1
|
Stewart I, Garcia MJ, Alluri N, Buzo M, Keko M, Nazarian A. A Meta-Analysis Study to Define Variations in Murine Long Bone Biomechanical Testing. J Biomech Eng 2025; 147:060801. [PMID: 40172045 DOI: 10.1115/1.4068318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/13/2025] [Indexed: 04/04/2025]
Abstract
A systematic literature search and meta-analysis were performed to evaluate the variability in biomechanical testing of murine long bones, specifically focused on point-bending tests of mice femora. Due to the lack of standardized protocols for these tests, the assessment quantifies the heterogeneity in reported mechanical properties across existing literature. This study followed preferred reporting items for systematic reviews and meta-analyses (PRISMA) and strengthening the reporting of observational studies in epidemiology (STROBE) guidelines to search publicly available databases for relevant studies. After title and abstract screening, full-text reviews identified 73 articles meeting the inclusion criteria. Data was extracted from these studies, including stiffness, maximum load, modulus, and ultimate stress values for both three-point and four-point bending tests. The data were analyzed through ANOVA and metaregression to assess variability caused by age, sex, and genetic strain. The reviewers also assessed the quality of the included studies. The meta-analysis revealed significant heterogeneity in reported mechanical properties, with I2 values ranging from 72% to 100% in the three point-bend tests of pooled genetic strains. This heterogeneity persisted even after accounting for age, sex, and genetic strain differences. The review concludes that nonstandardized testing setups are the likely major source of the observed variability in reported data more than the population characteristics of the mice, highlighting the need for more consistent testing methodologies in future studies.
Collapse
Affiliation(s)
- Isabella Stewart
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA 02215
- Beth Israel Deaconess Medical Center
| | - Mason J Garcia
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA 02215; Department of Mechanical Engineering, Boston University, 330 Brookline Avenue, RN123, Boston, MA 02215
- Beth Israel Deaconess Medical Center
| | - Namitha Alluri
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA 02215
- Beth Israel Deaconess Medical Center
| | - Maria Buzo
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA 02215
- Beth Israel Deaconess Medical Center
| | - Mario Keko
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA 02215
- Beth Israel Deaconess Medical Center
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN123, Boston, MA 02215; Department of Mechanical Engineering, Boston University, Boston, MA 02215; Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan 0025, Armenia
| |
Collapse
|
2
|
Chen Y, Li C, Jia J, Jiang Y, Zhang P, Cheng C, Zhang G, Gao L, Yang X, Zhao J, Li K, Yu B. COX-2 inhibition as a therapeutic strategy for bone loss in Staphylococcus aureus osteomyelitis. Mol Med 2025; 31:177. [PMID: 40335904 PMCID: PMC12057237 DOI: 10.1186/s10020-025-01202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Bone loss in Staphylococcus aureus (S. aureus) osteomyelitis poses a serious challenge to orthopedic treatment, but the underlying mechanism of systemic osteoporosis caused by chronic infection is not completely clear. In this study, γ-irradiation-killed S. aureus (IKSA) was applied to simulate the inflammation and explore the mechanism of systemic bone loss caused by it. In this study, we found that the systemic application of IKSA caused bone loss in mice through increasing osteoclasts and decreasing osteoblasts. An immune response profile with up-regulated COX-2 is identified based on our transcriptional data from IKSA mice bone marrow cells. COX-2 expression is widely up-regulated in bone marrow immune cells, such as myeloid-derived suppressor cells (MDSCs), neutrophils and macrophages in the IKSA-treated mice. Mechanistically, COX-2 stimulated the increasing proportion of MDSCs and neutrophils and the inflammatory response of the bone marrow immune cells, that may regulate bone metabolism. Importantly, COX-2 inhibitor, celecoxib could rescue the bone loss induced by IKSA, which may reason from decrease of inflammatory gene expression in MDSCs, neutrophils and macrophages. Excitingly, COX-2 expression is also increased in bone marrow from mice and patients with S. aureus osteomyelitis. These findings suggested a therapeutic potential for inhibiting COX-2 in combating bone loss in S. aureus osteomyelitis.
Collapse
Affiliation(s)
- Yuhui Chen
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Chao Li
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Jishan Jia
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Yuhui Jiang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Ping Zhang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Caiyu Cheng
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Guangyan Zhang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Lang Gao
- Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Xiang Yang
- Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Jiawei Zhao
- Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Kaiqun Li
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| | - Bin Yu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, No. 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
3
|
Panahipour L, Imani A, dos Santos Sanches N, Kühtreiber H, Mildner M, Gruber R. RNA Sequencing Revealed a Weak Response of Gingival Fibroblasts Exposed to Hyaluronic Acid. Bioengineering (Basel) 2024; 11:1307. [PMID: 39768125 PMCID: PMC11726844 DOI: 10.3390/bioengineering11121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Hyaluronic acid was proposed to support soft tissue recession surgery and guided tissue regeneration. The molecular mechanisms through which hyaluronic acid modulates the response of connective tissue cells remain elusive. To elucidate the impact of hyaluronic acid on the connective tissue cells, we used bulk RNA sequencing to determine the changes in the genetic signature of gingival fibroblasts exposed to 1.6% cross-linked hyaluronic acid and 0.2% natural hyaluronic acid. Transcriptome-wide changes were modest. Even when implementing a minimum of 1.5 log2 fold-change and a significance threshold of 1.0 -log10, only a dozenth of genes were differentially expressed. Upregulated genes were PLK3, SLC16A6, IL6, HBEGF, DGKE, DUSP4, PTGS2, FOXC2, ATAD2B, NFATC2, and downregulated genes were MMP24 and PLXNA2. RT-PCR analysis supported the impact of hyaluronic acid on increasing the expression of a selected gene panel. The findings from bulk RNA sequencing suggest that gingival fibroblasts experience weak changes in their transcriptome when exposed to hyaluronic acid.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (A.I.); (N.d.S.S.)
| | - Atefe Imani
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (A.I.); (N.d.S.S.)
| | - Natália dos Santos Sanches
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (A.I.); (N.d.S.S.)
- Department of Diagnosis and Surgery, Araçatuba Dental School of Sao Paulo, Sao Paulo 16015-050, Brazil
| | - Hannes Kühtreiber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (H.K.); (M.M.)
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria; (H.K.); (M.M.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (A.I.); (N.d.S.S.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
4
|
Panahipour L, Micucci C, Gelmetti B, Gruber R. In Vitro Bioassay for Damage-Associated Molecular Patterns Arising from Injured Oral Cells. Bioengineering (Basel) 2024; 11:687. [PMID: 39061769 PMCID: PMC11273541 DOI: 10.3390/bioengineering11070687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Gingival fibroblasts are a significant source of paracrine signals required to maintain periodontal homeostasis and to mediate pathological events linked to periodontitis and oral squamous cell carcinomas. Among the potential paracrine signals are stanniocalcin-1 (STC1), involved in oxidative stress and cellular survival; amphiregulin (AREG), a growth factor that mediates the cross-talk between immune cells and epithelial cells; chromosome 11 open reading frame 96 (C11orf96) with an unclear biologic function; and the inflammation-associated prostaglandin E synthase (PTGES). Gingival fibroblasts increasingly express these genes in response to bone allografts containing remnants of injured cells. Thus, the gene expression might be caused by the local release of damage-associated molecular patterns arising from injured cells. The aim of this study is consequently to use the established gene panel as a bioassay to measure the damage-associated activity of oral cell lysates. To this aim, we have exposed gingival fibroblasts to lysates prepared from the squamous carcinoma cell lines TR146 and HSC2, oral epithelial cells, and gingival fibroblasts. We report here that all lysates significantly increased the transcription of the entire gene panel, supported for STC1 at the protein level. Blocking TGF-β receptor 1 kinase with SB431542 only partially reduced the forced expression of STC1, AREG, and C11orf96. SB431542 even increased the PTGES expression. Together, these findings suggest that the damage signals originating from oral cells can change the paracrine activity of gingival fibroblasts. Moreover, the expression panel of genes can serve as a bioassay for testing the biocompatibility of materials for oral application.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (C.M.); (B.G.)
| | - Chiara Micucci
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (C.M.); (B.G.)
| | - Benedetta Gelmetti
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (C.M.); (B.G.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (C.M.); (B.G.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
5
|
Abstract
The cell nucleus is best known as the container of the genome. Its envelope provides a barrier for passive macromolecule diffusion, which enhances the control of gene expression. As its largest and stiffest organelle, the nucleus also defines the minimal space requirements of a cell. Internal or external pressures that deform a cell to its physical limits cause a corresponding nuclear deformation. Evidence is consolidating that the nucleus, in addition to its genetic functions, serves as a physical sensing device for critical cell body deformation. Nuclear mechanotransduction allows cells to adapt their acute behaviors, mechanical stability, paracrine signaling, and fate to their physical surroundings. This review summarizes the basic chemical and mechanical properties of nuclear components, and how these properties are thought to be utilized for mechanosensing.
