities from two parental proteins are combined into a single fusion protein. This effectively reduces the incidence of resistant strain development. The fusion protein reduced colonization by Staphylococcus aureus in a rat nasal colonization model, surpassing the efficacy of either parental protein. Modification of a triple-acting lytic construct with a protein transduction domain significantly enhanced both biofilm eradication and the ability to kill intracellular S. aureus as demonstrated in cultured mammary epithelial cells and in a mouse model of staphylococcal mastitis. Interestingly, the protein transduction domain was not necessary for reducing the intracellular pathogens in cultured osteoblasts or in two mouse models of osteomyelitis, highlighting the vagaries of exactly how protein transduction domains facilitate protein uptake. Bacterial cell wall degrading enzyme antimicrobials can be engineered to enhance their value as potent therapeutics.
Collapse
Affiliation(s)
| | | | | | - Yang Shen
- Institute for Bioscience and Biotechnology Research, University of MD, Rockville, MD, USA.,Department of Veterinary Medicine, University of MD, College Park, MD, USA
| | | | | | - Gary Bauchan
- ARS, USDA, 10300 Baltimore Ave, Beltsville, MD, USA
| | | | | | | | - Chad Simmons
- ARS, USDA, 10300 Baltimore Ave, Beltsville, MD, USA
| | | | - Mary Camp
- ARS, USDA, 10300 Baltimore Ave, Beltsville, MD, USA
| | - Shengli Dong
- Biochemistry, Univ. Alabama, Birmingham, Birmingham, AL, USA
| | - John R Baker
- Biochemistry, Univ. Alabama, Birmingham, Birmingham, AL, USA
| | | | - Kelly S Doran
- Biology, San Diego State University, San Diego, CA, USA
| | | | | | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of MD, Rockville, MD, USA.,Department of Veterinary Medicine, University of MD, College Park, MD, USA
| | - Ian Marriott
- Biology, Univ. North Carolina, Charlotte, Charlotte, NC, USA
| | - Jean C Lee
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
29
|
Lovati AB, Bottagisio M, de Vecchi E, Gallazzi E, Drago L. Animal Models of Implant-Related Low-Grade Infections. A Twenty-Year Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 971:29-50. [PMID: 27718217 DOI: 10.1007/5584_2016_157] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The demand for joint replacement and surgical treatment is continuously increasing, thus representing a clinical burden and a cost for the healthcare system. Among several pathogens involved in implant-related infections, staphylococci account for the two-thirds of clinically isolated bacteria. Despite most of them are highly virulent microorganisms (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa), low virulent bacteria (Staphylococcus epidermidis, Propionibacterium acnes) are responsible for delayed, low-grade infections without specific clinical signs and hardly distinguishable from aseptic prosthetic failure. Therefore, there is a real need to study the pathogenesis of orthopedic infections through in vivo animal models. The present review of the literature provides a 20-year overview of animal models of acute, subclinical or chronic orthopedic infections according to the pathogen virulence and inocula. Through this analysis, a great variety of conditions in terms of bacterial strains and inocula emerged, thus encouraging the development of more reproducible in vivo studies to provide relevant information for a translational approach to humans.
Collapse
Affiliation(s)
- Arianna Barbara Lovati
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopedic Institute, via R. Galeazzi 4, 20161, Milan, Italy.
| | - Marta Bottagisio
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopedic Institute, via R. Galeazzi 4, 20161, Milan, Italy.,Department of Veterinary Medicine, University of Milan, via Celoria 10, 20133, Milan, Italy
| | - Elena de Vecchi
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopedic Institute, via R. Galeazzi 4, 20161, Milan, Italy
| | - Enrico Gallazzi
- Department of Reconstructive Surgery of Osteo-articular Infections C.R.I.O. Unit, IRCCS Galeazzi Orthopedic Institute, via R. Galeazzi 4, 20161, Milan, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopedic Institute, via R. Galeazzi 4, 20161, Milan, Italy.,Department of Biomedical Science for Health, University of Milan, via L. Mangiagalli 31, 20133, Milan, Italy
| |
Collapse
|
30
|
Crémet L, Broquet A, Brulin B, Jacqueline C, Dauvergne S, Brion R, Asehnoune K, Corvec S, Heymann D, Caroff N. Pathogenic potential of Escherichia coli clinical strains from orthopedic implant infections towards human osteoblastic cells. Pathog Dis 2015; 73:ftv065. [PMID: 26333570 DOI: 10.1093/femspd/ftv065] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 01/18/2023] Open
Abstract
Escherichia coli is one of the first causes of Gram-negative orthopedic implant infections (OII), but little is known about the pathogenicity of this species in such infections that are increasing due to the ageing of the population. We report how this pathogen interacts with human osteoblastic MG-63 cells in vitro, by comparing 20 OII E. coli strains to two Staphylococcus aureus and two Pseudomonas aeruginosa strains. LDH release assay revealed that 6/20 (30%) OII E. coli induced MG-63 cell lysis whereas none of the four control strains was cytotoxic after 4 h of coculture. This high cytotoxicity was associated with hemolytic properties and linked to hlyA gene expression. We further showed by gentamicin protection assay and confocal microscopy that the non-cytotoxic E. coli were not able to invade MG-63 cells unlike S. aureus strains (internalization rate <0.01% for the non-cytotoxic E. coli versus 8.88 ± 2.31% and 4.60 ± 0.42% for both S. aureus). The non-cytotoxic E. coli also demonstrated low adherence rates (<7%), the most adherent E. coli eliciting higher IL-6 and TNF-α mRNA expression in the osteoblastic cells. Either highly cytotoxic or slightly invasive OII E. coli do not show the same infection strategies as S. aureus towards osteoblasts.
