1
|
Guozhu Y, yihua W, Zhu Y, li D, Tianqi Z, Jia L, Shizhou Z. Adenovirus mediated gene delivery of α-calcitonin gene-related peptide facilitates osseointegration of implant in ovariectomized rat. Regen Ther 2025; 29:140-147. [PMID: 40162020 PMCID: PMC11952862 DOI: 10.1016/j.reth.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Background Osteoporosis, which adversely affected osseointegration of dental implants, became prevalent with the entry of ageing era. Recent studies indicated that α-calcitonin gene-related peptide (α-CGRP) played a role in modulating osteoporosis. However, due to the plasma half-life of α-CGRP being estimated at merely 7-10 min, it was difficult to utilize a conventional method that administered sufficient α-CGRP to the implant site. This present study aimed to investigate the efficacy of an α-CGRP transgene in promoting implant osseointegration in ovariectomized (OVX) rats. Method The osteoporosis rat model was established through bilateral ovariectomy, following which the subjects were categorized into three distinct groups: the α-CGRP transgene group, the empty virus vector group, and the blank control group. Ad-CGRP-EGFP was locally administered into the bone defect site prior to implant placement in the OVX rats. 7 and 28 days after implantation, the femurs were isolated for molecular and histological analyses, micro-CT analysis and biomechanical test. Result Bone marrow stromal cells (BMSCs) transduced with Ad-CGRP-EGFP could continuously express α-CGRP more than 28 days in vitro. Successful transgene expression was confirmed through cryosectioning and Western blot analysis 7 days after implantation in vivo. The results indicated a substantial decrease in the quantity of TRAP + cells in the α-CGRP transgene group. Additionally, quantitative real-time RT-PCR and Western blot analysis revealed a significant elevation in the expression levels of Runx2 and ALP, coupled with a notable reduction in the expression of cathepsin K and RANKL (P<0.05). Moreover, the α-CGRP transgene group exhibited a significant enhancement in osteointegration and restoration of implant stability in OVX rats (P<0.01) 28 days after implantation. Conclusion This study implied a great therapeutic potential of α-CGRP in osseointegration of titanium implants in OVX-relative osteoporosis rats, offering valuable insights for guiding bone regeneration strategies under osteoporotic conditions.
Collapse
Affiliation(s)
- Yin Guozhu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Wu yihua
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China
| | - You Zhu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China
| | - Dai li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China
| | - Zhang Tianqi
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China
| | - Li Jia
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Zhang Shizhou
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China
| |
Collapse
|
2
|
Al Maruf DSA, Ren J, Cheng K, Xin H, Lewin W, Pickering E, Kruse HV, Leinkram D, Parthasarathi K, Wise I, Filippi B, Beirne S, Froggatt C, Wykes J, Howes D, Suchowerska N, Woodruff MA, Crook JM, McKenzie DR, Clark JR. Evaluation of osseointegration of plasma treated polyaryletherketone maxillofacial implants. Sci Rep 2025; 15:1895. [PMID: 39805882 PMCID: PMC11731023 DOI: 10.1038/s41598-024-80335-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues. In this investigation, plasma ion immersion implantation (PIII)-treated polyether ether ketone (PEEK) and polyether ketone (PEK) implants were assessed in a sheep maxilla and mandible model. Defects were filled with PIII-treated PEEK and PEK implants, produced through fused filament fabrication (FFF) and selective laser sintering (SLS), respectively. Positive controls were grade 23 titanium implants via selective laser melting, while untreated PEEK implants served as negative controls. Surface analyses using scanning electron microscopy and atomic force microscopy revealed favorable properties. Osseointegration was qualitatively and quantitatively assessed at 8-, 10-, and 12-weeks post-implantation, showing significantly improved outcomes for both PIII-treated PEEK and PEK implants compared to untreated controls. The study suggests PIII treatment enhances FFF-printed PEEK's osseointegration, and PIII-treated SLS-printed PEK achieves comparable osseointegration to 3D printed titanium. These findings underscore surface modification strategies' potential for polymeric biomaterials, offering insights into developing alternative implant materials for craniofacial surgeries, with enhanced biocompatibility and osseointegration capabilities for improved clinical outcomes.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia.
| | - Jiongyu Ren
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Central Analytical Research Facility, Research Infrastructure, Queensland University of Technology, Brisbane, Australia
- ARC Training Centre for Cells and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia
| | - Hai Xin
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Will Lewin
- Arto Hardy Family Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, Australia
| | - Edmund Pickering
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Hedi Verena Kruse
- Arto Hardy Family Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, Australia
- School of Physics, Faculty of Science, The University of Sydney, Camperdown, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - David Leinkram
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia
| | - Krishnan Parthasarathi
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia
| | - Innes Wise
- Laboratory Animal Services, The University of Sydney, Camperdown, Australia
| | - Benjamin Filippi
- AIIM Facility, Intelligent Polymer Research Institute, The University of Wollongong, Wollongong, Australia
| | - Stephen Beirne
- AIIM Facility, Intelligent Polymer Research Institute, The University of Wollongong, Wollongong, Australia
| | - Cate Froggatt
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia
| | - James Wykes
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia
| | - Dale Howes
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia
- School of Dentistry, Faculty of Medicine, University of Sydney, Camperdown, Australia
| | - Natalka Suchowerska
- School of Physics, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Maria A Woodruff
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Jeremy M Crook
- Arto Hardy Family Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, Australia
- AIIM Facility, Intelligent Polymer Research Institute, The University of Wollongong, Wollongong, Australia
- School of Dentistry, Faculty of Medicine, University of Sydney, Camperdown, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
- Sarcoma and Surgical Research Centre, Chris O'Brien Lifehouse, Camperdown, Australia
| | - David R McKenzie
- School of Physics, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Jonathan R Clark
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Camperdown, Australia.
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, Australia.
| |
Collapse
|
3
|
Hammad M, Oktarina A, Suhardi VJ, Thomson A, Li Q, Döring K, Augustin EJ, Ivashkiv LB, Carli AV, Bostrom MPG, Yang X. Effects of antiseptic irrigation solutions on osseointegration in a cementless tibial implantation mouse model. J Orthop Res 2024; 42:2852-2862. [PMID: 39017392 DOI: 10.1002/jor.25937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/18/2024]
Abstract
Despite the success of standard antiseptic irrigation solutions in reducing periprosthetic joint infection (PJI) rates, there is still a need for more effective solutions. Synergistic use of povidone-iodine (PI) and hydrogen peroxide (H2O2) has shown promising results; however, the optimal solution concentration balancing bactericidal activity and osseointegration remains unknown. This study aims to evaluate the impact of these antiseptic irrigation solutions on osseointegration and the bone-implant interface strength in vivo. Forty C57BL/6 mice underwent bilateral tibial implantation surgery and were randomly allocated into three groups receiving 0.3% PI, 10% PI mixed with 3% H2O2, or saline as irrigation solutions intraoperatively. Assessments were performed on postoperative Days 1 and 28, including plain radiographs, microcomputed tomography (microCT) evaluation, histological analysis, immunohistochemistry, and biomechanical pull-out testing. No wound complications were observed. MicroCT scans revealed no differences in peri-implant trabecular bone parameters. Biomechanical pull-out testing showed no differences in the bone-implant interface strength across groups. Histological analysis indicated no differences in bone and bone marrow percentage areas among treatment groups. Immunohistochemical analysis demonstrated no differences among groups in peri-implant osteocalcin, osterix, or endomucin-positive cells. In conclusion, using either antiseptic irrigation solution showed no differences in osseointegration parameters compared to the control group, demonstrating safety and the absence of toxicity. CLINICAL RELEVANCE: Dilute 0.3% povidone-iodine and a 1:1 combination of 10% povidone-iodine mixed with 3% hydrogen peroxide can be safely used during primary and revision total joint arthroplasty without compromising osseointegration or causing wound complications.
Collapse
Affiliation(s)
- Mohammed Hammad
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Anastasia Oktarina
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Vincentius J Suhardi
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, USA
| | - Andrew Thomson
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Qingdian Li
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopaedic Surgery, Weill Cornell Medicine, New York, USA
| | - Kevin Döring
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Edouard J Augustin
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Lionel B Ivashkiv
- Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Alberto V Carli
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, USA
- Department of Orthopedics, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Mathias P G Bostrom
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, USA
- Department of Orthopedics, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, USA
| |
Collapse
|
4
|
Ma Y, Wang S, Wang H, Chen X, Shuai Y, Wang H, Mao Y, He F. Mesenchymal stem cells and dental implant osseointegration during aging: from mechanisms to therapy. Stem Cell Res Ther 2023; 14:382. [PMID: 38124153 PMCID: PMC10734190 DOI: 10.1186/s13287-023-03611-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Dental implants are widely used to replace missing teeth, providing patients with unparalleled levels of effectiveness, convenience, and affordability. The biological basis for the clinical success of dental implants is osseointegration. Bone aging is a high-risk factor for the reduced osseointegration and survival rates of dental implants. In aged individuals, mesenchymal stem cells (MSCs) in the bone marrow show imbalanced differentiation with a reduction in osteogenesis and an increase in adipogenesis. This leads to impaired osseointegration and implant failure. This review focuses on the molecular mechanisms underlying the dysfunctional differentiation of aged MSCs, which primarily include autophagy, transcription factors, extracellular vesicle secretion, signaling pathways, epigenetic modifications, microRNAs, and oxidative stress. Furthermore, this review addresses the pathological changes in MSCs that affect osseointegration and discusses potential therapeutic interventions to enhance osseointegration by manipulating the mechanisms underlying MSC aging.
Collapse
Affiliation(s)
- Yang Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Siyuan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Hui Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Xiaoyu Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yi Shuai
- Nanjing Jinling Hospital: East Region Military Command General Hospital, Nanjing, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Yingjie Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Couto BADA, Fernandes JCH, Saavedra-Silva M, Roca H, Castilho RM, Fernandes GVDO. Antisclerostin Effect on Osseointegration and Bone Remodeling. J Clin Med 2023; 12:jcm12041294. [PMID: 36835830 PMCID: PMC9964545 DOI: 10.3390/jcm12041294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Objective: This study reviewed the literature on local or systemic administration of antisclerostin, presenting results associated with osseointegration of dental/orthopedic implants and stimulation of bone remodeling. Materials and Methods: An extensive electronic search was conducted through MED-LINE/PubMed, PubMed Central, Web of Science databases and specific peer-reviewed journals to identify case reports, case series, randomized controlled trials, clinical trials and animal studies comparing either the systemic or local administration of antisclerostin and its effect in osseointegration and bone remodeling. Articles in English and with no restriction on period were included. Results: Twenty articles were selected for a full-text, and one was excluded. Finally, 19 articles were included in the study (16 animal studies and 3 randomized control trials). These studies were divided into two groups, which evaluated (i) osseointegration and (ii) bone remodeling potential. Initially 4560 humans and 1191 animals were identified. At least 1017 were excluded from the studies (981 humans and 36 animals), totaling 4724 subjects who completed (3579 humans and 1145 animals). (a) Osseointegration: 7 studies described this phenomenon; 4 reported bone-implant contact, which increased in all included studies. Similar results were found for bone mineral density, bone area/volume and bone thickness. (b) Bone remodeling: 13 studies were used for description. The studies reported an increase in BMD with sclerostin antibody treatment. A similar effect was found for bone mineral density/area/volume, trabecular bone and bone formation. Three biomarkers of bone formation were identified: bone-specific alkaline phosphatase (BSAP), osteocalcin and procollagen type 1 N-terminal Pro-peptide (P1NP); and markers for bone resorption were: serum C-telopeptide (sCTX), C-terminal telopeptides of type I collagen (CTX-1), β-isomer of C-terminal telopeptides of type I collagen (β-CTX) and tartrate-resistant acid phosphatase 5b (TRACP-5b). There were limitations: low number of human studies identified; high divergence in the model used (animal or human); the variance in the type of Scl-Ab and doses of administration; and the lack of reference quantitative values in the parameters analyzed by authors' studies (many articles only reported qualitative information). Conclusion: Within the limitations of this review and carefully observing all data, due to the number of articles included and the heterogeneity existing, more studies must be carried out to better evaluate the action of the antisclerostin on the osseointegration of dental implants. Otherwise, these findings can accelerate and stimulate bone remodeling and neoformation.