Collapse
Affiliation(s)
- Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
6
|
Sickle cell disease promotes sex-dependent pathological bone loss through enhanced cathepsin proteolytic activity. Blood Adv 2021; 6:1381-1393. [PMID: 34547771 PMCID: PMC8905708 DOI: 10.1182/bloodadvances.2021004615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
Age- and sex-dependent bone loss occurs in a Townes mouse model of SCD, with female mice more prone to trabecular bone loss. Reduced cathepsin activity leads to increased thickness and density of cortical and trabecular bone in the Townes mouse model of SCD.
Sickle cell disease (SCD) is the most common hereditary blood disorder in the United States. SCD is frequently associated with osteonecrosis, osteoporosis, osteopenia, and other bone-related complications such as vaso-occlusive pain, ischemic damage, osteomyelitis, and bone marrow hyperplasia known as sickle bone disease (SBD). Previous SBD models have failed to distinguish the age- and sex-specific characteristics of bone morphometry. In this study, we use the Townes mouse model of SCD to assess the pathophysiological complications of SBD in both SCD and sickle cell trait. Changes in bone microarchitecture and bone development were assessed by using high-resolution quantitative micro–computed tomography and the three-dimensional reconstruction of femurs from male and female mice. Our results indicate that SCD causes bone loss and sex-dependent anatomical changes in bone. SCD female mice in particular are prone to trabecular bone loss, whereas cortical bone degradation occurs in both sexes. We also describe the impact of genetic knockdown of cathepsin K– and E-64–mediated cathepsin inhibition on SBD.
Collapse
|
7
|
Abstract
The cell nucleus is best known as the container of the genome. Its envelope provides a barrier for passive macromolecule diffusion, which enhances the control of gene expression. As its largest and stiffest organelle, the nucleus also defines the minimal space requirements of a cell. Internal or external pressures that deform a cell to its physical limits cause a corresponding nuclear deformation. Evidence is consolidating that the nucleus, in addition to its genetic functions, serves as a physical sensing device for critical cell body deformation. Nuclear mechanotransduction allows cells to adapt their acute behaviors, mechanical stability, paracrine signaling, and fate to their physical surroundings. This review summarizes the basic chemical and mechanical properties of nuclear components, and how these properties are thought to be utilized for mechanosensing. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
8
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
9
|
Evaluation of musculoskeletal phenotype of the G608G progeria mouse model with lonafarnib, pravastatin, and zoledronic acid as treatment groups. Proc Natl Acad Sci U S A 2020; 117:12029-12040. [PMID: 32404427 DOI: 10.1073/pnas.1906713117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a uniformly fatal condition that is especially prevalent in skin, cardiovascular, and musculoskeletal systems. A wide gap exists between our knowledge of the disease and a promising treatment or cure. The aim of this study was to first characterize the musculoskeletal phenotype of the homozygous G608G BAC-transgenic progeria mouse model, and to determine the phenotype changes of HGPS mice after a five-arm preclinical trial of different treatment combinations with lonafarnib, pravastatin, and zoledronic acid. Microcomputed tomography and CT-based rigidity analyses were performed to assess cortical and trabecular bone structure, density, and rigidity. Bones were loaded to failure with three-point bending to assess strength. Contrast-enhanced µCT imaging of mouse femurs was performed to measure glycosaminoglycan content, thickness, and volume of the femoral head articular cartilage. Advanced glycation end products were assessed with a fluorometric assay. The changes demonstrated in the cortical bone structure, rigidity, stiffness, and modulus of the HGPS G608G mouse model may increase the risk for bending and deformation, which could result in the skeletal dysplasia characteristic of HGPS. Cartilage abnormalities seen in this HGPS model resemble changes observed in the age-matched WT controls, including early loss of glycosaminoglycans, and decreased cartilage thickness and volume. Such changes might mimic prevalent degenerative joint diseases in the elderly. Lonafarnib monotherapy did not improve bone or cartilage parameters, but treatment combinations with pravastatin and zoledronic acid significantly improved bone structure and mechanical properties and cartilage structural parameters, which ameliorate the musculoskeletal phenotype of the disease.
Collapse
|
10
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part I – Modulation of inflammation. Clin Hemorheol Microcirc 2020; 73:381-408. [PMID: 31177205 DOI: 10.3233/ch-199102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
11
|
|
12
|
Abstract
Prostaglandins (PGs) are highly bioactive fatty acids. PGs, especially prostaglandin E2 (PGE2), are abundantly produced by cells of both the bone-forming (osteoblast) lineage and the bone-resorbing (osteoclast) lineage. The inducible cyclooxygenase, COX-2, is largely responsible for most PGE2 production in bone, and once released, PGE2 is rapidly degraded in vivo. COX-2 is induced by multiple agonists - hormones, growth factors, and proinflammatory factors - and the resulting PGE2 may mediate, amplify, or, as we have recently shown for parathyroid hormone (PTH), inhibit responses to these agonists. In vitro, PGE2 can directly stimulate osteoblast differentiation and, indirectly via stimulation of RANKL in osteoblastic cells, stimulate the differentiation of osteoclasts. The net balance of these two effects of PGE2 in vivo on bone formation and bone resorption has been hard to predict and, as expected for such a widespread local factor, hard to study. Some of the complexity of PGE2 actions on bone can be explained by the fact that there are four receptors for PGE2 (EP1-4). Some of the major actions of PGE2 in vitro occur via EP2 and EP4, both of which can stimulate cAMP signaling, but there are other distinct signaling pathways, important in other tissues, which have not yet been fully elucidated in bone cells. Giving PGE2 or agonists of EP2 and EP4 to accelerate bone repair has been examined with positive results. Further studies to clarify the pathways of PGE2 action in bone may allow us to identify new and more effective ways to deliver the therapeutic benefits of PGE2 in skeletal disorders.
Collapse
Affiliation(s)
- Carol Pilbeam
- Department of Medicine and Musculoskeletal Institute, UConn Health, Farmington, CT, USA.