Collapse
Affiliation(s)
- Lise Crémet
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France Department of Bacteriology-Hygiene, Nantes University Hospital, F-44000 Nantes, France
| | - Alexis Broquet
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Bénédicte Brulin
- INSERM, UMR 957, Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Cédric Jacqueline
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Sandie Dauvergne
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Régis Brion
- INSERM, UMR 957, Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Karim Asehnoune
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France Department of Bacteriology-Hygiene, Nantes University Hospital, F-44000 Nantes, France INSERM, UMR 957, Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France Intensive Care Unit, Anesthesia and Critical Care Department, Nantes University Hospital, F-44000 Nantes, France
| | - Stéphane Corvec
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France Department of Bacteriology-Hygiene, Nantes University Hospital, F-44000 Nantes, France
| | - Dominique Heymann
- INSERM, UMR 957, Pathophysiology of Bone Resorption Laboratory and Therapy of Primary Bone Tumors, Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| | - Nathalie Caroff
- UPRES EA3826, Laboratory of Clinical and Experimental Therapeutics of Infections., Medicine Faculty, University of Nantes, 1, rue G. Veil, F-44000 Nantes, France
| |
Collapse
|
31
|
Mesenchymal stromal cell implantation for stimulation of long bone healing aggravates Staphylococcus aureus induced osteomyelitis. Acta Biomater 2015; 21:165-77. [PMID: 25805108 DOI: 10.1016/j.actbio.2015.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/05/2015] [Accepted: 03/17/2015] [Indexed: 01/08/2023]
Abstract
Large bone defects requiring long-term osteosynthetic stabilization or repeated surgeries show a considerable rate of infection. Mesenchymal stromal cells (MSCs) have been successfully used to enhance bone regeneration, but their powerful immunomodulatory effects may impose an enhanced risk for osteomyelitis development. In order to unravel whether implantation of MSCs aggravates a simultaneous bone infection, a hydrogel-supported osteomyelitis ostectomy model was developed in which rats received a femoral bone defect with rigid plate-fixation. After fibrin-assisted transfer of Staphylococcus aureus (SA), effects of MSC implantation on osteomyelitis development were quantified over 3-4 weeks. All SA-infected animals developed an acute local osteomyelitis with significantly increased blood neutrophil count, abscess formation and bone destruction. MSC-treatment of infected defects aggravated osteomyelitis according to a significantly elevated osteomyelitis score and enhanced distal bone loss with spongy alteration of cortical bone architecture. Increased attraction of macrophages, osteoclasts and regulation of pro- and anti-inflammatory mediators were potential MSC actions. Overall trophic actions of MSCs implanted into non-sterile bone defects may enhance an infection and/or exacerbate osteomyelitis. Studies on antibiotic carrier augmentation or antibiotic treatment are warranted to decide whether MSC implantation is a safe and promising therapy for orthopedic implant-stabilized bone defects at high risk for development of infection.
Collapse
|
32
|
Hamza T, Li B. Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection. BMC Microbiol 2014; 14:207. [PMID: 25059520 PMCID: PMC4116603 DOI: 10.1186/s12866-014-0207-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is one of the primary causes of bone infections which are often chronic and difficult to eradicate. Bacteria like S. aureus may survive upon internalization in cells and may be responsible for chronic and recurrent infections. In this study, we compared the responses of a phagocytic cell (i.e. macrophage) to a non-phagocytic cell (i.e. osteoblast) upon S. aureus internalization. RESULTS We found that upon internalization, S. aureus could survive for up to 5 and 7 days within macrophages and osteoblasts, respectively. Significantly more S. aureus was internalized in macrophages compared to osteoblasts and a significantly higher (100 fold) level of live intracellular S. aureus was detected in macrophages compared to osteoblasts. However, the percentage of S. aureus survival after infection was significantly lower in macrophages compared to osteoblasts at post-infection days 1-6. Interestingly, macrophages had relatively lower viability in shorter infection time periods (i.e. 0.5-4 h; significant at 2 h) but higher viability in longer infection time periods (i.e. 6-8 h; significant at 8 h) compared to osteoblasts. In addition, S. aureus infection led to significant changes in reactive oxygen species production in both macrophages and osteoblasts. Moreover, infected osteoblasts had significantly lower alkaline phosphatase activity at post-infection day 7 and infected macrophages had higher phagocytosis activity compared to non-infected cells. CONCLUSIONS S. aureus was found to internalize and survive within osteoblasts and macrophages and led to differential responses between osteoblasts and macrophages. These findings may assist in evaluation of the pathogenesis of chronic and recurrent infections which may be related to the intracellular persistence of bacteria within host cells.