Collapse
Affiliation(s)
| | | | - Mariana Saavedra-Silva
- Departamento de Cirurgía (Área de Estomatología), Facultad de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Hernan Roca
- McCauley-Roca Lab’s, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Rogério Moraes Castilho
- Periodontics and Oral Medicine Department, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
6
|
Gao X, Meng Y, Hao D, Liu H. Parathyroid hormone enhances gap healing and osseointegration in orthopedic porous coated titanium implants: a correlative micro-computed tomographic, histomorphometric and biomechanical analysis. BMC Musculoskelet Disord 2022; 23:17. [PMID: 34980060 PMCID: PMC8725270 DOI: 10.1186/s12891-021-04917-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background Parathyroid hormone, with its anabolic effect on bone formation, has shown excellent outcomes of curing postmenopausal osteoporosis as well as enhancing osseointegration around orthopaedic and stomatologic implants.The purpose of the present study is to test if low-dose intermittent PTH (1–34) treatment could achieve a satisfactory osseointegration in 2-mm peri-implant gaps, as to provide a new idea for improving the stability of such prosthesis, which will be of great clinical value. Methods A custom-made titanium implant was implanted on the calvarium of New Zealand White rabbits. 48 male rabbits were randomly divided into control and PTH group. PTH group received subcutaneous injection of PTH (20 μg/day, 5 days/week). Animals were sacrificed at 4 and 8 weeks after surgery. Quantitative micro-computed tomography, histology and biomechanical pull-out testing were performed to evaluate the gap healing at implantation site. Results Analysis of micro-computed tomography demonstrated that PTH group achieved more new bone formation in 2-mm gaps and on bone-implant interface. Quantitatively, significant differences were observed between two groups in regard to BIC and BV/TV at each time-point. Histological staining revealed that PTH group had a superiority in trabecular number, thickness, separation and better osseointegration compared to control group. As for biomechanical pull-out testing, PTH group also showed significant improvement of ultimate force than control group. Conclusions Low-dose intermittent administration of PTH for 4 and 8 weeks enhances early osseointegration and fixation of orthopedic implants surrounded by a 2-mm gap in terms of increased bone regeneration and mechanical stability. These findings suggest PTH a potential for reducing the postoperative complications of implants by improving bone healing at peri-implant gaps.
Collapse
Affiliation(s)
- Xinlin Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Meng
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Hao Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Akhter MP, Recker RR. High resolution imaging in bone tissue research-review. Bone 2021; 143:115620. [PMID: 32866682 DOI: 10.1016/j.bone.2020.115620] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
This review article focuses on imaging of bone tissue to understand skeletal health with regards to bone quality. Skeletal fragility fractures are due to bone diseases such as osteoporosis which result in low bone mass and bone mineral density (BMD) leading to high risk of fragility fractures. Recent advances in imaging and analysis technologies have highly benefitted the field of biological sciences. In particular, their application in skeletal health has been of significant importance in understanding bone mechanical behavior (structure and properties) at the tissue level. While synchrotron based microCT technique has remained the gold standard for non-destructive evaluation of structure in material and biological sciences, several lab based microCT systems have been developed to provide high resolution imaging of specimens with greater access, and ease of use in laboratory settings. Lab based microCT scanners are widely used in the bone field as a standard tool to evaluate three-dimensional (3D) morphologies of bone structure at image resolutions appropriate for bone samples from small animals to bone biopsy specimens from humans. Both synchrotron and standard lab based microCT systems provide high resolution imaging ex vivo for a small sized specimen. A few X-ray based systems are also commercially available for in vivo scanning at relatively low image resolutions. Synchrotron-based CT microscopy is being used for various ultra-high-resolution image analyses using complex 3D software. However, the synchrotron-based CT technology is in high demand, allows only limited numbers of specimens, expensive, requires complex additional instrumentation, and is not easily available to researchers as it requires access to a synchrotron source which is always limited. Therefore, desktop laboratory scanners (microXCT, Zeiss/Xradia, Scanco, SkyScan. etc.), mimicking the synchrotron based CT technology or image resolution, have been developed to solve the accessibility issues. These lab based scanners have helped both material science, and the bone field to investigate bone tissue morphologies at submicron mage resolutions. Considerable progress has been made in both in vivo and ex vivo imaging towards providing high resolution images of bone tissue. Both clinical and research imaging technologies will continue to improve and help understand osteoporosis and other related skeletal issues in order to develop targeted treatments for bone fragility. This review summarizes the high resolution imaging work in bone research.
Collapse
Affiliation(s)
- M P Akhter
- Creighton University Osteoporosis Research Center, Omaha, NE, United States of America.
| | - R R Recker
- Creighton University Osteoporosis Research Center, Omaha, NE, United States of America
| |
Collapse
|
8
|
Mahri M, Shen N, Berrizbeitia F, Rodan R, Daer A, Faigan M, Taqi D, Wu KY, Ahmadi M, Ducret M, Emami E, Tamimi F. Osseointegration Pharmacology: A Systematic Mapping Using Artificial Intelligence. Acta Biomater 2021; 119:284-302. [PMID: 33181361 DOI: 10.1016/j.actbio.2020.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
Clinical performance of osseointegrated implants could be compromised by the medications taken by patients. The effect of a specific medication on osseointegration can be easily investigated using traditional systematic reviews. However, assessment of all known medications requires the use of evidence mapping methods. These methods allow assessment of complex questions, but they are very resource intensive when done manually. The objective of this study was to develop a machine learning algorithm to automatically map the literature assessing the effect of medications on osseointegration. Datasets of articles classified manually were used to train a machine-learning algorithm based on Support Vector Machines. The algorithm was then validated and used to screen 599,604 articles identified with an extremely sensitive search strategy. The algorithm included 281 relevant articles that described the effect of 31 different drugs on osseointegration. This approach achieved an accuracy of 95%, and compared to manual screening, it reduced the workload by 93%. The systematic mapping revealed that the treatment outcomes of osseointegrated medical devices could be influenced by drugs affecting homeostasis, inflammation, cell proliferation and bone remodeling. The effect of all known medications on the performance of osseointegrated medical devices can be assessed using evidence mappings executed with highly accurate machine learning algorithms.
Collapse
|
9
|
Karakaya M, Demirbaş AE. Effect of low-level laser therapy on osseointegration of titanium dental implants in ovariectomized rabbits: biomechanics and micro-CT analysis. Int J Implant Dent 2020; 6:61. [PMID: 33043397 PMCID: PMC7548265 DOI: 10.1186/s40729-020-00257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/31/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The primary aim of this study is to assess, in an animal model, whether biostimulation of osteoporotic bone with low-level laser therapy improves the osseointegration of dental implants. MATERIAL AND METHODS Twenty-two female rabbits were randomly divided into two groups: sham-ovariectomy and bilateral-ovariectomy. Laser therapy was applied to the implants placed in the right tibial bones and was not applied to implants placed in the left tibial bones. The periotest device was used for the stability test. Periotest values were recorded after the implantation (T0) and when the animals were euthanized (T1). The removal torque test and micro-computed tomography examination were evaluated. RESULTS As a result of removal torque, the mean of ovariectomy-laser group (56.1 ± 5.1 Ncm) was higher than sham-ovariectomy group (55.4 ± 18.5 Ncm) (p = 0.9). In periotest analysis, a significant difference was found between the values of T1 and T0 in all groups, except sham-ovariectomy group (p < 0.05); and the highest difference was found in the ovariectomy-laser group. Micro-CT examination demonstrated that ovariectomy-laser group showed an increase of implant-bone contact when compared with ovariectomy (p < 0.05). CONCLUSIONS The values obtained from biomechanical tests and micro-CT in the ovariectomy-laser group were significantly higher than the ovariectomy group and achieved the values in the healthy bone.
Collapse
Affiliation(s)
- Mustafa Karakaya
- Sancaktepe Oral and Dental Health Hospital, Department of Oral and Maxillofacial Surgery, Ministry of Health, İstanbul, Turkey.
| | - Ahmet Emin Demirbaş
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Melikgazi, Kayseri, Turkey
| |
Collapse
|
10
|
Kassim ZH, Nor Hisham ND, Dardiri NA, Goot Heah K, Hazwani Baharuddin I, De Angelis N. Primary stability of self-tapping dual etched implants. ACTA ACUST UNITED AC 2020; 68:291-296. [PMID: 32052617 DOI: 10.23736/s0026-4970.19.04242-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aims of this study were to enumerate the primary implant stability quotient (ISQ) value of self-tapping dual etched implants and to explore the influence of parameters such as implant length, implant diameter, age, gender, implant location and osteotomy preparation on the ISQ value. METHODS Retrospective data from clinical worksheets given to participants during two implant courses held between the periods of 2013 to 2014 were evaluated. A total of 61 implants were considered based on the inclusion criteria. The effects of parameters such as implant diameter, implant length, age, gender, implant location and osteotomy protocol on ISQ values were analyzed. RESULTS Mean ISQ value for all implants was 67.21±9.13. Age of patients (P=0.016) and location of implants (P=0.041) had a significant linear relationship with the ISQ values. Within the age limit of the patients in this study, it was found that an increase in one year of patient's age results in 0.20 decrease in ISQ value (95% CI: -0.36, -0.04). However, placing an implant in the posterior maxilla may negatively affect the ISQ with a likely decrease in primary stability by 6.76 ISQ value (95% CI: -13.22, -0.30). CONCLUSIONS The results suggest that the mean ISQ achieved by the participants were comparable with the range reported for this particular type of implants. The patient's age and location of implants were elucidated as the determinant factors of primary implant stability.
Collapse
Affiliation(s)
- Zethy H Kassim
- Center of Studies for Restorative Dentistry, Faculty of Dentistry, MARA Technology University, Jalan Hospital, Sungai Buloh, Malaysia
| | | | | | - Khor Goot Heah
- Center of Studies for Preclinical Sciences, Faculty of Dentistry, MARA Technology University, Jalan Hospital, Sungai Buloh, Malaysia
| | - Izyan Hazwani Baharuddin
- Center of Studies for Preclinical Sciences, Faculty of Dentistry, MARA Technology University, Jalan Hospital, Sungai Buloh, Malaysia
| | - Nicola De Angelis
- Center of Studies for Restorative Dentistry, Faculty of Dentistry, MARA Technology University, Jalan Hospital, Sungai Buloh, Malaysia - .,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
Dam C, Jung UW, Park KM, Huh J, Park W. Effect of teriparatide on early sinus graft healing in the ovariectomized rabbit. Clin Oral Implants Res 2019; 31:264-273. [PMID: 31837052 DOI: 10.1111/clr.13565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The purpose of this study was to determine the effect of administering intermittent parathyroid hormone 1-34 [teriparatide, (PTH)] on the maxillary sinus lift and bone grafting in osteoporotic rabbits induced by ovariectomy and glucocorticoid. MATERIALS AND METHODS Ovariectomies were performed on 20 female New Zealand white rabbits that were randomly divided into two groups: (a) the PTH group (n = 10), in which 10 μg kg-1 day-1 PTH was injected subcutaneously 5 days a week for 5 weeks (from 1 week before until 4 weeks after sinus surgery), and (b) the saline group (n = 10), in which saline substituted PTH at the same dose, mode of administration, and duration. Bone grafting with bovine bone mineral was augmented into 13 sinuses, and bone grafts and implants were simultaneously performed in seven sinuses, in both groups. Animals were sacrificed at 4 weeks after surgery. To determine whether PTH was an effective treatment for osteoporosis, we measured the bone mineral density (BMD) of the right femur using micro-computed tomography and performed radiographic and histometric analyses of the maxillary sinus surgery site. The Mann-Whitney test was used for statistical analysis. RESULTS It was found that BMD increased in the femur, whereas none of the radiographic and histometric parameters differed significantly between the groups in the sinus, while there were large interindividual variations within groups. CONCLUSIONS These findings suggest that intermittent PTH does not promote new bone formation in the augmented maxillary sinus of ovariectomized rabbits.