| |
Collapse
|
13
|
Jiang X, Xu C, Shi H, Cheng Q. PTH1-34 improves bone healing by promoting angiogenesis and facilitating MSCs migration and differentiation in a stabilized fracture mouse model. PLoS One 2019; 14:e0226163. [PMID: 31821371 PMCID: PMC6903750 DOI: 10.1371/journal.pone.0226163] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/20/2019] [Indexed: 11/18/2022] Open
Abstract
Objective PTH1-34 (parathyroid hormone 1–34) is the only clinical drug to promote osteogenesis. MSCs (mesenchymal stem cells) have multidirectional differentiation potential and are closely related to fracture healing. This study was to explore the effects of PTH1-34 on proliferation and differentiation of endothelial cells and MSCs in vitro, and on angiogenesis, and MSCs migration during fracture healing in vivo. Methods Mice with stabilized fracture were assigned to 4 groups: CON, PTH (PTH1-34 40 μg/kg/day), MSC (transplanted with 105 MSCs), PTH+MSCs. Mice were sacrificed 14 days after fracture, and callus tissues were harvested for microCT scan and immunohistochemistry analysis. The effects of PTH1-34 on angiogenesis, and MSCs differentiation and migration were assessed by wound healing, tube formation and immunofluorescence staining. Results Treatment with either PTH1-34, or MSCs promoted bone healing and vascular formation in fracture callus. The callus bone mass, bone volume, and bone mineral density were all greater in PTH and/or MSC groups than they were in CON (p<0.05). PTH1-34 increased small vessels formation (diameter ≤50μm), whereas MSCs increased the large ones (diameter >50μm). Expression of CD31 within calluses and trabecular bones were significantly higher in PTH1-34 treated group than that of not (p<0.05). Expression of CD31, VEGFR, VEGFR2, and vWF was upregulated, and wound healing and tube formation were increased in MSCs treated with PTH1-34 compared to that of control. Conclusions PTH1-34 improved the proliferation and differentiation of endothelial cells and MSCs, enhancing migration of MSCs to bone callus to promote angiogenesis and osteogenesis, and facilitating fracture healing.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Cuidi Xu
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Hongli Shi
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
| | - Qun Cheng
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Research Section of Geriatric Metabolic Bone Disease, Shanghai Geriatric Institute, Shanghai, China
- * E-mail:
| |
Collapse
|
14
|
Carmeli-Ligati S, Shipov A, Dumont M, Holtze S, Hildebrandt T, Shahar R. The structure, composition and mechanical properties of the skeleton of the naked mole-rat (Heterocephalus glaber). Bone 2019; 128:115035. [PMID: 31421251 DOI: 10.1016/j.bone.2019.115035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/29/2022]
Abstract
The naked mole-rat (NMR) is a small rodent with a remarkable array of properties, such as unique physiology, extremely long life-span and unusual social life. However, very little is known regarding its skeleton. The aim of this study was to describe the structure, composition and mechanical properties in an ontogenetic series of naked mole-rat bones. Since common small rodents like mice and rats have an unusual structure of cortical bone, which includes a central region of non-lamellar (disordered) bone, mineralized cartilaginous islands and total lack of remodeling, this study could also determine if these are features of all small rodents. Sixty-one NMRs were included in the study and were divided into the following four age groups: 0-0.5 years old (n = 17), 0.5-3 years old (n = 25), 3-10 years old (n = 13), and >10 years (n = 6). Femora, vertebrae and mandibulae were examined using micro-CT, light microscopy, polarized light microscopy and scanning electron microscopy, thermogravimetric analysis was used to determine their dry ash content and their derived elastic modulus and hardness were determined using micro-indentation. Our findings show that NMR bones are similar in composition and mechanical properties to those of other small rodents. However, in contrast to other small rodents, the cortical bone of NMRs is entirely circumferential-lamellar and lacks mineralized cartilage islands. Furthermore, despite their long life-span, their bones did not show evidence of remodeling at any of the age groups, thus proving that lack of cortical remodeling in small rodents is not caused by their short life-span, but characteristic of this order of mammals.
Collapse
Affiliation(s)
- Shira Carmeli-Ligati
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Anna Shipov
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Maïtena Dumont
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Thomas Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel.
| |
Collapse
|
15
|
Rauch F, Geng Y, Lamplugh L, Hekmatnejad B, Gaumond MH, Penney J, Yamanaka Y, Moffatt P. Crispr-Cas9 engineered osteogenesis imperfecta type V leads to severe skeletal deformities and perinatal lethality in mice. Bone 2018; 107:131-142. [PMID: 29174564 DOI: 10.1016/j.bone.2017.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 01/24/2023]
Abstract
Osteogenesis imperfecta (OI) type V is caused by an autosomal dominant mutation in the IFITM5 gene, also known as BRIL. The c.-14C>T mutation in the 5'UTR of BRIL creates a novel translational start site adding 5 residues (MALEP) in frame with the natural coding of BRIL. A neomorphic function has been proposed for the MALEP-BRIL but the mechanisms at play are still unknown. In order to further understand the effects of MALEP-BRIL in vivo, we generated a knockin (KI) mouse model having the exact genetic -14C>T replica of patients with OI type V. Live KI descendants were never obtained from 2 male mosaic founders. Skeletal staining with alizarin red/alcian blue and μCT imaging of KI embryos revealed striking skeletal anomalies such as hypomineralized skull, short and bent long bones, and frail and wavy ribs. Histology and histochemical labeling revealed that midshaft of long bones was filled with hypertrophic chondrocytes, lacked a defined primary ossification center with the absence of defined cortices. Gene expression monitoring at E15.5 and E17.5 showed no change in Osx but decreased Bril itself as well as other differentiated osteoblast markers (Ibsp, Bglap, Sost). However, upregulation of Ptgs2 and Nr4a3 suggested that a pro-inflammatory reaction was activated. Primary osteoblasts from KI calvaria showed delayed differentiation and mineralization, with decreased abundance of BRIL. However, the upregulation AdipoQ and Fabp4 in young cultures indicated a possible switch in fate towards adipogenesis. Altogether our data suggest that the low level expression of MALEP-BRIL in Osx+ mesenchymal progenitors blunted their further differentiation into mature osteoblasts, which may have resulted in part from an inflammatory response.
Collapse
Affiliation(s)
- Frank Rauch
- Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada
| | - Yeqing Geng
- Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada
| | - Lisa Lamplugh
- Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada
| | | | | | - Janice Penney
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Yojiro Yamanaka
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Pierre Moffatt
- Shriners Hospitals for Children - Canada, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Injury Repair and Recovery Program, McGill University Health Centre Research Institute, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Effect of acetaminophen on osteoblastic differentiation and migration of MC3T3-E1 cells. Pharmacol Rep 2017; 70:29-36. [PMID: 29306760 DOI: 10.1016/j.pharep.2017.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/30/2017] [Accepted: 07/04/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND N-acetyl-p-aminophenol (APAP, acetaminophen, paracetamol) is a widely used analgesic/antipyretic with weak inhibitory effects on cyclooxygenase (COX) compared to non-steroidal anti-inflammatory drugs (NSAIDs). The mechanism of action of APAP is mediated by its metabolite that activates transient receptor potential channels, including transient receptor potential vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) or the cannabinoid receptor type 1 (CB1). However, the exact molecular mechanism and target underlying the cellular actions of APAP remain unclear. Therefore, we investigated the effect of APAP on osteoblastic differentiation and cell migration, with a particular focus on TRP channels and CB1. METHODS Effects of APAP on osteoblastic differentiation and cell migration of MC3T3-E1, a mouse pre-osteoblast cell line, were assessed by the increase in alkaline phosphatase (ALP) activity, and both wound-healing and transwell-migration assays, respectively. RESULTS APAP dose-dependently inhibited osteoblastic differentiation, which was well correlated with the effects on COX activity compared with other NSAIDs. In contrast, cell migration was promoted by APAP, and this effect was not correlated with COX inhibition. None of the agonists or antagonists of TRP channels and the CB receptor affected the APAP-induced cell migration, while the effect of APAP on cell migration was abolished by down-regulating TRPV4 gene expression. CONCLUSION APAP inhibited osteoblastic differentiation via COX inactivation while it promoted cell migration independently of previously known targets such as COX, TRPV1, TRPA1 channels, and CB receptors, but through the mechanism involving TRPV4. APAP may have still unidentified molecular targets that modify cellular functions.
Collapse
|
17
|
Xu K, Sun X, Benderro GF, Tsipis CP, LaManna JC. Gender differences in hypoxic acclimatization in cyclooxygenase-2-deficient mice. Physiol Rep 2017; 5:5/4/e13148. [PMID: 28242826 PMCID: PMC5328777 DOI: 10.14814/phy2.13148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to determine the effect of cyclooxygenase‐2 (COX‐2) gene deletion on the adaptive responses during prolonged moderate hypobaric hypoxia. Wild‐type (WT) and COX‐2 knockout (KO) mice of both genders (3 months old) were exposed to hypobaric hypoxia (~0.4 ATM) or normoxia for 21 days and brain capillary densities were determined. Hematocrit was measured at different time intervals; brain hypoxia‐inducible factor ‐1α (HIF‐1α), angiopoietin 2 (Ang‐2), brain erythropoietin (EPO), and kidney EPO were measured under normoxic and hypoxic conditions. There were no gender differences in hypoxic acclimatization in the WT mice and similar adaptive responses were observed in the female KO mice. However, the male KO mice exhibited progressive vulnerability to prolonged hypoxia. Compared to the WT and female KO mice, the male COX‐2 KO mice had significantly lower survival rate and decreased erythropoietic and polycythemic responses, diminished cerebral angiogenesis, decreased brain accumulation of HIF‐1α, and attenuated upregulation of VEGF, EPO, and Ang‐2 during hypoxia. Our data suggest that there are physiologically important gender differences in hypoxic acclimatization in COX‐2‐deficient mice. The COX‐2 signaling pathway appears to be required for acclimatization in oxygen‐limiting environments only in males, whereas female COX‐2‐deficient mice may be able to access COX‐2‐independent mechanisms to achieve hypoxic acclimatization.
