1
|
Delgado-Calle J, McAndrews K, Wu G, Orr AL, Ferrari A, Tu X, Srinivasan V, Roodman GD, Ebetino FH, Boeckman RK, Bellido T. The Notch pathway regulates the bone gain induced by PTH anabolic signaling. FASEB J 2022; 36:e22196. [PMID: 35137455 PMCID: PMC8855690 DOI: 10.1096/fj.202101807r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
Parathyroid hormone (PTH) signaling downstream of the PTH 1 receptor (Pth1r) results in both bone anabolic and catabolic actions by mechanisms not yet fully understood. In this study, we show that Pth1r signaling upregulates the expression of several components of the Notch pathway and that Notch signals contribute to the catabolic actions of PTH in bone. We found that constitutive genetic activation of PTH receptor signaling in osteocytes (caPth1rOt ) or treatment with PTH daily increased the expression of several Notch ligands/receptors in bone. In contrast, sustained elevation of endogenous PTH did not change Notch components expression. Deletion of the PTH receptor or sclerostin overexpression in osteocytes abolished Notch increases by PTH. Further, deleting the canonical Notch transcription factor Rbpjk in osteocytes decreased bone mass and increased resorption and Rankl expression in caPth1rOt mice. Moreover, pharmacological bone-targeted Notch inhibition potentiated the bone mass gain induced by intermittent PTH by reducing bone resorption and preserving bone formation. Thus, Notch activation lies downstream of anabolic signaling driven by PTH actions in osteocytes, and Notch pharmacological inhibition maximizes the bone anabolic effects of PTH.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72223, USA,The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72223, USA,Corresponding authors’ information: Jesus Delgado-Calle, Ph.D., Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, 4301 W. Markham St. Little Rock, AR 72205, Office: +1-501-686-7668, ; Teresita Bellido, Ph.D., Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, 4301 W. Markham St. Little Rock, AR 72205, Office: +1 (501) 686-5442,
| | - Kevin McAndrews
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gerald Wu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ashley L. Orr
- Department of Medicine, Division of Hematology/Oncology, University of Rochester, Rochester, NY, 14627, USA
| | - Adam Ferrari
- Department of Medicine, Division of Hematology/Oncology, University of Rochester, Rochester, NY, 14627, USA
| | - Xiaolin Tu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - G. David Roodman
- Department of Medicine, Division of Hematology/Oncology, University of Rochester, Rochester, NY, 14627, USA
| | - Frank H. Ebetino
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA,Biovinc, LLC, Pasadena, CA, 91107, USA
| | - Robert K. Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72223, USA,The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72223, USA,Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA,Corresponding authors’ information: Jesus Delgado-Calle, Ph.D., Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, 4301 W. Markham St. Little Rock, AR 72205, Office: +1-501-686-7668, ; Teresita Bellido, Ph.D., Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, 4301 W. Markham St. Little Rock, AR 72205, Office: +1 (501) 686-5442,
| |
Collapse
|
2
|
Pissarra MF, Torello CO, Gomes RGB, Shiraishi RN, Santos I, Vieira Ferro KP, Lopes MR, Bergamo Favaro PM, Olalla Saad ST, Lazarini M. Arhgap21 Deficiency Results in Increase of Osteoblastic Lineage Cells in the Murine Bone Marrow Microenvironment. Front Cell Dev Biol 2021; 9:718560. [PMID: 34917608 PMCID: PMC8670086 DOI: 10.3389/fcell.2021.718560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
ARHGAP21 is a member of the RhoGAP family of proteins involved in cell growth, differentiation, and adhesion. We have previously shown that the heterozygous Arhgap21 knockout mouse model (Arhgap21+/-) presents several alterations in the hematopoietic compartment, including increased frequency of hematopoietic stem and progenitor cells (HSPC) with impaired adhesion in vitro, increased mobilization to peripheral blood, and decreased engraftment after bone marrow transplantation. Although these HSPC functions strongly depend on their interactions with the components of the bone marrow (BM) niche, the role of ARHGAP21 in the marrow microenvironment has not yet been explored. In this study, we investigated the composition and function of the BM microenvironment in Arhgap21+/- mice. The BM of Arhgap21+/- mice presented a significant increase in the frequency of phenotypic osteoblastic lineage cells, with no differences in the frequencies of multipotent stromal cells or endothelial cells when compared to the BM of wild type mice. Arhgap21+/- BM cells had increased capacity of generating osteogenic colony-forming units (CFU-OB) in vitro and higher levels of osteocalcin were detected in the Arhgap21+/- BM supernatant. Increased expression of Col1a1, Ocn and decreased expression of Trap1 were observed after osteogenic differentiation of Arhgap21+/- BM cells. In addition, Arhgap21+/- mice recipients of normal BM cells showed decreased leucocyte numbers during transplantation recovery. Our data suggest participation of ARHGAP21 in the balanced composition of the BM microenvironment through the regulation of osteogenic differentiation.
Collapse
Affiliation(s)
| | | | | | | | - Irene Santos
- Hematology and Hemotherapy Center, University of Campinas, São Paulo, Brazil
| | | | | | - Patricia Maria Bergamo Favaro
- Hematology and Hemotherapy Center, University of Campinas, São Paulo, Brazil.,Institute of Environmental, Chemical and Pharmaceutical Sciences-Federal University of São Paulo, São Paulo, Brazil
| | | | - Mariana Lazarini
- Hematology and Hemotherapy Center, University of Campinas, São Paulo, Brazil.,Institute of Environmental, Chemical and Pharmaceutical Sciences-Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Soto CA, Lo Celso C, Purton LE, Frisch BJ. From the niche to malignant hematopoiesis and back: reciprocal interactions between leukemia and the bone marrow microenvironment. JBMR Plus 2021; 5:e10516. [PMID: 34693187 PMCID: PMC8520063 DOI: 10.1002/jbm4.10516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
The bone marrow microenvironment (BMME) regulates hematopoiesis through a complex network of cellular and molecular components. Hematologic malignancies reside within, and extensively interact with, the same BMME. These interactions consequently alter both malignant and benign hematopoiesis in multiple ways, and can encompass initiation of malignancy, support of malignant progression, resistance to chemotherapy, and loss of normal hematopoiesis. Herein, we will review supporting studies for interactions of the BMME with hematologic malignancies and discuss challenges still facing this exciting field of research. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Celia A. Soto
- Department of PathologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Cristina Lo Celso
- Department of Life SciencesImperial College LondonLondonUK
- Sir Francis Crick InstituteLondonUK
| | - Louise E. Purton
- St Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
- Department of Medicine at St. Vincent's HospitalThe University of MelbourneMelbourneVictoriaAustralia
| | - Benjamin J. Frisch
- Department of PathologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Wilmot Cancer InstituteUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
- Center for Musculoskeletal ResearchUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| |
Collapse
|
4
|
Hematopoietic stem cell function in β-thalassemia is impaired and is rescued by targeting the bone marrow niche. Blood 2021; 136:610-622. [PMID: 32344432 DOI: 10.1182/blood.2019002721] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are regulated by signals from the bone marrow (BM) niche that tune hematopoiesis at steady state and in hematologic disorders. To understand HSC-niche interactions in altered nonmalignant homeostasis, we selected β-thalassemia, a hemoglobin disorder, as a paradigm. In this severe congenital anemia, alterations secondary to the primary hemoglobin defect have a potential impact on HSC-niche cross talk. We report that HSCs in thalassemic mice (th3) have an impaired function, caused by the interaction with an altered BM niche. The HSC self-renewal defect is rescued after cell transplantation into a normal microenvironment, thus proving the active role of the BM stroma. Consistent with the common finding of osteoporosis in patients, we found reduced bone deposition with decreased levels of parathyroid hormone (PTH), which is a key regulator of bone metabolism but also of HSC activity. In vivo activation of PTH signaling through the reestablished Jagged1 and osteopontin levels correlated with the rescue of the functional pool of th3 HSCs by correcting HSC-niche cross talk. Reduced HSC quiescence was confirmed in thalassemic patients, along with altered features of the BM stromal niche. Our findings reveal a defect in HSCs in β-thalassemia induced by an altered BM microenvironment and provide novel and relevant insight for improving transplantation and gene therapy approaches.
Collapse
|
5
|
Vinchi F, Vance SZ. Challenging the Erythropoiesis Paradigm in β-Thalassemia. Hemasphere 2020; 4:e475. [PMID: 32923985 PMCID: PMC7455222 DOI: 10.1097/hs9.0000000000000475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Francesca Vinchi
- Iron Research Program, Lindsley Kimball Research Institute, New York Blood Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Steven Zebulon Vance
- Iron Research Program, Lindsley Kimball Research Institute, New York Blood Center, New York, NY, USA
| |
Collapse
|
6
|
Albakri M, Tashkandi H, Zhou L. A Review of Advances in Hematopoietic Stem Cell Mobilization and the Potential Role of Notch2 Blockade. Cell Transplant 2020; 29:963689720947146. [PMID: 32749152 PMCID: PMC7563033 DOI: 10.1177/0963689720947146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplantation can be a potential cure for hematological malignancies and some nonhematologic diseases. Hematopoietic stem and progenitor cells (HSPCs) collected from peripheral blood after mobilization are the primary source to provide HSC transplantation. In most of the cases, mobilization by the cytokine granulocyte colony-stimulating factor with chemotherapy, and in some settings, with the CXC chemokine receptor type 4 antagonist plerixafor, can achieve high yield of hematopoietic progenitor cells (HPCs). However, adequate mobilization is not always successful in a significant portion of donors. Research is going on to find new agents or strategies to increase HSC mobilization. Here, we briefly review the history of HSC transplantation, current mobilization regimens, some of the novel agents that are under investigation for clinical practice, and our recent findings from animal studies regarding Notch and ligand interaction as potential targets for HSPC mobilization.