Collapse
Affiliation(s)
- Chugeum Dam
- Department of Advanced General Dentistry, College of Dentistry, Yonsei University, Seoul, Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Kyeong-Mee Park
- Department of Advanced General Dentistry, Human Identification Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Jisun Huh
- Department of Dental Education, Yonsei University College of Dentistry, Seoul, Korea
| | - Wonse Park
- Department of Advanced General Dentistry, College of Dentistry, Yonsei University, Seoul, Korea
| |
Collapse
|
12
|
Sun T, Li J, Xing HL, Tao ZS, Yang M. Melatonin improves the osseointegration of hydroxyapatite-coated titanium implants in senile female rats. Z Gerontol Geriatr 2019; 53:770-777. [PMID: 31654128 DOI: 10.1007/s00391-019-01640-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/07/2019] [Indexed: 02/03/2023]
Abstract
The aim of this study was to confirm the effect of the systemic administration of melatonin on hydroxyapatite-coated titanium (HA-Ti) implants in senile osteopenic rats. For this study 24-month-old female Sprague-Dawley rats were used. The animals were randomly divided into two groups: a control group and a melatonin group and the bilateral femurs of all the rats received HA-Ti implants. Animals in the melatonin group received treatment with melatonin (30 mg/kg day). After a 12-week healing period, rats in the melatonin group revealed improved osseointegration compared to the control group, with the bone area ratio (BAR) and bone to implant contact (BIC) increased by 1.87-fold and 1.65-fold in histomorphometry, the quantitative results of implant osseointegration and peri-implant trabeculae, such as a higher bone volume per total volume (BV/TV), trabecular number (Tb.N), the mean connective density (Conn.D), trabecular thickness (Tb.Th), and a lower trabecular spacing (Tb.Sp) in micro-computed tomography (CT) evaluation and the maximum push-out force by 1.75-fold in push out tests. Additionally, compared with the control group, melatonin could significantly up-regulate the expression of the runt-related transcription factor 2 (Runx2), osteocalcin (OC) and osteoprotegerin (OPG) genes and down-regulate the expression of the RANKL gene. These findings suggest that systemic administration with melatonin is useful to improve the fixation of HA-coated implants even in osteopenic rats through promoting Runx2, OC and OPG gene expression and inhibiting RANKL gene expression.
Collapse
Affiliation(s)
- Tao Sun
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, No. 289, Kuocang Road, Liandu District, Lishui City, Zhejiang, China
| | - Jian Li
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, No. 289, Kuocang Road, Liandu District, Lishui City, Zhejiang, China
| | - Hai-Lin Xing
- Department of Orthopaedic Surgery, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, No. 289, Kuocang Road, Liandu District, Lishui City, Zhejiang, China
| | - Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China.
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, 241001, Wuhu, Anhui, China
| |
Collapse
|
13
|
He W, Yin X, Xie L, Liu Z, Li J, Zou S, Chen J. Enhancing osseointegration of titanium implants through large-grit sandblasting combined with micro-arc oxidation surface modification. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:73. [PMID: 31187259 DOI: 10.1007/s10856-019-6276-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
PURPOSE The demand for titanium dental implants has risen sharply. However, the clinical success rate of implant surgery needs to be improved. In this paper, we report a novel surface modification strategy, large-grit sandblasting combined with micro-arc oxidation (SL-MAO), aiming to promote peri-implant bone formation and osseointegration of titanium implants. MATERIALS AND METHODS Modified titanium samples were prepared by large-grit sandblasting and acid etching (SLA), micro-arc oxidation (MAO), and SL-MAO. The resulting topographical changes and chemical composition of the samples were examined by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively, and the biocompatibility and bioactivity were analyzed by bone-marrow mesenchymal stem cells (BMMSC) adhesion tests. Modified titanium implants were also inserted into the femurs of beagle dogs, and their competence of osseointegration was appraised by quantitative histomorphometry and micro-computed-tomography (micro-CT) analyses. RESULTS Compared to SLA and MAO techniques, SL-MAO surface modification further enhanced titanium surfaces by creating a topographic morphology characterized by both micron-sized craters and sub-micron-scale pits, and resulted in superior chemical composition, which promoted cell adhesion, proliferation, and osteogenic differentiation. SL-MAO-modified titanium implants osseointegrated more efficiently than SLA or MAO controls, with significantly higher bone-area (BA) ratio and bone-implant contact (BIC) in the peri-implant region. CONCLUSIONS The SL-MAO surface modification technique optimized the surface properties of titanium implants and enhanced peri-implant bone formation and osseointegration.
Collapse
Affiliation(s)
- Wulin He
- Stomatological Hospital, Southern Medical University, No. 366, South Jiangnan Avenue, Guangzhou, 510280, Guangdong, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
- College of Materials Science and Engineering, Sichuan University, 610064, Chengdu, China
| | - Zeping Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Jingtao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
14
|
Weng SJ, Xie ZJ, Wu ZY, Yan DY, Tang JH, Shen ZJ, Li H, Bai BL, Boodhun V, Eric Dong XD, Yang L. Effects of combined menaquinone-4 and PTH 1-34 treatment on osetogenesis and angiogenesis in calvarial defect in osteopenic rats. Endocrine 2019; 63:376-384. [PMID: 30244350 DOI: 10.1007/s12020-018-1761-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The aim of this study was to evaluate the effect of combining human parathyroid hormone (1-34) (PTH1-34; PTH) and menaquinone-4 (MK-4) on calvarial bone defect repair in osteopenic rats. METHODS Fourteen week olds were subject to craniotomy for the establishment of osteopenic animal models fed through a chronically low-protein diet. After that, critical calvarial defect model was established and all rats were randomly divided into four groups: sham, MK-4, PTH, and PTH + MK-4. The animals received MK-4 (30 mg/kg/day), PTH1-34 (60 μg/kg, three times a week), or PTH1-34 (60 μg/kg, three times a week) plus MK-4 (30 mg/kg/day) for 8 weeks, respectively. Serum γ-carboxylated osteocalcin (Gla-OC) levels, histological and immunofluorescent labeling were employed to evaluate the bone formation and mineralization in calvarial bone defect. In addition, Microfil perfusion, immunohistochemical, and micro-CT suggested enhanced angiogenesis and bone formation in calvarial bone healing. RESULTS In this study, treatment with either PTH1-34 or MK-4 promoted bone formation and vascular formation in calvarial bone defects compared with the sham group. In addition, combined treatment of PTH1-34 plus MK-4 increased serum level of Gla-OC, improved vascular number and vascular density, and enhanced bone formation in calvarial bone defect in osteopenic conditions as compared with monotherapy. CONCLUSIONS In summary, this study indicated that PTH1-34 plus MK-4 combination therapy accelerated bone formation and angiogenesis in calvarial bone defects in presence of osteopenia.
Collapse
MESH Headings
- Animals
- Bone Diseases, Metabolic/complications
- Bone Diseases, Metabolic/diagnosis
- Bone Diseases, Metabolic/drug therapy
- Bone Diseases, Metabolic/pathology
- Drug Therapy, Combination
- Female
- Fracture Healing/drug effects
- Fractures, Spontaneous/diagnosis
- Fractures, Spontaneous/drug therapy
- Fractures, Spontaneous/etiology
- Fractures, Spontaneous/pathology
- Neovascularization, Physiologic/drug effects
- Osteogenesis/drug effects
- Parathyroid Hormone/administration & dosage
- Rats
- Rats, Sprague-Dawley
- Skull/diagnostic imaging
- Skull/drug effects
- Skull/injuries
- Skull/pathology
- Skull Fractures/diagnosis
- Skull Fractures/drug therapy
- Skull Fractures/etiology
- Skull Fractures/pathology
- Vitamin K 2/administration & dosage
- Vitamin K 2/analogs & derivatives
- X-Ray Microtomography
Collapse
Affiliation(s)
- She-Ji Weng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhong-Jie Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zong-Yi Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - De-Yi Yan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia-Hao Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zi-Jian Shen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hang Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bing-Li Bai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Viraj Boodhun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang Da Eric Dong
- Department of Surgery, Westchester Medical Center / New York Medical College, Valhalla, NY, USA
| | - Lei Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
15
|
Combined treatment with vitamin K2 and PTH enhanced bone formation in ovariectomized rats and increased differentiation of osteoblast in vitro. Chem Biol Interact 2019; 300:101-110. [PMID: 30639440 DOI: 10.1016/j.cbi.2019.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/22/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
Osteoporosis is accompanied by insufficient osteogenic capacity. Several lines of evidence suggested that solutions to enhance osteoblastogenesis were important strategies for osteoporotic bone defect repair. This study investigated the effect of combined treatment with vitamin K2 and PTH on bone formation in calvarial bone defect in osteoporotic rats and its influence on osteoblast in vitro. Bilateral ovariectomy was used in SPF Sprague Dawley rats to generate an osteoporosis model. Subsequently, a calvarial defect model was established and all osteoporotic rats were randomly assigned to the following groups: control, VK (vitamin K2, 30 mg/kg everyday), PTH (recombinant human PTH (1-34), 60 μg/kg, three times a week) or VK + PTH (vitamin K2, 30 mg/kg everyday plus PTH, 60 μg/kg three times a week) for 8 weeks. In vitro, bone marrow-derived stem cells (BMSCs) were cultured and treated with vitamin K2, PTH or vitamin K2+PTH. ALP staining and western blot were performed to observe the influence of combined treatment on BMSCs. Bone formation within calvarial defect were assessed by serum γ-carboxylated osteocalcin (Gla-OC), micro-CT, histological and immunofluorescent labeling. In this study, combined treatment of PTH and vitamin K2 showed positive effects on preventing bone loss in femurs in OVX rats. Combined treatment increased serum Gla-OC and promoted bone formation in osteoporotic calvarial bone defects. Immunohistochemistry showed that OCN and RUNX2 were more highly expressed in the VK + PTH group than in the control groups. In vitro studies results suggested that combined treatment with PTH and vitamin K2 increased expression of ALP, BMP2 and RUNX2 in BMSCs. Our data suggested that the combination of vitamin K2 and PTH increased differentiation of osteoblast and had a synergistic effect on bone formation in osteoporotic calvarial bone defect.
Collapse
|
16
|
Li H, Zhou Q, Bai BL, Weng SJ, Wu ZY, Xie ZJ, Feng ZH, Cheng L, Boodhun V, Yang L. Effects of combined human parathyroid hormone (1-34) and menaquinone-4 treatment on the interface of hydroxyapatite-coated titanium implants in the femur of osteoporotic rats. J Bone Miner Metab 2018; 36:691-699. [PMID: 29280077 DOI: 10.1007/s00774-017-0893-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/26/2017] [Indexed: 01/22/2023]
Abstract
The objective of this study was to investigate the effects of human parathyroid hormone (1-34) (PTH1-34; PTH) plus menaquinone-4 (vitamin K2; MK) on the osseous integration of hydroxyapatite (HA)-coated implants in osteoporotic rats. Ovariectomized female Sprague-Dawley rats were used for the study. Twelve weeks after bilateral ovariectomy, HA-coated titanium implants were inserted bilaterally in the femoral medullary canal of the remaining 40 ovariectomized rats. All animals were then randomly assigned to four groups: Control, MK, PTH and PTH + MK. The rats from groups MK, PTH and PTH + MK received vitamin K2 (30 mg/kg/day), PTH1-34 (60 μg/kg, three times a week), or both for 12 weeks. Thereafter, serum levels of γ-carboxylated osteocalcin (Gla-OC) were quantitated by ELISA and the bilateral femurs of rats were harvested for evaluation. The combination of PTH and MK clearly increased the serum levels of Gla-OC (a specific marker for bone formation) compared to PTH or MK alone. The results of our study indicated that all treated groups had increased new bone formation around the surface of implants and increased push-out force compared to Control. In addition, PTH + MK treatment showed the strongest effects in histological, micro-computed tomography and biomechanical tests. In summary, our results confirm that treatment with PTH1-34 and MK together may have a therapeutic advantage over PTH or MK monotherapy on bone healing around HA-coated implants in osteoporotic rats.
Collapse
Affiliation(s)
- Hang Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiang Zhou
- Department of Orthopedics Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Bing-Li Bai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - She-Ji Weng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zong-Yi Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhong-Jie Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen-Hua Feng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang Cheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Viraj Boodhun
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Basudan AM, Shaheen MY, de Vries RB, van den Beucken JJJP, Jansen JA, Alghamdi HS. Antiosteoporotic Drugs to Promote Bone Regeneration Related to Titanium Implants: A Systematic Review and Meta-Analysis. TISSUE ENGINEERING PART B-REVIEWS 2018; 25:89-99. [PMID: 30191772 DOI: 10.1089/ten.teb.2018.0120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
IMPACT STATEMENT This meta-analysis was to investigate literature on the administration of antiosteoporotic drugs as an effective adjunct therapy for implant osseointegration using in vivo animal models.
