1
|
Levy-Shraga Y, Goldmann S, Gruber N, Tripto-Shkolnik L, Modan-Moses D, Givon U, Ben-Zeev B. Bone health and bisphosphonate treatment in females with Rett syndrome in a national center. Pediatr Res 2025:10.1038/s41390-025-04001-4. [PMID: 40119038 DOI: 10.1038/s41390-025-04001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Impaired bone health is a common morbidity in Rett syndrome (RTT). We aimed to assess lumbar bone mineral density (BMD) and trabecular bone score (TBS) in females with RTT, and to evaluate the effectiveness of bisphosphonate treatment. METHODS This retrospective study included 40 females with RTT, aged 5-22 years, who underwent dual-energy X-ray absorptiometry (DXA) scans during 2019-2024 at a national center for RTT. Data collected included medical treatment, anthropometric measurements, and functional scores. RESULTS The median age at the first DXA scan was 10.8 years. The mean L1-4 BMD Z-score was -2.1 ± 1.4, and the mean TBS Z-score was -0.4 ± 1.3. The L1-4 BMD Z-score correlated with height (r = 0.407, p = 0.009), weight (r = 0.551, p < 0.001), BMI (r = 0.644, p < 0.001), and TBS Z-scores (r = 0.594, p = 0.009). Poor L1-4 BMD Z-scores were associated with poor mobility scores (p = 0.05) and valproate treatment (p = 0.016). Nine patients (23%) received zoledronate, for a mean 2 years. The mean age at zoledronate initiation was 9.7 ± 2.3 years. Four completed two DXA scans (pre- and post-treatment); the mean BMD Z-score improved from -2.2 ± 0.9 to -1.4 ± 0.9 after treatment. CONCLUSIONS Females with RTT have reduced lumbar BMD, which was associated with anthropometric factors, TBS, mobility, and valproate use. Zoledronate may be effective for some patients. IMPACT In a retrospective study of 40 females with Rett syndrome (RTT), low bone mineral density (BMD) correlated with lower anthropometric measurements, impaired mobility, and valproic acid use. The association between BMD and trabecular bone score (TBS) in the context of RTT is a novel finding. Our preliminary data support the effectiveness and safety of zoledronate for treating osteoporosis in patients with RTT. Our findings are important in light of the increasing life expectancy of individuals with RTT, and the consequent need to prioritize bone health in this population.
Collapse
Affiliation(s)
- Yael Levy-Shraga
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
- Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.
| | - Simon Goldmann
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noah Gruber
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Liana Tripto-Shkolnik
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Dalit Modan-Moses
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Uri Givon
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Pediatric Orthopedics Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Bruria Ben-Zeev
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Division of Pediatric Neurology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| |
Collapse
|
2
|
Caffarelli C, Gonnelli S. The Management of Bone Defects in Rett Syndrome. Calcif Tissue Int 2025; 116:11. [PMID: 39751871 DOI: 10.1007/s00223-024-01322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/29/2024] [Indexed: 01/04/2025]
Abstract
Rett syndrome (RS) is a rare neurodevelopmental disorder primarily caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene, responsible for encoding MECP2 which plays a pivotal role in regulating gene expression. The neurological and non-neurological manifestations of RS vary widely in severity depending on the specific mutation type. Bone complications, mostly scoliosis but also osteoporosis, hip displacement, and a high rate of fractures, are among the most prevalent non-neurological comorbidities observed in girls with RS. Low bone mineral density (BMD) is primarily due to a slow rate of bone formation due to dysfunctional osteoblast activity. The use of anticonvulsants, immobilization, low physical activity, poor nutrition, and inadequate vitamin D intake all significantly hamper skeletal maturation and the accumulation of bone mass in RS girls, making them more susceptible to fragility fractures. In RS patients, the upper and lower limbs are the most common sites for fractures which are due to both a reduced BMD and a diminished bone size. This review summarizes the knowledge on risk factors for fragility fracture in patients with RS and proposes a potential diagnostic and therapeutic pathway to enhance low BMD and mitigate the risk of fragility fractures. In particular, this review focused on the importance of clinical and instrumental evaluation of bone status as a basis for adequate planning of nutritional, pharmacological, and surgical interventions to be undertaken. Additionally, the management of bone defects in individuals with RS should be customized to meet each person's specific needs, abilities, and general health.
Collapse
Affiliation(s)
- Carla Caffarelli
- Section of Internal Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy.
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Pepe G, Coco R, Corica D, Di Rosa G, Bossowski F, Skorupska M, Aversa T, Stagi S, Wasniewska M. Prevalence of Endocrinopathies in a Cohort of Patients with Rett Syndrome: A Two-Center Observational Study. Genes (Basel) 2024; 15:287. [PMID: 38540345 PMCID: PMC10970698 DOI: 10.3390/genes15030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
Systematic data on endocrinopathies in Rett syndrome (RTT) patients remain limited and inconclusive. The aim of this retrospective observational two-center study was to assess the prevalence of endocrinopathies in a pediatric population of RTT patients. A total of 51 Caucasian patients (47 girls, 4 boys) with a genetically confirmed diagnosis of RTT were enrolled (mean age 9.65 ± 5.9 years). The patients were referred from the Rett Center of two Italian Hospitals for endocrinological evaluation. All the study population underwent clinical and auxological assessments and hormonal workups. MeCP2 mutations were detected in 38 cases (74.5%), CDKL5 deletions in 11 (21.6%), and FOXG1 mutations in 2 (3.9%). Overall, 40 patients were treated with anti-seizure medications. The most frequent endocrinological finding was short stature (47%), followed by menstrual cycle abnormalities (46.2%), weight disorders (45.1%), low bone mineral density (19.6%), hyperprolactinemia (13.7%) and thyroid disorders (9.8%). In the entire study population, endocrinopathies were significantly more frequent in patients with MeCP2 mutations (p = 0.0005), and epilepsy was more frequent in CDKL5 deletions (p = 0.02). In conclusion, our data highlighted that endocrinopathies are not rare in RTT, especially in patients with MeCP2 deletions. Therefore, in the context of a multidisciplinary approach, endocrinological evaluation should be recommended for RTT patients.
Collapse
Affiliation(s)
- Giorgia Pepe
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Roberto Coco
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Domenico Corica
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Gabriella Di Rosa
- Child Neuropsychiatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, 98128 Messina, Italy;
| | - Filip Bossowski
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Magdalena Skorupska
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Tommaso Aversa
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy;
- Meyer Children Hospital IRCCS, 50139 Florence, Italy
| | - Malgorzata Wasniewska
- Pediatric Unit, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.C.); (D.C.); (F.B.); (M.S.); (T.A.)
| |
Collapse
|
4
|
Lui JC. Growth disorders caused by variants in epigenetic regulators: progress and prospects. Front Endocrinol (Lausanne) 2024; 15:1327378. [PMID: 38370361 PMCID: PMC10870149 DOI: 10.3389/fendo.2024.1327378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Epigenetic modifications play an important role in regulation of transcription and gene expression. The molecular machinery governing epigenetic modifications, also known as epigenetic regulators, include non-coding RNA, chromatin remodelers, and enzymes or proteins responsible for binding, reading, writing and erasing DNA and histone modifications. Recent advancement in human genetics and high throughput sequencing technology have allowed the identification of causative variants, many of which are epigenetic regulators, for a wide variety of childhood growth disorders that include skeletal dysplasias, idiopathic short stature, and generalized overgrowth syndromes. In this review, we highlight the connection between epigenetic modifications, genetic variants in epigenetic regulators and childhood growth disorders being established over the past decade, discuss their insights into skeletal biology, and the potential of epidrugs as a new type of therapeutic intervention.
Collapse
Affiliation(s)
- Julian C. Lui
- Section on Growth and Development, National Institute of Child Health and Human Development, Bethesda, MD, United States
| |
Collapse
|
5
|
Caffarelli C, Al Refaie A, Mondillo C, De Vita M, Baldassini L, Valacchi G, Gonnelli S. Bone Fracture in Rett Syndrome: Mechanisms and Prevention Strategies. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1861. [PMID: 38136063 PMCID: PMC10741854 DOI: 10.3390/children10121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
The present study aimed to evaluate the burden and management of fragility fractures in subjects with Rett syndrome. We searched all relevant medical literature from 1 January 1986 to 30 June 2023 for studies under the search term "Rett syndrome and fracture". The fracture frequency ranges from a minimum of 13.9% to a maximum of 36.1%. The majority of such fractures occur in lower limb bones and are associated with low bone mineral density. Anticonvulsant use, joint contractures, immobilization, low physical activity, poor nutrition, the genotype, and lower calcium and vitamin D intakes all significantly impair skeletal maturation and bone mass accrual in Rett syndrome patients, making them more susceptible to fragility fractures. This review summarizes the knowledge on risk factors for fragility fracture in patients with Rett syndrome and suggests a possible diagnostic and therapeutic care pathway for improving low bone mineral density and reducing the risk of fragility fractures. The optimization of physical activity, along with adequate nutrition and the intake of calcium and vitamin D supplements, should be recommended. In addition, subjects with Rett syndrome and a history of fracture should consider using bisphosphonates.