Collapse
Affiliation(s)
- Marwah Albakri
- Department of Pathology, Case Western Reserve University, Cleveland,
OH, USA
| | - Hammad Tashkandi
- Department of Pathology, University of Pittsburgh Medical Center,
PA, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland,
OH, USA
| |
Collapse
|
7
|
Cardoso BA. The Bone Marrow Niche - The Tumor Microenvironment That Ensures Leukemia Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:259-293. [PMID: 32130704 DOI: 10.1007/978-3-030-34025-4_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The human body requires a constant delivery of fresh blood cells that are needed to maintain body homeostasis. Hematopoiesis is the process that drives the formation of new blood cells from a single stem cell. This is a complex, orchestrated and tightly regulated process that occurs within the bone marrow. When such process is faulty or deregulated, leukemia arises, develops and thrives by subverting normal hematopoiesis and availing the supplies of this rich milieu.In this book chapter we will describe and characterize the bone marrow microenvironment and its key importance for leukemia expansion. The several components of the bone marrow niche, their interaction with the leukemic cells and the cellular pathways activated within the malignant cells will be emphasized. Finally, novel therapeutic strategies to target this sibling interaction will also be discussed.
Collapse
Affiliation(s)
- Bruno António Cardoso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
8
|
The impact of parathyroid hormone treated mesenchymal stem cells on ex-vivo expansion of cord blood hematopoietic stem cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Heath JL, Cohn GM, Zaidi SK, Stein GS. The role of cell adhesion in hematopoiesis and leukemogenesis. J Cell Physiol 2019; 234:19189-19198. [PMID: 30980400 DOI: 10.1002/jcp.28636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/26/2019] [Indexed: 01/23/2023]
Abstract
The cells of the bone marrow microenvironment are emerging as important contributors and regulators of normal hematopoiesis. This microenvironment is perturbed during leukemogenesis, and evidence points toward a bidirectional communication between leukemia cells and the normal cells of the bone marrow, mediated by direct cell-cell contact as well as soluble factors. These interactions are increasingly appreciated to play a role in leukemogenesis and possibly in resistance to chemotherapy. In fact, several compounds that specifically target the bone marrow microenvironment, including inhibitors of cell adhesion, are being tested as adjuncts to leukemia therapy.
Collapse
Affiliation(s)
- Jessica L Heath
- Department of Pediatrics, University of Vermont, Burlington, Vermont.,Department of Biochemistry, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - Gabriel M Cohn
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Sayyed K Zaidi
- Department of Biochemistry, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|
10
|
Galán-Díez M, Cuesta-Domínguez Á, Kousteni S. The Bone Marrow Microenvironment in Health and Myeloid Malignancy. Cold Spring Harb Perspect Med 2018; 8:a031328. [PMID: 28963115 PMCID: PMC6027930 DOI: 10.1101/cshperspect.a031328] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) interact dynamically with an intricate network of cells in the bone marrow (BM) microenvironment or niche. These interactions provide instructive cues that influence the production and lineage determination of different types of blood cells and maintenance of HSC quiescence. They also contribute to hematopoietic deregulation and hematological myeloid malignancies. Alterations in the BM niche are commonly observed in myeloid malignancies and contribute to the aberrant function of myelodysplastic and leukemia-initiating stem cells. In this work, we review how different components of the BM niche affect normal hematopoiesis, the molecular signals that govern this interaction, and how genetic changes in stromal cells or alterations in remodeled malignant BM niches contribute to myeloid malignancies. Understanding the intricacies between normal and malignant niches and their modulation may provide insights into developing novel therapeutics for blood disorders.
Collapse
Affiliation(s)
- Marta Galán-Díez
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| | - Álvaro Cuesta-Domínguez
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| | - Stavroula Kousteni
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|
11
|
Cheng ZY, Ye T, Ling QY, Wu T, Wu GY, Zong GJ. Parathyroid hormone promotes osteoblastic differentiation of endothelial cells via the extracellular signal-regulated protein kinase 1/2 and nuclear factor-κB signaling pathways. Exp Ther Med 2017; 15:1754-1760. [PMID: 29434762 DOI: 10.3892/etm.2017.5545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 09/22/2017] [Indexed: 01/17/2023] Open
Abstract
Vascular calcification (VC) occurs in patients with chronic kidney disease (CKD) and contributes to cardiovascular dysfunction and mortality. Parathyroid hormone (PTH) is a crucial regulator of VC. High PTH serum levels constitute as a major risk factor for patients with CKD. However, the effect and mechanism of PTH on osteoblastic differentiation in endothelial cells have not been fully elucidated. In the present study, the role of PTH in VC was investigated using an in vitro calcification model. Endothelial cells were stimulated with PTH in the femto- to picomolar range. As determined by western blot analysis and ELISA, osteoblastic differentiation, as indicated by the BMP2 marker, occurred with maximum effect at 1×10-10 mmol/l PTH. The results indicate that PTH promotes osteoblastic differentiation of endothelial cells, as demonstrated by the increased expression of bone morphogenetic protein (BMP) 2 and BMP4. In addition, western blot analysis revealed that PTH activated the extracellular signal-regulated protein kinase (Erk)1/2 and nuclear factor (NF)-κB signaling pathways. However, reverse transcription-quantitative polymerase chain reaction demonstrated that inhibitors specific to Erk1/2 and NF-κB eradicated the effect of PTH treatment on BMP2, BMP4, ALP and RUNX2 expression. These results demonstrate that PTH promotes the osteoblastic differentiation of endothelial cells via the Erk1/2 and NF-κB signaling pathways, which suggests a potential role of PTH in the promotion of VC. These findings provide an insight into the association between PTH and cardiovascular disease.
Collapse
Affiliation(s)
- Zhi-Yuan Cheng
- Department of Cardiology, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Ting Ye
- Department of Cardiology, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China
| | - Qiu-Yang Ling
- Department of Cardiology, 101 Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Ting Wu
- Department of Cardiology, 101 Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Gang-Yong Wu
- Department of Cardiology, 101 Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| | - Gang-Jun Zong
- Department of Cardiology, Wuxi Clinical Hospital, Anhui Medical University, Wuxi, Jiangsu 214044, P.R. China.,Department of Cardiology, 101 Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
12
|
Zanotti S, Canalis E. Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes. Bone 2017; 103:159-167. [PMID: 28676438 PMCID: PMC5568480 DOI: 10.1016/j.bone.2017.06.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
Parathyroid hormone (PTH) and Notch receptors regulate bone formation by governing the function of osteoblastic cells. To determine whether PTH interacts with Notch signaling as a way to control osteoblast function, we tested the effects of PTH on Notch activity in osteoblast- and osteocyte-enriched cultures. Notch signaling was activated in osteoblast-enriched cells from wild-type C57BL/6J mice following exposure to the Notch ligand Delta-like (Dll)1 or by the transient transfection of the Notch intracellular domain (NICD), the transcriptionally active fragment of Notch1. To induce Notch signaling in osteocyte-enriched cultures, a murine model of Notch2 gain-of-function was used. PTH opposed the stimulatory effects of Dll1 on Hey1, Hey2 and HeyL mRNA levels in osteoblast-enriched cells and suppressed the expression of selected Notch target genes in osteocyte-enriched cultures, either under basal conditions or in the context of Notch2 gain-of-function. Induction of Notch signaling in osteocytes did not alter the inhibitory effect of PTH on Sost expression, but reduced the stimulation of Tnfsf11 mRNA levels by PTH. In agreement with these in vitro observations, male mice administered with PTH displayed suppressed Hey1 and HeyL expression in parietal bones. Transactivation experiments with a Notch reporter construct and electrophoretic mobility shift assays in osteoblast-enriched cells suggest that PTH acts by decreasing the capacity of Rbpjκ to bind to DNA. In conclusion, downregulation of Notch in osteoblasts and osteocytes may represent a mechanism contributing to the anabolic effects of PTH in bone.
Collapse
Affiliation(s)
- Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030-5456, USA.
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030-5456, USA
| |
Collapse
|
13
|
Nedvetsky PI, Zhao X, Mathivet T, Aspalter IM, Stanchi F, Metzger RJ, Mostov KE, Gerhardt H. cAMP-dependent protein kinase A (PKA) regulates angiogenesis by modulating tip cell behavior in a Notch-independent manner. Development 2017; 143:3582-3590. [PMID: 27702786 DOI: 10.1242/dev.134767] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/08/2016] [Indexed: 01/06/2023]
Abstract
cAMP-dependent protein kinase A (PKA) is a ubiquitously expressed serine/threonine kinase that regulates a variety of cellular functions. Here, we demonstrate that endothelial PKA activity is essential for vascular development, specifically regulating the transition from sprouting to stabilization of nascent vessels. Inhibition of endothelial PKA by endothelial cell-specific expression of dominant-negative PKA in mice led to perturbed vascular development, hemorrhage and embryonic lethality at mid-gestation. During perinatal retinal angiogenesis, inhibition of PKA resulted in hypersprouting as a result of increased numbers of tip cells. In zebrafish, cell autonomous PKA inhibition also increased and sustained endothelial cell motility, driving cells to become tip cells. Although these effects of PKA inhibition were highly reminiscent of Notch inhibition effects, our data demonstrate that PKA and Notch independently regulate tip and stalk cell formation and behavior.