Collapse
Affiliation(s)
- Kui Xu
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Xiaoyan Sun
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Girriso F Benderro
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Constantinos P Tsipis
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - Joseph C LaManna
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
18
|
Soares EA, Novaes RD, Nakagaki WR, Fernandes GJM, Garcia JAD, Camilli JA. Metabolic and structural bone disturbances induced by hyperlipidic diet in mice treated with simvastatin. Int J Exp Pathol 2015; 96:261-8. [PMID: 26175225 PMCID: PMC4561563 DOI: 10.1111/iep.12134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 05/15/2015] [Indexed: 12/23/2022] Open
Abstract
Simvastatin can modulate lipid and bone metabolism. However, information related to the interaction between diet and simvastatin on bone structure and biomechanics is scarce. Thus, this study evaluated the effects of simvastatin on femoral biomechanics and cortical/trabecular bone structure in wild-type mice nourished with a hyperlipidic diet. Three-month-old male wild-type mice (C57BL6 strain) were divided into four groups: (1) group W, nourished with a standard diet; (2) group WH, fed a hyperlipidic diet; (3) group WS, nourished with a standard diet plus oral simvastatin (20 mg/kg/day); and (4) group WHS, fed a hyperlipidic diet plus oral simvastatin (20 mg/kg/day). All animals received only their specific diet and water for 60 days. Blood samples were collected for the analysis of calcium, triglycerides, total cholesterol (TC) and fraction serum levels. Diet manipulation was able to induce a dyslipidaemic status in mice, characterized by triglyceride and TC rise in WH animals. Simvastatin prevented hypercholesterolaemia and reduced TC and LDL serum levels, but did not prevent hypertriglyceridaemia and HDL serum levels in the WHS group. In the WH mice the hyperlipidaemia was associated with reduction in trabecular bone thickness, femur structural and material property alterations. Simvastatin prevented these morphological alterations and minimized femur biomechanical changes in WHS mice. Taken together, the results indicated that the hyperlipidic diet intake acts as a risk factor for bone integrity, generating bones with reduced resistance and more susceptible to fractures, an effect attenuated by simvastatin that is potentially related to the modulatory action of this drug on lipid and bone metabolism.
Collapse
Affiliation(s)
| | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | - Wilson Romero Nakagaki
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | - José Antônio Dias Garcia
- Nucleus of Experimental Research in Pharmacology and Experimental Surgery, University José Rosário Vellano (UNIFENAS), Alfenas, Brazil
| | - José Angelo Camilli
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
19
|
Gary MF, Viggeswarapu M, Oliver C, Teklemariam M, Sangadala S, Titus L, Boden SD. Lim mineralization protein-1 knockout mice have reduced spine trabecular bone density on microcomputed tomography due to decreased bone morphogenetic protein responsiveness. Neurosurgery 2015; 61 Suppl 1:182-6. [PMID: 25032549 DOI: 10.1227/neu.0000000000000414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Matthew Frank Gary
- ‡Atlanta Veterans Affairs Medical Center, Decatur, Georgia; §Department of Neurosurgery, Emory University School of Medicine, Decatur, Georgia; ‖Department of Orthopaedics, Emory University School of Medicine, Decatur, Georgia
| | | | | | | | | | | | | |
Collapse
|
20
|
Green M, Akinsami I, Lin A, Banton S, Ghosh S, Chen B, Platt M, Osunkwo I, Ofori-Acquah S, Guldberg R, Barabino G. Microarchitectural and mechanical characterization of the sickle bone. J Mech Behav Biomed Mater 2015; 48:220-228. [PMID: 25957113 DOI: 10.1016/j.jmbbm.2015.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/12/2015] [Accepted: 04/17/2015] [Indexed: 01/09/2023]
Abstract
Individuals with sickle cell disease often experience acute and chronic bone pain due to occlusive events within the tissue vasculature that result in ischemia, necrosis, and organ degeneration. Macroscopically, sickle bone is identified in clinical radiographs by its reduced mineral density, widening of the marrow cavity, and thinning of the cortical bone due to the elevated erythroid hyperplasia accompanying the disease. However, the microstructural architecture of sickle bone and its role in mechanical functionality is largely unknown. This study utilized micro-CT and biomechanical testing to determine the relationship between the bone morphology, tissue mineral density, and trabecular and cortical microarchitecture of 10- and 21-week-old femurs from transgenic sickle male mice and littermates with sickle trait, as well as a wild-type control. While bone tissue mineral density did not vary among the genotypes at either age, variation in bone microstructure were observed. At 10 weeks, healthy and trait mice exhibited similar morphology within the cortical and trabecular bone, while sickle mice exhibited highly connected trabeculae. Within older femurs, sickle and trait specimens displayed significantly fewer trabeculae, and the remaining trabeculae had a more deteriorated geometry based on the structure model index. Thinning of the cortical region in sickle femurs contributed to the displayed flexibility with a significantly lower elastic modulus than the controls at both 10- and 21-weeks old. Wild-type and trait femurs generally demonstrated similar mechanical properties; however, trait femurs had a significantly higher modulus than sickle and wild-type control at 21-weeks. Overall, these data indicate that the progressive damage to the microvasculature caused by sickle cell disease, results in deleterious structural changes in the bone tissue׳s microarchitecture and mechanics.
Collapse
Affiliation(s)
- Mykel Green
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA
| | - Idowu Akinsami
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Angela Lin
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shereka Banton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Samit Ghosh
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Binbin Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Manu Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ifeyinwa Osunkwo
- Levine Cancer Institute, Carolinas HealthCare System, Charlotte, NC 28204, USA
| | - Solomon Ofori-Acquah
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Robert Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gilda Barabino
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
21
|
Wirrig EE, Gomez MV, Hinton RB, Yutzey KE. COX2 inhibition reduces aortic valve calcification in vivo. Arterioscler Thromb Vasc Biol 2015; 35:938-47. [PMID: 25722432 DOI: 10.1161/atvbaha.114.305159] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Calcific aortic valve disease (CAVD) is a significant cause of morbidity and mortality, which affects ≈1% of the US population and is characterized by calcific nodule formation and stenosis of the valve. Klotho-deficient mice were used to study the molecular mechanisms of CAVD as they develop robust aortic valve (AoV) calcification. Through microarray analysis of AoV tissues from klotho-deficient and wild-type mice, increased expression of the gene encoding cyclooxygenase 2 (COX2; Ptgs2) was found. COX2 activity contributes to bone differentiation and homeostasis, thus the contribution of COX2 activity to AoV calcification was assessed. APPROACH AND RESULTS In klotho-deficient mice, COX2 expression is increased throughout regions of valve calcification and is induced in the valvular interstitial cells before calcification formation. Similarly, COX2 expression is increased in human diseased AoVs. Treatment of cultured porcine aortic valvular interstitial cells with osteogenic media induces bone marker gene expression and calcification in vitro, which is blocked by inhibition of COX2 activity. In vivo, genetic loss of function of COX2 cyclooxygenase activity partially rescues AoV calcification in klotho-deficient mice. Moreover, pharmacological inhibition of COX2 activity in klotho-deficient mice via celecoxib-containing diet reduces AoV calcification and blocks osteogenic gene expression. CONCLUSIONS COX2 expression is upregulated in CAVD, and its activity contributes to osteogenic gene induction and valve calcification in vitro and in vivo.