Collapse
Affiliation(s)
- Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (A.A.R.); (C.M.); (M.D.V.); (L.B.); (S.G.)
| | - Antonella Al Refaie
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (A.A.R.); (C.M.); (M.D.V.); (L.B.); (S.G.)
| | - Caterina Mondillo
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (A.A.R.); (C.M.); (M.D.V.); (L.B.); (S.G.)
| | - Michela De Vita
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (A.A.R.); (C.M.); (M.D.V.); (L.B.); (S.G.)
| | - Leonardo Baldassini
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (A.A.R.); (C.M.); (M.D.V.); (L.B.); (S.G.)
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy;
- Animal Science Department, Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC 27695, USA
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy; (A.A.R.); (C.M.); (M.D.V.); (L.B.); (S.G.)
| |
Collapse
|
6
|
Giuliani A, Sabbatinelli J, Amatori S, Graciotti L, Silvestrini A, Matacchione G, Ramini D, Mensà E, Prattichizzo F, Babini L, Mattiucci D, Busilacchi EM, Bacalini MG, Espinosa E, Lattanzio F, Procopio AD, Olivieri F, Poloni A, Fanelli M, Rippo MR. MiR-422a promotes adipogenesis via MeCP2 downregulation in human bone marrow mesenchymal stem cells. Cell Mol Life Sci 2023; 80:75. [PMID: 36847916 PMCID: PMC9971129 DOI: 10.1007/s00018-023-04719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/16/2022] [Accepted: 01/22/2023] [Indexed: 03/01/2023]
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a ubiquitous transcriptional regulator. The study of this protein has been mainly focused on the central nervous system because alterations of its expression are associated with neurological disorders such as Rett syndrome. However, young patients with Rett syndrome also suffer from osteoporosis, suggesting a role of MeCP2 in the differentiation of human bone marrow mesenchymal stromal cells (hBMSCs), the precursors of osteoblasts and adipocytes. Here, we report an in vitro downregulation of MeCP2 in hBMSCs undergoing adipogenic differentiation (AD) and in adipocytes of human and rat bone marrow tissue samples. This modulation does not depend on MeCP2 DNA methylation nor on mRNA levels but on differentially expressed miRNAs during AD. MiRNA profiling revealed that miR-422a and miR-483-5p are upregulated in hBMSC-derived adipocytes compared to their precursors. MiR-483-5p, but not miR-422a, is also up-regulated in hBMSC-derived osteoblasts, suggesting a specific role of the latter in the adipogenic process. Experimental modulation of intracellular levels of miR-422a and miR-483-5p affected MeCP2 expression through direct interaction with its 3' UTR elements, and the adipogenic process. Accordingly, the knockdown of MeCP2 in hBMSCs through MeCP2-targeting shRNA lentiviral vectors increased the levels of adipogenesis-related genes. Finally, since adipocytes released a higher amount of miR-422a in culture medium compared to hBMSCs we analyzed the levels of circulating miR-422a in patients with osteoporosis-a condition characterized by increased marrow adiposity-demonstrating that its levels are negatively correlated with T- and Z-scores. Overall, our findings suggest that miR-422a has a role in hBMSC adipogenesis by downregulating MeCP2 and its circulating levels are associated with bone mass loss in primary osteoporosis.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,SOD Medicina di Laboratorio, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Fano, PU, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Silvestrini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Deborah Ramini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | | | - Lucia Babini
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy
| | - Domenico Mattiucci
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Marinelli Busilacchi
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Giulia Bacalini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Laboratorio Brain Aging, Bologna, Italy
| | - Emma Espinosa
- Geriatrics, Santa Croce Hospital, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Fano, Italy
| | | | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.,Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Antonella Poloni
- Section of Hematology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory "PaoLa", University of Urbino Carlo Bo, Fano, PU, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy.
| |
Collapse
|
7
|
Gao X, Xue S, Yang F, Wu B, Yu X, An B. Methyl-CpG binding protein 2 is associated with the prognosis and mortality of elderly patients with hip fractures. Clinics (Sao Paulo) 2022; 77:100034. [PMID: 35436701 PMCID: PMC9036098 DOI: 10.1016/j.clinsp.2022.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To investigate the expression level and clinical significance of Methyl-CpG binding Protein 2 (MECP2) in elderly patients with hip fractures. METHODS This prospective observational study included 367 elderly patients with hip fractures between April 2016 and December 2018. All the patients were treated with internal fixation or joint replacement. In addition, 50 healthy elderly individuals were enrolled as healthy controls. The serum levels of MECP2 and inflammatory factors Interleukin (IL)-1β, IL-6, IL-8, and Tumor Necrosis Factor (TNF)-α was determined by enzyme-linked immunosorbent assay. Data on patients' basic characteristics and postoperative complications were collected. The Harris score was used to assess hip function at 1-month, 3-months, and 6-months after surgery. Patient quality of life was measured using the Barthel Index (BI) score 3-months after surgery. The 1-year mortality was analyzed using the Kaplan-Meier curve, and logical regression was used to analyze the risk factors for mortality. RESULTS No significant differences were observed in the basic clinical characteristics of all patients. The serum MECP2 levels were remarkably high in patients with hip fractures and negatively correlated with serum IL-1β, IL-6, and TNF-α levels. Patients with higher MECP2 predicted higher dynamic Harris scores, lower postoperative complications, lower 1-year mortality, and higher BI scores. Logical regression showed that age was the only independent risk factor for postoperative 1-year mortality in elderly patients with hip fractures. CONCLUSION Lower MECP2 predicted poor prognosis and higher 1-year mortality in elderly patients with hip fractures.
Collapse
Affiliation(s)
- Xuejian Gao
- Department of Orthopedics, The 80(th) Army Hospital of Chinese People's Liberation Army, Weifang, Shandong, China
| | - Shan Xue
- Department of Orthopedics, The 80(th) Army Hospital of Chinese People's Liberation Army, Weifang, Shandong, China
| | - Fuqiang Yang
- Department of Orthopedics, The 80(th) Army Hospital of Chinese People's Liberation Army, Weifang, Shandong, China
| | - Baoling Wu
- Department of Orthopedics, The 80(th) Army Hospital of Chinese People's Liberation Army, Weifang, Shandong, China
| | - Xiaojing Yu
- Department of Orthopedics, The 80(th) Army Hospital of Chinese People's Liberation Army, Weifang, Shandong, China
| | - Baoquan An
- Department of Orthopedics, The 80(th) Army Hospital of Chinese People's Liberation Army, Weifang, Shandong, China.
| |
Collapse
|
8
|
Abstract
Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder characterized by neurodevelopmental regression between 6 and 18 months of life and associated with multi-system comorbidities. Caused mainly by pathogenic variants in the MECP2 (methyl CpG binding protein 2) gene, it is the second leading genetic cause of intellectual disability in girls after Down syndrome. RTT affects not only neurological function but also a wide array of non-neurological organs. RTT-related disorders involve abnormalities of the respiratory, cardiovascular, digestive, metabolic, skeletal, endocrine, muscular, and urinary systems and immune response. Here, we review the different aspects of RTT affecting the main peripheral groups of organs and sometimes occurring independently of nervous system defects.
Collapse
Affiliation(s)
- Emilie Borloz
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| | - Laurent Villard
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| | - Jean-Christophe Roux
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| |
Collapse
|
9
|
Gripp EW, Harcke HT, Bachrach SJ, Kecskemethy HH. A Comparison of Lumbar Spine and Lateral Distal Femur Bone Density in Girls With Rett Syndrome. J Clin Densitom 2021; 24:374-382. [PMID: 33183919 DOI: 10.1016/j.jocd.2020.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/01/2022]
Abstract
Patients with Rett syndrome (RS) are at risk for low bone mineral density (BMD) and femoral fractures. In patients with RS, assessment with lateral distal femur (LDF) dual-energy X-ray absorptiometry (DXA) is recommended and clinically relevant. This study is the first to assess LDF BMD in girls with RS, and to compare LDF BMD results with lumbar spine BMD results in RS. Method Eleven girls (mean age 8.4 yr) with molecularly diagnosed RS and clinical DXA scan(s) were identified; medical charts were retrospectively reviewed. Baseline and serial lumbar spine and LDF BMD Z-scores were evaluated based on patients' ambulation status, presence of epilepsy, and mutation type. Results At the time of first scan, 8 of 11 patients had normal lumbar spine BMD and low LDF BMD Z-scores. Two patients had fracture history. Fully ambulatory (3) patients had higher lumbar spine and LDF BMD than partially (5) and nonambulatory (3) patients. Patients with epilepsy had lower average BMD at all sites. No difference was seen in lumbar spine or LDF BMD in patients with high-risk BMD mutations. Seven patients had serial DXA scans with an average observation of 5.1 yr (range 3.1 yr to 6.2 yr). Lumbar spine BMD over time was variable, while LDF bone mass accrual occurred at a lower rate than typically developing girls. Conclusion Females with RS exhibited lower BMD Z-scores at the LDF than at the lumbar spine. LDF and lumbar spine results were discordant. Ambulatory status and the presence of epilepsy were related to BMD. LDF BMD accrual deviated from normal as patients aged.