Collapse
Affiliation(s)
- Pavel I Nedvetsky
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Xiaocheng Zhao
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Thomas Mathivet
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Irene M Aspalter
- Vascular Biology Laboratory, London Research Institute - Cancer Research UK, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Fabio Stanchi
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ross J Metzger
- Department of Anatomy, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, CA 94143-2140, USA
| | - Keith E Mostov
- Department of Anatomy, University of California San Francisco, Genentech Hall, 600 16th Street, San Francisco, CA 94143-2140, USA
| | - Holger Gerhardt
- Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium Vascular Patterning Laboratory, Vesalius Research Center, Department of Oncology, KU Leuven, Leuven, Belgium Vascular Biology Laboratory, London Research Institute - Cancer Research UK, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany DZHK (German Center for Cardiovascular Research), partner site Berlin Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
14
|
Fibroblast growth factor 2 supports osteoblastic niche cells during hematopoietic homeostasis recovery after bone marrow suppression. Cell Commun Signal 2017; 15:25. [PMID: 28662672 PMCID: PMC5492158 DOI: 10.1186/s12964-017-0181-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/16/2017] [Indexed: 11/30/2022] Open
Abstract
Background Hematopoietic stem cell (HSC) maintenance requires a specific microenvironment. HSC niches can be activated by tissue damaging chemotherapeutic drugs and various cell signaling molecules such as SDF-1 and FGF, which might also result in bone marrow stress. Recent research has insufficiently shown that endosteal osteolineage cells and other niche constituents recover after marrow injury. Methods We investigated the role of FGF2 in the osteoblastic niche cells during hematopoietic homeostasis recovery after bone marrow injury. Mice were treated with 5-fluorouracil (5FU) to eliminate actively cycling cells in the bone marrow. Primary osteoblasts were isolated and subjected to cell culture. Real-time PCR, western blot and immunohistochemical staining were performed to study niche-related genes, osteoblast markers, and FGF2 signaling. Proliferation rate were analyzed by marker gene Ki67 and colony formation assay. Also, osterix-positive osteoprogenitor cells were isolated by FACS from Osx-GFP-Cre mice after 5FU treatment, and subjected to RNA-sequencing and analyzed for Fgf receptors and niche markers. Results The endosteal osteolineage cells isolated from 5FU-treated mice showed increased expression of the niche-related genes Sdf-1, Jagged-1, Scf, N-cad, Angpt1 and Vcam-1 and the osteoblast marker genes Osx, Opn, Runx2, and Alp, indicating that BM stress upon 5FU treatment activated the osteoblastic niche. Endosteal osteoblast expanded from a single layer to several layers 3 and 6 days after 5FU treatment. During the early recovery phase in 5FU-activated osteoblastic niches increased FGF2 expression and activated its downstream pERK. FGF2 treatment resulted in increased proliferation rate and the expression of niche marker genes in 5FU-activated osteoblastic niche cells. RNA-seq analysis in Osterix-positive osteoprogenitor cells isolated from 5FU-treated Osx-GFP mice showed significantly increased expression of Fgf receptors Fgfr1, 2 and 3. Although osteoblastic niche cells were damaged by 5FU treatment in the beginning, the increased number of OB layers in the recovery phase may be derived from resident osteoprogenitor cells by FGF2 activation under stress. Conclusions Taken together, FGF2 signaling can regulate osteoblastic niche cells to support HSC homeostasis in response to bone marrow damage.
Collapse
|
15
|
Galán-Díez M, Kousteni S. The osteoblastic niche in hematopoiesis and hematological myeloid malignancies. CURRENT MOLECULAR BIOLOGY REPORTS 2017; 3:53-62. [PMID: 29098141 PMCID: PMC5662025 DOI: 10.1007/s40610-017-0055-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This review focuses on evidence highlighting the bidirectional crosstalk between the hematopoietic stem cell (HSC) and their surrounding stromal cells, with a particular emphasis on cells of the osteoblast lineage. The role and molecular functions of osteoblasts in normal hematopoiesis and in myeloid hematological malignancies is discussed. RECENT FINDINGS Cells of the osteoblast lineage have emerged as potent regulators of HSC expansion that regulate their recruitment and, depending on their stage of differentiation, their activity, proliferation and differentiation along the lymphoid, myeloid and erythroid lineages. In addition, mutations in mature osteoblasts or their progenitors induce myeloid malignancies. Conversely, signals from myelodysplastic cells can remodel the osteoblastic niche to favor self-perpetuation. SUMMARY Understanding cellular crosstalk between osteoblastic cells and HSCs in the bone marrow microenvironment is of fundamental importance for developing therapies against benign and malignant hematological diseases.
Collapse
Affiliation(s)
- Marta Galán-Díez
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | - Stavroula Kousteni
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| |
Collapse
|
16
|
Lawal RA, Zhu X, Batey K, Hoffman CM, Georger MA, Radtke F, Hilton MJ, Xing L, Frisch BJ, Calvi LM. The Notch Ligand Jagged1 Regulates the Osteoblastic Lineage by Maintaining the Osteoprogenitor Pool. J Bone Miner Res 2017; 32:1320-1331. [PMID: 28277610 PMCID: PMC5466455 DOI: 10.1002/jbmr.3106] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/16/2022]
Abstract
Notch signaling is critical for osteoblastic differentiation; however, the specific contribution of individual Notch ligands is unknown. Parathyroid hormone (PTH) regulates the Notch ligand Jagged1 in osteoblastic cells. To determine if osteolineage Jagged1 contributes to bone homeostasis, selective deletion of Jagged1 in osteolineage cells was achieved through the presence of Prx1 promoter-driven Cre recombinase expression, targeting mesenchymal stem cells (MSCs) and their progeny (PJag1 mice). PJag1 mice were viable and fertile and did not exhibit any skeletal abnormalities at 2 weeks of age. At 2 months of age, however, PJag1 mice had increased trabecular bone mass compared to wild-type (WT) littermates. Dynamic histomorphometric analysis showed increased osteoblastic activity and increased mineral apposition rate. Immunohistochemical analysis showed increased numbers of osteocalcin-positive mature osteoblasts in PJag1 mice. Also increased phenotypically defined Lin- /CD45- /CD31- /Sca1- /CD51+ osteoblastic cells were measured by flow cytometric analysis. Surprisingly, phenotypically defined Lin- /CD45- /CD31- /Sca1+ /CD51+ MSCs were unchanged in PJag1 mice as measured by flow cytometric analysis. However, functional osteoprogenitor (OP) cell frequency, measured by Von Kossa+ colony formation, was decreased, suggesting that osteolineage Jagged1 contributes to maintenance of the OP pool. The trabecular bone increases were not due to osteoclastic defects, because PJag1 mice had increased bone resorption. Because PTH increases osteoblastic Jagged1, we sought to understand if osteolineage Jagged1 modulates PTH-mediated bone anabolism. Intermittent PTH treatment resulted in a significantly greater increase in BV/TV in PJag1 hind limbs compared to WT. These findings demonstrate a critical role of osteolineage Jagged1 in bone homeostasis, where Jagged1 maintains the transition of OP to maturing osteoblasts. This novel role of Jagged1 not only identifies a regulatory loop maintaining appropriate populations of osteolineage cells, but also provides a novel approach to increase trabecular bone mass, particularly in combination with PTH, through modulation of Jagged1. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rialnat A Lawal
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xichao Zhu
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kaylind Batey
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Corey M Hoffman
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mary A Georger
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Vaud, Switzerland
| | - Matthew J Hilton
- Duke Orthopedic, Cellular, and Developmental and Genome Laboratories, Duke University School of Medicine, Durham, NC, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Benjamin J Frisch
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Laura M Calvi
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
17
|
Alsheikh M, Abu-Khader A, Michalicka M, Pasha R, Pineault N. Impact of osteoblast maturation on their paracrine growth enhancing activity on cord blood progenitors. Eur J Haematol 2017; 98:542-552. [PMID: 28160325 DOI: 10.1111/ejh.12865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Osteoblasts possess strong growth modulatory activity on haematopoietic stem cells and progenitors. We sought to characterise the growth and differentiation modulatory activities of human osteoblasts at distinct stages of maturation on cord blood (CB) progenitors in the context of osteoblast conditioned medium (OCM). METHODS OCM was produced from MSC-derived osteoblasts (M-OST) at distinct stages of maturation. The growth modulatory activities of the OCM were tested on CB CD34+ cells using different functional assays. RESULTS OCMs raised the growth of CB cells and expansion of CD34+ cells independently of the maturation status of M-OST. However, productions of immature CB cells including committed and multipotent progenitors were superior with OCM produced with immature osteoblasts. Osteogenic differentiation was accompanied by the upregulation of IGFBP-2, by several members of the Angpt-L family of growth factor, and by the Notch ligands Dll-1 and Dll-4. However, the growth activity of OCM and the in vivo engraftment properties of OCM-expanded CB cells were retained after IGFBP-2 neutralisation. Similarly, OCM-mediated expansion of CB myeloid progenitors was largely independent of Notch signalling. CONCLUSIONS These results demonstrate that immature osteoblasts possess greater regulatory activity over haematopoietic progenitors, and that this activity is not entirely dependent on Notch signalling.
