1
|
Hollensteiner M, Traweger A, Augat P. Anatomic variability of the human femur and its implications for the use of artificial bones in biomechanical testing. BIOMED ENG-BIOMED TE 2024; 69:551-562. [PMID: 38997222 DOI: 10.1515/bmt-2024-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Aside from human bones, epoxy-based synthetic bones are regarded as the gold standard for biomechanical testing os osteosyntheses. There is a significant discrepancy in biomechanical testing between the determination of fracture stability due to implant treatment in experimental methods and their ability to predict the outcome of stability and fracture healing in a patient. One possible explanation for this disparity is the absence of population-specific variables such as age, gender, and ethnicity in artificial bone, which may influence the geometry and mechanical properties of bone. The goal of this review was to determine whether commercially available artificial bones adequately represent human anatomical variability for mechanical testing of femoral osteosyntheses. To summarize, the availability of suitable bone surrogates currently limits the validity of mechanical evaluations of implant-bone constructs. The currently available synthetic bones neither accurately reflect the local mechanical properties of human bone, nor adequately represent the necessary variability between various populations, limiting their generalized clinical relevance.
Collapse
Affiliation(s)
- Marianne Hollensteiner
- Institute for Biomechanics, BG Unfallklinik Murnau, Murnau, Germany
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Peter Augat
- Institute for Biomechanics, BG Unfallklinik Murnau, Murnau, Germany
- Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
2
|
Kong SH, Cho W, Park SB, Choo J, Kim JH, Kim SW, Shin CS. A Computed Tomography-Based Fracture Prediction Model With Images of Vertebral Bones and Muscles by Employing Deep Learning: Development and Validation Study. J Med Internet Res 2024; 26:e48535. [PMID: 38995678 PMCID: PMC11282387 DOI: 10.2196/48535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/27/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND With the progressive increase in aging populations, the use of opportunistic computed tomography (CT) scanning is increasing, which could be a valuable method for acquiring information on both muscles and bones of aging populations. OBJECTIVE The aim of this study was to develop and externally validate opportunistic CT-based fracture prediction models by using images of vertebral bones and paravertebral muscles. METHODS The models were developed based on a retrospective longitudinal cohort study of 1214 patients with abdominal CT images between 2010 and 2019. The models were externally validated in 495 patients. The primary outcome of this study was defined as the predictive accuracy for identifying vertebral fracture events within a 5-year follow-up. The image models were developed using an attention convolutional neural network-recurrent neural network model from images of the vertebral bone and paravertebral muscles. RESULTS The mean ages of the patients in the development and validation sets were 73 years and 68 years, and 69.1% (839/1214) and 78.8% (390/495) of them were females, respectively. The areas under the receiver operator curve (AUROCs) for predicting vertebral fractures were superior in images of the vertebral bone and paravertebral muscles than those in the bone-only images in the external validation cohort (0.827, 95% CI 0.821-0.833 vs 0.815, 95% CI 0.806-0.824, respectively; P<.001). The AUROCs of these image models were higher than those of the fracture risk assessment models (0.810 for major osteoporotic risk, 0.780 for hip fracture risk). For the clinical model using age, sex, BMI, use of steroids, smoking, possible secondary osteoporosis, type 2 diabetes mellitus, HIV, hepatitis C, and renal failure, the AUROC value in the external validation cohort was 0.749 (95% CI 0.736-0.762), which was lower than that of the image model using vertebral bones and muscles (P<.001). CONCLUSIONS The model using the images of the vertebral bone and paravertebral muscle showed better performance than that using the images of the bone-only or clinical variables. Opportunistic CT screening may contribute to identifying patients with a high fracture risk in the future.