Collapse
Affiliation(s)
- Emily W Gripp
- Departments of Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - H Theodore Harcke
- Departments of Medical Imaging, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Steven J Bachrach
- Departments of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Heidi H Kecskemethy
- Departments of Biomedical Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE; Departments of Medical Imaging, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE.
| |
Collapse
|
10
|
Pecorelli A, Cordone V, Schiavone ML, Caffarelli C, Cervellati C, Cerbone G, Gonnelli S, Hayek J, Valacchi G. Altered Bone Status in Rett Syndrome. Life (Basel) 2021; 11:life11060521. [PMID: 34205017 PMCID: PMC8230033 DOI: 10.3390/life11060521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
Rett syndrome (RTT) is a monogenic neurodevelopmental disorder primarily caused by mutations in X-linked MECP2 gene, encoding for methyl-CpG binding protein 2 (MeCP2), a multifaceted modulator of gene expression and chromatin organization. Based on the type of mutation, RTT patients exhibit a broad spectrum of clinical phenotypes with various degrees of severity. In addition, as a complex multisystem disease, RTT shows several clinical manifestations ranging from neurological to non-neurological symptoms. The most common non-neurological comorbidities include, among others, orthopedic complications, mainly scoliosis but also early osteopenia/osteoporosis and a high frequency of fractures. A characteristic low bone mineral density dependent on a slow rate of bone formation due to dysfunctional osteoblast activity rather than an increase in bone resorption is at the root of these complications. Evidence from human and animal studies supports the idea that MECP2 mutation could be associated with altered epigenetic regulation of bone-related factors and signaling pathways, including SFRP4/WNT/β-catenin axis and RANKL/RANK/OPG system. More research is needed to better understand the role of MeCP2 in bone homeostasis. Indeed, uncovering the molecular mechanisms underlying RTT bone problems could reveal new potential pharmacological targets for the treatment of these complications that adversely affect the quality of life of RTT patients for whom the only therapeutic approaches currently available include bisphosphonates, dietary supplements, and physical activity.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Correspondence: (A.P.); (G.V.)
| | - Valeria Cordone
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Lucia Schiavone
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy; (C.C.); (S.G.)
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Gaetana Cerbone
- Division of Medical Genetics, “S.G. Moscati” Hospital, 74100 Avellino, Italy;
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy; (C.C.); (S.G.)
| | - Joussef Hayek
- Toscana Life Sciences Foundation, 53100 Siena, Italy;
| | - Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (A.P.); (G.V.)
| |
Collapse
|
11
|
Good KV, Vincent JB, Ausió J. MeCP2: The Genetic Driver of Rett Syndrome Epigenetics. Front Genet 2021; 12:620859. [PMID: 33552148 PMCID: PMC7859524 DOI: 10.3389/fgene.2021.620859] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Mutations in methyl CpG binding protein 2 (MeCP2) are the major cause of Rett syndrome (RTT), a rare neurodevelopmental disorder with a notable period of developmental regression following apparently normal initial development. Such MeCP2 alterations often result in changes to DNA binding and chromatin clustering ability, and in the stability of this protein. Among other functions, MeCP2 binds to methylated genomic DNA, which represents an important epigenetic mark with broad physiological implications, including neuronal development. In this review, we will summarize the genetic foundations behind RTT, and the variable degrees of protein stability exhibited by MeCP2 and its mutated versions. Also, past and emerging relationships that MeCP2 has with mRNA splicing, miRNA processing, and other non-coding RNAs (ncRNA) will be explored, and we suggest that these molecules could be missing links in understanding the epigenetic consequences incurred from genetic ablation of this important chromatin modifier. Importantly, although MeCP2 is highly expressed in the brain, where it has been most extensively studied, the role of this protein and its alterations in other tissues cannot be ignored and will also be discussed. Finally, the additional complexity to RTT pathology introduced by structural and functional implications of the two MeCP2 isoforms (MeCP2-E1 and MeCP2-E2) will be described. Epigenetic therapeutics are gaining clinical popularity, yet treatment for Rett syndrome is more complicated than would be anticipated for a purely epigenetic disorder, which should be taken into account in future clinical contexts.
Collapse
Affiliation(s)
- Katrina V. Good
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John B. Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
12
|
Caffarelli C, Gonnelli S, Pitinca MDT, Camarri S, Al Refaie A, Hayek J, Nuti R. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with bone disease severity in Rett syndrome. BMC MEDICAL GENETICS 2020; 21:21. [PMID: 32005172 PMCID: PMC6995101 DOI: 10.1186/s12881-020-0960-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023]
Abstract
Background More than 95% of individuals with RTT have mutations in methyl-CpG-binding protein 2 (MECP2), whose protein product modulates gene transcription. The disorder is caused by mutations in a single gene and the disease severity in affected individuals can be quite variable. Specific MECP2 mutations may lead phenotypic variability and different degrees of disease severity. It is known that low bone mass is a frequent and early complication of subjects with Rett syndrome. As a consequence of the low bone mass Rett girls are at an increased risk of fragility fractures. This study aimed to investigate if specific MECP2 mutations may affects the degree of involvement of the bone status in Rett subjects. Methods In 232 women with Rett syndrome (mean age 13.8 ± 8.3 yrs) we measured bone mineral density at whole body and at femur (BMD-FN and BMD-TH) by using a DXA machine (Hologic QDR 4500). QUS parameters were assessed at phalanxes by Bone Profiler-IGEA (amplitude dependent speed of sound: AD-SoS and bone transmission time: BTT). Moreover, ambulation capacity (independent or assisted), fracture history and presence of scoliosis were assessed. We divided the subjects with the most common point mutations in two group based on genotype-phenotype severity; in particular, there has been consensus in recognising that the mutations R106T, R168X, R255X, R270X are considered more severe. Results As aspect, BMD-WB, BMD-FN and BMD-TH were lower in subjects with Rett syndrome that present the most severe mutations with respect to subjects with Rett syndrome with less severe mutations, but the difference was statistically significant only for BMD-FN and BMD-TH (p < 0.05). Also both AD-SoS and BTT values were lower in subjects that present the most severe mutations with respect to less severe mutations but the difference was not statistically significant. Moreover, subjects with Rett syndrome with more severe mutations present a higher prevalence of scoliosis (p < 0.05) and of inability to walk (p < 0.05). Conclusion This study confirms that MECP2 mutation type is a strong predictor of disease severity in subjects with Rett syndrome. In particular, the subjects with more severe mutation present a greater deterioration of bone status, and a higher prevalence of scoliosis and inability to walk.
Collapse
Affiliation(s)
- Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy.
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Maria Dea Tomai Pitinca
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Silvia Camarri
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Antonella Al Refaie
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| | - Joussef Hayek
- Paediatrics Neuropsychiatry Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, Viale Bracci 2, 53100, Siena, Italy
| |
Collapse
|
13
|
Vogel Ciernia A, Yasui DH, Pride MC, Durbin-Johnson B, Noronha AB, Chang A, Knotts TA, Rutkowsky JR, Ramsey JJ, Crawley JN, LaSalle JM. MeCP2 isoform e1 mutant mice recapitulate motor and metabolic phenotypes of Rett syndrome. Hum Mol Genet 2018; 27:4077-4093. [PMID: 30137367 PMCID: PMC6240741 DOI: 10.1093/hmg/ddy301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 01/27/2023] Open
Abstract
Mutations in the X-linked gene MECP2 cause the majority of Rett syndrome (RTT) cases. Two differentially spliced isoforms of exons 1 and 2 (MeCP2-e1 and MeCP2-e2) contribute to the diverse functions of MeCP2, but only mutations in exon 1, not exon 2, are observed in RTT. We previously described an isoform-specific MeCP2-e1-deficient male mouse model of a human RTT mutation that lacks MeCP2-e1 while preserving expression of MeCP2-e2. However, RTT patients are heterozygous females that exhibit delayed and progressive symptom onset beginning in late infancy, including neurologic as well as metabolic, immune, respiratory and gastrointestinal phenotypes. Consequently, we conducted a longitudinal assessment of symptom development in MeCP2-e1 mutant females and males. A delayed and progressive onset of motor impairments was observed in both female and male MeCP2-e1 mutant mice, including hind limb clasping and motor deficits in gait and balance. Because these motor impairments were significantly impacted by age-dependent increases in body weight, we also investigated metabolic phenotypes at an early stage of disease progression. Both male and female MeCP2-e1 mutants exhibited significantly increased body fat compared to sex-matched wild-type littermates prior to weight differences. Mecp2e1-/y males exhibited significant metabolic phenotypes of hypoactivity, decreased energy expenditure, increased respiratory exchange ratio, but decreased food intake compared to wild-type. Untargeted analysis of lipid metabolites demonstrated a distinguishable profile in MeCP2-e1 female mutant liver characterized by increased triglycerides. Together, these results demonstrate that MeCP2-e1 mutation in mice of both sexes recapitulates early and progressive metabolic and motor phenotypes of human RTT.