Collapse
Affiliation(s)
- Manal Alsheikh
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada.,Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Ahmad Abu-Khader
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada
| | - Matthew Michalicka
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada.,Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Roya Pasha
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada.,Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Youngstrom DW, Dishowitz MI, Bales CB, Carr E, Mutyaba PL, Kozloff KM, Shitaye H, Hankenson KD, Loomes KM. Jagged1 expression by osteoblast-lineage cells regulates trabecular bone mass and periosteal expansion in mice. Bone 2016; 91:64-74. [PMID: 27416809 PMCID: PMC5578473 DOI: 10.1016/j.bone.2016.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/05/2016] [Accepted: 07/09/2016] [Indexed: 01/20/2023]
Abstract
Loss-of-function mutations in the Notch ligand, Jagged1 (Jag1), result in multi-system developmental pathologies associated with Alagille syndrome (ALGS). ALGS patients present with skeletal manifestations including hemi-vertebrae, reduced bone mass, increased fracture incidence and poor bone healing. However, it is not known whether the increased fracture risk is due to altered bone homeostasis (primary) or nutritional malabsorption due to chronic liver disease (secondary). To determine the significance of Jag1 loss in bone, we characterized the skeletal phenotype of two Jag1-floxed conditional knockout mouse models: Prx1-Cre;Jag1(f/f) to target osteoprogenitor cells and their progeny, and Col2.3-Cre;Jag1(f/f) to target mid-stage osteoblasts and their progeny. Knockout phenotypes were compared to wild-type (WT) controls using quantitative micro-computed tomography, gene expression profiling and mechanical testing. Expression of Jag1 and the Notch target genes Hes1 and Hey1 was downregulated in all Jag1 knockout mice. Osteoblast differentiation genes were downregulated in whole bone of both groups, but unchanged in Prx1-Cre;Jag1(f/f) cortical bone. Both knockout lines exhibited changes in femoral trabecular morphology including decreased bone volume fraction and increased trabecular spacing, with males presenting a more severe trabecular osteopenic phenotype. Prx1-Cre;Jag1(f/f) mice showed an increase in marrow mesenchymal progenitor cell number and, counterintuitively, developed increased cortical thickness resulting from periosteal expansion, translating to greater mechanical stiffness and strength. Similar alterations in femoral morphology were observed in mice with canonical Notch signaling disrupted using Prx1-Cre-regulatable dominant-negative mastermind like-protein (dnMAML). Taken together, we report that 1) Jag1 negatively regulates the marrow osteochondral progenitor pool, 2) Jag1 is required for normal trabecular bone formation and 3) Notch signaling through homotypic Jag1 signaling in osteochondral progenitors, but not mature osteoblasts, inhibits periosteal expansion. Therefore, Jag1 signaling within the osteoblast lineage regulates bone metabolism in a compartment-dependent manner. Moreover, loss of Jag1 function in osteoblast lineage cells may contribute to the skeletal phenotype associated with ALGS.
Collapse
Affiliation(s)
- D W Youngstrom
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States; Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - M I Dishowitz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - C B Bales
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - E Carr
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - P L Mutyaba
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - K M Kozloff
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - H Shitaye
- Medical Scientist Training Program, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - K D Hankenson
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States; Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - K M Loomes
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
19
|
Abstract
Notch plays an important function in skeletal homeostasis, osteoblastogenesis, and osteoclastogenesis. Hajdu-Cheney syndrome (HCS) is a rare disease associated with mutations in NOTCH2 leading to the translation of a truncated NOTCH2 stable protein. As a consequence, a gain-of-NOTCH2 function is manifested. HCS is inherited as an autosomal dominant disease although sporadic cases exist. HCS is characterized by craniofacial developmental defects, including platybasia and wormian bones, osteoporosis with fractures, and acro-osteolysis. Subjects may suffer severe neurological complications, and HCS presents with cardiovascular defects and polycystic kidneys. An experimental mouse model harboring a HCSNotch2 mutation exhibits osteopenia secondary to enhanced bone resorption suggesting this as a possible mechanism for the skeletal disease. If the same mechanisms were operational in humans, anti-resorptive therapy could correct the bone loss, but not necessarily the acro-osteolysis. In conclusion, HCS is a devastating disease associated with a gain-of-NOTCH2 function resulting in diverse clinical manifestations.
Collapse
Affiliation(s)
- Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, and the UConn Musculoskeletal Institute, UConn Health, Farmington, CT, 06030-5456, USA.
| | - Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine, and the UConn Musculoskeletal Institute, UConn Health, Farmington, CT, 06030-5456, USA
| |
Collapse
|
20
|
Environment-wide association study to identify factors associated with hematocrit: evidence from the Guangzhou Biobank Cohort Study. Ann Epidemiol 2016; 26:638-642.e2. [PMID: 27502758 DOI: 10.1016/j.annepidem.2016.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE In randomized controlled trials reducing high hematocrit (Hct) in patients with polycythemia vera protects against cardiovascular disease (CVD) events, whereas increasing Hct in anemia patients causes CVD events. Hct is influenced by environmental and lifestyle factors. Given limited knowledge concerning the drivers of Hct, we took an agnostic approach to identify drivers of Hct. METHODS We used an environment-wide association study to identify environmental and lifestyle factors associated with Hct in 20443 older Chinese adults (mean age = 62.7 years) from the Guangzhou Biobank Cohort Study. We evaluated the role of 25 nutrients, 40 environmental contaminants, two metals (only available for 10405 participants), and six lifestyle factors in relation to Hct, adjusted for sex, age, recruitment phase, and socioeconomic position. RESULTS In a mutually adjusted model vitamin A, serum calcium, serum magnesium, and alcohol use were associated with higher Hct, whereas physical activity was associated with lower Hct. CONCLUSIONS Despite the difficulty of ascertaining causality, finding both expected (vitamin A and physical inactivity) and novel factors (serum calcium, serum magnesium and alcohol use) strongly associated with Hct illustrates the utility of environment-wide association study to generate hypotheses regarding the potential contribution of modifiable exposures to CVD.
Collapse
|
21
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
22
|
Shimizu M, Noda H, Joyashiki E, Nakagawa C, Asanuma K, Hayasaka A, Kato M, Nanami M, Inada M, Miyaura C, Tamura T. The Optimal Duration of PTH(1-34) Infusion Is One Hour per Day to Increase Bone Mass in Rats. Biol Pharm Bull 2016; 39:625-30. [PMID: 26822531 DOI: 10.1248/bpb.b15-00756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parathyroid hormone (PTH) is a potential medicine for osteoporosis, and subcutaneous (s.c.) PTH treatment enhances bone mass; however, continuous infusion of PTH elicits bone resorption and induces bone loss. To clarify this contradictory phenomenon, we examined bone markers and bone mass in rats to assess the optimal duration of PTH(1-34) infusion. Continuous infusion of PTH at 1 µg/kg/h (Css, steady-state concentration ca. 300 pg/mL) for 1-4 h clearly stimulated the expression both of bone formation-related genes (c-fos, Wnt4, EphrinB2) and of bone resorption-related genes (tnfsf11, tnfsf11b, encoding receptor activator of nuclear factor-kappaB ligand (RANKL), osteoprotegerin (OPG)), but s.c. treatment stimulated these genes only 1-h after the injection. Rats were treated with 1-, 2-, or 4-h infusions of PTH daily using a totally implanted catheter system, and the femoral bone mineral density (BMD) was measured at 4 weeks. The 1-h infusion of PTH significantly stimulated serum bone formation markers (procollagen I N-terminal propeptide (PINP) and osteocalcin) on day 14 and femoral BMD at 2 and 4 weeks, but the 4-h infusion of PTH did not enhance BMD. Since the 4-h infusion increased the levels of both the bone formation markers and a bone resorption marker (urinary C-terminal telopeptide of type 1 collagen (CTx)), the increased bone resorption may predominate over bone formation. The intermittent elevation of plasma PTH to 300 pg/mL for 1-h each day is optimal for increasing bone mass in rats. In osteoporosis therapy in human, using the optimal duration for the clinical dose of PTH may selectively stimulate bone formation.
Collapse
|
23
|
Grabmaier U, Huber BC, Franz WM, Koch E, Brunner S. Mobilisation of haemopoietic stem cells in teriparatide-treated patients. Intern Med J 2015. [PMID: 26220030 DOI: 10.1111/imj.12830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parathyroid hormone (PTH) is the predominant regulator of calcium/phosphate homeostasis in the human body. Beside this classical function, preclinical and clinical studies indicated a relevant role for PTH in mobilisation of bone marrow-derived cells into peripheral blood. In addition, recombinant PTH (teriparatide) was recently approved for the treatment of severe osteoporosis. Therefore, it was the aim of the present study to investigate the dynamics of haemopoietic stem cells and corresponding in peripheral blood of 13 patients with osteoporosis during treatment with teriparatide. We were able to show that administration of teriparatide is sufficient to mobilise haemopoietic stem cells into the bloodstream accompanied by an alteration of mobilising cytokines. In conclusion, teriparatide might be a useful tool in the context of stem cell mobilisation.