Collapse
Affiliation(s)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown 26506, WV, USA.
| |
Collapse
|
33
|
The macrophage inflammatory proteins MIP1α (CCL3) and MIP2α (CXCL2) in implant-associated osteomyelitis: linking inflammation to bone degradation. Mediators Inflamm 2014; 2014:728619. [PMID: 24795505 PMCID: PMC3984830 DOI: 10.1155/2014/728619] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/18/2014] [Indexed: 12/22/2022] Open
Abstract
Bacterial infections of bones remain a serious complication of endoprosthetic surgery. These infections are difficult to treat, because many bacterial species form biofilms on implants, which are relatively resistant towards antibiotics. Bacterial biofilms elicit a progressive local inflammatory response, resulting in tissue damage and bone degradation. In the majority of patients, replacement of the prosthesis is required. To address the question of how the local inflammatory response is linked to bone degradation, tissue samples were taken during surgery and gene expression of the macrophage inflammatory proteins MIP1α (CCL3) and MIP2α (CXCL2) was assessed by quantitative RT-PCR. MIPs were expressed predominantly at osteolytic sites, in close correlation with CD14 which was used as marker for monocytes/macrophages. Colocalisation of MIPs with monocytic cells could be confirmed by histology. In vitro experiments revealed that, aside from monocytic cells, also osteoblasts were capable of MIP production when stimulated with bacteria; moreover, CCL3 induced the differentiation of monocytes to osteoclasts. In conclusion, the multifunctional chemokines CCL3 and CXCL2 are produced locally in response to bacterial infection of bones. In addition to their well described chemokine activity, these cytokines can induce generation of bone resorbing osteoclasts, thus providing a link between bacterial infection and osteolysis.
Collapse
|
34
|
Reizner W, Hunter J, O’Malley N, Southgate R, Schwarz E, Kates S. A systematic review of animal models for Staphylococcus aureus osteomyelitis. Eur Cell Mater 2014; 27:196-212. [PMID: 24668594 PMCID: PMC4322679 DOI: 10.22203/ecm.v027a15] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Staphylococcus aureus (S. aureus) osteomyelitis is a significant complication for orthopaedic patients undergoing surgery, particularly with fracture fixation and arthroplasty. Given the difficulty in studying S. aureus infections in human subjects, animal models serve an integral role in exploring the pathogenesis of osteomyelitis, and aid in determining the efficacy of prophylactic and therapeutic treatments. Animal models should mimic the clinical scenarios seen in patients as closely as possible to permit the experimental results to be translated to the corresponding clinical care. To help understand existing animal models of S. aureus, we conducted a systematic search of PubMed and Ovid MEDLINE to identify in vivo animal experiments that have investigated the management of S. aureus osteomyelitis in the context of fractures and metallic implants. In this review, experimental studies are categorised by animal species and are further classified by the setting of the infection. Study methods are summarised and the relevant advantages and disadvantages of each species and model are discussed. While no ideal animal model exists, the understanding of a model's strengths and limitations should assist clinicians and researchers to appropriately select an animal model to translate the conclusions to the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | - S.L. Kates
- Address for correspondence: Stephen L. Kates, 601 Elmwood Ave, Box 665, Rochester, NY 14642, USA,
| |
Collapse
|
35
|
Nakao J, Fujii Y, Kusuyama J, Bandow K, Kakimoto K, Ohnishi T, Matsuguchi T. Low-intensity pulsed ultrasound (LIPUS) inhibits LPS-induced inflammatory responses of osteoblasts through TLR4-MyD88 dissociation. Bone 2014; 58:17-25. [PMID: 24091132 DOI: 10.1016/j.bone.2013.09.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 11/24/2022]
Abstract
Previous reports have shown that osteoblasts are mechano-sensitive. Low-intensity pulsed ultrasound (LIPUS) induces osteoblast differentiation and is an established therapy for bone fracture. Here we have examined how LIPUS affects inflammatory responses of osteoblasts to LPS. LPS rapidly induced mRNA expression of several chemokines including CCL2, CXCL1, and CXCL10 in both mouse osteoblast cell line and calvaria-derived osteoblasts. Simultaneous treatment by LIPUS significantly inhibited mRNA induction of CXCL1 and CXCL10 by LPS. LPS-induced phosphorylation of ERKs, p38 kinases, MEK1/2, MKK3/6, IKKs, TBK1, and Akt was decreased in LIPUS-treated osteoblasts. Furthermore, LIPUS inhibited the transcriptional activation of NF-κB responsive element and Interferon-sensitive response element (ISRE) by LPS. In a transient transfection experiment, LIPUS significantly inhibited TLR4-MyD88 complex formation. Thus LIPUS exerts anti-inflammatory effects on LPS-stimulated osteoblasts by inhibiting TLR4 signal transduction.