Collapse
Affiliation(s)
- Annie Vogel Ciernia
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
- UC Davis Genome Center, University of California, Davis, CA, USA
- UC Davis MIND Institute, University of California, Davis, CA, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Michael C Pride
- UC Davis MIND Institute, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Adriana B Noronha
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Alene Chang
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Trina A Knotts
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jennifer R Rutkowsky
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jon J Ramsey
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jacqueline N Crawley
- UC Davis MIND Institute, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, UC Davis School of Medicine, University of California, Davis, CA, USA
- UC Davis Genome Center, University of California, Davis, CA, USA
- UC Davis MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Ross PD, Guy J, Selfridge J, Kamal B, Bahey N, Tanner KE, Gillingwater TH, Jones RA, Loughrey CM, McCarroll CS, Bailey MES, Bird A, Cobb S. Exclusive expression of MeCP2 in the nervous system distinguishes between brain and peripheral Rett syndrome-like phenotypes. Hum Mol Genet 2018; 25:4389-4404. [PMID: 28173151 PMCID: PMC5886038 DOI: 10.1093/hmg/ddw269] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022] Open
Abstract
Rett syndrome (RTT) is a severe genetic disorder resulting from mutations in the X-linked MECP2 gene. MeCP2 protein is highly expressed in the nervous system and deficiency in the mouse central nervous system alone recapitulates many features of the disorder. This suggests that RTT is primarily a neurological disorder, although the protein is reportedly widely expressed throughout the body. To determine whether aspects of the RTT phenotype that originate in non-neuronal tissues might have been overlooked, we generated mice in which Mecp2 remains at near normal levels in the nervous system, but is severely depleted elsewhere. Comparison of these mice with wild type and globally MeCP2-deficient mice showed that the majority of RTT-associated behavioural, sensorimotor, gait and autonomic (respiratory and cardiac) phenotypes are absent. Specific peripheral phenotypes were observed, however, most notably hypo-activity, exercise fatigue and bone abnormalities. Our results confirm that the brain should be the primary target for potential RTT therapies, but also strongly suggest that some less extreme but clinically significant aspects of the disorder arise independently of defects in the nervous system.
Collapse
Affiliation(s)
- Paul D Ross
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jacky Guy
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, UK
| | - Jim Selfridge
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, UK
| | - Bushra Kamal
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Noha Bahey
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.,Histology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Christopher M Loughrey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK and
| | - Charlotte S McCarroll
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK and
| | - Mark E S Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, UK
| | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Kyle SM, Vashi N, Justice MJ. Rett syndrome: a neurological disorder with metabolic components. Open Biol 2018; 8:170216. [PMID: 29445033 PMCID: PMC5830535 DOI: 10.1098/rsob.170216] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/18/2018] [Indexed: 02/06/2023] Open
Abstract
Rett syndrome (RTT) is a neurological disorder caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2), a ubiquitously expressed transcriptional regulator. Despite remarkable scientific progress since its discovery, the mechanism by which MECP2 mutations cause RTT symptoms is largely unknown. Consequently, treatment options for patients are currently limited and centred on symptom relief. Thought to be an entirely neurological disorder, RTT research has focused on the role of MECP2 in the central nervous system. However, the variety of phenotypes identified in Mecp2 mutant mouse models and RTT patients implicate important roles for MeCP2 in peripheral systems. Here, we review the history of RTT, highlighting breakthroughs in the field that have led us to present day. We explore the current evidence supporting metabolic dysfunction as a component of RTT, presenting recent studies that have revealed perturbed lipid metabolism in the brain and peripheral tissues of mouse models and patients. Such findings may have an impact on the quality of life of RTT patients as both dietary and drug intervention can alter lipid metabolism. Ultimately, we conclude that a thorough knowledge of MeCP2's varied functional targets in the brain and body will be required to treat this complex syndrome.
Collapse
Affiliation(s)
- Stephanie M Kyle
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada M5G 0A4
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neeti Vashi
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada M5G 0A4
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A1
| | - Monica J Justice
- Genetics and Genome Biology Program, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada M5G 0A4
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A1
| |
Collapse
|
16
|
Shapiro JR, Boskey AL, Doty SB, Lukashova L, Blue ME. Zoledronic acid improves bone histomorphometry in a murine model of Rett syndrome. Bone 2017; 99:1-7. [PMID: 28323142 DOI: 10.1016/j.bone.2017.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/06/2017] [Accepted: 03/15/2017] [Indexed: 12/01/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder predominately affecting young females, caused by deficiency of the global transcriptional protein methyl CpG binding protein 2 (MeCP2). Osteoblasts express MeCP2 and girls with RTT experience early onset osteoporosis, decreased bone mass and an increased fracture risk. There is no defined treatment for osteoporosis associated with RTT. The present study evaluated the effects of zoledronic acid (ZA), a third generation nitrogen-containing bisphosphonate with primarily anti-osteoclastic activity, in a mouse model of MeCP2 deficiency. Mice received weekly injections of 20μg/kg ZA for six weeks. Due to the shortened lifespan of hemizygous male (Mecp2-null) mice, treatment began at 3weeks of age for this group and corresponding wildtype (WT) male mice. Treatment for heterozygous (HET) and WT female mice began at 8weeks of age. Micro-computed tomography (micro-CT) and dynamic analyses of bone turnover were performed. ZA treatment led to significant increases in bone volume fraction, number, connectivity density and apparent density of trabecular bone in all genotypes of mice. In contrast, cortical bone generally was unaffected by ZA injections. Parameters of bone turnover, including mineral apposition rate, labeled bone surface and bone formation rate decreased after treatment with ZA. Mecp2-null mice had reduced labeled bone surface and bone formation rate compared to WT male mice. The results indicate that ZA treatment significantly improved trabecular bone mass in a murine model of RTT with little effect on cortical bone.
Collapse
Affiliation(s)
- Jay R Shapiro
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., 707 North Broadway, Baltimore, MD 21205, USA
| | - Adele L Boskey
- Hospital for Special Surgery, Mineralized Tissue Laboratory, 535 E 70th Street, New York, NY 10021, USA.
| | - Stephen B Doty
- Hospital for Special Surgery, Mineralized Tissue Laboratory, 535 E 70th Street, New York, NY 10021, USA.
| | - Lyudmila Lukashova
- Hospital for Special Surgery, Mineralized Tissue Laboratory, 535 E 70th Street, New York, NY 10021, USA.
| | - Mary E Blue
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., 707 North Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Leonard H, Cobb S, Downs J. Clinical and biological progress over 50 years in Rett syndrome. Nat Rev Neurol 2016; 13:37-51. [PMID: 27934853 DOI: 10.1038/nrneurol.2016.186] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the 50 years since Andreas Rett first described the syndrome that came to bear his name, and is now known to be caused by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, a compelling blend of astute clinical observations and clinical and laboratory research has substantially enhanced our understanding of this rare disorder. Here, we document the contributions of the early pioneers in Rett syndrome (RTT) research, and describe the evolution of knowledge in terms of diagnostic criteria, clinical variation, and the interplay with other Rett-related disorders. We provide a synthesis of what is known about the neurobiology of MeCP2, considering the lessons learned from both cell and animal models, and how they might inform future clinical trials. With a focus on the core criteria, we examine the relationships between genotype and clinical severity. We review current knowledge about the many comorbidities that occur in RTT, and how genotype may modify their presentation. We also acknowledge the important drivers that are accelerating this research programme, including the roles of research infrastructure, international collaboration and advocacy groups. Finally, we highlight the major milestones since 1966, and what they mean for the day-to-day lives of individuals with RTT and their families.
Collapse
Affiliation(s)
- Helen Leonard
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Jenny Downs
- Telethon Kids Institute, 100 Roberts Road, Subiaco, Perth, Western Australia 6008, Australia
| |
Collapse
|
18
|
Caffarelli C, Hayek J, Nuti R, Gonnelli S. Teriparatide in the treatment of recurrent fractures in a Rett patient. CLINICAL CASES IN MINERAL AND BONE METABOLISM 2015; 12:253-6. [PMID: 26811706 DOI: 10.11138/ccmbm/2015.12.3.253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rett syndrome is a common X-linked neurodevelopmental disorder caused by mutations in the MECP2 gene. Patients with Rett syndrome have a low bone mineral density and increased risk of fracture. The present case report describes a successful novel therapeutic intervention with teriparatide with one patient with Rett syndrome, after suffering from recurrent low-trauma fractures at intervals of several years. Because of the severity of bone involvement, the decision was made to treat with teriparatide and subsequently with intravenous bisphosphonate. Since the initiation of the treatment, there was an evident improvement at densitometric and QUS parameters. Furthermore, until the present, no new fractures have appeared. This is the first report in which teriparatide was administered to a subjects with Rett syndrome. In conclusion, this report has shown the effectiveness of teriparatide in the management of osteoporotic fractures in one subjects with Rett syndrome. This report provides evidence that increased knowledge of bone pathology and fracture prevention in Rett subjects is important and should be addressed in future studies.