Collapse
Affiliation(s)
- U Grabmaier
- Medical Department I, Campus Innenstadt and Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - B C Huber
- Medical Department I, Campus Innenstadt and Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - W-M Franz
- Department of Internal Medicine III (Cardiology & Angiology), Medical University of Innsbruck, Innsbruck, Austria
| | - E Koch
- Medical Department II, Campus Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - S Brunner
- Medical Department I, Campus Innenstadt and Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
24
|
Wang W, Yu S, Zimmerman G, Wang Y, Myers J, Yu VWC, Huang D, Huang X, Shim J, Huang Y, Xin W, Qiao P, Yan M, Xin W, Scadden DT, Stanley P, Lowe JB, Huang AY, Siebel CW, Zhou L. Notch Receptor-Ligand Engagement Maintains Hematopoietic Stem Cell Quiescence and Niche Retention. Stem Cells 2015; 33:2280-93. [PMID: 25851125 DOI: 10.1002/stem.2031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/21/2015] [Indexed: 01/05/2023]
Abstract
Notch is long recognized as a signaling molecule important for stem cell self-renewal and fate determination. Here, we reveal a novel adhesive role of Notch-ligand engagement in hematopoietic stem and progenitor cells (HSPCs). Using mice with conditional loss of O-fucosylglycans on Notch EGF-like repeats important for the binding of Notch ligands, we report that HSPCs with faulty ligand binding ability display enhanced cycling accompanied by increased egress from the marrow, a phenotype mainly attributed to their reduced adhesion to Notch ligand-expressing stromal cells and osteoblastic cells and their altered occupation in osteoblastic niches. Adhesion to Notch ligand-bearing osteoblastic or stromal cells inhibits wild type but not O-fucosylglycan-deficient HSPC cycling, independent of RBP-JK -mediated canonical Notch signaling. Furthermore, Notch-ligand neutralizing antibodies induce RBP-JK -independent HSPC egress and enhanced HSPC mobilization. We, therefore, conclude that Notch receptor-ligand engagement controls HSPC quiescence and retention in the marrow niche that is dependent on O-fucosylglycans on Notch.
Collapse
Affiliation(s)
- Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Grant Zimmerman
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jay Myers
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vionnie W C Yu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Dan Huang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaoran Huang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jeongsup Shim
- Department of Pathology, Genentech, Inc., South San Francisco, California, USA
| | - Yuanshuai Huang
- Department of Blood Transfusion, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, People's Republic of China
| | - William Xin
- University School, Hunting Valley, Ohio, USA
| | - Peter Qiao
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Minhong Yan
- Department of Molecular Biology Oncology, Genentech, Inc., South San Francisco, California, USA
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - John B Lowe
- Department of Pathology, Genentech, Inc., South San Francisco, California, USA
| | - Alex Y Huang
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christian W Siebel
- Department of Molecular Biology Oncology, Genentech, Inc., South San Francisco, California, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Colombo M, Mirandola L, Reidy A, Suvorava N, Konala V, Chiaramonte R, Grizzi F, Rahman RL, Jenkins MR, Nugyen DD, Dalhbeck S, Cobos E, Figueroa JA, Chiriva-Internati M. Targeting Tumor Initiating Cells through Inhibition of Cancer Testis Antigens and Notch Signaling: A Hypothesis. Int Rev Immunol 2015; 34:188-199. [PMID: 25901861 DOI: 10.3109/08830185.2015.1027629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor initiating cells (TICs) differ from normal stem cells (SCs) in their ability to initiate tumorigenesis, invasive growth, metastasis and the acquisition of chemo and/or radio-resistance. Over the past years, several studies have indicated the potential role of the Notch system as a key regulator of cellular stemness and tumor development. Furthermore, the expression of cancer testis antigens (CTA) in TICs, and their role in SC differentiation and biology, has become an important area of investigation. Here, we propose a model in which CTA expression and Notch signaling interacts to maintain the sustainability of self-replicating tumor populations, ultimately leading to the development of metastasis, drug resistance and cancer progression. We hypothesize that Notch-CTA interactions in TICs offer a novel opportunity for meaningful therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano , Milano , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Huber BC, Grabmaier U, Brunner S. Impact of parathyroid hormone on bone marrow-derived stem cell mobilization and migration. World J Stem Cells 2014; 6:637-643. [PMID: 25426261 PMCID: PMC4178264 DOI: 10.4252/wjsc.v6.i5.637] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/05/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Parathyroid hormone (PTH) is well-known as the principal regulator of calcium homeostasis in the human body and controls bone metabolism via actions on the survival and activation of osteoblasts. The intermittent administration of PTH has been shown to stimulate bone production in mice and men and therefore PTH administration has been recently approved for the treatment of osteoporosis. Besides to its physiological role in bone remodelling PTH has been demonstrated to influence and expand the bone marrow stem cell niche where hematopoietic stem cells, capable of both self-renewal and differentiation, reside. Moreover, intermittent PTH treatment is capable to induce mobilization of progenitor cells from the bone marrow into the bloodstream. This novel function of PTH on modulating the activity of the stem cell niche in the bone marrow as well as on mobilization and regeneration of bone marrow-derived stem cells offers new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders.
Collapse
|
27
|
Evans AG, Calvi LM. Notch signaling in the malignant bone marrow microenvironment: implications for a niche-based model of oncogenesis. Ann N Y Acad Sci 2014; 1335:63-77. [PMID: 25351294 DOI: 10.1111/nyas.12562] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fueled by the growing interest in stem cell biology and the promise of regenerative medicine, study of the hematopoietic stem cell (HSC) microenvironment has provided critical insights into normal and malignant hematopoiesis. Notch receptor signaling in this microenvironment is a critical regulator of HSC fate and differentiation. Notch signaling also has the potential to modulate the growth of various malignant cell types, as evidenced by the growing list of hematologic cancers and other malignancies associated with either mutations in Notch genes or alterations in Notch signaling. In both health and disease, activation of Notch signaling predominantly exerts influence through stromal cell interactions with the tumor or stem cell microenvironments. Definitive evidence from transgenic mouse models has shown that alterations in stromal cell signaling from the bone marrow niche can induce malignant outgrowth of preleukemic clones and leukemia. Understanding how Notch receptor signals in the bone marrow microenvironment govern stem cell behavior will advance our understanding of cancer pathogenesis in hematologic malignancies and may have implications for treating metastatic solid tumors involving bone. These microenvironmental interactions are potential therapeutic targets for treating and preventing a variety of diseases, including bone marrow failure disorders, myelodysplastic syndromes, leukemia, and lymphoma.
Collapse
Affiliation(s)
- Andrew G Evans
- Hematopathology Unit, Department of Pathology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | |
Collapse
|
28
|
|
29
|
Hoffman CM, Calvi LM. Minireview: complexity of hematopoietic stem cell regulation in the bone marrow microenvironment. Mol Endocrinol 2014; 28:1592-601. [PMID: 25083740 DOI: 10.1210/me.2014-1079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hematopoiesis in vertebrates is sustained over the duration of an organism's lifetime due to strict regulation of the highly hierarchical hematopoietic system, where a few immature hematopoietic stem cells (HSCs) continuously regenerate the entire blood supply, which is constantly being replaced. Although HSCs self-regulate through cell-autonomous processes, they also receive a variety of signals from their microenvironment or niche. Within the microenvironment, HSCs are regulated through both cell-cell interactions and secreted signals, including hormones. HSCs at the apex of the blood supply integrate these signals to produce progeny to support hematopoiesis while simultaneously maintaining a stem cell pool. In the past 10 years, advances in genetic models and flow cytometry have provided the tools to test how the microenvironment regulates HSCs. This review is organized in 3 main parts and will focus on cellular components of the HSC niche that are potential targets for hormonal signals, then review critical regulatory signals in the HSC niche, and finally highlight the emerging role of hormonal and paracrine signals in the bone marrow.