Collapse
Affiliation(s)
- Juna Nakao
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Staphylococcus aureus supernatant induces the release of mouse β-defensin-14 from osteoblasts via the p38 MAPK and NF-κB pathways. Int J Mol Med 2013; 31:1484-94. [PMID: 23588388 DOI: 10.3892/ijmm.2013.1346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/03/2013] [Indexed: 11/05/2022] Open
Abstract
Mammalian β-defensins are small cationic peptides of approximately 2-6 kDa that have been implicated in mediating innate immune defenses against microbial infection. Previous studies have reported that mouse β-defensin-14 (MBD‑14), based on structural and functional similarities, appears to be an ortholog of human β-defensin-3 (HBD-3). The aim of this study was to identify the signaling pathways that contribute to the expression of MBD-14 in mouse osteoblasts (OBs) upon contact with methicillin-resistant Staphylococcus aureus (S. aureus) supernatant (SAS) to provide a theoretical basis for the use of MDB-14 as a therapeutic agent in the treatment of intramedullary infection with S. aureus in vivo. The bacterial exoproducts released by S. aureus mainly include a large amount of enterotoxins. Using mouse OBs, the release and regulation of MBD-14 was evaluated by real-time polymerase chain reaction (PCR) and enzyme‑linked immunosorbent assay (ELISA) following exposure to SAS. The activation of the p38 mitogen‑activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) and nuclear factor-κB (NF-κB) pathways was determined by western blot analysis. OBs treated with lipopolysaccharide (LPS) were used as the positive control. The results revealed that SAS significantly promoted the phosphorylation of p38 MAPK, NF-κB and the inhibitory subunit of NF-κBα (IκBα) in a time-dependent manner. The treatment of OBs with SB203580 (an inhibitor of p38 MAPK) and pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB) prior to stimulation with SAS significantly inhibited the phosphorylation and mRNA expression of p38 MAPK and NF-κB p65, simultaneously reducing the release of MBD-14. Our findings suggest that the release of MBD-14 is mediated at least in part through the activation of p38 MAPK and NF-κB in response to S. aureus‑secreted bacterial exoproducts. Moreover, our data demonstrate the innate immune capacity of OBs under conditions of bacterial challenge to enhance the local expression of this MBD-14, a peptide with anti‑staphylococcal activity.
Collapse
|
37
|
Nyazee HA, Finney KM, Sarikonda M, Towler DA, Johnson JE, Babcock HM. Diabetic foot osteomyelitis: bone markers and treatment outcomes. Diabetes Res Clin Pract 2012; 97:411-7. [PMID: 22542519 PMCID: PMC3622462 DOI: 10.1016/j.diabres.2012.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/27/2012] [Accepted: 04/02/2012] [Indexed: 01/17/2023]
Abstract
AIMS Novel bone turnover markers could help with the diagnosis and monitoring of osteomyelitis patients. We compared levels of two bone turnover markers, serum amino-terminal telopeptides (NTx) and bone alkaline phosphatase (BAP), in diabetic patients with and without osteomyelitis. METHODS Matched case-control study was conducted with diabetic patients with and without osteomyelitis. Cases not undergoing immediate amputation were followed with repeat measurements after osteomyelitis treatment and for outcome determination. RESULTS Analysis included 54 subjects, 27 cases and 27 controls. Median BAP levels were similar between cases and controls at enrollment (p=.55) as were median NTx levels (p=.43). Cases with follow-up data (n=18) had similar bone marker levels at enrollment and 6 weeks. No significant differences in BAP or NTx levels at enrollment or follow-up were seen between cases with poor versus favorable outcomes. CONCLUSIONS No differences in NTx or BAP levels were seen between cases and controls. Cases with follow-up data had similar levels at enrollment and 6 weeks. Lack of difference may be due to small sample size, small areas of bone involved in foot osteomyelitis, or limitations of these specific markers. More research is needed.
Collapse
Affiliation(s)
- Humaa A. Nyazee
- Division of Infectious Diseases, Washington University School of Medicine, St.Louis, MO
| | - Kristina M. Finney
- Division of Infectious Diseases, Washington University School of Medicine, St.Louis, MO
| | - Molly Sarikonda
- Division of Infectious Diseases, Washington University School of Medicine, St.Louis, MO
| | - Dwight A. Towler
- Division of Endocrinology and Metabolism, Washington University School of Medicine, St.Louis, MO
| | - Jeffrey E. Johnson
- Department of Orthopedic Surgery, Washington University School of Medicine, St.Louis, MO
| | - Hilary M. Babcock
- Division of Infectious Diseases, Washington University School of Medicine, St.Louis, MO
| |
Collapse
|
38
|
Sparnell A, Aniket, El-Ghannam A. Machining of a bioactive nanocomposite orthopedic fixation device. J Biomed Mater Res B Appl Biomater 2012; 100:1545-55. [DOI: 10.1002/jbm.b.32723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/21/2012] [Accepted: 03/31/2012] [Indexed: 01/28/2023]
|
39
|
Ning RD, Zhang XL, Li QT, Guo XK. The effect of Staphylococcus aureus on apoptosis of cultured human osteoblasts. Orthop Surg 2012; 3:199-204. [PMID: 22009652 DOI: 10.1111/j.1757-7861.2011.00146.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE To investigate the effect of Staphylococcus aureus (S. aureus) on cultured human osteoblast apoptosis and the corresponding mode of action. METHODS Transmission electron microscopy (TEM), assessment of DNA laddering, and flow cytometry assays were used to investigate human osteoblast apoptosis following infection with S. aureus. RESULTS TEM examination and DNA laddering assessment indicated that S. aureus can induce cultured human osteoblast apoptosis. Flow cytometry assays showed that human osteoblast apoptosis occurs in a dose-dependent manner following infection with S. aureus. In addition, compared with under co-culture conditions, inhibition of invasion by S. aureus resulted in a 64.62% reduction in the percentage of early apoptotic cells (P < 0.01); 7.09% ± 1.21% of human osteoblasts under indirect co-culture with S. aureus at a multiplicity of infection of 250 showed an early apoptotic profile compared with uninfected controls(P < 0.01). CONCLUSIONS S. aureus induces cultured human osteoblast apoptosis in a dose-dependent manner. Intracellular S. aureus is mainly responsible for cultured human osteoblast apoptosis following infection; secreted soluble factor(s) of S. aureus playing a minor role in this process.