Collapse
Affiliation(s)
- Sung Hye Kong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Wonwoo Cho
- Kim Jaechul Graduate School of AI, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung Bae Park
- Department of Neurosurgery, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Jaegul Choo
- Kim Jaechul Graduate School of AI, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Morgan H, Knight K, Meertens R. Regional variation in bone mineral density of the distal radius. Osteoporos Sarcopenia 2024; 10:54-59. [PMID: 39035230 PMCID: PMC11260022 DOI: 10.1016/j.afos.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 07/23/2024] Open
Abstract
Objectives This study investigates the regional variation in areal bone mineral density (aBMD) at the distal radius, a critical site for osteoporosis-related fractures. Understanding aBMD distribution is essential for accurate diagnosis and management of osteoporosis. Methods The study involved 261 participants aged over 50. Using dual-energy X-ray absorptiometry (DXA) scans, aBMD was recorded across contiguous regions of the distal radius. Factors considered include age, sex, and hand dominance, providing a comprehensive view of aBMD distribution. Results The findings indicated a consistent pattern in aBMD distribution along the radius, with a plateau around the one-third distance from the wrist. Notably, significant differences in aBMD were observed between age groups, especially among post-menopausal women. The study also recorded minor variations in aBMD between dominant and non-dominant forearms. Conclusions The study's insights into aBMD variation at the distal radius have implications for osteoporosis research and clinical diagnosis. It highlights the importance of standardized region of interest placement in DXA scans for accurate assessment.
Collapse
Affiliation(s)
- Helen Morgan
- University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Katy Knight
- University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Robert Meertens
- University of Exeter, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| |
Collapse
|
4
|
Zhang G, Jia X, Li Z, Wang Q, Gu H, Liu Y, Bai Z, Mao H. Comprehensively characterizing heterogeneous and transversely isotropic properties of femur cortical bones. J Mech Behav Biomed Mater 2024; 151:106387. [PMID: 38246092 DOI: 10.1016/j.jmbbm.2024.106387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/23/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Comprehensive characterization of the transversely isotropic mechanical properties of long bones along both the longitudinal and circumferential gradients is crucial for developing accurate mathematical models and studying bone biomechanics. In addition, mechanical testing to derive elastic, plastic, and failure properties of bones is essential for modeling plastic deformation and failure of bones. To achieve these, we machined a total of 336 cortical specimens, including 168 transverse and 168 longitudinal specimens, from four different quadrants of seven different sections of 3 bovine femurs. We conducted three-point bending tests of these specimens at a loading rate of 0.02 mm/s. Young's modulus, yield stress, tangential modulus, and effective plastic strain for each specimen were derived from correction equations based on classical beam theory. Our statistical analysis reveals that the longitudinal gradient has a significant effect on the Young's modulus, yield stress, and tangential modulus of both longitudinal and transverse specimens, whereas the circumferential gradient significantly influences the Young's modulus, yield stress, and tangential modulus of transverse specimens only. The differences in Young's modulus and yield stress between longitudinal specimens from different sections are greater than 40%, whereas those between transverse specimens are approximately 30%. The Young's modulus and yield stress of transverse specimens in the anterior quadrant were 18.81%/15.46% and 18.34%/14.88% higher than those in the posterior and lateral quadrants, respectively. There is no significant interaction between the longitudinal gradient and the circumferential gradient. Considering the transverse isotropy, it is crucial to consider loading direction when investigating the impact of circumferential gradients in the anterior, lateral, medial, and posterior directions. Our findings indicate that the conventional assumption of homogeneity in simulating the cortical bone of long bones may have limitations, and researchers should consider the anatomical position and loading direction of femur specimens for precise prediction of mechanical responses.
Collapse
Affiliation(s)
- Guanjun Zhang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| | - Xiaohang Jia
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| | - Zhentao Li
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| | - Qinhuai Wang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| | - Hongyue Gu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| | - Yu Liu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| | - Zhonghao Bai
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082, China
| | - Haojie Mao
- Department of Mechanical and Materials Engineering, Faculty of Engineering, School of Biomedical Engineering, Western University, London, ON, N6A 5B9, Canada.