Collapse
Affiliation(s)
- Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Jussef Hayek
- Child Neuropsychiatry Unit, University Hospital, "Azienda Ospedaliera Universitaria Senese", Siena, Italy
| | - Ranuccio Nuti
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
19
|
Tsujimura K, Irie K, Nakashima H, Egashira Y, Fukao Y, Fujiwara M, Itoh M, Uesaka M, Imamura T, Nakahata Y, Yamashita Y, Abe T, Takamori S, Nakashima K. miR-199a Links MeCP2 with mTOR Signaling and Its Dysregulation Leads to Rett Syndrome Phenotypes. Cell Rep 2015; 12:1887-901. [PMID: 26344767 DOI: 10.1016/j.celrep.2015.08.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 06/06/2015] [Accepted: 08/08/2015] [Indexed: 01/03/2023] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by MECP2 mutations. Although emerging evidence suggests that MeCP2 deficiency is associated with dysregulation of mechanistic target of rapamycin (mTOR), which functions as a hub for various signaling pathways, the mechanism underlying this association and the molecular pathophysiology of RTT remain elusive. We show here that MeCP2 promotes the posttranscriptional processing of particular microRNAs (miRNAs) as a component of the microprocessor Drosha complex. Among the MeCP2-regulated miRNAs, we found that miR-199a positively controls mTOR signaling by targeting inhibitors for mTOR signaling. miR-199a and its targets have opposite effects on mTOR activity, ameliorating and inducing RTT neuronal phenotypes, respectively. Furthermore, genetic deletion of miR-199a-2 led to a reduction of mTOR activity in the brain and recapitulated numerous RTT phenotypes in mice. Together, these findings establish miR-199a as a critical downstream target of MeCP2 in RTT pathogenesis by linking MeCP2 with mTOR signaling.
Collapse
Affiliation(s)
- Keita Tsujimura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; Laboratory of Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Koichiro Irie
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshihiro Egashira
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Yoichiro Fukao
- Plant Global Education Project, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan; Department of Bioinformatics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masayuki Fujiwara
- Plant Global Education Project, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Masayuki Itoh
- Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Masahiro Uesaka
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yasukazu Nakahata
- Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Yui Yamashita
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Takaya Abe
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan; Laboratory of Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan.
| |
Collapse
|
20
|
Blue ME, Boskey AL, Doty SB, Fedarko NS, Hossain MA, Shapiro JR. Osteoblast function and bone histomorphometry in a murine model of Rett syndrome. Bone 2015; 76:23-30. [PMID: 25769649 PMCID: PMC7455889 DOI: 10.1016/j.bone.2015.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/21/2015] [Accepted: 01/25/2015] [Indexed: 02/07/2023]
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder due to mutations affecting the neural transcription factor MeCP2. Approximately 50% of affected females have decreased bone mass. We studied osteoblast function using a murine model of RTT. Female heterozygote (HET) and male Mecp2-null mice were compared to wild type (WT) mice. Micro-CT of tibia from 5 week-old Mecp2-null mice showed significant alterations in trabecular bone including reductions in bone volume fraction (-29%), number (-19%), thickness (-9%) and connectivity density (-32%), and increases in trabecular separation (+28%) compared to WT. We also found significant reductions in cortical bone thickness (-18%) and in polar moment of inertia (-45%). In contrast, cortical and trabecular bone from 8 week-old WT and HET female mice were not significantly different. However, mineral apposition rate, mineralizing surface and bone formation rate/bone surface were each decreased in HET and Mecp2-null mice compared to WT mice. Histomorphometric analysis of femurs showed decreased numbers of osteoblasts but similar numbers of osteoclasts compared to WT, altered osteoblast morphology and decreased tissue synthesis of alkaline phosphatase in Mecp2-null and HET mice. Osteoblasts cultured from Mecp2-null mice, which unlike WT osteoblasts did not express MeCP2, had increased growth rates, but reductions in mRNA expression of type I collagen, Runx2 and Osterix compared to WT osteoblasts. These results indicate that MeCP2 deficiency leads to altered bone growth. Osteoblast dysfunction was more marked in Mecp2-null male than in HET female mice, suggesting that expression of MeCP2 plays a critical role in bone development.
Collapse
Affiliation(s)
- Mary E Blue
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., 707 North Broadway, Baltimore, MD 21205, USA.
| | - Adele L Boskey
- Hospital for Special Surgery, Mineralized Tissue Laboratory 535 E 70th Street, New York, NY 10021, USA.
| | - Stephen B Doty
- Hospital for Special Surgery, Mineralized Tissue Laboratory 535 E 70th Street, New York, NY 10021, USA.
| | - Neal S Fedarko
- Geriatric Medicine and Gerontology, Johns Hopkins Medical Institutions, Room 1A-12 JHAAC, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | - Mir Ahamed Hossain
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., 707 North Broadway, Baltimore, MD 21205, USA.
| | - Jay R Shapiro
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., 707 North Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Kamal B, Russell D, Payne A, Constante D, Tanner KE, Isaksson H, Mathavan N, Cobb SR. Biomechanical properties of bone in a mouse model of Rett syndrome. Bone 2015; 71:106-14. [PMID: 25445449 PMCID: PMC4289916 DOI: 10.1016/j.bone.2014.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 10/09/2014] [Accepted: 10/15/2014] [Indexed: 12/22/2022]
Abstract
Rett syndrome (RTT) is an X-linked genetic disorder and a major cause of intellectual disability in girls. Mutations in the methyl-CpG binding protein 2 (MECP2) gene are the primary cause of the disorder. Despite the dominant neurological phenotypes, MECP2 is expressed ubiquitously throughout the body and a number of peripheral phenotypes such as scoliosis, reduced bone mineral density and skeletal fractures are also common and important clinical features of the disorder. In order to explore whether MeCP2 protein deficiency results in altered structural and functional properties of bone and to test the potential reversibility of any defects, we have conducted a series of histological, imaging and biomechanical tests of bone in a functional knockout mouse model of RTT. Both hemizygous Mecp2(stop/y) male mice in which Mecp2 is silenced in all cells and female Mecp2(stop/+) mice in which Mecp2 is silenced in ~50% of cells as a consequence of random X-chromosome inactivation, revealed significant reductions in cortical bone stiffness, microhardness and tensile modulus. Microstructural analysis also revealed alterations in both cortical and cancellous femoral bone between wild-type and MeCP2-deficient mice. Furthermore, unsilencing of Mecp2 in adult mice cre-mediated stop cassette deletion resulted in a restoration of biomechanical properties (stiffness, microhardness) towards wild-type levels. These results show that MeCP2-deficiency results in overt, but potentially reversible, alterations in the biomechanical integrity of bone and highlights the importance of targeting skeletal phenotypes in considering the development of pharmacological and gene-based therapies.
Collapse
Affiliation(s)
- Bushra Kamal
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK; Laboratory of Human Anatomy, School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; Department of Anatomy, Khyber Medical University, Khyber Pakhtunkhwa, Pakistan
| | - David Russell
- Laboratory of Human Anatomy, School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anthony Payne
- Laboratory of Human Anatomy, School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Diogo Constante
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Faculadade de Engenharia da Universidade do Porto, Porto, Portugal
| | - K Elizabeth Tanner
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Department of Orthopaedics, Clinical Sciences, Lund University, Lund, S-22185, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Neashan Mathavan
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Stuart R Cobb
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
22
|
Chapleau CA, Lane J, Pozzo-Miller L, Percy AK. Evaluation of current pharmacological treatment options in the management of Rett syndrome: from the present to future therapeutic alternatives. ACTA ACUST UNITED AC 2014; 8:358-69. [PMID: 24050745 DOI: 10.2174/15748847113086660069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/14/2013] [Accepted: 02/21/2013] [Indexed: 11/22/2022]
Abstract
Neurodevelopmental disorders are a large family of conditions of genetic or environmental origin that are characterized by deficiencies in cognitive and behavioral functions. The therapeutic management of individuals with these disorders is typically complex and is limited to the treatment of specific symptoms that characterize each disorder. The neurodevelopmental disorder Rett syndrome (RTT) is the leading cause of severe intellectual disability in females. Mutations in the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MECP2), located on the X chromosome, have been confirmed in more than 95% of individuals meeting diagnostic criteria for classical RTT. RTT is characterized by an uneventful early infancy followed by stagnation and regression of growth, motor, language, and social skills later in development. This review will discuss the genetics, pathology, and symptoms that distinguish RTT from other neurodevelopmental disorders associated with intellectual disability. Because great progress has been made in the basic and clinical science of RTT, the goal of this review is to provide a thorough assessment of current pharmacotherapeutic options to treat the symptoms associated with this disorder. Furthermore, we will highlight recent discoveries made with novel pharmacological interventions in experimental preclinical phases, and which have reversed pathological phenotypes in mouse and cell culture models of RTT and may result in clinical trials.