Collapse
Affiliation(s)
- Corey M Hoffman
- Endocrine Division (C.M.H., L.M.C.), Department of Medicine, and Department of Pharmacology and Physiology (C.M.H.), University of Rochester School of Medicine, Rochester, New York 14642
| | | |
Collapse
|
30
|
Yao H, Miura Y, Yoshioka S, Miura M, Hayashi Y, Tamura A, Iwasa M, Sato A, Hishita T, Higashi Y, Kaneko H, Ashihara E, Ichinohe T, Hirai H, Maekawa T. Parathyroid Hormone Enhances Hematopoietic Expansion Via Upregulation of Cadherin-11 in Bone Marrow Mesenchymal Stromal Cells. Stem Cells 2014; 32:2245-55. [DOI: 10.1002/stem.1701] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/05/2014] [Accepted: 02/20/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Hisayuki Yao
- Department of Transfusion Medicine and Cell Therapy; Kyoto University Hospital; Kyoto Japan
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy; Kyoto University Hospital; Kyoto Japan
| | - Satoshi Yoshioka
- Department of Transfusion Medicine and Cell Therapy; Kyoto University Hospital; Kyoto Japan
- Department of Hematology/Oncology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Masako Miura
- Department of Medicine and Clinical Science; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Yoshihiro Hayashi
- Department of Transfusion Medicine and Cell Therapy; Kyoto University Hospital; Kyoto Japan
- Division of Gastroenterology and Hematology; Shiga University of Medical Science; Ōtsu Shiga Japan
| | - Akihiro Tamura
- Department of Transfusion Medicine and Cell Therapy; Kyoto University Hospital; Kyoto Japan
| | - Masaki Iwasa
- Department of Transfusion Medicine and Cell Therapy; Kyoto University Hospital; Kyoto Japan
- Division of Gastroenterology and Hematology; Shiga University of Medical Science; Ōtsu Shiga Japan
| | - Atsushi Sato
- Department of Transfusion Medicine and Cell Therapy; Kyoto University Hospital; Kyoto Japan
| | - Terutoshi Hishita
- Department of Hematology; National Hospital Organization Himeji Medical Center; Himeji Hyogo Japan
| | - Yayoi Higashi
- Department of Gynecology and Obstetrics; Japanese Red Cross Kyoto Daini Hospital; Kyoto Japan
| | - Hitomi Kaneko
- Department of Hematology; Osaka Red Cross Hospital; Osaka Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology; Kyoto Pharmaceutical University; Kyoto Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology; Research Institute for Radiation Biology and Medicine, Hiroshima University; Hiroshima Japan
| | - Hideyo Hirai
- Department of Transfusion Medicine and Cell Therapy; Kyoto University Hospital; Kyoto Japan
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy; Kyoto University Hospital; Kyoto Japan
| |
Collapse
|
31
|
Ozcivici E, Zhang W, Donahue LR, Judex S. Quantitative trait loci that modulate trabecular bone's risk of failure during unloading and reloading. Bone 2014; 64:25-32. [PMID: 24698783 DOI: 10.1016/j.bone.2014.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/01/2014] [Accepted: 03/22/2014] [Indexed: 01/23/2023]
Abstract
Genetic makeup of an individual is a strong determinant of the morphologic and mechanical properties of bone. Here, in an effort to identify quantitative trait loci (QTLs) for changes in the simulated mechanical parameters of trabecular bone during altered mechanical demand, we subjected 352 second generation female adult (16 weeks old) BALBxC3H mice to 3 weeks of hindlimb unloading followed by 3 weeks of reambulation. Longitudinal in vivo microcomputed tomography (μCT) scans tracked trabecular changes in the distal femur. Tomographies were directly translated into finite element (FE) models and subjected to a uniaxial compression test. Apparent trabecular stiffness and components of the Von Mises (VM) stress distributions were computed for the distal metaphysis and associated with QTLs. At baseline, five QTLs explained 20% of the variation in trabecular peak stresses across the mouse population. During unloading, three QTLs accounted for 14% of the variability in peak stresses. During reambulation, one QTL accounted for 5% of the variability in peak stresses. QTLs were also identified for mechanically induced changes in stiffness, median stress values and skewness of stress distributions. There was little overlap between QTLs identified for baseline and QTLs for longitudinal changes in mechanical properties, suggesting that distinct genes may be responsible for the mechanical response of trabecular bone. Unloading related QTLs were also different from reambulation related QTLs. Further, QTLs identified here for mechanical properties differed from previously identified QTLs for trabecular morphology, perhaps revealing novel gene targets for reducing fracture risk in individuals exposed to unloading and for maximizing the recovery of trabecular bone's mechanical properties during reambulation.
Collapse
Affiliation(s)
- Engin Ozcivici
- Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey.
| | | | | | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
32
|
Guezguez B, Campbell CJV, Boyd AL, Karanu F, Casado FL, Di Cresce C, Collins TJ, Shapovalova Z, Xenocostas A, Bhatia M. Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell 2014; 13:175-89. [PMID: 23910084 DOI: 10.1016/j.stem.2013.06.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/28/2013] [Accepted: 06/19/2013] [Indexed: 01/12/2023]
Abstract
Numerous studies have shown that the bone marrow (BM) niche plays a key role in mouse hematopoietic stem cell (HSC) function and involves contributions from a broad array of cell types. However, the composition and role of the human BM HSC niche have not been investigated. Here, using human bone biopsy specimens, we provide evidence of HSC propensity to localize to endosteal regions of the trabecular bone area (TBA). Through functional xenograft transplantation, we found that human HSCs localizing to the TBA have superior regenerative and self-renewal capacity and are molecularly distinct from those localizing to the long bone area (LBA). In addition, osteoblasts in the TBA possess unique characteristics and express a key network of factors that regulate TBA- versus LBA-localized human HSCs in vivo. Our study reveals that BM localization and architecture play a critical role in defining the functional and molecular properties of human HSCs.
Collapse
Affiliation(s)
- Borhane Guezguez
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone. Proc Natl Acad Sci U S A 2014; 111:1545-50. [PMID: 24406853 DOI: 10.1073/pnas.1315153111] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cellular subpopulations in the bone marrow play distinct and unexplored functions in skeletal homeostasis. This study delineated a unique role of osteal macrophages in bone and parathyroid hormone (PTH)-dependent bone anabolism using murine models of targeted myeloid-lineage cell ablation. Depletion of c-fms(+) myeloid lineage cells [via administration of AP20187 in the macrophage Fas-induced apoptosis (MAFIA) mouse model] reduced cortical and trabecular bone mass and attenuated PTH-induced trabecular bone anabolism, supporting the positive function of macrophages in bone homeostasis. Interestingly, using a clodronate liposome model with targeted depletion of mature phagocytic macrophages an opposite effect was found with increased trabecular bone mass and increased PTH-induced anabolism. Apoptotic cells were more numerous in MAFIA versus clodronate-treated mice and flow cytometric analyses of myeloid lineage cells in the bone marrow showed that MAFIA mice had reduced CD68(+) cells, whereas clodronate liposome-treated mice had increased CD68(+) and CD163(+) cells. Clodronate liposomes increased efferocytosis (clearance of apoptotic cells) and gene expression associated with alternatively activated M2 macrophages as well as expression of genes associated with bone formation including Wnt3a, Wnt10b, and Tgfb1. Taken together, depletion of early lineage macrophages resulted in osteopenia with blunted effects of PTH anabolic actions, whereas depletion of differentiated macrophages promoted apoptotic cell clearance and transformed the bone marrow to an osteogenic environment with enhanced PTH anabolism. These data highlight a unique function for osteal macrophages in skeletal homeostasis.
Collapse
|
34
|
Calvi LM, Link DC. Cellular complexity of the bone marrow hematopoietic stem cell niche. Calcif Tissue Int 2014; 94:112-24. [PMID: 24101231 PMCID: PMC3936515 DOI: 10.1007/s00223-013-9805-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/15/2013] [Indexed: 12/17/2022]
Abstract
The skeleton serves as the principal site for hematopoiesis in adult terrestrial vertebrates. The function of the hematopoietic system is to maintain homeostatic levels of all circulating blood cells, including myeloid cells, lymphoid cells, red blood cells, and platelets. This action requires the daily production of more than 500 billion blood cells. The vast majority of these cells are synthesized in the bone marrow, where they arise from a limited number of hematopoietic stem cells (HSCs) that are multipotent and capable of extensive self-renewal. These attributes of HSCs are best demonstrated by marrow transplantation, where even a single HSC can repopulate the entire hematopoietic system. HSCs are therefore adult stem cells capable of multilineage repopulation, poised between cell fate choices which include quiescence, self-renewal, differentiation, and apoptosis. While HSC fate choices are in part determined by multiple stochastic fluctuations of cell autonomous processes, according to the niche hypothesis, signals from the microenvironment are also likely to determine stem cell fate. While it had long been postulated that signals within the bone marrow could provide regulation of hematopoietic cells, it is only in the past decade that advances in flow cytometry and genetic models have allowed for a deeper understanding of the microenvironmental regulation of HSCs. In this review, we will highlight the cellular regulatory components of the HSC niche.
Collapse
Affiliation(s)
- Laura M Calvi
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA,
| | | |
Collapse
|
35
|
Watanabe S, Ito J, Baba T, Hiratsuka T, Kuse K, Ochi H, Anai Y, Hisasue M, Tsujimoto H, Nishigaki K. Notch2 transduction by feline leukemia virus in a naturally infected cat. J Vet Med Sci 2013; 76:553-7. [PMID: 24317268 PMCID: PMC4064141 DOI: 10.1292/jvms.13-0344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Feline leukemia virus (FeLV)
induces neoplastic and nonneoplastic diseases in cats. The transduction of cellular genes
by FeLV is sometimes observed and associated with neoplastic diseases including lymphoma
and sarcoma. Here, we report the first natural case of feline Notch2
transduction by FeLV in an infected cat with multicentric lymphoma and hypercalcemia. We
cloned recombinant FeLVs harboring Notch2 in the env
gene. Notch2 was able to activate expression of a reporter gene, similar
to what was previously reported in cats with experimental FeLV-induced thymic lymphoma.
Our findings suggest that the transduction of Notch2 strongly correlates
with FeLV-induced lymphoma.