Collapse
Affiliation(s)
- Elaine E Wirrig
- From The Heart Institute, Cincinnati Children's Hospital Medical Center, OH
| | - M Victoria Gomez
- From The Heart Institute, Cincinnati Children's Hospital Medical Center, OH
| | - Robert B Hinton
- From The Heart Institute, Cincinnati Children's Hospital Medical Center, OH
| | - Katherine E Yutzey
- From The Heart Institute, Cincinnati Children's Hospital Medical Center, OH.
| |
Collapse
|
22
|
Factors affecting the incidence of aseptic nonunion after surgical fixation of humeral diaphyseal fracture. J Orthop Sci 2014; 19:973-7. [PMID: 25196794 DOI: 10.1007/s00776-014-0640-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Although aseptic nonunion of humeral diaphyseal fracture is rare, it often is debilitating for the patient. Treatment is challenging for the surgeon when nonunion occurs. The purpose of this study was to analyze and identify independent risk factors for aseptic nonunion among patients with humeral diaphyseal fracture undergoing surgical fixation. METHODS The medical records of all humeral diaphyseal fracture patients who underwent surgical fixation from January 2005 to January 2011 were reviewed to identify those who developed aseptic nonunion. We performed univariate and multivariate logistic regression to identify independent associations of potential risk factors for aseptic nonunion among patients with surgical humeral diaphyseal fracture. RESULTS A total of 686 patients were identified, with 659 meeting our inclusion criteria. Among these 659 cases there were 24 cases of septic nonunion, an incidence of 3.6%. The patients were followed for 9-24 months, with an average follow-up period of 14.8 months. In the final regression model, advanced age (odds ratio, 1.09; 95% CI: 1.03-1.14, P = 0.001), smoking (odds ratio, 5.34; 95% CI: 1.05-27.00, P = 0.043), use of NSAIDs (odds ratio, 2.51; 95% CI: 1.80-3.50, P < 0.001), and ASA score (odds ratio, 3.04; 95% CI: 1.06-8.74, P = 0.039) were risk factors for aseptic nonunion of humeral diaphyseal fracture after surgical fixation. CONCLUSIONS This analysis confirms advanced age, smoking, use of NSAIDs, and ASA score were related to an increased risk of aseptic nonunion of humeral diaphyseal fracture after surgical fixation. Patients who have the risk factors identified in this study should be counseled about the possibility of aseptic nonunion occurring after surgical fixation.
Collapse
|
23
|
Lau KHW, Popa NL, Rundle CH. Microarray Analysis of Gene Expression Reveals that Cyclo-oxygenase-2 Gene Therapy Up-regulates Hematopoiesis and Down-regulates Inflammation During Endochondral Bone Fracture Healing. J Bone Metab 2014; 21:169-88. [PMID: 25247155 PMCID: PMC4170080 DOI: 10.11005/jbm.2014.21.3.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cyclo-oxygenase-2 (Cox-2) is an inflammatory mediator that is necessary for the tissue repair, including bone fracture healing. Although the application of Cox-2 gene therapy to a murine closed femoral fracture has accelerated bony union, but the beneficial effect was not observed until the endochondral stage of bone repair that is well after the inflammatory stage normally subsides. METHODS To identify the molecular pathways through which Cox-2 regulates fracture healing, we examined gene expression profile in fracture tissues in response to Cox-2 gene therapy during the endochondral bone repair phase. Cox-2 gene therapy was applied to the closed murine femur fracture model. Microarray analysis was performed at 10 days post-fracture to examine global gene expression profile in the fracture tissues during the endochondral bone repair phase. The entire repertoire of significantly expressed genes was examined by gene set enrichment analysis, and the most up-regulated individual genes were evaluated further. RESULTS The genes that normally promote inflammation were under-represented in the microarray analysis, and the expression of several inflammatory chemokines was significantly down-regulated. There was an up-regulation of two key transcription factor genes that regulate hematopoiesis and erythropoiesis. More surprisingly, there was no significant up-regulation in the genes that are normally involved in angiogenesis or bone formation. However, the expression of two tissue remodeling genes was up-regulated. CONCLUSIONS The down-regulation of the inflammatory genes in response to Cox-2 gene therapy was unexpected, given the pro-inflammatory role of prostaglandins. Cox-2 gene therapy could promote bony union through hematopoietic precursor proliferation during endochondral bone repair and thereby enhances subsequently fracture callus remodeling that leads to bony union of the fracture gap.
Collapse
Affiliation(s)
- K.-H. William Lau
- Research Service (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nicoleta L. Popa
- Research Service (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA, USA
| | - Charles H. Rundle
- Research Service (151), Jerry L. Pettis Memorial Veterans Administration Medical Center, Loma Linda, CA, USA
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
24
|
Huang C, Xue M, Chen H, Jiao J, Herschman HR, O'Keefe RJ, Zhang X. The spatiotemporal role of COX-2 in osteogenic and chondrogenic differentiation of periosteum-derived mesenchymal progenitors in fracture repair. PLoS One 2014; 9:e100079. [PMID: 24988184 PMCID: PMC4079554 DOI: 10.1371/journal.pone.0100079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/21/2014] [Indexed: 12/16/2022] Open
Abstract
Periosteum provides a major source of mesenchymal progenitor cells for bone fracture repair. Combining cell-specific targeted Cox-2 gene deletion approaches with in vitro analyses of the differentiation of periosteum-derived mesenchymal progenitor cells (PDMPCs), here we demonstrate a spatial and temporal role for Cox-2 function in the modulation of osteogenic and chondrogenic differentiation of periosteal progenitors in fracture repair. Prx1Cre-targeted Cox-2 gene deletion in mesenchyme resulted in marked reduction of intramembraneous and endochondral bone repair, leading to accumulation of poorly differentiated mesenchyme and immature cartilage in periosteal callus. In contrast, Col2Cre-targeted Cox-2 gene deletion in cartilage resulted in a deficiency primarily in cartilage conversion into bone. Further cell culture analyses using Cox-2 deficient PDMPCs demonstrated reduced osteogenic differentiation in monolayer cultures, blocked chondrocyte differentiation and hypertrophy in high density micromass cultures. Gene expression microarray analyses demonstrated downregulation of a key set of genes associated with bone/cartilage formation and remodeling, namely Sox9, Runx2, Osx, MMP9, VDR and RANKL. Pathway analyses demonstrated dysregulation of the HIF-1, PI3K-AKT and Wnt pathways in Cox-2 deficient cells. Collectively, our data highlight a crucial role for Cox-2 from cells of mesenchymal lineages in modulating key pathways that control periosteal progenitor cell growth, differentiation, and angiogenesis in fracture repair.
Collapse
Affiliation(s)
- Chunlan Huang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Ming Xue
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Hongli Chen
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Jing Jiao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Harvey R. Herschman
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Regis J. O'Keefe
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Published data raise concerns about the use of nonselective NSAIDs and selective cyclo-oxygenase (COX)-2 inhibitors as anti-inflammatory or analgesic drugs in patients after a recent fracture or who are undergoing (uncemented) arthroplasty or osteotomy. However, clinical reports on the effect of COX-2 inhibition on fracture healing in humans have been variable and inconclusive. This review gives an overview of the published data and an advice when to avoid NSAIDs. RECENT FINDINGS Prostaglandins play an important role as mediators of inflammation and COX are required for their production. Inflammation is an essential step in the fracture healing process in which prostaglandin production by COX-2 is involved. Data from animal studies suggest that NSAIDs, which inhibit COX-2, can impair fracture healing due to the inhibition of the endochondral ossification pathway. Animal data suggest that the effects of COX-2 inhibitors are dependent on the timing, duration, and dose, and that these effects are reversible. SUMMARY These animal data, together with the view of limited scientifically robust clinical evidence in humans, indicate that physicians consider only short-term administration of COX-2 inhibitors or other drugs in the pain management of patients who are in the phase of fracture or other bone defect healing. COX-2-inhibitors should be considered a potential risk factor for fracture healing, and therefore to be avoided in patients at risk for delayed fracture healing.
Collapse
|
26
|
Soares EA, Nakagaki WR, Garcia JAD, Camilli JA. Effect of hyperlipidemia on femoral biomechanics and morphology in low-density lipoprotein receptor gene knockout mice. J Bone Miner Metab 2012; 30:419-25. [PMID: 22246084 DOI: 10.1007/s00774-011-0345-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 12/13/2011] [Indexed: 11/24/2022]
Abstract
The objective of this study was to evaluate the effect of hyperlipidemia on the biomechanical and morphological properties of the femur of low-density lipoprotein receptor gene knockout mice (LDLr-/-) mice. Ten wild-type mice (C57BL6) and 10 LDLr-/- mice generated on a C57BL6 background were used. Male 3-month-old animals were divided into four groups (n = 5): group W (wild type) and group L (LDLr-/-) receiving low-fat commercial ration, and group WH (wild type) and group LH (LDLr-/-) receiving a high-fat diet. After 60 days, blood samples were collected for laboratory analysis of calcium, triglycerides, and cholesterol. The femur was excised for mechanical testing and morphometric analysis. LDLr-/- mice receiving the high-fat diet presented more marked alterations in the mechanical and morphological properties of femoral cortical and trabecular bone. Changes in the plasma levels of calcium, triglycerides, cholesterol, and fractions were also more pronounced in this group. The present results demonstrate that hyperlipidemia causes alterations in the structure and mechanical properties of the femur of LDLr-/- mice. These effects were more pronounced when associated with a high-fat diet.