Collapse
Affiliation(s)
- Amani M Basudan
- 1 Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Marwa Y Shaheen
- 1 Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Rob B de Vries
- 2 Systematic Review Center for Laboratory Animal Experimentation, Department for Health Evidence (section HTA), Radboudumc, Nijmegen, The Netherlands
| | | | - John A Jansen
- 3 Department of Biomaterials, Radboudumc, Nijmegen, The Netherlands
| | - Hamdan S Alghamdi
- 1 Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.,3 Department of Biomaterials, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Yu SH, Hao J, Fretwurst T, Liu M, Kostenuik P, Giannobile WV, Jin Q. Sclerostin-Neutralizing Antibody Enhances Bone Regeneration Around Oral Implants. Tissue Eng Part A 2018; 24:1672-1679. [PMID: 29921173 DOI: 10.1089/ten.tea.2018.0013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dental implants are an important option for replacement of missing teeth. A major clinical challenge is how best to accelerate bone regeneration and reduce the healing time for functional restoration after implant placement. A sclerostin-neutralizing antibody (Scl-Ab) has been shown to enhance alveolar bone formation and fracture repair. The aim of this study was to investigate the effects of systemic administration of Scl-Ab on dental implant osseointegration and bone regeneration in an experimental alveolar ridge tooth extraction model. MATERIALS AND METHODS To investigate the effects of Scl-Ab on bone regeneration and dental implant osseointegration, an experimental alveolar bone osteotomy rat model was adopted. One month after extraction of maxillary right first molars, osteotomy defects were created at the coronal aspect of each of the extraction sites, and 1 × 2-mm custom titanium implants were installed into the osteotomies. Coincident with implant placement, Scl-Ab was administered subcutaneously at a dose of 25 mg/kg twice weekly for 10-28 days and compared with a vehicle control. Animals were sacrificed 10, 14, and 28 days after surgery, and maxillae were harvested and analyzed by microcomputed tomography (microCT), histology, and histomorphometry. RESULTS microCT analysis demonstrated that the maxillary bone volume fraction was approximately 2- to 2.5-fold greater in Scl-Ab-treated animals compared with vehicle alone at days 14 and 28. Consistent with those findings, two-dimensional bone fill percentages within the coronal osteotomy sites were highest in Scl-Ab treatment groups at 28 days. In addition, bone-implant contact at 28 days was approximately twofold greater in the Scl-Ab group compared with the vehicle control. CONCLUSIONS These results indicate that systemic Scl-Ab administration enhances osseointegration and bone regeneration around dental implants. This approach offers potential as a treatment modality for patients with low bone mass or bone defects to achieve more predictable bone regeneration at alveolar bone defects and to enhance dental implant osseointegration.
Collapse
Affiliation(s)
- Shan Huey Yu
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan , Ann Arbor, Michigan
| | - Jie Hao
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan , Ann Arbor, Michigan
| | - Tobias Fretwurst
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan , Ann Arbor, Michigan.,2 Department of Oral- and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center-University of Freiburg , Freiburg, Germany
| | - Min Liu
- 3 Amgen, Inc. , Thousand Oaks, California
| | - Paul Kostenuik
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan , Ann Arbor, Michigan.,3 Amgen, Inc. , Thousand Oaks, California.,6 Phylon Pharma Services, Newbury Park, California
| | - William V Giannobile
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan , Ann Arbor, Michigan.,4 Department of Biomedical Engineering, College of Engineering, University of Michigan College of Engineering , Ann Arbor, Michigan
| | - Qiming Jin
- 5 Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
19
|
Scardueli CR, Bizelli-Silveira C, Marcantonio RAC, Marcantonio E, Stavropoulos A, Spin-Neto R. Systemic administration of strontium ranelate to enhance the osseointegration of implants: systematic review of animal studies. Int J Implant Dent 2018; 4:21. [PMID: 30014305 PMCID: PMC6047953 DOI: 10.1186/s40729-018-0132-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
The literature states that Strontium (Sr) is able to simultaneously stimulate bone formation and suppress bone resorption. Recent animal studies suggest that the systemic administration of Sr, in the form of strontium ranelate (SRAN), would enhance the osseointegration of implants. The purpose of the present study was to undertake a systematic review on animal studies evaluating the systemic administration of Sr to enhance the osseointegration of titanium implants and the remodeling of bone grafts. The MEDLINE (PubMed) and Scopus bibliographic databases were searched from 1950 to October 2017 for reports on the use of systemic and non-radioactive Sr to enhance the osseointegration of titanium implants and the remodeling of bone grafts in animals. The search strategy was restricted to English language publications using the combined terms: "strontium" and "implant or graft or biomaterial or bone substitute". Five studies were included, all related to the systemic administration of Sr in the form SRAN, and its effects on osseointegration of titanium implants. No studies on the use of SRAN-based therapy to enhance the remodeling of bone grafts were found. The studies differed notably with respect to the study population (healthy female rats, healthy male rats, and female rats with induced osteoporosis) and SRAN dose (ranging from 500 to 1000 mg/kg/day). Results were diverse, but a tendency suggesting positive influence of systemic SRAN administration on the osseointegration of titanium implants was observed. No major side-effects due to strontium administration were reported. Systemic Sr administration, in the form of SRAN, seems to enhance peri-implant bone quality and implant osseointegration in animals, however, at a moderate extent. Further studies, evaluating both the effects of this drug on implant osseointegration and the risk/benefit of its use, are needed to provide a rationale of this therapeutic approach.
Collapse
Affiliation(s)
- Cassio Rocha Scardueli
- Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
- Department of Periodontology, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo Brazil
| | | | | | - Elcio Marcantonio
- Department of Periodontology, São Paulo State University (Unesp), School of Dentistry, Araraquara, São Paulo Brazil
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, University of Malmö, Malmö, Sweden
| | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Liu H, Zhang N, Liu Y, Liu L, Yin G, En L. Effect of Human Wnt10b Transgene Overexpression on Peri-Implant Osteogenesis in Ovariectomized Rats. Hum Gene Ther 2018; 29:1416-1427. [PMID: 29790378 DOI: 10.1089/hum.2018.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study aimed to investigate the efficacy of human Wnt10b (hWnt10b) transgene expression in ovariectomized (OVX) rats to accelerate osseointegration around titanium implants, and to provide a new strategy for treating osteoporosis with implants. An in vivo osteoporosis model was generated via bilateral ovariectomy in rats, and changes in expression of Wnt pathway-related genes were investigated. In OVX rats with a femur defect, hWnt10b expressed from an adenovirus vector was locally delivered to the defect site prior to implant placement. Surrounding femur tissues were collected 1 and 3 weeks after implantation for imaging, biomechanical testing, and molecular and histological analyses. In an in vitro model, bone-marrow stromal cells (BMSCs) transfected with adenovirus containing hWnt10b (Ad-hWnt10b) were cultured for 2 weeks in adipogenic medium followed by 2 weeks in osteogenic induction medium. Alizarin Red staining and Oil Red O staining, as well as reverse transcription polymerase chain reaction and Western blot analyses, were performed to assess the effect of hWnt10b expression on BMSC differentiation. Expression of Wnt pathway genes was significantly downregulated in OVX rats. OVX rats treated with Ad-hWnt10b prior to induction of a femur defect showed markedly increased ALP, Runx-2, and osteocalcin expression and decreased cathepsin K expression. Histological and imaging analysis showed increases in the number of osteocalcin-positive cells and the density of newly formed bone surrounding the implant in the Ad-hWnt10b group relative to the untreated control. Meanwhile, Ad-hWnt10b-BMSCs showed significantly increased osteogenesis and decreased adipogenesis. hWnt10b may accelerate osseointegration around implants and subsequently enhance bone regeneration and implant stabilization under OVX conditions.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Nian Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yao Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts
| | - Li Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Guozhu Yin
- Department of Stomatology, Shandong Provincial Hospital affiliated with Shandong University, Jinan, P.R. China
| | - Luo En
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
21
|
Li Z, Müller R, Ruffoni D. Bone remodeling and mechanobiology around implants: Insights from small animal imaging. J Orthop Res 2018; 36:584-593. [PMID: 28975660 DOI: 10.1002/jor.23758] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/27/2017] [Indexed: 02/04/2023]
Abstract
Anchorage of orthopedic implants depends on the interfacial bonding between the implant and the host bone as well as on the mass and microstructure of peri-implant bone, with all these factors being continuously regulated by the biological process of bone (re)modeling. In osteoporotic bone, implant integration may be jeopardized not only by lower peri-implant bone quality but also by reduced intrinsic regeneration ability. The first aim of this review is to provide a critical overview of the influence of osteoporosis on bone regeneration post-implantation. Mechanical stimulation can trigger bone formation and inhibit bone resorption; thus, judicious administration of mechanical loading can be used as an effective non-pharmacological treatment to enhance implant anchorage. Our second aim is to report recent achievements on the application of external mechanical stimulation to improve the quantity of peri-implant bone. The review focuses on peri-implant bone changes in osteoporotic conditions and following mechanical loading, prevalently using small animals and in vivo monitoring approaches. We intend to demonstrate the necessity to reveal new biological information on peri-implant bone mechanobiology to better target implant anchorage and fracture fixation in osteoporotic conditions. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:584-593, 2018.
Collapse
Affiliation(s)
- Zihui Li
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Davide Ruffoni
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.,Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospaceand Mechanical Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
22
|
Cai L, Zhang D, Liu W, Cui Y, Jing J, Xie J, Zhou X. Effects of parathyroid hormone (1-34) on the regulation of the lysyl oxidase family in ovariectomized mice. RSC Adv 2018; 8:30629-30641. [PMID: 35546858 PMCID: PMC9087977 DOI: 10.1039/c8ra04574g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023] Open
Abstract
Osteoporosis (OP) is a highly prevalent chronic disease. The anabolic agent parathyroid hormone (PTH) is often prescribed for the treatment of OP to strengthen bone quality and decrease the risk of fracture, although the specific mechanisms are still unclear. Lysyl oxidase (LOX) can stabilize the organic matrix through catalyzing the cross-linking of collagen and elastin. In this study, we established osteoporotic models via ovariectomizing C57BL/6J mice and treating them with PTH. We further aimed to determine the expression changes of the LOX family, impacted by PTH, in ovariectomized mice. We observed that bone mass was reduced and bone microstructure was deteriorative in ovariectomized mice. And PTH attenuated the microstructural damage and accelerated bone remodeling, as confirmed via μCT and HE staining. Serum levels of copper and zinc indirectly proved the results. The expression levels of five members of the LOX family all declined in ovariectomized mice compared to in sham-operated control mice (p < 0.05), and the daily injection of PTH successfully reversed the low expression of LOXs in OP. The current study examined expression changes of LOXs in osteoporotic mice and PTH-treated osteoporotic mice for the first time, and provided an important piece of evidence that the aberrant expression of LOXs had intimate associations with the occurrence and development of OP. And LOXs may act as the downstream effectors of PTH, contributing to unbalanced bone metabolism and damaged bone microstructure. Consequently, LOXs may act as promising therapeutic targets for OP. LOX family is a potential target in ovariectomized osteoporosis (OP).![]()
Collapse
Affiliation(s)
- Linyi Cai
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Wenjing Liu
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Junjun Jing
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Jing Xie
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| |
Collapse
|
23
|
A comparison of micro-CT and histomorphometry for evaluation of osseointegration of PEO-coated titanium implants in a rat model. Sci Rep 2017; 7:16270. [PMID: 29176604 PMCID: PMC5701240 DOI: 10.1038/s41598-017-16465-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
The aim of the present study was to determine the correlation between bone volume density (BV/TV) around a titanium implant determined by micro-computed tomography (micro-CT) and bone area density (BA/TA) measurements obtained using histomorphometry. An intramedullary rat femur implant model was evaluated to compare raw titanium implants with plasma electrolytic oxidation (PEO)-coated titanium implants. Titanium and PEO-treated titanium pins were inserted into rat femurs under general anesthesia. The animals were sacrificed and femurs harvested at 0, 2, 4 and 6 weeks, and subsequently, histomorphometry and micro-CT were performed. BV/TV and BA/TA values were strongly and positively correlated at all time points and locations (with all correlation coefficients being >0.8 and with P < 0.001). BV/TV and BA/TA were significantly higher proximal to the growth plate than distal to the growth plate, with estimated differences of 14.10% (P < 0.001) and 11.95% (P < 0.001), respectively. BV/TV and BA/TA were significantly higher on the PEO-coated surface than on the raw titanium surface, with estimated differences of 3.20% (P = 0.044) and 4.10% (P = 0.018), respectively. Therefore, quantitative micro-CT analysis of BV/TV is correlated with BA/TA determined by histomorphometry when artifacts around titanium implants are minimized by a region of interest modification.