Collapse
Affiliation(s)
- Ren-de Ning
- Department of Orthopaedics, the Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | | | | |
Collapse
|
40
|
Shi S, Zhang X. Interaction of Staphylococcus aureus with osteoblasts (Review). Exp Ther Med 2011; 3:367-370. [PMID: 22969897 DOI: 10.3892/etm.2011.423] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/22/2011] [Indexed: 02/02/2023] Open
Abstract
Orthopedic infection is refractory to cure. Staphylococcus aureus (S. aureus) is the main causative pathogen responsible for orthopedic infection. S. aureus is capable of not only colonizing bone matrix, but also invading osteoblasts, which may play a significant role in the persistence and recurrence of osteomyelitis. Internalization requires the involvement of cytoskeletal elements, including actin microfilaments, microtubules and clathrin-coated pits. Microfilaments are most significant in the invasion process. S. aureus is capable of remaining alive in osteoblasts for a long period of time. Decreased sensitivity to antibiotics capable of penetrating host cells increases the difficulties of eradicating S. aureus. Osteoblasts, invaded by S. aureus, play a significant role in the initiation and maintenance of inflammatory immune responses. These osteoblasts recruit leukocytes and phagocytes to the site of inflammation via the expression of cytokines. Apoptosis is observed in osteoblasts invaded by S. aureus. Recruitment of osteoclasts and other immunocytes plays a crucial role in the resorption and destruction of bone.
Collapse
Affiliation(s)
- Sifeng Shi
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital, Jiao Tong University, Shanghai, P.R. China
| | | |
Collapse
|
41
|
Establishment of a real-time, quantitative, and reproducible mouse model of Staphylococcus osteomyelitis using bioluminescence imaging. Infect Immun 2011; 80:733-41. [PMID: 22104103 DOI: 10.1128/iai.06166-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Osteomyelitis remains a serious problem in the orthopedic field. There are only a few animal models in which the quantity and distribution of bacteria can be reproducibly traced. Here, we established a real-time quantitative mouse model of osteomyelitis using bioluminescence imaging (BLI) without sacrificing the animals. A bioluminescent strain of Staphylococcus aureus was inoculated into the femurs of mice. The bacterial photon intensity (PI) was then sequentially measured by BLI. Serological and histological analyses of the mice were performed. The mean PI peaked at 3 days, and stable signals were maintained for over 3 months after inoculation. The serum levels of interleukin-6, interleukin-1β, and C-reactive protein were significantly higher in the infected mice than in the control mice on day 7. The serum monocyte chemotactic protein 1 level was also significantly higher in the infected group at 12 h than in the control group. A significantly higher proportion of granulocytes was detected in the peripheral blood of the infected group after day 7. Additionally, both acute and chronic histological manifestations were observed in the infected group. This model is useful for elucidating the pathophysiology of both acute and chronic osteomyelitis and to assess the effects of novel antibiotics or antibacterial implants.
Collapse
|
42
|
Ning R, Zhang X, Guo X, Li Q. Staphylococcus aureus regulates secretion of interleukin-6 and monocyte chemoattractant protein-1 through activation of nuclear factor kappaB signaling pathway in human osteoblasts. Braz J Infect Dis 2011; 15:189-94. [PMID: 21670915 DOI: 10.1016/s1413-8670(11)70173-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE Activation of nuclear factor kappaB by diverse bacteria regulates the secretion of chemokines and cytokines. Staphylococcus aureus (S. aureus)-infected osteoblasts can significantly increase the secretion of interleukin-6 and monocyte chemoattractant protein-1. The aim of this study was to investigate whether S. aureus can activate nuclear factor kappaB in human osteoblasts, and whether the activation of nuclear factor kappaB by S. aureus regulates the secretion of interleukin-6 and monocyte chemoattractant protein-1. METHODS Immunoblot and electrophoretic mobility shift assay were used to detect the degradation of IκBa and activation of nuclear factor kappaB in human osteoblasts in response to S. aureus, respectively. Enzyme-linked immunosorbent assay was used to measure the secretion of interleukin-6 and monocyte chemoattractant protein-1 in the supernatants. Lastly, carbobenzoxyl-l-leucinyl-l-leucinyl-l-leucinal, an inhibitor of the nuclear factor kappaB, was used to determine if activation of nuclear factor kappaB by S. aureus in human osteoblasts regulates the secretions of interleukin-6 and monocyte chemoattractant protein-1. RESULTS Our results for the first time demonstrated that S. aureus can induce the degradation of IκBa and activation of nuclear factor kappaB in human osteoblasts in a time and dose-dependent manner. In addition, inhibition of nuclear factor kappaB by carbobenzoxyl-l-leucinyl-l-leucinyl-l-leucinal suppressed the secretion of interleukin-6 and monocyte chemoattractant protein-1 in the supernatants of S. aureus-infected human osteoblasts in a dose-dependent manner. CONCLUSION These findings suggest that S. aureus can activate nuclear factor kappaB in human osteoblasts, and subsequently regulate the secretion of interleukin-6 and monocyte chemoattractant protein-1. The nuclear factor kappaB transcription factor regulates a number of genes involved in a wide variety of biological processes. Further study of the effects of nuclear factor kappaB activation on S. aureus-infected human osteoblast may provide us new insights into discovery of the immune mechanisms in osteomyelitis.