Collapse
Affiliation(s)
- Evelise Aline Soares
- Department of Anatomy and Physiology, University of José Rosário Vellano (UNIFENAS), Alfenas, MG, Brazil
| | | | | | | |
Collapse
|
27
|
Williams LJ, Pasco JA, Henry MJ, Sanders KM, Nicholson GC, Kotowicz MA, Berk M. Paracetamol (acetaminophen) use, fracture and bone mineral density. Bone 2011; 48:1277-81. [PMID: 21396491 DOI: 10.1016/j.bone.2011.03.435] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/15/2011] [Accepted: 03/02/2011] [Indexed: 01/02/2023]
Abstract
Paracetamol is the most widely prescribed simple analgesic and antipyretic. It exerts its effects via cyclooxygenase and endocannabinoid pathways, which may affect signalling in bone cells and hence influence bone metabolism. Given the high rates of paracetamol use in the community and the evidence linking its mechanism of action to bone metabolism, we aimed to investigate the association between paracetamol use, fracture, and bone mineral density (BMD) in women participating in the Geelong Osteoporosis Study (GOS). Cases (n = 569) were women aged ≥ 50 years identified from radiological reports as having sustained a fracture between 1994 and 1996. Controls (n = 775) were women without fracture recruited from the same region during this period. BMD was measured at the spine, hip, total body and forearm using dual energy absorptiometry. Medication use, medical history and lifestyle factors were self-reported. There were 69 (12.1%) paracetamol users among the cases and 63 (8.1%) among the controls. Paracetamol use increased the odds for fracture (OR = 1.56, 95%CI 1.09-2.24, p = 0.02). Adjustment for BMD at the spine, total hip and forearm did not confound the association. However, incorporating total body BMD into the model attenuated the association (adjusted OR = 1.46, 95%CI 1.00-2.14, p = 0.051). Further adjustment for age, weight, physical activity, smoking, alcohol, calcium intake, medication use, medical conditions, falls and previous fracture did not explain the association. These data suggest that paracetamol use is a risk factor for fracture, although the mechanism of action remains unclear.
Collapse
Affiliation(s)
- Lana J Williams
- School of Medicine, Deakin University, Australia; Department of Psychiatry, University of Melbourne, Australia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang M, Ho HC, Sheu TJ, Breyer MD, Flick LM, Jonason JH, Awad HA, Schwarz EM, O'Keefe RJ. EP1(-/-) mice have enhanced osteoblast differentiation and accelerated fracture repair. J Bone Miner Res 2011; 26:792-802. [PMID: 20939055 PMCID: PMC3179328 DOI: 10.1002/jbmr.272] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As a downstream product of cyclooxygenase 2 (COX-2), prostaglandin E(2) (PGE(2)) plays a crucial role in the regulation of bone formation. It has four different receptor subtypes (EP1 through EP4), each of which exerts different effects in bone. EP2 and EP4 induce bone formation through the protein kinase A (PKA) pathway, whereas EP3 inhibits bone formation in vitro. However, the effect of EP1 receptor signaling during bone formation remains unclear. Closed, stabilized femoral fractures were created in mice with EP1 receptor loss of function at 10 weeks of age. Healing was evaluated by radiographic imaging, histology, gene expression studies, micro-computed tomographic (µCT), and biomechanical measures. EP1(-/-) mouse fractures have increased formation of cartilage, increased fracture callus, and more rapid completion of endochondral ossification. The fractures heal faster and with earlier fracture callus mineralization with an altered expression of genes involved in bone repair and remodeling. Fractures in EP1(-/-) mice also had an earlier appearance of tartrate-resistant acid phosphatase (TRAcP)-positive osteoclasts, accelerated bone remodeling, and an earlier return to normal bone morphometry. EP1(-/-) mesenchymal progenitor cells isolated from bone marrow have higher osteoblast differentiation capacity and accelerated bone nodule formation and mineralization in vitro. Loss of the EP1 receptor did not affect EP2 or EP4 signaling, suggesting that EP1 and its downstream signaling targets directly regulate fracture healing. We show that unlike the PGE(2) receptors EP2 and EP4, the EP1 receptor is a negative regulator that acts at multiple stages of the fracture healing process. Inhibition of EP1 signaling is a potential means to enhance fracture healing.
Collapse
Affiliation(s)
- Minjie Zhang
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Styner M, Sen B, Xie Z, Case N, Rubin J. Indomethacin promotes adipogenesis of mesenchymal stem cells through a cyclooxygenase independent mechanism. J Cell Biochem 2011; 111:1042-50. [PMID: 20672310 DOI: 10.1002/jcb.22793] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regulation of mesenchymal stem cell (MSC) lineage selection is important for the generation of bone mass. Inhibition of cyclooxygenase-2 (COX2) may increase adipogenesis at the cost of decreasing osteoprogenitor output. Here we investigated the role of COX2 and its products during MSC differentiation. Indomethacin stimulated adipogenesis (increased aP2, adiponectin and lipid droplets) of CH310T1/2 stem cells as well as marrow-derived MSCs to a degree similar to the PPARγ2 ligand, rosiglitazone. Unlike rosiglitazone, indomethacin significantly upregulated PPARγ2 expression. Indomethacin and the COX2 specific inhibitor celecoxib suppressed PGE2 production, but celecoxib did not induce adipogenesis. As well, addition of PGE2 failed to reverse indomethacin induced adipogenesis, indicating that indomethacin's effects were prostaglandin independent. In MSCs over-expressing PPARγ2 and RXRα, indomethacin did not increase PPAR-induced transcription, while rosiglitazone and 15d-PGJ2 did (1.7- and 1.3-fold, respectively, P < 0.001). We considered whether indomethacin might directly affect C/EBPβ proximally to PPARγ2 induction. Indomethacin significantly increased C/EBPβ expression and protein within 24 h of addition. These results indicate that indomethacin promotes adipogenesis by increasing C/EBPβ and PPARγ2 expression in a prostaglandin-independent fashion. This effect of indomethacin is pertinent to potential deleterious effects of this commonly used anti-inflammatory drug on bone remodeling and tissue healing.
Collapse
Affiliation(s)
- Maya Styner
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7170, USA.
| | | | | | | | | |
Collapse
|
30
|
Nakagaki WR, Bertran CA, Matsumura CY, Santo-Neto H, Camilli JA. Mechanical, biochemical and morphometric alterations in the femur of mdx mice. Bone 2011; 48:372-9. [PMID: 20850579 DOI: 10.1016/j.bone.2010.09.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 08/20/2010] [Accepted: 09/07/2010] [Indexed: 11/18/2022]
Abstract
The bone tissue abnormalities observed in patients with Duchenne muscular dystrophy are frequently attributed to muscle weakness. In this condition, bones receive fewer mechanical stimuli, compromising the process of bone modeling. In the present study we hypothesize that other factors inherent to the disease might be associated with bone tissue impairment, irrespective of the presence of muscle impairment. Mdx mice lack dystrophin and present cycles of muscle degeneration/regeneration that become more intense in the third week of life. As observed in humans with muscular dystrophy, bone tissue abnormalities were found in mdx mice during more intense muscle degeneration due to age. Under these circumstances, muscle deficit is probably one of the factors promoting these changes. To test our hypothesis, we investigated the changes that occur in the femur of mdx mice at 21 days of age when muscle damage is still not significant. The mechanical (structural and material) and biochemical properties and morphometric characteristics of the femur of mdx and control animals were evaluated. The results demonstrated a lower strength, stiffness and energy absorption capacity in mdx femurs. Higher values for structural (load and stiffness) and material (stress, elastic modulus and toughness) properties were observed in the control group. Mdx femurs were shorter and were characterized by a smaller cortical area and thickness and a smaller area of epiphyseal trabecular bone. The hydroxyproline content was similar in the two groups, but there was a significant difference in the Ca/P ratios. Thermogravimetry showed a higher mineral matrix content in cortical bone of control animals. In conclusion, femurs of mdx mice presented impaired mechanical and biochemical properties as well as changes in collagen organization in the extracellular matrix. Thus, mdx mice developed femoral osteopenia even in the absence of significant muscle fiber degeneration. This weakness of the mdx femur is probably due to genetic factors that are directly or indirectly related to dystrophin deficiency.