Collapse
Affiliation(s)
- Christopher A Chapleau
- Department of Pediatrics, CIRC-320, The University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-0021, USA.
| | | | | | | |
Collapse
|
23
|
Motil KJ, Barrish JO, Neul JL, Glaze DG. Low bone mineral mass is associated with decreased bone formation and diet in girls with Rett syndrome. J Pediatr Gastroenterol Nutr 2014; 59:386-92. [PMID: 25144778 PMCID: PMC4144049 DOI: 10.1097/mpg.0000000000000440] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE The aim of the present study was to characterize biomarkers of bone turnover and their relation with bone mineral mass in a cross-sectional cohort of girls with Rett syndrome (RTT) and to examine the role of dietary, biochemical, hormonal, and inflammatory factors on bone mineral mass and bone biomarkers in this disorder. METHODS Total body bone mineral content (BMC) and bone mineral density (BMD) were determined by dual-energy x-ray absorptiometry. Dietary nutrient intakes were determined from 3-day food records. Biomarkers of bone turnover, bone metabolites, vitamin D metabolites, hormones, and inflammatory markers were measured by standard clinical laboratory methods. RESULTS Serum osteocalcin, bone alkaline phosphatase, and C-telopeptide showed significant inverse relations with age in the RTT cohort. Mean osteocalcin concentrations were significantly lower and mean bone alkaline phosphatase concentrations were significantly higher for individual age groups in the RTT cohort than mean values for their respective age ranges in the reference population. Significant inverse associations were identified between urinary calcium losses, expressed as calcium:creatinine ratios, and total body BMC and BMD z scores. Dietary protein, calcium, and phosphorus intakes, expressed as a proportion of Dietary Reference Intakes for age and sex, showed significant positive associations with total body BMD z scores. CONCLUSIONS The present study suggests decreased bone formation instead of increased bone resorption may explain in part the deficits in bone mineral mass in RTT and that attention to the adequacy of dietary protein, calcium, and phosphorus intakes may offer an opportunity to improve bone health in RTT.
Collapse
Affiliation(s)
- Kathleen J. Motil
- USDA/ARS Children's Nutrition Research Center, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Judy O. Barrish
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
- The Blue Bird Circle Rett Center, Houston, TX 77030
| | - Jeffrey L. Neul
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
- The Blue Bird Circle Rett Center, Houston, TX 77030
| | - Daniel G. Glaze
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
- The Blue Bird Circle Rett Center, Houston, TX 77030
| |
Collapse
|
24
|
Roende G, Petersen J, Ravn K, Fuglsang K, Andersen H, Nielsen JB, Brøndum-Nielsen K, Jensen JEB. Low bone turnover phenotype in Rett syndrome: results of biochemical bone marker analysis. Pediatr Res 2014; 75:551-8. [PMID: 24375084 DOI: 10.1038/pr.2013.252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/19/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Patients with Rett syndrome (RTT) are at risk of having low bone mass and low-energy fractures. METHODS We characterized bone metabolism by both bone formation and resorption markers in blood in a RTT population of 61 girls and women and 122 well-matched healthy controls. Levels of N-terminal propeptides of collagen type 1 (P1NP), C-terminal telopeptide cross links (CTX), osteocalcin (OC), and bone-specific alkaline phosphatase (B-ALP) were compared between RTT patients and controls in regression models adjusted for BMI, vitamin D status, volumetric bone mineral apparent density of the lumbar spine (vBMAD spine), and femoral neck (vBMAD neck). We examined biochemical bone marker levels overall and stratified to persons younger than age 25 y or equal to or older than age 25 y. RESULTS The RTT patients had reduced levels of all biochemical bone markers (P < 0.05), which remained significant in persons younger than 25 y (P ≤ 0.001) regarding P1NP, CTX, and OC. Bone marker levels were not significantly associated to methyl-CpG-binding protein 2 (MECP2) mutation group, walking ability, or previous low-energy fractures. CONCLUSION Our findings of a low bone turnover state in girls with RTT suggest critical attention to medical treatment of low bone mass in young RTT patients.
Collapse
Affiliation(s)
- Gitte Roende
- Center for Rett Syndrome, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Janne Petersen
- Clinical Research Centre, Copenhagen University Hospital, Hvidovre Hospital, Hvidovre, Denmark
| | - Kirstine Ravn
- Center for Rett Syndrome, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Kathrine Fuglsang
- Center for Rett Syndrome, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Henrik Andersen
- Department of Exercise and Sports Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jytte B Nielsen
- Center for Rett Syndrome, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Karen Brøndum-Nielsen
- Genetic Counseling Clinic, Kennedy Center, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Jens-Erik B Jensen
- Department of Endocrinology, Copenhagen University Hospital, Hvidovre Hospital, Hvidovre, Denmark
| |
Collapse
|
25
|
Monteiro CB, Savelsbergh GJ, Smorenburg AR, Graciani Z, Torriani-Pasin C, de Abreu LC, Valenti VE, Kok F. Quantification of functional abilities in Rett syndrome: a comparison between stages III and IV. Neuropsychiatr Dis Treat 2014; 10:1213-22. [PMID: 25061307 PMCID: PMC4086772 DOI: 10.2147/ndt.s57333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We aimed to evaluate the functional abilities of persons with Rett syndrome (RTT) in stages III and IV. The group consisted of 60 females who had been diagnosed with RTT: 38 in stage III, mean age (years) of 9.14, with a standard deviation of 5.84 (minimum 2.2/maximum 26.4); and 22 in stage IV, mean age of 12.45, with a standard deviation of 6.17 (minimum 5.3/maximum 26.9). The evaluation was made using the Pediatric Evaluation of Disability Inventory, which has 197 items in the areas of self-care, mobility, and social function. The results showed that in the area of self-care, stage III and stage IV RTT persons had a level of 24.12 and 18.36 (P=0.002), respectively. In the area of mobility, stage III had 37.22 and stage IV had 14.64 (P<0.001), while in the area of social function, stage III had 17.72 and stage IV had 12.14 (P=0.016). In conclusion, although persons with stage III RTT have better functional abilities when compared with stage IV, the areas of mobility, self-care, and social function are quite affected, which shows a great functional dependency and need for help in basic activities of daily life.
Collapse
Affiliation(s)
- Carlos Bm Monteiro
- School of Arts, Sciences and Humanities, University of São Paulo, São Paulo, Brazil
| | - Geert Jp Savelsbergh
- MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University, Amsterdam, the Netherlands
| | | | - Zodja Graciani
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | | | - Luiz Carlos de Abreu
- Laboratory of Scientific Writing, Department of Morphology and Physiology, School of Medicine of ABC, Santo Andre, Brazil
| | - Vitor E Valenti
- Department of Speech Language and Hearing Therapy, Faculty of Philosophy and Sciences, UNESP, Marilia, Brazil
| | - Fernando Kok
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Systemic delivery of MeCP2 rescues behavioral and cellular deficits in female mouse models of Rett syndrome. J Neurosci 2013; 33:13612-20. [PMID: 23966684 DOI: 10.1523/jneurosci.1854-13.2013] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
De novo mutations in the X-linked gene encoding the transcription factor methyl-CpG binding protein 2 (MECP2) are the most frequent cause of the neurological disorder Rett syndrome (RTT). Hemizygous males usually die of neonatal encephalopathy. Heterozygous females survive into adulthood but exhibit severe symptoms including microcephaly, loss of purposeful hand motions and speech, and motor abnormalities, which appear after a period of apparently normal development. Most studies have focused on male mouse models because of the shorter latency to and severity in symptoms, yet how well these mice mimic the disease in affected females is not clear. Very few therapeutic treatments have been proposed for females, the more gender-appropriate model. Here, we show that self-complementary AAV9, bearing MeCP2 cDNA under control of a fragment of its own promoter (scAAV9/MeCP2), is capable of significantly stabilizing or reversing symptoms when administered systemically into female RTT mice. To our knowledge, this is the first potential gene therapy for females afflicted with RTT.
Collapse
|
27
|
Epigenetics and autism. AUTISM RESEARCH AND TREATMENT 2013; 2013:826156. [PMID: 24151554 PMCID: PMC3787640 DOI: 10.1155/2013/826156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/17/2013] [Accepted: 08/01/2013] [Indexed: 12/19/2022]
Abstract
This review identifies mechanisms for altering DNA-histone interactions of cell chromatin to upregulate or downregulate gene expression that could serve as epigenetic targets for therapeutic interventions in autism. DNA methyltransferases (DNMTs) can phosphorylate histone H3 at T6. Aided by protein kinase C β 1, the DNMT lysine-specific demethylase-1 prevents demethylation of H3 at K4. During androgen-receptor-(AR-) dependent gene activation, this sequence may produce AR-dependent gene overactivation which may partly explain the male predominance of autism. AR-dependent gene overactivation in conjunction with a DNMT mechanism for methylating oxytocin receptors could produce high arousal inputs to the amygdala resulting in aberrant socialization, a prime characteristic of autism. Dysregulation of histone methyltransferases and histone deacetylases (HDACs) associated with low activity of methyl CpG binding protein-2 at cytosine-guanine sites in genes may reduce the capacity for condensing chromatin and silencing genes in frontal cortex, a site characterized by decreased cortical interconnectivity in autistic subjects. HDAC1 inhibition can overactivate mRNA transcription, a putative mechanism for the increased number of cerebral cortical columns and local frontal cortex hyperactivity in autistic individuals. These epigenetic mechanisms underlying male predominance, aberrant social interaction, and low functioning frontal cortex may be novel targets for autism prevention and treatment strategies.