Collapse
Affiliation(s)
- Rende Ning
- Department of Orthopaedics, The Sixth People's Hospital Affiliated, Shanghai Jiao Tong University, China
| | | | | | | |
Collapse
|
43
|
Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, Chadee K, Vallance BA. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 2010; 6:e1000902. [PMID: 20485566 PMCID: PMC2869315 DOI: 10.1371/journal.ppat.1000902] [Citation(s) in RCA: 469] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 04/08/2010] [Indexed: 12/20/2022] Open
Abstract
Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2−/−) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2−/− mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2−/− vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2−/− mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2−/− vs. WT mice, with overt pathogen and commensal translocation into the Muc2−/− colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2−/− mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium. Enteropathogenic E. coli (EPEC) and Enterohemorrhagic E. coli (EHEC) are important causes of diarrheal disease and other serious complications worldwide. Despite many studies addressing the pathogenic strategies used by these microbes, how the host protects itself from these pathogens is poorly understood. A critical question we address here is whether the thick mucus layer that overlies the intestinal surface plays a role in host protection. Since EPEC and EHEC do not infect mice efficiently, we used a related mouse pathogen called Citrobacter rodentium to infect and compare responses between wildtype mice and Muc2-deficient mice, which are defective in mucus production. We show that Muc2-deficient mice are extremely susceptible to C. rodentium infection-induced mortality and disease. Muc2-deficient mice were also colonized faster and had higher pathogen burdens throughout the experiment. Resident (non-pathogenic) bacteria were found to interact with C. rodentium and host tissues in Muc2-deficient mice, indicating Muc2 regulates all forms of intestinal microbiota at the gut surface. Deficiency in mucus production also contributed to increased leakiness of the gut, which allowed microbes to enter mucosal tissues. Our study shows that Muc2-dependent mucus production is critical for effective management of both pathogenic and non-pathogenic bacteria during infection by an EPEC/EHEC-like pathogen.
Collapse
Affiliation(s)
- Kirk S. B. Bergstrom
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Vanessa Kissoon-Singh
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Deanna L. Gibson
- Department of Biology and Physical Geography, Irving K. Barber School of Arts and Sciences, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Caixia Ma
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Marinieve Montero
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Ho Pan Sham
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Natasha Ryz
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Tina Huang
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Anna Velcich
- Department of Oncology, Albert Einstein Cancer Center/Montefiore Medical Center, Bronx, New York, United States of America
| | - B. Brett Finlay
- Michael Smith Laboratories and Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kris Chadee
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail: (KC); (BAV)
| | - Bruce A. Vallance
- Department of Pediatrics, Division of Gastroenterology, Child and Family Research Institute, Vancouver, British Columbia, Canada
- * E-mail: (KC); (BAV)
| |
Collapse
|
44
|
Localization of osteoblast inflammatory cytokines MCP-1 and VEGF to the matrix of the trabecula of the femur, a target area for metastatic breast cancer cell colonization. Clin Exp Metastasis 2010; 27:331-40. [PMID: 20446021 DOI: 10.1007/s10585-010-9330-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 04/20/2010] [Indexed: 01/08/2023]
Abstract
Bone likely provides a hospitable environment for cancer cells as suggested by their preferential localization to the skeleton. Previous work has shown that osteoblast-derived cytokines increased in the presence of metastatic breast cancer cells. Thus, we hypothesized that osteoblast-derived cytokines, in particular IL-6, MCP-1, and VEGF, would be localized to the bone metaphyses, an area to which breast cancer cells preferentially traffic. Human metastatic MDA-MB-231 breast cancer cells were inoculated into the left ventricle of the heart of athymic mice. Three to four weeks later, tumor localization within isolated femurs was examined using muCT and MRI. In addition, IL-6, MCP-1, and VEGF localization were assayed via immunohistochemistry. We found that MDA-MB-231 cells colonized trabecular bone, the area in which murine MCP-1 and VEGF were visualized in the bone matrix. In contrast, IL-6 was expressed by murine cells throughout the bone marrow. MDA-MB-231 cells produced VEGF, whose expression was not only associated with the breast cancer cells, but also increased with tumor growth. This is the first study to localize MCP-1, VEGF, and IL-6 in bone compartments via immunohistochemistry. These data suggest that metastatic cancer cells may co-opt bone cells into creating a niche facilitating cancer cell colonization.
Collapse
|
45
|
Li B, Jiang B, Dietz MJ, Smith ES, Clovis NB, Krishna Rao KM. Evaluation of local MCP-1 and IL-12 nanocoatings for infection prevention in open fractures. J Orthop Res 2010; 28:48-54. [PMID: 19588527 PMCID: PMC3886371 DOI: 10.1002/jor.20939] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The increasing incidence of bacterial infection and the appearance of Staphylococcus aureus (S. aureus) strains that are resistant to commonly used antibiotics has made it important to develop non-antibiotic approaches for infection prevention. The aim of this study was to develop local monocyte chemoattractant protein-1 (MCP-1) and interleukin-12 p70 (IL-12 p70) therapies to prevent S. aureus infection by enhancing the recruitment and activation of macrophages, which are believed to play an important role in infection prevention as the first line of defense against invading pathogens. Nanocoating systems for MCP-1 and IL-12 p70 deliveries were prepared, and their release characteristics desirable for infection prevention in open fractures were explored. Local MCP-1 therapy reduced S. aureus infection and influenced white blood cell populations, and local IL-12 p70 treatment had a more profound effect on preventing S. aureus infection. No synergistic relationship in decreasing S. aureus infection was observed when MCP-1 and IL-12 p70 treatments were combined. This reported new approach may reduce antibiotic use and antibiotic resistance.