Collapse
|
24
|
Effects of Intermittent Low-Dose Parathyroid Hormone Treatment on Rapid Mandibular Distraction Osteogenesis in Rabbits. J Oral Maxillofac Surg 2017; 75:1722-1731. [PMID: 28500874 DOI: 10.1016/j.joms.2017.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
|
25
|
Bar-Maisels M, Gabet Y, Shamir R, Hiram-Bab S, Pasmanik-Chor M, Phillip M, Bar-Yoseph F, Gat-Yablonski G. Beta Palmitate Improves Bone Length and Quality during Catch-Up Growth in Young Rats. Nutrients 2017; 9:nu9070764. [PMID: 28718808 PMCID: PMC5537878 DOI: 10.3390/nu9070764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 01/29/2023] Open
Abstract
Palmitic acid (PA) is the most abundant saturated fatty acid in human milk, where it is heavily concentrated in the sn-2-position (termed beta palmitate, BPA) and as such is conserved in all women, regardless of their diet or ethnicity, indicating its physiological and metabolic importance. We hypothesized that BPA improves the efficiency of nutrition-induced catch up growth as compared to sn-1,3 PA, which is present in vegetable oil. Pre-pubertal male rats were subjected to a 17 days food restriction followed by re-feeding for nine days with 1,3 PA or BPA-containing diets. We measured bone length, epiphyseal growth plate height (EGP, histology), bone quality (micro-CT and 3-point bending assay), and gene expression (Affymetrix). The BPA-containing diet improved most growth parameters: humeri length and EGP height were greater in the BPA-fed animals. Further analysis of the EGP revealed that the hypertrophic zone was significantly higher in the BPA group. In addition, Affymetrix analysis revealed that the diet affected the expression of several genes in the liver and EGP. Despite the very subtle difference between the diets and the short re-feeding period, we found a small but significant improvement in most growth parameters in the BPA-fed rats. This pre-clinical study may have important implications, especially for children with growth disorders and children with special nutritional needs.
Collapse
Affiliation(s)
- Meytal Bar-Maisels
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva 4920235, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Raanan Shamir
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva 4920235, Israel.
- The Molecular Endocrinology Laboratory, Felsenstein Medical Research Center, Petach Tikva 4920235, Israel.
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Moshe Phillip
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva 4920235, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
- The Molecular Endocrinology Laboratory, Felsenstein Medical Research Center, Petach Tikva 4920235, Israel.
| | - Fabiana Bar-Yoseph
- Enzymotec Ltd., Sagi 2000 Industrial Park, Migdal HaEmeq 2310001, Israel.
| | - Galia Gat-Yablonski
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva 4920235, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
- The Molecular Endocrinology Laboratory, Felsenstein Medical Research Center, Petach Tikva 4920235, Israel.
| |
Collapse
|
26
|
Abstract
Background and purpose - Aseptic loosening is a main cause of late revision in total knee replacement (TKR). Teriparatide, a recombinant parathyroid hormone (PTH), stimulates osteoblasts and has been suggested to improve cancellous bone healing in humans. This might also be relevant for prosthesis fixation. We used radiostereometric analysis (RSA) to investigate whether teriparatide influences prosthesis fixation. Early migration as measured by RSA can predict future loosening. Patients and methods - In a randomized controlled trial with blind evaluation, 50 patients with osteoarthritis of the knee were allocated to a teriparatide treatment group (Forsteo, 20 μg daily for 2 months postoperatively) or to an untreated control group. RSA was performed postoperatively and at 6 months, 12 months, and 24 months. The primary effect variable was maximal total point motion (MTPM) from 12 to 24 months. Results - Median maximal total point motion from 12 to 24 months was similar in the 2 groups (teriparatide: 0.14 mm, 10% and 90% percentiles: 0.08 and 0.24; control: 0.13 mm, 10% and 90% percentiles: 0.09 and 0.21). [Authors: this is perhaps better than using "10th" and "90th", which looks ugly in print./language editor] The 95% confidence interval for the difference between group means was -0.03 to 0.04 mm, indicating that no difference occurred. Interpretation - We found no effect of teriparatide on migration in total knee replacement. Other trials using the same dosing have suggested a positive effect of teriparatide on human cancellous fracture healing. Thus, the lack of effect on migration may have been due to something other than the dose. In a similar study in this issue of Acta Orthopaedica, we found that migration could be reduced with denosumab (Ledin et al. 2017 ). The difference in response between the anabolic substance teriparatide and the antiresorptive denosumab suggests that resorption has a more important role during the postoperative course than any deficit in bone formation.
Collapse
Affiliation(s)
- Håkan Ledin
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Medicine, Linköping University, Linköping;,Department of Orthopedics, Aleris Specialist Care Motala AB, Motala;,Correspondence:
| | - Lars Good
- Department of Orthopedics, Hospital of Oskarshamn, Oskarshamn
| | - Torsten Johansson
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Medicine, Linköping University, Norrköping, Sweden
| | - Per Aspenberg
- Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Medicine, Linköping University, Linköping
| |
Collapse
|
27
|
Ying G, Bo L, Yanjun J, Lina W, Binquan W. Effect of a local, one time, low-dose injection of zoledronic acid on titanium implant osseointegration in ovariectomized rats. Arch Med Sci 2016; 12:941-949. [PMID: 27695483 PMCID: PMC5016583 DOI: 10.5114/aoms.2016.61908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/02/2014] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Local application of bisphosphonates has been proven to be safer than systemic administration to promote implant fixation. The objective of this study was to introduce such a simple, convenient and efficient method to enhance titanium (Ti) implant osseointegration in ovariectomized (OVX) rats. MATERIAL AND METHODS Twenty female Sprague-Dawley rats sequentially underwent bilateral ovariectomy and tibia implantation, and injection of 30 µg/implant zoledronic acid (ZOL) at the site of implantation was performed. At the end of the study, the tibiae, mandibles, femurs and vertebrae were harvested for dual energy X-ray absorptiometry, histology and micro-computed tomography examination. RESULTS Ovariectomized rats showed poor bone density, bone mass and trabecular microstructure. OVX + ZOL rats were characterized by significantly improved peri-implant bone area (1.72-fold), bone contact (2.30-fold), bone mineral density (1.57-fold) and bone mineral content (1.67-fold), as well as moderately increased bone volume to total volume ratio (1.34-fold), percentage osteointegration (1.54-fold), connectivity density (1.45-fold), and trabecular number (1.43-fold), but decreased trabecular separation (57.69%) when compared with the control levels (p < 0.05). No histological signs of jaw osteonecrosis were observed in the rats treated with ZOL, and there was no significant difference between the OVX group and OVX + ZOL group in the bone mass of the mandible, femur and 5th lumbar vertebra (p > 0.05). In addition, the overproduction of osteoporosis-induced advanced glycation end-products (AGEs) was completely prevented by local treatment with 30 µg/implant ZOL. CONCLUSIONS A local, one time, low-dose injection of ZOL at the site of implantation is able to promote the osseointegration of Ti implants following postmenopausal osteoporosis, and this action may be partly mediated by inhibition of the osteoporosis-induced AGE overproduction in the bone marrow.
Collapse
Affiliation(s)
- Gao Ying
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lian Bo
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiao Yanjun
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wu Lina
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wang Binquan
- Department of Stomatology, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
28
|
Zhou H, Hou Y, Zhu Z, Xiao W, Xu Q, Li L, Li X, Chen W. Effects of Low-Intensity Pulsed Ultrasound on Implant Osseointegration in Ovariectomized Rats. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2016; 35:747-754. [PMID: 26960802 DOI: 10.7863/ultra.15.01083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
OBJECTIVES To investigate the effect of low-intensity pulsed ultrasound (US) on periimplant bone healing and osseointegration under osteoporotic conditions. METHODS Seventy-two 12-week-old female Sprague Dawley rats received bilateral ovariectomies. Twelve weeks later, titanium implants were bilaterally placed in the proximal tibial metaphysis. The right tibia was exposed to low-intensity pulsed US (40 mW/cm2, spatial and temporal average) for 20 min/d starting the 2nd day after implantation, and the left tibia served as a control without stimulation. The rats were randomly assigned to 6 groups of 12 each according to the US duration (group 1: weeks 0–2, 280 minutes; group 2: weeks 0–4, 560 minutes; group 3: weeks 0–6, 840 minutes; group 4: weeks 0–8, 1120 minutes; group 5: weeks 0–10, 1400 minutes; group 6: weeks 0–12, 1680 minutes). At the end of the 2nd, 4th, 6th, 8th, 10th, and 12th weeks, the rats were euthanized, and bilateral tibias were harvested. Peri-implant bone volume and bone-implant contact were assessed by micro–computed tomography; the implantbone interface was assessed histologically; and implant fixation strength was determined by a removal torque test. RESULTS Low-intensity pulsed US increased bone-implant contact at the 4th, 6th, 8th, 10th, and 12th weeks (P = .019, .017, <.001, <.001, and <.001, respectively) and periimplant bone volume at all times (P = <.001, .002, .012, .007, .005, and .010). Removal torque on the US side was improved at the 6th, 8th, 10th, and 12th weeks (P= .012, <.001, .006, and .009). Ultrasound evoked a favorable bone response in the histologic study. CONCLUSIONS Low-intensity pulsed US might enhance new bone formation, especially at an early stage, and improve osseointegration in osteoporotic bone as an auxiliary method. However, further studies are needed to elucidate the mechanisms underlying its action.
Collapse
|
29
|
Tao ZS, Zhou WS, Bai BL, Cui W, Lv YX, Yu XB, Huang ZL, Tu KK, Zhou Q, Sun T, Li H, Yang L. The effects of combined human parathyroid hormone (1-34) and simvastatin treatment on the interface of hydroxyapatite-coated titanium rods implanted into osteopenic rats femurs. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:43. [PMID: 26758890 DOI: 10.1007/s10856-015-5650-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
The effect of human parathyroid hormone 1-34 (PTH) and simvastatin (SIM) alone could promote bone healing in osteoporotic implant fixation, but there are no reports about the combined use of PTH and SIM for promotion of bone healing around implant in osteoporotic settings. This study aims to investigate effects of PTH + SIM on implant stabilization in osteopenic rats. Fourteen weeks after chronically fed a low protein diet, osteopenic rats randomly received implants. Subsequently, the animals were randomly divided into four groups: Control, SIM, PTH and PTH + SIM. Then all rats from groups PTH, SIM and PTH + SIM received PTH (40 μg/kg, three times a week), SIM (25 mg/kg, daily), or both for 12 weeks. The results of our study indicated that all treatments promoted bone healing around implant compared to Control, but PTH + SIM treatment showed significantly stronger effects than PTH or SIM alone in histological, micro-CT, and biomechanical tests. The results indicated additive effects of PTH and SIM on implant fixation in osteoporotic rats.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Wan-Shu Zhou
- Endocrine & Metabolic Diseases Unit, Affiliated Hospital of Guizhou Medical University, Guizhou, 550001, People's Republic of China
| | - Bing-li Bai
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Wei Cui
- Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Chengdu, 610000, Sichuan, People's Republic of China
| | - Yang-Xun Lv
- Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Xian-Bin Yu
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Zheng-Liang Huang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Kai-kai Tu
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Qiang Zhou
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Tao Sun
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Hang Li
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China
| | - Lei Yang
- Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, People's Republic of China.