Collapse
|
28
|
Panighini A, Duranti E, Santini F, Maffei M, Pizzorusso T, Funel N, Taddei S, Bernardini N, Ippolito C, Virdis A, Costa M. Vascular dysfunction in a mouse model of Rett syndrome and effects of curcumin treatment. PLoS One 2013; 8:e64863. [PMID: 23705018 PMCID: PMC3660336 DOI: 10.1371/journal.pone.0064863] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 04/22/2013] [Indexed: 02/07/2023] Open
Abstract
Mutations in the coding sequence of the X-linked gene MeCP2 (Methyl CpG-binding protein) are present in around 80% of patients with Rett Syndrome, a common cause of intellectual disability in female and to date without any effective pharmacological treatment. A relevant, and so far unexplored feature of RTT patients, is a marked reduction in peripheral circulation. To investigate the relationship between loss of MeCP2 and this clinical aspect, we used the MeCP2 null mouse model B6.129SF1-MeCP2tm1Jae for functional and pharmacological studies. Functional experiments were performed on isolated resistance mesenteric vessels, mounted on a pressurized myograph. Vessels from female MeCP2(+/-) mice show a reduced endothelium-dependent relaxation, due to a reduced Nitric Oxide (NO) availability secondary to an increased Reactive Oxygen Species (ROS) generation. Such functional aspects are associated with an intravascular increase in superoxide anion production, and a decreased vascular eNOS expression. These alterations are reversed by curcumin administration (5% (w/w) dietary curcumin for 21 days), which restores endothelial NO availability, decreases intravascular ROS production and normalizes vascular eNOS gene expression. In conclusion our findings highlight alterations in the vascular/endothelial system in the absence of a correct function of MeCP2, and uncover related cellular/molecular mechanisms that are rescued by an anti-oxidant treatment.
Collapse
MESH Headings
- Animals
- Blood Vessels/drug effects
- Blood Vessels/physiopathology
- Curcumin/administration & dosage
- Curcumin/pharmacology
- Curcumin/therapeutic use
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Immunohistochemistry
- Malondialdehyde/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rett Syndrome/complications
- Rett Syndrome/drug therapy
- Rett Syndrome/physiopathology
- Superoxides/metabolism
- Time Factors
- Vascular Diseases/complications
- Vascular Diseases/drug therapy
- Vascular Diseases/physiopathology
Collapse
Affiliation(s)
- Anna Panighini
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa, Italy
| | - Emiliano Duranti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ferruccio Santini
- Department of Endocrinology and Kidney; University-Hospital of Pisa, Pisa, Italy
| | - Margherita Maffei
- Department of Endocrinology and Kidney; University-Hospital of Pisa, Pisa, Italy
- Dulbecco Telethon Institute, Rome, Italy
- Institute of Food Science, CNR, Avellino, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa, Italy
- Institute of Psychology, University of Florence, Florence, Italy
| | - Niccola Funel
- Department of Surgery, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mario Costa
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa, Italy
- Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
29
|
Watson LA, Solomon LA, Li JR, Jiang Y, Edwards M, Shin-ya K, Beier F, Bérubé NG. Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span. J Clin Invest 2013; 123:2049-63. [PMID: 23563309 DOI: 10.1172/jci65634] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 02/14/2013] [Indexed: 01/02/2023] Open
Abstract
Human ATRX mutations are associated with cognitive deficits, developmental abnormalities, and cancer. We show that the Atrx-null embryonic mouse brain accumulates replicative damage at telomeres and pericentromeric heterochromatin, which is exacerbated by loss of p53 and linked to ATM activation. ATRX-deficient neuroprogenitors exhibited higher incidence of telomere fusions and increased sensitivity to replication stress-inducing drugs. Treatment of Atrx-null neuroprogenitors with the G-quadruplex (G4) ligand telomestatin increased DNA damage, indicating that ATRX likely aids in the replication of telomeric G4-DNA structures. Unexpectedly, mutant mice displayed reduced growth, shortened life span, lordokyphosis, cataracts, heart enlargement, and hypoglycemia, as well as reduction of mineral bone density, trabecular bone content, and subcutaneous fat. We show that a subset of these defects can be attributed to loss of ATRX in the embryonic anterior pituitary that resulted in low circulating levels of thyroxine and IGF-1. Our findings suggest that loss of ATRX increases DNA damage locally in the forebrain and anterior pituitary and causes tissue attrition and other systemic defects similar to those seen in aging.
Collapse
Affiliation(s)
- L Ashley Watson
- Children’s Health Research Institute, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lo T, Tsai CF, Shih YRV, Wang YT, Lu SC, Sung TY, Hsu WL, Chen YJ, Lee OK. Phosphoproteomic Analysis of Human Mesenchymal Stromal Cells during Osteogenic Differentiation. J Proteome Res 2011; 11:586-98. [DOI: 10.1021/pr200868p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ting Lo
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chia-Feng Tsai
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yu-Ru V. Shih
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Wang
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Sheng-Chieh Lu
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ting-Yi Sung
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Wen-Lian Hsu
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Chen
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Oscar K. Lee
- Department of Medical Research and Education and ‡Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine and ∥Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Chemistry and Genomics Research Center, ¶Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Chemistry, and #Institute of Information Science, Academia Sinica, Taipei, Taiwan
- Department of Chemistry and ○Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Roende G, Ravn K, Fuglsang K, Andersen H, Nielsen JB, Brøndum-Nielsen K, Jensen JEB. DXA measurements in Rett syndrome reveal small bones with low bone mass. J Bone Miner Res 2011; 26:2280-6. [PMID: 21590733 DOI: 10.1002/jbmr.423] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Low bone mass is reported in growth-retarded patients harboring mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene causing Rett syndrome (RTT). We present the first study addressing both bone mineral density (BMD) and bone size in RTT. Our object was to determine whether patients with RTT do have low BMD when correcting for smaller bones by examination with dual-energy X-ray absorptiometry (DXA). We compared areal BMD (aBMD(spine) and aBMD(total hip) ) and volumetric bone mineral apparent density (vBMAD(spine) and vBMAD(neck) ) in 61 patients and 122 matched healthy controls. Further, spine and hip aBMD and vBMAD of patients were associated with clinical risk factors of low BMD, low-energy fractures, MECP2 mutation groups, and X chromosome inactivation (XCI). Patients with RTT had reduced bone size on the order of 10% and showed lower values of spine and hip aBMD and vBMAD (p < .001) adjusted for age, pubertal status, and body mass index (BMI). aBMD(spine) , vBMAD(spine) , and aBMD(total hip) were associated with low-energy fractures (p < .05). Walking was significantly associated to aBMD(total hip) and vBMAD(neck) adjusted for age and body mass index (BMI). Further, vBMAD(neck) was significantly associated to a diagnosis of epilepsy, antiepileptic treatment, and MECP2 mutation group, but none of the associations with vBMAD(neck) remained clinically significant in a multiple adjusted model including age and BMI. Neither aBMD(spine) , vBMAD(spine) , nor aBMD(total hip) were significantly associated with epilepsy, antiepileptic treatment, MECP2 mutation group, XCI, or vitamin D status. Low bone mass and small bones are evident in RTT, indicating an apparent low-bone-formation phenotype.
Collapse
Affiliation(s)
- Gitte Roende
- Center for Rett Syndrome, Kennedy Center, Glostrup, Denmark.
| | | | | | | | | | | | | |
Collapse
|
32
|
Allanson JE, Hennekam RCM, Moog U, Smeets EE. Rett syndrome: a study of the face. Am J Med Genet A 2011; 155A:1563-7. [PMID: 21626673 DOI: 10.1002/ajmg.a.34027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 03/12/2011] [Indexed: 11/08/2022]
Abstract
Rett syndrome is a unique disorder of neurodevelopment that is characterized by an evolving behavioral and developmental phenotype, which emerges after an apparently normal early infantile period. It almost exclusively affects females. The face of Rett syndrome is said to resemble that of Angelman syndrome, although there seems little objective support for this impression and it is not a concept with universal support. This observational and anthropometric study was carried out to define the key facial characteristics of females with Rett syndrome and to evaluate whether any changes of significance occur with age. Thirty-seven affected Caucasian females, from 2 to 20 years of age, were evaluated. Thirty-five of them had a documented mutation in MECP2 while the remaining two fulfilled the clinical criteria for Rett syndrome and had been diagnosed by an experienced clinician. Few unusual facial features were noted. Almost all facial measurements were within the normal range although head circumference tended to fall below the normal range with increasing age. The pattern of measurements was constant over time, with the exception of increased facial width in the under 3-year-old girls. The face of Rett syndrome does not demonstrate marked prognathism, wide mouth, spaced teeth or striking microcephaly, all features of Angelman syndrome. Thus, while Rett and Angelman syndromes have similar clinical, neurological, and behavioral phenotypes, they do not appear to share similar facial features.
Collapse
Affiliation(s)
- Judith E Allanson
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada.
| | | | | | | |
Collapse
|
33
|
Jefferson AL, Woodhead HJ, Fyfe S, Briody J, Bebbington A, Strauss BJ, Jacoby P, Leonard H. Bone mineral content and density in Rett syndrome and their contributing factors. Pediatr Res 2011; 69:293-8. [PMID: 21178825 PMCID: PMC3906210 DOI: 10.1203/pdr.0b013e31820b937d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study used densitometry to investigate the areal bone mineral density (aBMD) and bone mineral content (BMC) in an Australian Rett syndrome cohort and to assess how factors such as genotype, epilepsy, BMI, and mobility affect these parameters. The influence of lean tissue mass (LTM) and bone area (BA) on total body BMC (TBBMC) was also investigated. Participants, recruited from the Australian Rett Syndrome Database (ARSD), had TBBMC and lumbar spine (LS) and femoral neck (FN) aBMD measured using Dual energy x-ray absorptiometry. Mean height standardized Z scores and CIs for the bone outcomes were obtained from multiple regression models. The mean height Z score for the FN aBMD was low at -2.20, while the LS aBMD was -0.72. The TBBMC mean height Z score was -0.62, although once adjusted for BA and LTM, the mean was above zero, suggesting that low BMC can be explained by narrow bones and decreased muscle mass, likely secondary to decreased mobility. Multiple linear regression identified the p.R168× and p.T158M mutations as the strongest predictors of low aBMC and BMD for all bone outcomes. The strong relationship between genotype, BMC, and aBMD is likely underpinned by the strong relationship between LTM, mobility, and bone outcome measures.