Collapse
Affiliation(s)
- Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA,WVNano Initiative, Morgantown, WV 26506, USA,Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26506, USA,Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Center for Disease Control and Prevention, Morgantown, WV 26505, USA,Correspondence to: Bingyun Li, PhD, Director, Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506-9196, USA, Tel: 1-304-293-1075, Fax: 1-304-293-7070, , URL: http://www.hsc.wvu.edu/som/ortho/nanomedica-group/
| | - Bingbing Jiang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Matthew J. Dietz
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - E. Suzanne Smith
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Nina B. Clovis
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - K. Murali Krishna Rao
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Center for Disease Control and Prevention, Morgantown, WV 26505, USA
| |
Collapse
|
46
|
Sánchez-Sabaté E, Alvarez L, Gil-Garay E, Munuera L, Vilaboa N. Identification of differentially expressed genes in trabecular bone from the iliac crest of osteoarthritic patients. Osteoarthritis Cartilage 2009; 17:1106-14. [PMID: 19303468 DOI: 10.1016/j.joca.2009.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is clinically characterized by degeneration of the joints and has been traditionally considered a primary disorder of articular cartilage, with secondary changes in the subchondral bone. The increased bone mass and generalized changes in bone quality observed in osteoarthritic patients suggest that OA may be a primary systemic bone disorder with secondary articular cartilage damage. The iliac crest is a skeletal site distant from the affected joint, with a minimal load-bearing function. To provide evidence that OA is a systemic disorder, we searched for differentially expressed genes in the iliac crest bone of patients suffering from hip OA. MATERIAL AND METHODS Gene expression levels between bone samples collected at surgery from the iliac crest of patients undergoing total hip arthroplasty for primary OA and younger donors, who were undergoing spinal arthrodesis, were investigated by means of oligonucleotide microarrays. To verify data detected by microarrays technology, Real Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assays were performed with specimens from osteoarthritic patients and donors, as well as from elderly donors who were undergoing arthroplasty for subcapital femoral neck fracture. RESULTS The microarray analysis surveyed 8327 genes and identified 83 whose expression levels differed at least 1.5-fold in the OA group (P<0.005). Comparisons between Real Time RT-PCR data from OA and the two donor groups indicated differential expression of genes involved in bone cell functions in the group of OA patients. The genes identified, including CCL2, FOS, PRSS11, DVL2, AKT1, CA2, BMP6, OMD, MMP2, TGFBR3, FLT1, BMP1 and TNFRS11B, have known roles in osteoblast or osteoclast activities. CONCLUSIONS The data from this study identify a set of genes, closely related to bone cell functions, in which differential regulation in osteoarthritic bone distant from the diseased subchondral bone might underlie the etiopathogenesis of OA as a generalized bone disease.
Collapse
Affiliation(s)
- E Sánchez-Sabaté
- Unidad de Investigación, Hospital Universitario La Paz, Paseo de la Castellana 261, Madrid 28046, Spain
| | | | | | | | | |
Collapse
|
47
|
Varoga D, Tohidnezhad M, Paulsen F, Wruck CJ, Brandenburg L, Mentlein R, Lippross S, Hassenpflug J, Besch L, Müller M, Jürgens C, Seekamp A, Schmitt L, Pufe T. The role of human beta-defensin-2 in bone. J Anat 2009; 213:749-57. [PMID: 19094191 DOI: 10.1111/j.1469-7580.2008.00992.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteomyelitis often causes functional impairment due to tissue destruction. This report demonstrates a novel previously unappreciated role of osteoblasts. Samples of osteomyelitic bone and bacterially challenged osteoblasts produce increased amounts of antimicrobial peptides in order to combat bacterial bone infection. An osteomyelitis mouse model confirmed the osseous induction of the murine homologue of human beta-defensin-2, suggesting a central role in the prevention of bacterial bone infection. Antimicrobial peptides are effectors of the innate defence system and play a key role in host protection at cellular surfaces. Some of them are produced constitutively, whereas others are induced during infection. Human beta-defensins represent a major subclass of antimicrobial peptides and act as a first line of defence through their broad spectrum of potent antimicrobial activity. The aim of the present in-vitro and in-vivo investigations was to study the expression and regulation of human beta-defensin-2 in the case of bacterial bone infection and to analyse the effects of immunosuppressive drugs on bone-derived antimicrobial peptide expression. Samples of healthy human bone, osteomyelitic bone and cultured osteoblasts (hFOB cells) were assessed for the expression of human beta-defensin-2. Regulation of human beta-defensin-2 was studied in hFOB cells after exposure to bacterial supernatants, proinflammatory cytokines and immunosuppressive drugs (glucocorticoids and methotrexate) and was assayed by enzyme-linked immunosorbent assay. An osteomyelitis mouse model was performed to demonstrate the regulation of the murine homologue of human beta-defensin-2, named murine beta-defensin-3, by real-time reverse transcription-polymerase chain reaction and immunohistochemistry. Healthy human bone and cultured osteoblasts are able to produce human beta-defensin-2 under standard conditions. Samples of infected bone produce higher levels of endogenous antibiotics, such as human beta-defensin-2, when compared with samples of healthy bone. A clear induction of human beta-defensin-2 was observed after exposure of cultured osteoblasts to gram-positive bacteria or proinflammatory cytokines. Additional treatment with glucocorticoids or methotrexate prevented bacteria-mediated antimicrobial peptide induction in cultured osteoblasts. The osteomyelitis mouse model demonstrated transcriptional upregulation of the murine homologue of human beta-defensin-2, namely murine beta-defensin-3, in bone after intraosseous contamination of the tibia. Human and murine bone have the ability to produce broad-spectrum endogenous antibiotics when challenged by micro-organisms in vitro and in vivo. Immunosuppressive drugs, such as glucocorticoids or methotrexate, may increase the susceptibility to bone infection by decreasing antimicrobial peptide expression levels in case of microbial challenge. The induction of human beta-defensin-2 following bacterial contact suggests a central role of antimicrobial peptides in the prevention of bacterial bone infection.