| |
Collapse
|
30
|
Jiang N, Zhu S, Li J, Zhang L, Liao Y, Hu J. Development of a novel biomimetic micro/nano-hierarchical interface for enhancement of osseointegration. RSC Adv 2016. [DOI: 10.1039/c6ra03183h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the present study, a novel biomimetic micro/nano-hierarchical interface was obtained and an unexpected trabecular bone-like interface was given.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Jihua Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| | - Li Zhang
- Research Center for Nano-Biomaterials
- Analytical and Testing Center
- Sichuan University
- Chengdu
- China
| | - Yunmao Liao
- Research Center for Nano-Biomaterials
- Analytical and Testing Center
- Sichuan University
- Chengdu
- China
| | - Jing Hu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
- China
| |
Collapse
|
31
|
Javed F, Al Amri MD, Kellesarian SV, Al-Kheraif AA, Vohra F, Calvo-Guirado JL, Malmstrom H, Romanos GE. Efficacy of parathyroid hormone supplementation on the osseointegration of implants: a systematic review. Clin Oral Investig 2015; 20:649-58. [DOI: 10.1007/s00784-015-1691-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
|
32
|
Li Z, Kuhn G, von Salis-Soglio M, Cooke SJ, Schirmer M, Müller R, Ruffoni D. In vivo monitoring of bone architecture and remodeling after implant insertion: The different responses of cortical and trabecular bone. Bone 2015; 81:468-477. [PMID: 26303288 DOI: 10.1016/j.bone.2015.08.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/01/2022]
Abstract
The mechanical integrity of the bone-implant system is maintained by the process of bone remodeling. Specifically, the interplay between bone resorption and bone formation is of paramount importance to fully understand the net changes in bone structure occurring in the peri-implant bone, which are eventually responsible for the mechanical stability of the bone-implant system. Using time-lapsed in vivo micro-computed tomography combined with new composite material implants, we were able to characterize the spatio-temporal changes of bone architecture and bone remodeling following implantation in living mice. After insertion, implant stability was attained by a quick and substantial thickening of the cortical shell which counteracted the observed loss of trabecular bone, probably due to the disruption of the trabecular network. Within the trabecular compartment, the rate of bone formation close to the implant was transiently higher than far from the implant mainly due to an increased mineral apposition rate which indicated a higher osteoblastic activity. Conversely, in cortical bone, the higher rate of bone formation close to the implant compared to far away was mostly related to the recruitment of new osteoblasts as indicated by a prevailing mineralizing surface. The behavior of bone resorption also showed dissimilarities between trabecular and cortical bone. In the former, the rate of bone resorption was higher in the peri-implant region and remained elevated during the entire monitoring period. In the latter, bone resorption rate had a bigger value away from the implant and decreased with time. Our approach may help to tune the development of smart implants that can attain a better long-term stability by a local and targeted manipulation of the remodeling process within the cortical and the trabecular compartments and, particularly, in bone of poor health.
Collapse
Affiliation(s)
- Zihui Li
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Gisela Kuhn
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Davide Ruffoni
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Department of Aerospace and Mechanical Engineering, University of Liege, Liege, Belgium.
| |
Collapse
|
33
|
The effects of combined human parathyroid hormone (1-34) and simvastatin treatment on osseous integration of hydroxyapatite-coated titanium implants in the femur of ovariectomized rats. Injury 2015; 46:2164-9. [PMID: 26404665 DOI: 10.1016/j.injury.2015.08.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/06/2015] [Accepted: 08/25/2015] [Indexed: 02/02/2023]
Abstract
The effect of human parathyroid hormone 1-34 (PTH) and simvastatin (SIM) alone could promote bone healing in osteoporotic osseous integration of the implant, but there are no reports about the combined use of PTH and SIM for promotion of bone healing around implant in osteoporotic settings still limited. This study aims to investigate effects of PTH+SIM on osseous integration of the implant in OVX rats. Female Sprague-Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group control; group SIM; group PTH and group PTH+SIM. Afterwards, all OVX rats received hydroxyapatite (HA)-coated titanium rods (external diameter and length are 1.5mm and 20mm) in the femoral medullary canal. Subsequently, the animals from group SIM, group PTH and group PTH+SIM received human parathyroid hormone 1-34 (60μg/kg, three times a week), SIM (5mg/kg daily), or both for 12 weeks. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All groups increased new bone formation around the surface of titanium rods and push-out force; group PTH+SIM showed the strongest effects on new bone formation and biomechanical strength. Additionally, these are significant difference observed in bone formation and push-out force between groups SIM and PTH. This finding suggests that intermittent administration of PTH or SIM alone has an effect to increase new bone formation on the surface of HA-coated implants in the osteoporotic condition, and the additive effects of combination PTH and SIM on osseous integration of the implant in OVX rats.
Collapse
|
34
|
Bi F, Shi Z, Zhou C, Liu A, Shen Y, Yan S. Intermittent Administration of Parathyroid Hormone [1-34] Prevents Particle-Induced Periprosthetic Osteolysis in a Rat Model. PLoS One 2015; 10:e0139793. [PMID: 26441073 PMCID: PMC4595472 DOI: 10.1371/journal.pone.0139793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/17/2015] [Indexed: 11/19/2022] Open
Abstract
We examined whether intermittent administration of parathyroid hormone [1-34] (PTH[1-34]; 60 μg/kg/day) can prevent the negative effects of titanium (Ti) particles on implant fixation and periprosthetic osteolysis in a rat model. Eighteen adult male rats (12 weeks old, bones still growing) received intramedullary Ti implants in their bilateral femurs; 6 rats from the blank group received vehicle injections, and 12 rats from the control group and PTH treatment group received Ti particle injections at the time of operation and intra-articular injections 2 and 4 weeks postoperatively. Six of the rats that received Ti particles from the PTH group also received PTH[1-34] treatment. Six weeks postoperatively, all specimens were collected for assessment by X-ray, micro-CT, biomechanical, scanning electron microscopy (SEM), and dynamic histomorphometry. A lower BMD, BV/TV, Tb.N, maximal fixation strength, and mineral apposition rate were observed in the control group compared to the blank group, demonstrating that a periprosthetic osteolysis model had been successfully established. Administration of PTH[1-34] significantly increased the bone mineral density of the distal femur, BV/TV, Tb.N, Tb.Th, Tb.Sp, Con.D, SMI, and maximal fixation strength in the PTH group compared to that in the control group. SEM revealed higher bone-implant contact, thicker lamellar bone, and larger trabecular bone area in the PTH group than in the control group. A higher mineral apposition rate was observed in the PTH group compared to both the blank and control groups. These findings imply that intermittent administration of PTH[1-34] prevents periprosthetic osteolysis by promoting bone formation. The effects of PTH[1-34] were evaluated at a suprapharmacological dosage to the human equivalent in rats; therefore, additional studies are required to demonstrate its therapeutic potential in periprosthetic osteolysis.
Collapse
Affiliation(s)
- Fanggang Bi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongli Shi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenhe Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - An Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Shen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shigui Yan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
35
|
Kogan NM, Melamed E, Wasserman E, Raphael B, Breuer A, Stok KS, Sondergaard R, Escudero AVV, Baraghithy S, Attar-Namdar M, Friedlander-Barenboim S, Mathavan N, Isaksson H, Mechoulam R, Müller R, Bajayo A, Gabet Y, Bab I. Cannabidiol, a Major Non-Psychotropic Cannabis Constituent Enhances Fracture Healing and Stimulates Lysyl Hydroxylase Activity in Osteoblasts. J Bone Miner Res 2015; 30:1905-13. [PMID: 25801536 DOI: 10.1002/jbmr.2513] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 02/15/2015] [Accepted: 03/18/2015] [Indexed: 12/16/2022]
Abstract
Cannabinoid ligands regulate bone mass, but skeletal effects of cannabis (marijuana and hashish) have not been reported. Bone fractures are highly prevalent, involving prolonged immobilization and discomfort. Here we report that the major non-psychoactive cannabis constituent, cannabidiol (CBD), enhances the biomechanical properties of healing rat mid-femoral fractures. The maximal load and work-to-failure, but not the stiffness, of femurs from rats given a mixture of CBD and Δ(9) -tetrahydrocannabinol (THC) for 8 weeks were markedly increased by CBD. This effect is not shared by THC (the psychoactive component of cannabis), but THC potentiates the CBD stimulated work-to-failure at 6 weeks postfracture followed by attenuation of the CBD effect at 8 weeks. Using micro-computed tomography (μCT), the fracture callus size was transiently reduced by either CBD or THC 4 weeks after fracture but reached control level after 6 and 8 weeks. The callus material density was unaffected by CBD and/or THC. By contrast, CBD stimulated mRNA expression of Plod1 in primary osteoblast cultures, encoding an enzyme that catalyzes lysine hydroxylation, which is in turn involved in collagen crosslinking and stabilization. Using Fourier transform infrared (FTIR) spectroscopy we confirmed the increase in collagen crosslink ratio by CBD, which is likely to contribute to the improved biomechanical properties of the fracture callus. Taken together, these data show that CBD leads to improvement in fracture healing and demonstrate the critical mechanical role of collagen crosslinking enzymes.
Collapse
Affiliation(s)
- Natalya M Kogan
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eitan Melamed
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Wasserman
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bitya Raphael
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aviva Breuer
- Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kathryn S Stok
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | | | - Saja Baraghithy
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | - Neashan Mathavan
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Orthopedics, Lund University, Lund, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden.,Department of Orthopedics, Lund University, Lund, Sweden
| | - Raphael Mechoulam
- Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Alon Bajayo
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itai Bab
- Bone Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
36
|
Barak S, Neuman M, Iezzi G, Piattelli A, Perrotti V, Gabet Y. A new device for improving dental implants anchorage: a histological and micro-computed tomography study in the rabbit. Clin Oral Implants Res 2015; 27:935-42. [PMID: 26249830 DOI: 10.1111/clr.12661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE In the present study, a new healing cap that could generate a pulsed electromagnetic field (PEMF) around titanium implants to stimulate peri-implant osteogenesis was tested in the rabbit model. MATERIALS AND METHODS A total of 22 implants were inserted in the proximal tibial metaphysis of 22 rabbits. A healing cap containing the active device was inserted in half of the implants (11 test implants); an "empty" healing cap was inserted in the other ones (11 control implants). The animals were euthanized after 2 and 4 weeks, and the samples were processed for micro-computed tomography and histology. The peri-implant volume was divided into coronal (where the PEMF was the strongest) and apical regions. RESULTS Most of the effects of the tested device were confined to the coronal region. Two weeks post-implantation, test implants showed a significant 56% higher trabecular bone fraction (BV/TV), associated with enhanced trabecular number (Tb.N, +37%) and connectivity density (Conn.D, +73%) as compared to the control group; at 4 weeks, the PEMF induced a 69% increase in BV/TV and 34% increase of Tb.N. There was no difference in the trabecular thickness (Tb.Th) at either time point. Furthermore, we observed a 48% higher bone-to-implant contact (BIC) in the test implants vs. controls after 2 weeks; this increase tended to remain stable until the fourth week. Mature trabecular and woven bone were observed in direct contact with the implant surface with no gaps or connective tissue at the bone-implant interface. CONCLUSIONS These results indicate that the PEMF device stimulated early bone formation around dental implants resulting in higher peri-implant BIC and bone mass already after 2 weeks which suggests an acceleration of the osseointegration process by more than three times.