Collapse
Affiliation(s)
- Amanda L Jefferson
- School of Biomedical Sciences, Curtin University of Technology, Perth, Western Australia 6845, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shapiro JR, Bibat G, Hiremath G, Blue ME, Hundalani S, Yablonski T, Kantipuly A, Rohde C, Johnston M, Naidu S. Bone mass in Rett syndrome: association with clinical parameters and MECP2 mutations. Pediatr Res 2010; 68:446-51. [PMID: 20661168 PMCID: PMC3074246 DOI: 10.1203/pdr.0b013e3181f2edd2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the MECP2 gene. In 49 female RTT children, aged 1.9-17 y, bone mass was assessed and correlated with clinical parameters and mutations involving the MECP2 gene. We also studied five adult females, aged 20-33 y, and one male child, aged 6 y. Lumbar spine bone mineral content (BMC) and bone mineral density (BMD) were correlated with weight, height, BMI, clinical severity, degree of scoliosis, use of anticonvulsants, and ambulatory status. L1-L4 BMD and BMC showed that 48.9% of them had BMD values >2 SD below age-related norms. BMD values were in the osteoporotic range in the five adult females with RTT. Eleven percent of the children and adults with RTT experienced fractures. Low bone mass was correlated with marginal significance to clinical severity and ambulation but not to scoliosis or anticonvulsant use. Lowest bone mass occurred in patients with T158M or R270X mutations but without statistical significance. Studies in a murine model of RTT confirmed low bone mass as an inherent component of this syndrome. MECP2 mutations and clinical parameters impact bone mass in RTT, but an association with a specific mutation was not demonstrable.
Collapse
Affiliation(s)
- Jay R Shapiro
- Department of Bone and Osteogenesis Imperfecta, Kennedy Krieger Institution, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hofstaetter JG, Roetzer KM, Krepler P, Nawrot-Wawrzyniak K, Schwarzbraun T, Klaushofer K, Roschger P. Altered bone matrix mineralization in a patient with Rett syndrome. Bone 2010; 47:701-5. [PMID: 20601296 DOI: 10.1016/j.bone.2010.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/31/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022]
Abstract
Rett syndrome (RTT) is a common X-linked neurodevelopmental disorder caused by mutations in the coding region of methyl-CpG-binding 2 (MECP2) gene. Patients with RTT have a low bone mineral density and increased risk of fracture. However, very little is known if bone matrix mineralization is altered in RTT. A 17-year-old girl with a classical form of RTT with a heterozygous nonsense mutation in exon 3 in the MECP2-gene was treated in our hospital. Her femoral neck BMD is 43.3% below the 3rd percentile when compared to age and sex-matched controls. She underwent surgery for correction of her scoliosis, which provided a unique opportunity to obtain bone tissue to study bone matrix mineralization (Bone Mineralization Density Distribution-BMDD) using quantitative backscattered electron imaging (qBEI) and histomorphometry. BMDD outcomes were compared to recently published normative reference data for young individuals. qBEI analysis showed a significant shift to lower matrix mineralization despite histomorphometric indices indicate a low bone turnover. There was a reduction in CaMean (-7.92%) and CaPeak (-3.97%), which describe the degree of mineralization. Furthermore the fraction of low mineralized matrix (CaLow: +261.84%) was dramatically increased, which was accompanied with an increase in the heterogeneity of mineralization (CaWidth: +86.34%). Our findings show a significantly altered bone matrix mineralization of a typical patient with RTT. This may partly explain the low bone density seen in these patients. These results also warrant further studies on the molecular role of MECP2 in bone matrix mineralization.
Collapse
Affiliation(s)
- Jochen G Hofstaetter
- Department of Orthopaedic Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
36
|
Xu XH, Dong SS, Guo Y, Yang TL, Lei SF, Papasian CJ, Zhao M, Deng HW. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev 2010; 31:447-505. [PMID: 20357209 PMCID: PMC3365849 DOI: 10.1210/er.2009-0032] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 02/02/2010] [Indexed: 12/12/2022]
Abstract
Osteoporosis is a complex human disease that results in increased susceptibility to fragility fractures. It can be phenotypically characterized using several traits, including bone mineral density, bone size, bone strength, and bone turnover markers. The identification of gene variants that contribute to osteoporosis phenotypes, or responses to therapy, can eventually help individualize the prognosis, treatment, and prevention of fractures and their adverse outcomes. Our previously published reviews have comprehensively summarized the progress of molecular genetic studies of gene identification for osteoporosis and have covered the data available to the end of September 2007. This review represents our continuing efforts to summarize the important and representative findings published between October 2007 and November 2009. The topics covered include genetic association and linkage studies in humans, transgenic and knockout mouse models, as well as gene-expression microarray and proteomics studies. Major results are tabulated for comparison and ease of reference. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis.
Collapse
Affiliation(s)
- Xiang-Hong Xu
- Institute of Molecular Genetics, Xi'an Jiaotong University, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sloofman LG, Verdelis K, Spevak L, Zayzafoon M, Yamauchi M, Opdenaker LM, Farach-Carson MC, Boskey AL, Kirn-Safran CB. Effect of HIP/ribosomal protein L29 deficiency on mineral properties of murine bones and teeth. Bone 2010; 47:93-101. [PMID: 20362701 PMCID: PMC2892198 DOI: 10.1016/j.bone.2010.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 03/21/2010] [Accepted: 03/23/2010] [Indexed: 01/16/2023]
Abstract
Mice lacking HIP/RPL29, a component of the ribosomal machinery, display increased bone fragility. To understand the effect of sub-efficient protein synthetic rates on mineralized tissue quality, we performed dynamic and static histomorphometry and examined the mineral properties of both bones and teeth in HIP/RPL29 knock-out mice using Fourier transform infrared imaging (FTIRI). While loss of HIP/RPL29 consistently reduced total bone size, decreased mineral apposition rates were not significant, indicating that short stature is not primarily due to impaired osteoblast function. Interestingly, our microspectroscopic studies showed that a significant decrease in collagen crosslinking during maturation of HIP/RPL29-null bone precedes an overall enhancement in the relative extent of mineralization of both trabecular and cortical adult bones. This report provides strong genetic evidence that ribosomal insufficiency induces subtle organic matrix deficiencies which elevates calcification. Consistent with the HIP/RPL29-null bone phenotype, HIP/RPL29-deficient teeth also showed reduced geometric properties accompanied with relative increased mineral densities of both dentin and enamel. Increased mineralization associated with enhanced tissue fragility related to imperfection in organic phase microstructure evokes defects seen in matrix protein-related bone and tooth diseases. Thus, HIP/RPL29 mice constitute a new genetic model for studying the contribution of global protein synthesis in the establishment of organic and inorganic phases in mineral tissues.
Collapse
Affiliation(s)
- Laura G. Sloofman
- Dept. Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kostas Verdelis
- Mineralized Tissue Laboratory, Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Lyudmila Spevak
- Mineralized Tissue Laboratory, Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Majd Zayzafoon
- Dept. Pathology, University of Birmingham, Birmingham, AL 35294, USA
| | - Mistuo Yamauchi
- North Carolina Oral Health Institute, School of Dentistry, University of North Carolina at Chapel Hill, Durham, NC 27709, USA
| | - Lynn M. Opdenaker
- Dept. Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mary C. Farach-Carson
- Dept. Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Dept. Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Adele L. Boskey
- Mineralized Tissue Laboratory, Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA
| | | |
Collapse
|
38
|
Alvarez-Saavedra M, Carrasco L, Sura-Trueba S, Demarchi Aiello V, Walz K, Neto JX, Young JI. Elevated expression of MeCP2 in cardiac and skeletal tissues is detrimental for normal development. Hum Mol Genet 2010; 19:2177-2190. [PMID: 20203171 DOI: 10.1093/hmg/ddq096] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MeCP2 plays a critical role in interpreting epigenetic signatures that command chromatin conformation and regulation of gene transcription. In spite of MeCP2's ubiquitous expression, its functions have always been considered in the context of brain physiology. In this study, we demonstrate that alterations of the normal pattern of expression of MeCP2 in cardiac and skeletal tissues are detrimental for normal development. Overexpression of MeCP2 in the mouse heart leads to embryonic lethality with cardiac septum hypertrophy and dysregulated expression of MeCP2 in skeletal tissue produces severe malformations. We further show that MeCP2's expression in the heart is developmentally regulated; further suggesting that it plays a key role in regulating transcriptional programs in non-neural tissues.
Collapse
|