Collapse
Affiliation(s)
- D Varoga
- Department of Trauma Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Delpino MV, Fossati CA, Baldi PC. Proinflammatory response of human osteoblastic cell lines and osteoblast-monocyte interaction upon infection with Brucella spp. Infect Immun 2009; 77:984-995. [PMID: 19103778 PMCID: PMC2643642 DOI: 10.1128/iai.01259-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 11/27/2008] [Accepted: 12/06/2008] [Indexed: 01/18/2023] Open
Abstract
The ability of Brucella spp. to infect human osteoblasts and the cytokine response of these cells to infection were investigated in vitro. Brucella abortus, B. suis, B. melitensis, and B. canis were able to infect the SaOS-2 and MG-63 osteoblastic cell lines, and the first three species exhibited intracellular replication. B. abortus internalization was not significantly affected by pretreatment of cells with cytochalasin D but was inhibited up to 92% by colchicine. A virB10 mutant of B. abortus could infect but not replicate within osteoblasts, suggesting a role for the type IV secretion system in intracellular survival. Infected osteoblasts produced low levels of chemokines (interleukin-8 [IL-8] and macrophage chemoattractant protein 1 [MCP-1]) and did not produce proinflammatory cytokines (IL-1beta, IL-6, and tumor necrosis factor alpha [TNF-alpha]). However, osteoblasts stimulated with culture supernatants from Brucella-infected human monocytes (THP-1 cell line) produced chemokines at levels 12-fold (MCP-1) to 17-fold (IL-8) higher than those of infected osteoblasts and also produced IL-6. In the inverse experiment, culture supernatants from Brucella-infected osteoblasts induced the production of IL-8, IL-1beta, IL-6, and TNF-alpha by THP-1 cells. The induction of TNF-alpha and IL-1beta was largely due to granulocyte-macrophage colony-stimulating factor produced by infected osteoblasts, as demonstrated by inhibition with a specific neutralizing antibody. This study shows that Brucella can invade and replicate within human osteoblastic cell lines, which can directly and indirectly mount a proinflammatory response. Both phenomena may have a role in the chronic inflammation and bone and joint destruction observed in osteoarticular brucellosis.
Collapse
|
49
|
Molloy AP, Martin FT, Dwyer RM, Griffin TP, Murphy M, Barry FP, O'Brien T, Kerin MJ. Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int J Cancer 2009; 124:326-32. [PMID: 19003962 DOI: 10.1002/ijc.23939] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over 70% of patients with advanced breast cancer will develop bone metastases for which there is no cure. Mesenchymal Stem Cells (MSCs) and their derivative osteoblasts are subpopulations of cells within the bone marrow environment, postulated as potential interacting targets for disseminating cancer cells because of their ability to secrete a range of chemokines. This study aimed to investigate chemokine secretion throughout MSC differentiation into osteoblasts and their effect on the breast cancer cells. Primary MSCs and osteoblast progenitors were cultured in appropriate conditions to induce differentiation into mature osteoblasts. Chemokines secreted throughout differentiation were detected using ChemiArray and ELISA. Migration of breast cancer cells in response to the bone-derived cells was quantified using Transwell inserts. Breast cancer cells were cocultured with MSCs, retrieved using magnetic beads, and changes in CCL2 expression were analyzed. MSCs secreted a range of factors including IL-6, TIMP-1 and CCL2, the range and level of which changed throughout differentiation. CCL2 secretion by MSCs increased significantly above control cells as they differentiated into mature osteoblasts (p<0.05). The bone-derived cells stimulated migration of breast cancer cells, and this was inhibited (21-50%) in the presence of a CCL2 antibody. CCL2 gene expression in breast cancer cells was upregulated following direct coculture with MSCs. The varying levels of chemokines secreted throughout MSC differentiation may play an important role in supporting tumor cell homing and progression. These results further highlight the distinct effect MSCs have on breast cancer cells and their potential importance in supporting development of metastases.
Collapse
Affiliation(s)
- Alan P Molloy
- Department of Surgery, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Varoga D, Wruck CJ, Tohidnezhad M, Brandenburg L, Paulsen F, Mentlein R, Seekamp A, Besch L, Pufe T. Osteoblasts participate in the innate immunity of the bone by producing human beta defensin-3. Histochem Cell Biol 2008; 131:207-18. [DOI: 10.1007/s00418-008-0522-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2008] [Indexed: 12/25/2022]
|