Collapse
Affiliation(s)
| | | | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Vittoria Perrotti
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
37
|
Yang X, Ricciardi BF, Dvorzhinskiy A, Brial C, Lane Z, Bhimani S, Burket JC, Hu B, Sarkisian AM, Ross FP, van der Meulen MCH, Bostrom MPG. Intermittent Parathyroid Hormone Enhances Cancellous Osseointegration of a Novel Murine Tibial Implant. J Bone Joint Surg Am 2015; 97:1074-83. [PMID: 26135074 PMCID: PMC4574908 DOI: 10.2106/jbjs.n.01052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Long-term fixation of uncemented joint implants requires early mechanical stability and implant osseointegration. To date, osseointegration has been unreliable and remains a major challenge in cementless total knee arthroplasty. We developed a murine model in which an intra-articular proximal tibial titanium implant with a roughened stem can be loaded through the knee joint. Using this model, we tested the hypothesis that intermittent injection of parathyroid hormone (iPTH) would increase proximal tibial cancellous osseointegration. METHODS Ten-week-old female C57BL/6 mice received a subcutaneous injection of PTH (40 μg/kg/day) or a vehicle (n = 45 per treatment group) five days per week for six weeks, at which time the baseline group was killed (n = 6 per treatment group) and an implant was inserted into the proximal part of the tibiae of the remaining mice. Injections were continued until the animals were killed at one week (n = 7 per treatment group), two weeks (n = 14 per treatment group), or four weeks (n = 17 per treatment group) after implantation. Outcomes included peri-implant bone morphology as analyzed with micro-computed tomography (microCT), osseointegration percentage and bone area fraction as shown with backscattered electron microscopy, cellular composition as demonstrated by immunohistochemical analysis, and pullout strength as measured with mechanical testing. RESULTS Preimplantation iPTH increased the epiphyseal bone volume fraction by 31.6%. When the data at post-implantation weeks 1, 2, and 4 were averaged for the iPTH-treated mice, the bone volume fraction was 74.5% higher in the peri-implant region and 168% higher distal to the implant compared with the bone volume fractions in the same regions in the vehicle-treated mice. Additionally, the trabecular number was 84.8% greater in the peri-implant region and 74.3% greater distal to the implant. Metaphyseal osseointegration and bone area fraction were 28.1% and 70.1% higher, respectively, in the iPTH-treated mice than in the vehicle-treated mice, and the maximum implant pullout strength was 30.9% greater. iPTH also increased osteoblast and osteoclast density by 65.2% and 47.0%, respectively, relative to the values in the vehicle group, when the data at post-implantation weeks 1 and 2 were averaged. CONCLUSIONS iPTH increased osseointegration, cancellous mass, and the strength of the bone-implant interface. CLINICAL RELEVANCE Our murine model is an excellent platform on which to study biological enhancement of cancellous osseointegration.
Collapse
Affiliation(s)
- Xu Yang
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for X. Yang:
| | - Benjamin F Ricciardi
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for X. Yang:
| | - Aleksey Dvorzhinskiy
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for X. Yang:
| | - Caroline Brial
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for X. Yang:
| | - Zachary Lane
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for X. Yang:
| | - Samrath Bhimani
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for X. Yang:
| | - Jayme C Burket
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for X. Yang:
| | - Bin Hu
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010
| | - Alexander M Sarkisian
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for X. Yang:
| | - F Patrick Ross
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for X. Yang:
| | | | - Mathias P G Bostrom
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021. E-mail address for X. Yang:
| |
Collapse
|
38
|
Cancellous bone response to strontium-doped hydroxyapatite in osteoporotic rats. J Appl Biomater Funct Mater 2015; 13:28-34. [PMID: 24744229 DOI: 10.5301/jabfm.5000168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The objective of this study was to investigate cancellous bone response to strontium-doped hydroxyapatite (SrHA) in ovariectomized (OVX) rats. METHODS Hydroxyapatite (HA) and 10%SrHA (HA with 10 mol% calcium substituted by strontium) implants were prepared and characterized by scanning electronic microscopy (SEM), energy dispersive microanalysis (EDX) and X-ray diffraction (XRD). Twelve weeks after bilateral ovariectomy, 20 rats randomly received HA or 10%SrHA implants in the right distal femur, with 10 animals in each group. Eight weeks after implantation, specimens were harvested and analyzed by micro-computed tomography (micro-CT) and histology. RESULTS Compared with HA, 10%SrHA raised the percentage bone volume by 42.6%, bone-to-implant contact by 47.1%, mean trabecular number by 27.3%, mean trabecular thickness by 31.5% and mean connectivity density by 37.4%, while it decreased mean trabecular separation by 20.1% in micro-CT evaluation. 10%SrHA also increased the bone area density by 47.6% in histological analysis. CONCLUSIONS With the HA implants as controls, the 10%SrHA implants were shown to increase bone density and bone-to-implant contact, and improve trabecular architecture in the vicinity of implant surfaces.
Collapse
|
39
|
Zhou Y, Guan X, Liu T, Wang X, Yu M, Yang G, Wang H. Whole body vibration improves osseointegration by up-regulating osteoblastic activity but down-regulating osteoblast-mediated osteoclastogenesis via ERK1/2 pathway. Bone 2015; 71:17-24. [PMID: 25304090 DOI: 10.1016/j.bone.2014.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
Due to the reduction in bone mass and deterioration in bone microarchitecture, osteoporosis is an important risk factor for impairing implant osseointegration. Recently, low-magnitude, high-frequency (LMHF) vibration (LM: <1×g; HF: 20-90Hz) has been shown to exhibit anabolic, but anti-resorptive effects on skeletal homeostasis. Therefore, we hypothesized that LMHF loading, in terms of whole body vibration (WBV), may improve implant fixation under osteoporotic status. In the in vivo study, WBV treatment (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h, 5days/week) was applied after hydroxyapatite-coated titanium implants were inserted in the bilateral tibiae of ovariectomized rats. The bone mass and the osteospecific gene expressions were measured at 12weeks post implantation. In the in vitro study, the cellular and molecular mechanisms underlying osteoblastic and osteoclastic activities were fully investigated using various experimental assays. Micro-CT examination showed that WBV could enhance osseointegration by improving microstructure parameters surrounding implants. WBV-regulated gene levels in favor of bone formation over resorption may be the reason for the favorable adaptive bone remolding on bone-implant surface. The in vitro study showed that vibration (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h) up-regulated osteoblast differentiation, matrix synthesis and mineralization. However, mechanically regulated osteoclastic activity was mainly through the effect on osteoblastic cells producing osteoclastogenesis-associated key soluble factors, including RANKL and M-CSF. Osteoblasts were therefore the direct target cells during the mechanotransduction process. The ERK1/2 pathway was demonstrated to play an essential role in vibration-induced enhancement of bone formation and decreased bone resorption. Our data suggests that WBV was a helpful non-pharmacological intervention for improving osseointegration under osteoporosis.
Collapse
Affiliation(s)
- Yi Zhou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Xiaoxu Guan
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Tie Liu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Xinhua Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Mengfei Yu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Guoli Yang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Huiming Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China.
| |
Collapse
|
40
|
Virdi AS, Irish J, Sena K, Liu M, Ke HZ, McNulty MA, Sumner DR. Sclerostin antibody treatment improves implant fixation in a model of severe osteoporosis. J Bone Joint Surg Am 2015; 97:133-40. [PMID: 25609440 DOI: 10.2106/jbjs.n.00654] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The mechanical fixation of orthopaedic and dental implants is compromised by diminished bone volume, such as with osteoporosis. Systemic administration of sclerostin antibody (Scl-Ab) has been shown to enhance implant fixation in normal animals. In the present study, we tested whether Scl-Ab can improve implant fixation in established osteoporosis in a rat model. METHODS We used an ovariectomized (ovx) rat model, in which we found a 78% decrease in trabecular bone volume at the time of implant surgery; sham-ovx, age-matched rats were used as controls. After placement of a titanium implant in the medullary cavity of the distal aspect of the femur, the rats were maintained for four, eight, or twelve weeks and treated biweekly with Scl-Ab or with the delivery vehicle alone. Outcomes were measured with use of microcomputed tomography, mechanical testing, and static and dynamic histomorphometry. RESULTS Scl-Ab treatment doubled implant fixation strength in both the sham-ovx and ovx groups, although the enhancement was delayed in the ovx group. Scl-Ab treatment also enhanced bone-implant contact; increased peri-implant trabecular thickness and volume; and increased cortical thickness. These structural changes were associated with an approximately five to sevenfold increase in the bone-formation rate and a >50% depression in the eroded surface following Scl-Ab treatment. Trabecular bone thickness and bone-implant contact accounted for two-thirds of the variance in fixation strength. CONCLUSIONS In this model of severe osteoporosis, Scl-Ab treatment enhanced implant fixation by stimulating bone formation and suppressing bone resorption, leading to enhanced bone-implant contact and improved trabecular bone volume and architecture. CLINICAL RELEVANCE Systemic administration of anti-sclerostin antibodies might be a useful strategy in total joint replacement when bone mass is deficient.
Collapse
Affiliation(s)
- Amarjit S Virdi
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 South Paulina Street, Suite 507, Chicago, IL 60612. E-mail address for A.S. Virdi:
| | - John Irish
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 South Paulina Street, Suite 507, Chicago, IL 60612. E-mail address for A.S. Virdi:
| | - Kotaro Sena
- Department of Periodontology, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Min Liu
- Metabolic Disorders, Amgen, Inc., One Amgen Center Drive, 29-1-A, Thousand Oaks, CA 91320
| | - Hua Zhu Ke
- Metabolic Disorders, Amgen, Inc., One Amgen Center Drive, 29-1-A, Thousand Oaks, CA 91320
| | - Margaret A McNulty
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803
| | - Dale R Sumner
- Department of Anatomy and Cell Biology, Rush University Medical Center, 600 South Paulina Street, Suite 507, Chicago, IL 60612. E-mail address for A.S. Virdi:
| |
Collapse
|
41
|
Ross RD, Hamilton JL, Wilson BM, Sumner DR, Virdi AS. Pharmacologic augmentation of implant fixation in osteopenic bone. Curr Osteoporos Rep 2014; 12:55-64. [PMID: 24293098 DOI: 10.1007/s11914-013-0182-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteoporosis presents a challenge for successful implant fixation due to an impaired healing response. Preclinical studies have consistently reported reduced osseointegration capability in trabecular bone. Although clinical studies of implant success in dentistry have not found a negative effect due to osteoporosis, low bone mass is a significant risk factor for implant migration in orthopedics. Pharmacologic treatment options that limit bone resorption or upregulate formation have been studied preclinically. While, both treatment options improve implant fixation, direct comparisons to-date have found anti-catabolic more effective than anabolic treatments for establishing implant fixation, but combination approaches are better than either treatment alone. Clinically, anti-catabolic treatments, particularly bisphosphonates have been shown to increase the longevity of implants, while limited clinical evidence on the effects of anabolic treatment exists. Preclinical experiments are needed to determine the effects of osteoporosis and subsequent treatment on the long-term maintenance of fixation and recovery after bone loss.
Collapse
Affiliation(s)
- R D Ross
- Anatomy and Cell Biology, Rush University Medical Center, 600 S. Paulina Street, Suite # AcFc 507, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
42
|
Basler SE, Traxler J, Müller R, van Lenthe GH. Peri-implant bone microstructure determines dynamic implant cut-out. Med Eng Phys 2013; 35:1442-9. [DOI: 10.1016/j.medengphy.2013.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 01/20/2013] [Accepted: 03/27/2013] [Indexed: 10/26/2022]
|
43
|
MacDonald DE, Rapuano BE, Vyas P, Lane JM, Meyers K, Wright T. Heat and radiofrequency plasma glow discharge pretreatment of a titanium alloy promote bone formation and osseointegration. J Cell Biochem 2013; 114:2363-74. [PMID: 23649564 PMCID: PMC3786157 DOI: 10.1002/jcb.24585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/29/2013] [Indexed: 12/16/2022]
Abstract
Orthopedic and dental implants manifest increased failure rates when inserted into low density bone. We determined whether chemical pretreatments of a titanium alloy implant material stimulated new bone formation to increase osseointegration in vivo in trabecular bone using a rat model. Titanium alloy rods were untreated or pretreated with heat (600°C) or radiofrequency plasma glow discharge (RFGD). The rods were then coated with the extracellular matrix protein fibronectin (1 nM) or left uncoated and surgically implanted into the rat femoral medullary cavity. Animals were euthanized 3 or 6 weeks later, and femurs were removed for analysis. The number of trabeculae in contact with the implant surface, surface contact between trabeculae and the implant, and the length and area of bone attached to the implant were measured by histomorphometry. Implant shear strength was measured by a pull-out test. Both pretreatments and fibronectin enhanced the number of trabeculae bonding with the implant and trabeculae-to-implant surface contact, with greater effects of fibronectin observed with pretreated compared to untreated implants. RFGD pretreatment modestly increased implant shear strength, which was highly correlated (r(2) = 0.87-0.99) with measures of trabecular bonding for untreated and RFGD-pretreated implants. In contrast, heat pretreatment increased shear strength 3-5-fold for both uncoated and fibronectin-coated implants at 3 and 6 weeks, suggesting a more rapid increase in implant-femur bonding compared to the other groups. In summary, our findings suggest that the heat and RFGD pretreatments can promote the osseointegration of a titanium alloy implant material.