Collapse
Affiliation(s)
- Wilson Romero Nakagaki
- Department of Anatomy, Cell Biology and Physiology and Biophysics, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
31
|
Xu M, Choudhary S, Voznesensky O, Gao Q, Adams D, Diaz-Doran V, Wu Q, Goltzman D, Raisz LG, Pilbeam CC. Basal bone phenotype and increased anabolic responses to intermittent parathyroid hormone in healthy male COX-2 knockout mice. Bone 2010; 47:341-52. [PMID: 20471507 PMCID: PMC3056501 DOI: 10.1016/j.bone.2010.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 04/26/2010] [Accepted: 05/06/2010] [Indexed: 01/09/2023]
Abstract
Cyclooxygenase-2 (COX-2) knockout (KO) mice in inbred strains can have renal dysfunction with secondary hyperparathyroidism (HPTH), making direct effects of COX-2 KO on bone difficult to assess. COX-2 KO mice in an outbred CD-1 background did not have renal dysfunction but still had two-fold elevated PTH compared to wild type (WT) mice. Compared to WT mice, KO mice had increased serum markers of bone turnover, decreased femoral bone mineral density (BMD) and cortical bone thickness, but no differences in trabecular bone volume by microCT or dynamic histomorphometry. Because PTH is a potent inducer of COX-2 and prostaglandin (PG) production, we examined the effects of COX-2 KO on bone responses after 3 weeks of intermittent PTH. Intermittent PTH increased femoral BMD and cortical bone area more in KO mice than in WT mice and increased trabecular bone volume in the distal femur in both WT and KO mice. Although not statistically significant, PTH-stimulated increases in trabecular bone tended to be greater in KO mice than in WT mice. PTH increased serum markers of bone formation and resorption more in KO than in WT mice but increased the ratio of osteoblastic surface-to-osteoclastic surface only in KO mice. PTH also increased femoral mineral apposition rates and bone formation rates in KO mice more than in WT mice. Acute mRNA responses to PTH of genes that might mediate some anabolic and catabolic effects of PTH tended to be greater in KO than WT mice. We conclude that (1) the basal bone phenotype in male COX-2 KO mice might reflect HPTH, COX-2 deficiency or both, and (2) increased responses to intermittent PTH in COX-2 KO mice, despite the presence of chronic HPTH, suggest that absence of COX-2 increased sensitivity to PTH. It is possible that manipulation of endogenous PGs could have important clinical implications for anabolic therapy with PTH.
Collapse
Affiliation(s)
- Manshan Xu
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Blackwell KA, Raisz LG, Pilbeam CC. Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab 2010; 21:294-301. [PMID: 20079660 PMCID: PMC2862787 DOI: 10.1016/j.tem.2009.12.004] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 02/01/2023]
Abstract
Prostaglandins (PGs) are multifunctional regulators of bone metabolism that stimulate both bone resorption and formation. PGs have been implicated in bone resorption associated with inflammation and metastatic bone disease, and also in bone formation associated with fracture healing and heterotopic ossification. Recent studies have identified roles for inducible cyclooxygenase (COX)-2 and PGE(2) receptors in these processes. Although the effects of PGs have been most often associated with cAMP production and protein kinase A activation, PGs can engage an extensive G-protein signaling network. Further analysis of COX-2 and PG receptors and their downstream G-protein signaling in bone could provide important clues to the regulation of skeletal cell growth in both health and disease.
Collapse
Affiliation(s)
- Katherine A Blackwell
- New England Musculoskeletal Institute, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, USA
| | | | | |
Collapse
|
33
|
In vivo cellular imaging pinpoints the role of reactive oxygen species in the early steps of adult hematopoietic reconstitution. Blood 2009; 115:443-52. [PMID: 19797522 DOI: 10.1182/blood-2009-05-222711] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Few techniques are available to characterize in vivo the early cellular dynamics of long-term reconstitution of hematopoiesis after transplantation of hematopoietic stem cells (HSCs) after lethal irradiation. Using a fiber-optic imaging system, we track the early steps of in vivo recruitment and proliferation of Lin(-)Sca-1(+)c-Kit(+)CD34(-) (LSKCD34(-)) HSCs highly enriched in HSCs and transplanted into lethally irradiated mice. Recruitment of the transplanted LSKCD34(-) hematopoietic cells first occurs in the femoral head and is continuous during 24 hours. Quantification of the fluorescence emitted by the transplanted hematopoietic cells shows that proliferation of LSKCD34(-) hematopoietic cells in the femoral head was potent 3 days after transplantation. Using a development of this fiber-optic imaging system, we show that the transplanted LSKCD34(-) hematopoietic cells are associated with vascularized structures as early as 5 hours after transplantation. This early association is dependent on reactive oxygen species (ROS) partly through the regulation of vascular cell adhesion molecule-1 expression on endothelial cells and is followed by a ROS-dependent proliferation of LSKCD34(-) hematopoietic cells. This new in vivo imaging technique permits the observation of the early steps of hematopoietic reconstitution by HSCs in long bones and shows a new role of ROS in the recruitment of HSCs by bone marrow endothelial cells.
Collapse
|
34
|
Terauchi M, Li JY, Bedi B, Baek KH, Tawfeek H, Galley S, Gilbert L, Nanes MS, Zayzafoon M, Guldberg R, Lamar DL, Singer MA, Lane TF, Kronenberg HM, Weitzmann MN, Pacifici R. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab 2009; 10:229-40. [PMID: 19723499 PMCID: PMC2751855 DOI: 10.1016/j.cmet.2009.07.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/22/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
Intermittent administration of parathyroid hormone (iPTH) is used to treat osteoporosis because it improves bone architecture and strength, but the underlying cellular and molecular mechanisms are unclear. Here, we show that iPTH increases the production of Wnt10b by bone marrow CD8+ T cells and induces these lymphocytes to activate canonical Wnt signaling in preosteoblasts. Accordingly, in responses to iPTH, T cell null mice display diminished Wnt signaling in preosteoblasts and blunted osteoblastic commitment, proliferation, differentiation, and life span, which result in decreased trabecular bone anabolism and no increase in strength. Demonstrating the specific role of lymphocytic Wnt10b, iPTH has no anabolic activity in mice lacking T-cell-produced Wnt10b. Therefore, T-cell-mediated activation of Wnt signaling in osteoblastic cells plays a key permissive role in the mechanism by which iPTH increases bone strength, suggesting that T cell osteoblast crosstalk pathways may provide pharmacological targets for bone anabolism.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation
- Cell Proliferation
- Mice
- Mice, Knockout
- Osteoblasts/cytology
- Osteoblasts/metabolism
- Parathyroid Hormone/pharmacology
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction
- Wnt Proteins/metabolism
Collapse
Affiliation(s)
- Masakazu Terauchi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA
| | - Jau-Yi Li
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA
| | - Brahmchetna Bedi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA
| | - Ki-Hyun Baek
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA
| | - Hesham Tawfeek
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA
| | - Sarah Galley
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA
| | | | - Mark S. Nanes
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA
- VA Medical Center, Atlanta GA
| | - Majd Zayzafoon
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL
| | - Robert Guldberg
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA
| | - David L. Lamar
- Kathleen B. and Mason I. Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA
| | - Meredith A. Singer
- Departments of Obstetrics & Gynecology & Biological Chemistry, and Orthopedic Hospital Research Center, University of California Los Angeles, Los Angeles, CA
| | - Timothy F. Lane
- Departments of Obstetrics & Gynecology & Biological Chemistry, and Orthopedic Hospital Research Center, University of California Los Angeles, Los Angeles, CA
| | | | - M. Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA
- Emory Winship Cancer Institute, Emory University, Atlanta, GA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA
| |
Collapse
|
35
|
Naik AA, Xie C, Zuscik MJ, Kingsley P, Schwarz EM, Awad H, Guldberg R, Drissi H, Puzas JE, Boyce B, Zhang X, O'Keefe RJ. Reduced COX-2 expression in aged mice is associated with impaired fracture healing. J Bone Miner Res 2009; 24:251-64. [PMID: 18847332 PMCID: PMC3276605 DOI: 10.1359/jbmr.081002] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 08/09/2008] [Accepted: 10/07/2008] [Indexed: 12/15/2022]
Abstract
The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX-2), the inducible regulator of prostaglandin E(2) (PGE(2)) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7-9 or 52-56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX-2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX-2 is expressed primarily in early cartilage precursors that co-express col-2. COX-2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX-2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX-2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging.