Collapse
Affiliation(s)
- Shinya Watanabe
- Laboratory of Molecular Immunology and Infectious Disease, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Agas D, Marchetti L, Capitani M, Sabbieti MG. The dual face of parathyroid hormone and prostaglandins in the osteoimmune system. Am J Physiol Endocrinol Metab 2013; 305:E1185-94. [PMID: 24045870 DOI: 10.1152/ajpendo.00290.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microenvironment of bone marrow, an extraordinarily heterogeneous and dynamic system, is populated by bone and immune cells, and its functional dimension has been at the forefront of recent studies in the field of osteoimmunology. The interaction of both marrow niches supports self-renewal, differentiation, and homing of the hematopoietic stem cells and provides the essential regulatory molecules for osteoblast and osteoclast homeostasis. Impaired signaling within the niches results in a pathological tableau and enhances disease, including osteoporosis and arthritis, or the rejection of hematopoietic stem cell transplants. Discovering the anabolic players that control these mechanisms has become warranted. In this review, we focus on parathyroid hormone (PTH) and prostaglandins (PGs), potent molecular mediators, both of which carry out a multitude of functions, particularly in bone lining cells and T cells. These two regulators proved to be promising therapeutic agents when strictly clinical protocols on dose treatments were applied.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Biotechnology, University of Camerino, Italy
| | | | | | | |
Collapse
|
37
|
|
38
|
Romero JR, Youte R, Brown EM, Pollak MR, Goltzman D, Karaplis A, Pong LC, Chien L, Chattopadhyay N, Rivera A. Parathyroid hormone ablation alters erythrocyte parameters that are rescued by calcium-sensing receptor gene deletion. Eur J Haematol 2013; 91:37-45. [PMID: 23528155 DOI: 10.1111/ejh.12110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2013] [Indexed: 11/29/2022]
Abstract
The mechanisms by which parathyroid hormone (PTH) produces anemia are unclear. Parathyroid hormone secretion is regulated by the extracellular Ca2+ -sensing receptor. We investigated the effects of ablating PTH on hematological indices and erythrocytes volume regulation in wild-type, PTH-null, and Ca2+ -sensing receptor-null/PTH-null mice. The erythrocyte parameters were measured in whole mouse blood, and volume regulatory systems were determined by plasma membrane K+ fluxes, and osmotic fragility was measured by hemoglobin determination at varying osmolarities. We observed that the absence of PTH significantly increases mean erythrocyte volume and reticulocyte counts, while decreasing erythrocyte counts, hemoglobin, hematocrit, and mean corpuscular hemoglobin concentration. These changes were accompanied by increases in erythrocyte cation content, a denser cell population, and increased K+ permeability, which were in part mediated by activation of the K+ /Cl- cotransporter and Gardos channel. In addition we observed that erythrocyte osmotic fragility in PTH-null compared with wild-type mice was enhanced. When Ca2+ -sensing receptor gene was deleted on the background of PTH-null mice, we observed that several of the alterations in erythrocyte parameters of PTH-null mice were largely rescued, particularly those related to erythrocyte volume, K+ fluxes and osmotic fragility, and became similar to those observed in wild-type mice. Our results demonstrate that Ca2+ -sensing receptor and parathyroid hormone are functionally coupled to maintain erythrocyte homeostasis.
Collapse
Affiliation(s)
- Jose R Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Intermittent parathyroid hormone (iPTH) treatment expands hemopoietic stem and progenitor cells (HSPCs), but the involved mechanisms and the affected HSPC populations are mostly unknown. Here we show that T cells are required for iPTH to expand short-term HSPCs (ST-HSPCs) and improve blood cell engraftment and host survival after BM transplantation. Silencing of PTH/PTH-related protein receptor (PPR) in T cells abrogates the effects of iPTH, thus demonstrating a requirement for direct PPR signaling in T cells. Mechanistically, iPTH expands ST-HSPCs by activating Wnt signaling in HSPCs and stromal cells (SCs) through T-cell production of the Wnt ligand Wnt10b. Attesting to the relevance of Wnt10b, iPTH fails to expand ST-HSPCs in mice with Wnt10b(-/-) T cells. Moreover, iPTH fails to promote engraftment and survival after BM transplantation in Wnt10b null mice. In summary, direct PPR signaling in T cells and the resulting production of Wnt10b play a pivotal role in the mechanism by which iPTH expands ST-HSPCs. The data suggest that T cells may provide pharmacologic targets for HSPC expansion.
Collapse
|
40
|
Hematopoietic stem cell development, niches, and signaling pathways. BONE MARROW RESEARCH 2012; 2012:270425. [PMID: 22900188 PMCID: PMC3413998 DOI: 10.1155/2012/270425] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/30/2012] [Accepted: 06/13/2012] [Indexed: 12/22/2022]
Abstract
Hematopoietic stem cells (HSCs) play a key role in hematopoietic system that functions mainly in homeostasis and immune response. HSCs transplantation has been applied for the treatment of several diseases. However, HSCs persist in the small quantity within the body, mostly in the quiescent state. Understanding the basic knowledge of HSCs is useful for stem cell biology research and therapeutic medicine development. Thus, this paper emphasizes on HSC origin, source, development, the niche, and signaling pathways which support HSC maintenance and balance between self-renewal and proliferation which will be useful for the advancement of HSC expansion and transplantation in the future.
Collapse
|
41
|
Notch regulation of hematopoiesis, endothelial precursor cells, and blood vessel formation: orchestrating the vasculature. Stem Cells Int 2012; 2012:805602. [PMID: 22550518 PMCID: PMC3328335 DOI: 10.1155/2012/805602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/20/2011] [Indexed: 12/27/2022] Open
Abstract
The development of the vascular system begins with the formation of hemangioblastic cells, hemangioblasts, which organize in blood islands in the yolk sac. The hemangioblasts differentiate into hematopoietic and angioblastic cells. Subsequently, the hematopoietic line will generate blood cells, whereas the angioblastic cells will give rise to vascular endothelial cells (ECs). In response to specific molecular and hemodynamic stimuli, ECs will acquire either arterial or venous identity. Recruitment towards the endothelial tubes and subsequent differentiation of pericyte and/or vascular smooth muscle cells (vSMCs) takes place and the mature vessel is formed. The Notch signaling pathway is required for determining the arterial program of both endothelial and smooth muscle cells; however, it is simultaneously involved in the generation of hematopoietic stem cells (HSCs), which will give rise to hematopoietic cells. Notch signaling also regulates the function of endothelial progenitor cells (EPCs), which are bone-marrow-derived cells able to differentiate into ECs and which could be considered the adult correlate of the angioblast. In addition, Notch signaling has been reported to control sprouting angiogenesis during blood vessels formation in the adult. In this paper we discuss the physiological role of Notch in vascular development, providing an overview on the involvement of Notch in vascular biology from hematopoietic stem cell to adaptive neovascularization in the adult.
Collapse
|
42
|
Sampson ER, Hilton MJ, Tian Y, Chen D, Schwarz EM, Mooney RA, Bukata SV, O'Keefe RJ, Awad H, Puzas JE, Rosier RN, Zuscik MJ. Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med 2012; 3:101ra93. [PMID: 21937758 DOI: 10.1126/scitranslmed.3002214] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is no disease-modifying therapy for osteoarthritis, a degenerative joint disease that is projected to afflict more than 67 million individuals in the United States alone by 2030. Because disease pathogenesis is associated with inappropriate articular chondrocyte maturation resembling that seen during normal endochondral ossification, pathways that govern the maturation of articular chondrocytes are candidate therapeutic targets. It is well established that parathyroid hormone (PTH) acting via the type 1 PTH receptor induces matrix synthesis and suppresses maturation of chondrocytes. We report that the PTH receptor is up-regulated in articular chondrocytes after meniscal injury and in osteoarthritis in humans and in a mouse model of injury-induced knee osteoarthritis. To test whether recombinant human PTH(1-34) (teriparatide) would inhibit aberrant chondrocyte maturation and associated articular cartilage degeneration, we administered systemic teriparatide (Forteo), a Food and Drug Administration-approved treatment for osteoporosis, either immediately after or 8 weeks after meniscal/ligamentous injury in mice. Knee joints were harvested at 4, 8, or 12 weeks after injury to examine the effects of teriparatide on cartilage degeneration and articular chondrocyte maturation. Microcomputed tomography revealed increased bone volume within joints from teriparatide-treated mice compared to saline-treated control animals. Immediate systemic administration of teriparatide increased proteoglycan content and inhibited articular cartilage degeneration, whereas delayed treatment beginning 8 weeks after injury induced a regenerative effect. The chondroprotective and chondroregenerative effects of teriparatide correlated with decreased expression of type X collagen, RUNX2 (runt-related transcription factor 2), matrix metalloproteinase 13, and the carboxyl-terminal aggrecan cleavage product NITEGE. These preclinical findings provide proof of concept that Forteo may be useful for decelerating cartilage degeneration and inducing matrix regeneration in patients with osteoarthritis.
Collapse
Affiliation(s)
- Erik R Sampson
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lawal RA, Calvi LM. The niche as a target for hematopoietic manipulation and regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:415-22. [PMID: 21902610 DOI: 10.1089/ten.teb.2011.0197] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hematopoietic stem cells (HSCs), rare primitive cells capable of reconstituting all blood cell lineages, are the only stem cells currently routinely used for therapeutic purposes. Clinical experience has shown that HSC number is an important limiting factor in treatment success. Strategies to expand HSCs are of great clinical appeal, as they would improve therapeutic use of these cells in stem cell transplantation and in conditions of bone marrow failure. The microenvironment in which HSCs reside, known as the niche, has long been considered a critical regulator of HSCs. Data accumulated over the past decade strongly confirm the importance of the niche in HSC behavior. A number of niche components as well as signaling pathways, such as Notch, have been implicated in the interaction of the microenvironment with HSCs and continue to be genetically evaluated in the hope of defining the critical elements that are required and which, if modified, can initiate HSC behaviors. In this review, we highlight the known characteristics of HSCs, challenges in their expansion, the niche phenomenon, and explain why niche stimulated HSC expansion is of utmost interest in the field, while beginning to bring to the fore potential caveats of niche manipulation. Lastly, the potential pitfalls of avoiding malignancy and controlling self-renewal versus differentiation will be briefly reviewed.