Collapse
Affiliation(s)
- Daniel E MacDonald
- Hospital for Special Surgery Affiliated With the Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Li X, Li Y, Peng S, Ye B, Lin W, Hu J. Effect of zinc ions on improving implant fixation in osteoporotic bone. Connect Tissue Res 2013; 54:290-6. [PMID: 23971976 DOI: 10.3109/03008207.2013.813495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The application of titanium (Ti) and its alloys in tooth restoration and joint replacement for aged patients with unfavorable conditions is gaining popularity. Therefore, strategies aiming at improving the fixation of Ti-based implants are worth investigating. This study was designed to observe whether modification of Ti implants by zinc (Zn) could enhance the fixation capability in osteoporotic bone. Two kinds of implants, hydroxyapatite (HA) coated Ti and Zn-incorporated HA (ZnHA) coated Ti, were inserted into the femoral metaphysis longitudinally in ovariectomized (OVX) rats. Specimens were harvested and subjected to double fluorescence labeling examination at week 6 after surgery. At week 12, samples were evaluated with histomorphometry, micro-CT (μCT) analysis and biomechanical test. Compared to the HA coated implants, ZnHA coating improved mineral apposition rate (MAR) of peri-implant bone, which was revealed by double fluorescence labeling; bone area ratio (BA) and bone-to-implant contact (BIC) were also higher for the latter group by histomorphometry. μCT images suggested that more bone mass was formed around the ZnHA coated implants as compared to the HA coated implants. Biomechanical push-out test showed that the ZnHA coated implants demonstrated higher strength of osseointegration than the HA group. The current study suggested that Zn ions could enhance bone formation and improve implant fixation in OVX rats.
Collapse
Affiliation(s)
- Xudong Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University , Chengdu , China and
| | | | | | | | | | | |
Collapse
|
45
|
Kim YJ, Henkin J. Micro-Computed Tomography Assessment of Human Alveolar Bone: Bone Density and Three-Dimensional Micro-Architecture. Clin Implant Dent Relat Res 2013; 17:307-13. [DOI: 10.1111/cid.12109] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yoon Jeong Kim
- Department of Periodontics; School of Dentistry; Loma Linda University; Loma Linda CA USA
| | - Jeffrey Henkin
- Department of Periodontics; School of Dentistry; Loma Linda University; Loma Linda CA USA
| |
Collapse
|
46
|
Li JP, Li P, Hu J, Dong W, Liao NN, Qi MC, Li JY. Early healing of hydroxyapatite-coated implants in grafted bone of zoledronic acid-treated osteoporotic rabbits. J Periodontol 2013; 85:308-16. [PMID: 23688100 DOI: 10.1902/jop.2013.130046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Resorption of grafted bone and delayed osseointegration of implants are main problems associated with alveolar bone augmentation in dental implantology, especially for patients with osteoporosis. The aim of this study is to investigate the early healing response of implants to systemic treatment of zoledronic acid (ZA) in autogenous grafted iliac bone of osteoporotic rabbits. METHODS Ovariectomy (OVX) or sham operation was performed in 46 rabbits, and osteoporotic changes were verified in animals receiving OVX 3 months later. The remaining animals were divided into three groups (n = 12): sham, OVX, and OVX with ZA treatment (ZA group). Autogenous iliac bone grafting was performed in bilateral tibiae, and hydroxyapatite-coated titanium implants were simultaneously placed into the grafted bone. The animals were sacrificed 2 and 8 weeks later for examination. RESULTS At both time points, systemic treatment of ZA efficiently promoted bone healing of implants in grafted bone, and all histologic and microcomputed tomography bone indices, including mineralized bone volume, implant-bone contact ratio, connectivity density, trabecular thickness, and trabecular number, were significantly increased in the ZA group compared with the OVX-only group (P <0.01); implant-bone contact rates in the ZA group were even restored to levels similar to those of sham-operated animals (P >0.05). Furthermore, biomechanical testing demonstrated that removal torque of implants was significantly increased in the ZA group compared with the OVX group (P <0.01). CONCLUSION Systemic treatment with ZA could efficiently promote early bone healing of implants in autogenous grafted bone of osteoporotic rabbits by increasing early osseointegration and fixation of implants.
Collapse
Affiliation(s)
- Jian-Ping Li
- College of Stomatology, Hebei United University, Tangshan City, Hebei Province, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Li YF, Li XD, Bao CY, Chen QM, Zhang H, Hu J. Promotion of peri-implant bone healing by systemically administered parathyroid hormone (1-34) and zoledronic acid adsorbed onto the implant surface. Osteoporos Int 2013; 24:1063-71. [PMID: 23296744 DOI: 10.1007/s00198-012-2258-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/30/2012] [Indexed: 11/24/2022]
Abstract
UNLABELLED The effect of human parathyroid hormone 1-34 (PTH) and zoledronic acid (ZA) alone or in combination on bone healing in osteoporotic settings was tested using implants inserted in tibiae of ovariectomized (OVX) rats. Combination therapy promoted bone healing more than each treatment alone 12 weeks after implant insertion. INTRODUCTION PTH and ZA have been demonstrated to be effective on implant fixation. However, reports about the combined use of PTH and ZA for promotion of bone healing around implant in osteoporotic settings are still limited. This study aims to investigate effects of PTH+ZA on implant stabilization in OVX rats. METHODS Twelve weeks after bilateral ovariectomy, OVX rats randomly received implants without or with ZA (by immersion in 1 mg/ml ZA solution for 24 h). Subsequently, half of the animals from each group also received subcutaneous injections of PTH (60 μg/kg, three times a week) for 12 weeks. Thus, there were four groups: control, PTH, ZA, and PTH+ZA. RESULTS All treatments promoted bone healing around implant compared to control, but PTH+ZA treatment showed significantly stronger effects than PTH or ZA alone in histological, micro-CT, and biomechanical tests. CONCLUSION The results indicated the additive effects of PTH and ZA on implant fixation in OVX rats; it was suggested that the anabolic effect of PTH was potent and not blunted by ZA during bone healing around implant when used concurrently.
Collapse
Affiliation(s)
- Y F Li
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No 14, Section 3, Southern Renmin Road, Chengdu 610041, China
| | | | | | | | | | | |
Collapse
|
48
|
Thoma DS, Martin IS, Mühlemann S, Jung RE. Systematic review of pre-clinical models assessing implant integration in locally compromised sites and/or systemically compromised animals. J Clin Periodontol 2012; 39 Suppl 12:37-62. [PMID: 22533946 DOI: 10.1111/j.1600-051x.2011.01833.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim was to systematically search the dental literature for pre-clinical models assessing implant integration in locally compromised sites (part 1) and systemically compromised animals (part 2), and to evaluate the quality of reporting of included publications. METHODS A Medline search (1966-2011) was performed, complimented by additional hand searching. The quality of reporting of the included publications was evaluated using the 20 items of the ARRIVE (Animals in Research In Vivo Experiments) guidelines. RESULTS One-hundred and seventy-six (part 1; mean ARRIVE score = 15.6 ± 2.4) and 104 (part 2; 16.2 ± 1.9) studies met the inclusion criteria. The overall mean score for all included studies amounted to 15.8 ± 2.2. Housing (38.3%), allocation of animals (37.9%), numbers analysed (50%) and adverse events (51.4%) of the ARRIVE guidelines were the least reported. Statistically significant differences in mean ARRIVE scores were found depending on the publication date (p < 0.05), with the highest score of 16.7 ± 1.6 for studies published within the last 2 years. CONCLUSIONS A large number of studies met the inclusion criteria. The ARRIVE scores revealed heterogeneity and missing information for selected items in more than 50% of the publications. The quality of reporting shifted towards better-reported pre-clinical trials within recent years.
Collapse
Affiliation(s)
- Daniel S Thoma
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
49
|
Daugaard H, Elmengaard B, Andreassen TT, Lamberg A, Bechtold JE, Soballe K. Systemic intermittent parathyroid hormone treatment improves osseointegration of press-fit inserted implants in cancellous bone. Acta Orthop 2012; 83:411-9. [PMID: 22880714 PMCID: PMC3427634 DOI: 10.3109/17453674.2012.702388] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Intermittent administration of parathyroid hormone (PTH) has an anabolic effect on bone, as confirmed in human osteoporosis studies, distraction osteogenesis, and fracture healing. PTH in rat models leads to improved fixation of implants in low-density bone or screw insertion transcortically. MATERIAL AND METHODS We examined the effect of human PTH (1-34) on the cancellous osseointegration of unloaded implants inserted press-fit in intact bone of higher animal species. 20 dogs were randomized to treatment with human PTH (1-34), 5 μg/kg/day subcutaneously, or placebo for 4 weeks starting on the day after insertion of a cylindrical porous coated plasma-sprayed titanium alloy implant in the proximal metaphyseal cancellous bone of tibia. Osseointegration was evaluated by histomorphometry and fixation by push-out test to failure. RESULTS Surface fraction of woven bone at the implant interface was statistically significantly higher in the PTH group by 1.4 fold with (median (interquartile range) 15% (13-18)) in the PTH group and 11% (7-13) in control. The fraction of lamellar bone was unaltered. No significant difference in bone or fibrous tissue was observed in the circumferential regions of 0-500, 500-1,000, and 1,000-2,000 μm around the implant. Mechanically, the implants treated with PTH showed no significant differences in total energy absorption, maximum shear stiffness, or maximum shear strength. INTERPRETATION Intermittent treatment with PTH (1-34) improved histological osseointegration of a prosthesis inserted press-fit at surgery in cancellous bone, with no additional improvement of the initial mechanical fixation at this time point.
Collapse
Affiliation(s)
- Henrik Daugaard
- Orthopaedic Research Laboratory, Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Brian Elmengaard
- Orthopaedic Research Laboratory, Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | | - Anders Lamberg
- Orthopaedic Research Laboratory, Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Joan Elisabeth Bechtold
- Orthopaedic Biomechanics Laboratory, Excelen Center for Bone and Joint Research and Minneapolis Medical Research Foundation, Minneapolis, MN, USA
| | - Kjeld Soballe
- Orthopaedic Research Laboratory, Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
50
|
Almagro MI, Roman-Blas JA, Bellido M, Castañeda S, Cortez R, Herrero-Beaumont G. PTH [1-34] enhances bone response around titanium implants in a rabbit model of osteoporosis. Clin Oral Implants Res 2012; 24:1027-34. [PMID: 22626278 DOI: 10.1111/j.1600-0501.2012.02495.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2012] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Dental implant osseointegration can be impaired in medical conditions with low bone mass, such as glucocorticoid-induced osteoporosis. Intermittent human parathyroid hormone (PTH) [1-34] administration has shown relevant anabolic bone activity in various animal models of osteoporosis. Therefore, we studied the effects of intermittent PTH [1-34] on bone response around titanium implants in experimental osteoporosis induced by ovariectomy and glucocorticoid administration. METHODS Titanium dental implants were placed in the proximal tibia metaphysis in 38 animals. Twenty-eight rabbits had undergone bilateral ovariectomy and further methylprednisolone administration for 4 weeks to induce osteoporosis. Ten healthy rabbits were used as controls. At week 8, osteoporotic rabbits started saline vehicle or intermittent PTH administration for 12 weeks. Bone mineral density (BMD) was assessed in peri-implant area, lumbar spine, and global and subchondral knee bone at baseline, and weeks 6 and 20. Animal sacrifice was carried out at week 21. Afterward, tibiae were removed for μCT morphometry and undecalcified sections were evaluated by light and scanning electron microscopy. RESULTS PTH increased bone-to-implant contact compared with control rabbits or vehicle administration in osteoporotic rabbits (P < 0.005). PTH-induced new bone formation around external and internal surfaces of titanium implants led to a significant increase of BMD at peri-implant area in osteoporotic rabbits at week 20, when compared with vehicle (P < 0.005). Likewise, PTH increased BMD in other analysed regions. CONCLUSIONS Intermittent administration of PTH [1-34] enhances the bone response around titanium implants in a rabbit model of ovariectomy and glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- M Isabel Almagro
- Department of Dentistry, IIS Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | |
Collapse
|