Collapse
Affiliation(s)
- Amish A Naik
- The Center for Musculoskeletal Research, University of RochesterRochester, New York, USA
| | - Chao Xie
- The Center for Musculoskeletal Research, University of RochesterRochester, New York, USA
| | - Michael J Zuscik
- The Center for Musculoskeletal Research, University of RochesterRochester, New York, USA
| | - Paul Kingsley
- Department of Pediatrics, University of RochesterRochester, New York, USA
| | - Edward M Schwarz
- The Center for Musculoskeletal Research, University of RochesterRochester, New York, USA
| | - Hani Awad
- The Center for Musculoskeletal Research, University of RochesterRochester, New York, USA
| | - Robert Guldberg
- Institute for Bioengineering and Bioscience, Georgia Institute of TechnologyAtlanta, Georgia, USA
| | - Hicham Drissi
- Department of Orthopaedics, University of Connecticut School of MedicineStorrs, Connecticut, USA
| | - J Edward Puzas
- The Center for Musculoskeletal Research, University of RochesterRochester, New York, USA
| | - Brendan Boyce
- The Center for Musculoskeletal Research, University of RochesterRochester, New York, USA
| | - Xinping Zhang
- The Center for Musculoskeletal Research, University of RochesterRochester, New York, USA
| | - Regis J O'Keefe
- The Center for Musculoskeletal Research, University of RochesterRochester, New York, USA
| |
Collapse
|
36
|
Shim S, Kwon YB, Yoshikawa Y, Kwon J. Ubiquitin C-terminal hydrolase L1 deficiency decreases bone mineralization. J Vet Med Sci 2008; 70:649-51. [PMID: 18628613 DOI: 10.1292/jvms.70.649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ubiquitin C-terminal hydrolase L1 is a component of the ubiquitin proteasome system, which evidences unique biological activities. In this study, we report the pattern of UCH-L1 expression, and show that it regulates bone mineralization in osteogenesis. UCH-L1 was expressed in osteoblasts, osteoclasts, and hematopoietic precursor cells of bone marrow in the metaphysis and diaphysis of the femora. To further assess the involvement of UCH-L1 in the regulation of bone mineralization, we evaluated the bone mineral density (BMD) rate of gad mice, using the Latheta computed tomography system. Male gad mice evidenced a significantly decreased BMD rate in the metaphysis and diaphysis of the femora. These findings of decreased BMD rate in the bones of gad mice may suggest that UCH-L1 function regulates bone mineralization during osteogenesis.
Collapse
Affiliation(s)
- Sehwan Shim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | | | | | | |
Collapse
|
37
|
Middleton KM, Kelly SA, Garland T. Selective breeding as a tool to probe skeletal response to high voluntary locomotor activity in mice. Integr Comp Biol 2008; 48:394-410. [PMID: 21669801 PMCID: PMC6515713 DOI: 10.1093/icb/icn057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We present a novel mouse-model for the study of skeletal structure and evolution, based on selective breeding for high levels of voluntary wheel running. Whereas traditional models (originally inbred strains, more recently knockouts and transgenics) rely on the study of mutant or laboratory-manipulated phenotypes, we have studied changes in skeletal morphometrics resulting from many generations of artificial selection for high activity in the form of wheel running, in which mice engage voluntarily. Mice from the four replicate High Runner (HR) lines run nearly three times as many revolutions during days 5 and 6 of a 6-day exposure to wheels (1.12 m circumference). We have found significant changes in skeletal dimensions of the hind limbs, including decreased directional asymmetry, larger femoral heads, and wider distal femora. The latter two have been hypothesized as evolutionary adaptations for long-distance locomotion in hominids. Exercise-training studies involving experimental groups with and without access to wheels have shown increased diameters of both femora and tibiafibulae, and suggest genetic effects on trainability (genotype-by-environment interactions). Reanalysis of previously published data on bone masses of hind limbs revealed novel patterns of change in bone mass associated with access to wheels for 2 months. Without access to wheels, HR mice have significantly heavier tibiafibulae and foot bones, whereas with chronic access to wheels, a significant increase in foot bone mass that was linearly related to increases in daily wheel running was observed. Mice exhibiting a recently discovered small-muscle phenotype ("mini-muscle," [MM] caused by a Mendelian recessive gene), in which the mass of the triceps surae muscle complex is ∼50% lower than in normal individuals, have significantly longer and thinner bones in the hind limb. We present new data for the ontogenetic development of muscle mass in Control, HR, and MM phenotypes in mice of 1-7 weeks postnatal age. Statistical comparisons reveal highly significant differences both in triceps surae mass and mass-corrected triceps surae mass between normal and MM mice at all but the postnatal age of 1 week. Based on previously observed differences in distributions of myosin isoforms in adult MM mice, we hypothesize that a reduction of myosin heavy-chain type-IIb isoforms with accounts for our observed ontogenetic changes in muscle mass.
Collapse
Affiliation(s)
- Kevin M. Middleton
- *Department of Biology, California State University–San Bernardino, San Bernardino, CA 92507, USA
| | - Scott A. Kelly
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
38
|
Bibliography. Current world literature. Parathyroids, bone and mineral metabolism. Curr Opin Endocrinol Diabetes Obes 2007; 14:494-501. [PMID: 17982358 DOI: 10.1097/med.0b013e3282f315ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Xu Z, Choudhary S, Okada Y, Voznesensky O, Alander C, Raisz L, Pilbeam C. Cyclooxygenase-2 gene disruption promotes proliferation of murine calvarial osteoblasts in vitro. Bone 2007; 41:68-76. [PMID: 17467356 PMCID: PMC1993538 DOI: 10.1016/j.bone.2007.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 02/21/2007] [Accepted: 03/12/2007] [Indexed: 12/31/2022]
Abstract
Cyclooxygenase-2 (COX-2) is highly expressed in osteoblasts, and COX-2 produced prostaglandins (PGs) can increase osteoblastic differentiation in vitro. The goal of this study was to examine effects of COX-2 expression on calvarial osteoblastic proliferation and apoptosis. Primary osteoblasts (POBs) were cultured from calvariae of COX-2 wild-type (WT) and knockout (KO) mice. POB proliferation was evaluated by (3)H-thymidine incorporation and analysis of cell replication and cell cycle distribution by flow cytometry. POB apoptosis was evaluated by annexin and PI staining on flow cytometry. As expected, PGE(2) production and alkaline phosphatase (ALP) activity were increased in WT cultures compared to KO cultures. In contrast, cell numbers were decreased in WT compared to KO cells by day 4 of culture. Proliferation, measured on days 3-7 of culture, was 2-fold greater in KO than in WT POBs and associated with decreased Go/G1 and increased S cell cycle distribution. There was no significant effect of COX-2 genotype on apoptosis under basal culture conditions on day 5 of culture. Cell growth was decreased in KO POBs by the addition of PGE(2) or a protein kinase A agonist and increased in WT POBs by the addition of NS398, a selective COX-2 inhibitor. In contrast, differentiation and cell growth in marrow stromal cell (MSC) cultures, evaluated by ALP and crystal violet staining respectively, were increased in MSCs from WT mice compared to MSCs from KO mice, and exogenous PGE(2) increased cell growth in KO MSC cultures. We conclude that PGs secondary to COX-2 expression decrease osteoblastic proliferation in cultured calvarial cells but increase growth of osteoblastic precursors in MSC cultures.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Shilpa Choudhary
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Yosuke Okada
- First department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555 Japan
| | - Olga Voznesensky
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Cynthia Alander
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Lawrence Raisz
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Carol Pilbeam
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|