Collapse
|
44
|
Insights into the genetics of osteoporosis from recent genome-wide association studies. Expert Rev Mol Med 2011; 13:e28. [PMID: 21867596 DOI: 10.1017/s1462399411001980] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteoporosis, which is characterised by reduced bone mineral density (BMD) and an increased risk of fragility fractures, is the result of a complex interaction between environmental factors and genetic variants that confer susceptibility. Heritability studies have shown that BMD and other osteoporosis-related traits such as ultrasound properties of bone, skeletal geometry and bone turnover have significant inheritable components. Although previous linkage and candidate gene studies have provided few replicated loci for osteoporosis, genome-wide association approaches have produced clear and reproducible findings. To date, 20 genome-wide association studies (GWASs) for osteoporosis and related traits have been conducted, identifying dozens of genes. Further meta-analyses of GWAS data and deep resequencing of rare variants will uncover more novel susceptibility loci and ultimately provide possible therapeutic targets for fracture prevention.
Collapse
|
45
|
Abstract
The last several decades have revealed numerous interactions between cells of the hematopoietic lineage and osteoblasts (OBs) of the mesenchymal lineage. For example, OBs are important players in the hematopoietic stem cell (HSC) niche and OBs are known to impact osteoclast (OC) development. Thus, although much is known regarding the impact OBs have on hematopoietic cells, less is known about the impact of hematopoietic cells on OBs. Here we will review this reciprocal relationship: the effects of hematopoietic cells on OBs. Specifically, we will examine the impact of hematopoietic cells such as HSCs, lymphocytes, and megakaryocytes, as well as the hematopoietic cell-derived OCs on OB proliferation, differentiation, and function.
Collapse
Affiliation(s)
- Monique Bethel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1120 South Drive, FH 115, Indianapolis, IN 46202, USA
| | - Edward F. Srour
- Departments of Medicine, Pediatrics, and Microbiology and Immunology, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 980 West Walnut Street, R3-C312, Indianapolis, IN 46202, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1120 South Drive, FH 115, Indianapolis, IN 46202, USA
| |
Collapse
|
46
|
Cheng YH, Chitteti BR, Streicher DA, Morgan JA, Rodriguez-Rodriguez S, Carlesso N, Srour EF, Kacena MA. Impact of maturational status on the ability of osteoblasts to enhance the hematopoietic function of stem and progenitor cells. J Bone Miner Res 2011; 26:1111-21. [PMID: 21542011 PMCID: PMC3179304 DOI: 10.1002/jbmr.302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoblasts (OBs) exert a prominent regulatory effect on hematopoietic stem cells (HSCs). We evaluated the difference in hematopoietic expansion and function in response to co-culture with OBs at various stages of development. Murine calvarial OBs were seeded directly (fresh) or cultured for 1, 2, or 3 weeks prior to seeding with 1000 Lin-Sca1 + cKit+ (LSK) cells for 1 week. Significant increases in the following hematopoietic parameters were detected when comparing co-cultures of fresh OBs to co-cultures containing OBs cultured for 1, 2, or 3 weeks: total hematopoietic cell number (up to a 3.4-fold increase), total colony forming unit (CFU) number in LSK progeny (up to an 18.1-fold increase), and percentage of Lin-Sca1+ cells (up to a 31.8-fold increase). Importantly, these studies were corroborated by in vivo reconstitution studies in which LSK cells maintained in fresh OB co-cultures supported a significantly higher level of chimerism than cells maintained in co-cultures containing 3-week OBs. Characterization of OBs cultured for 1, 2, or 3 weeks with real-time PCR and functional mineralization assays showed that OB maturation increased with culture duration but was not affected by the presence of LSK cells in culture. Linear regression analyses of multiple parameters measured in these studies show that fresh, most likely more immature OBs better promote hematopoietic expansion and function than cultured, presumably more mature OBs and suggest that the hematopoiesis-enhancing activity is mediated by cells present in fresh OB cultures de novo.
Collapse
Affiliation(s)
- Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 2011; 19:192-205. [PMID: 21295524 PMCID: PMC3040415 DOI: 10.1016/j.ccr.2010.12.022] [Citation(s) in RCA: 453] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/17/2010] [Accepted: 11/10/2010] [Indexed: 02/06/2023]
Abstract
Despite evidence supporting an oncogenic role in breast cancer, the Notch pathway's contribution to metastasis remains unknown. Here, we report that the Notch ligand Jagged1 is a clinically and functionally important mediator of bone metastasis by activating the Notch pathway in bone cells. Jagged1 promotes tumor growth by stimulating IL-6 release from osteoblasts and directly activates osteoclast differentiation. Furthermore, Jagged1 is a potent downstream mediator of the bone metastasis cytokine TGFβ that is released during bone destruction. Importantly, γ-secretase inhibitor treatment reduces Jagged1-mediated bone metastasis by disrupting the Notch pathway in stromal bone cells. These findings elucidate a stroma-dependent mechanism for Notch signaling in breast cancer and provide rationale for using γ-secretase inhibitors for the treatment of bone metastasis.
Collapse
Affiliation(s)
- Nilay Sethi
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Xudong Dai
- Merck Research Laboratories, Boston, MA 02115, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Breast Cancer Program, Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
48
|
Smith JN, Calvi LM. Regulatory Interactions in the Bone Marrow Microenvironment. ACTA ACUST UNITED AC 2011. [PMID: 26213605 DOI: 10.1138/20110495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are the immature, pluripotent cells from which all myeloid and lymphoid cell types originate. As stem cells, HSCs are capable of two very different fate choices: self-renewal, ensuring they will persist throughout the lifetime of an organism, and differentiation to mature progeny. Therapeutic applications of HSCs include their routine use in stem cell transplantation to treat hematopoietic malignancies or bone marrow failure. Research and clinical experience have provided tools for the immunophenotypic identification and functional analysis of HSCs and there is increasing evidence suggesting that HSC regulation is greatly influenced by signals from their niches in the bone marrow. Although they represent one of the most rigorously studied stem cell types, still more remains to be known about how HSCs are regulated and respond to stress conditions.
Collapse
Affiliation(s)
- Julianne N Smith
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Laura M Calvi
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
49
|
Mo JS, Ann EJ, Yoon JH, Jung J, Choi YH, Kim HY, Ahn JS, Kim SM, Kim MY, Hong JA, Seo MS, Lang F, Choi EJ, Park HS. Serum- and glucocorticoid-inducible kinase 1 (SGK1) controls Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin ligase. J Cell Sci 2010; 124:100-12. [PMID: 21147854 DOI: 10.1242/jcs.073924] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Notch is a transmembrane protein that acts as a transcriptional factor in the Notch signaling pathway for cell survival, cell death and cell differentiation. Notch1 and Fbw7 mutations both lead the activation of the Notch1 pathway and are found in the majority of patients with the leukemia T-ALL. However, little is known about the mechanisms and regulators that are responsible for attenuating the Notch signaling pathway through Fbw7. Here, we report that the serum- and glucocorticoid-inducible protein kinase SGK1 remarkably reduced the protein stability of the active form of Notch1 through Fbw7. The protein level and transcriptional activity of the Notch1 intracellular domain (Notch1-IC) were higher in SGK1-deficient cells than in SGK1 wild-type cells. Notch1-IC was able to form a trimeric complex with Fbw7 and SGK1, thereby SGK1 enhanced the protein degradation of Notch1-IC via a Fbw7-dependent proteasomal pathway. Furthermore, activated SGK1 phosphorylated Fbw7 at serine 227, an effect inducing Notch1-IC protein degradation and ubiquitylation. Moreover, accumulated dexamethasone-induced SGK1 facilitated the degradation of Notch1-IC through phosphorylation of Fbw7. Together our results suggest that SGK1 inhibits the Notch1 signaling pathway via phosphorylation of Fbw7.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shipounova IN, Petrova TV, Svinareva DA, Momotuk KS, Mikhailova EA, Drize NI. Alterations in hematopoietic microenvironment in patients with aplastic anemia. Clin Transl Sci 2010; 2:67-74. [PMID: 20443870 DOI: 10.1111/j.1752-8062.2008.00074.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mechanisms of hematopoietic failure in patients with aplastic anemia (AA) are obscure. We investigate alterations in the hematopoietic microenvironment in AA patients. We present the results of studying mesenchymal stromal cells (MSC), fibroblastic colony-forming units (CFU-F), and adherent cell layers (ACL) of long-term bone marrow cultures (LTBMC) from bone marrow (BM) samples of AA patients. MSC of AA patients proliferated longer than those of donors. In half of the patients' MSC cultures, adipogenesis was impaired. Osteogenic differentiation was not achieved in 36% of AA MSC. CFU-F formed enlarged colonies, and their concentration in the BM of AA patients was significantly increased. Our data suggest that the physiological activation of the stromal microenvironment is characteristic of AA. We detected a decrease in the expression of the angiopoetin-1 (ANG-1) and vascular cell adhesion molecule-1 (VCAM-1) genes, together with an increase in the expression of vascular endothelial growth factor (VEGF) in ACL of AA patients. This indicates abnormal regulatory patterns in both osteoblastic and vascular contexts. Addition of AA patients' serum to donors' LTBMC for 3 weeks induced similar gene expression alterations. The addition of parathyroid hormone (PTH) resulted in the expression levels of analyzed genes returning to normal, in both AA LTBMC and donor cultures treated with AA serum. The physiologic status of the BM stromal microenvironment (MSC, CFU-F, and ACL of LTBMC) of AA patients was altered.
Collapse
Affiliation(s)
- Irina N Shipounova
- Laboratory for Physiology of Haemopoiesis, National Haematology Research Centre, Russian Academy of Medical Science, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|