| |
Collapse
|
5
|
Abdelrahman S, Purcell M, Rantalainen T, Coupaud S, Ireland A. Regional and temporal variation in bone loss during the first year following spinal cord injury. Bone 2023; 171:116726. [PMID: 36871898 DOI: 10.1016/j.bone.2023.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Osteoporosis is a consequence of spinal cord injury (SCI) that leads to fragility fractures. Visual assessment of bone scans suggests regional variation in bone loss, but this has not been objectively characterised. In addition, substantial inter-individual variation in bone loss following SCI has been reported but it is unclear how to identify fast bone losers. Therefore, to examine regional bone loss, tibial bone parameters were assessed in 13 individuals with SCI (aged 16-76 years). Peripheral quantitative computed tomography scans at 4 % and 66 % tibia length were acquired within 5 weeks, 4 months and 12 months postinjury. Changes in total bone mineral content (BMC), and bone mineral density (BMD) were assessed in ten concentric sectors at the 4 % site. Regional changes in BMC and cortical BMD were analysed in thirty-six polar sectors at the 66 % site using linear mixed effects models. Relationships between regional and total loss at 4 months and 12 months timepoints were assessed using Pearson correlation. At the 4 % site, total BMC (P = 0.001) decreased with time. Relative losses were equal across the sectors (all P > 0.1). At the 66 % site, BMC and cortical BMD absolute losses were similar (all P > 0.3 and P > 0.05, respectively) across polar sectors, but relative loss was greatest in the posterior region (all P < 0.01). At both sites, total BMC loss at 4 months was strongly positively associated with the total loss at 12 months (r = 0.84 and r = 0.82 respectively, both P < 0.001). This correlation was stronger than those observed with 4-month BMD loss in several radial and polar sectors (r = 0.56-0.77, P < 0.05). These results confirm that SCI-induced bone loss varies regionally in the tibial diaphysis. Moreover, bone loss at 4 months is a strong predictor of total loss 12 months postinjury. More studies on larger populations are required to confirm these findings.
Collapse
Affiliation(s)
- Shima Abdelrahman
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, Glasgow, United Kingdom; Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, United Kingdom; Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom.
| | - Mariel Purcell
- Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Timo Rantalainen
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, Finland
| | - Sylvie Coupaud
- Department of Biomedical Engineering, Wolfson Building, University of Strathclyde, Glasgow, United Kingdom; Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Alex Ireland
- Research Centre for Musculoskeletal Science & Sports Medicine, Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
6
|
Long-Term Cola Intake Does Not Cause Evident Pathological Alterations in the Femoral Bone Microstructure: An Animal Study in Adult Mice. Nutrients 2023; 15:nu15030583. [PMID: 36771291 PMCID: PMC9920312 DOI: 10.3390/nu15030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Short-term animal experiments and association studies in humans have shown that cola intake may have a detrimental impact on bone mineral density (BMD); however, other bone parameters have not been investigated. This study examined the effects of long-term cola consumption on the femoral bone microstructure using adult mice (n = 32) as an animal model, which were divided into water and cola groups depending on whether they received water or cola along with a standard rodent diet for 6 months. Micro-computed tomography revealed that cola intake did not significantly affect all measured parameters characterizing trabecular bone mass and microarchitecture, as well as cortical microarchitecture and geometry in both sexes, although a slight deterioration of these parameters was noted. Cola consumption also resulted in a slightly, statistically insignificant worsening of bone mechanical properties. In contrast to female mice, males receiving cola had a lower area of primary osteons' vascular canals. Nevertheless, long-term cola intake did not cause evident pathological alterations in the femur of adult mice, possibly due to a balanced diet and no restriction of physical activity. Therefore, the adverse effects of cola consumption on BMD, the only bone parameter studied so far, may be caused by other risk and lifestyle factors.
Collapse
|
7
|
Assessment of Bone Microstructure by Micro CT in C57BL/6J Mice for Sex-Specific Differentiation. Int J Mol Sci 2022; 23:ijms232314585. [PMID: 36498911 PMCID: PMC9735535 DOI: 10.3390/ijms232314585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
It remains uncertain which skeletal sites and parameters should be analyzed in rodent studies evaluating bone health and disease. In this cross-sectional mouse study using micro-computed tomography (µCT), we explored: (1) which microstructural parameters can be used to discriminate female from male bones and (2) whether it is meaningful to evaluate more than one bone site. Microstructural parameters of the trabecular and/or cortical compartments of the femur, tibia, thoracic and lumbar vertebral bodies, and skull were evaluated by µCT in 10 female and 10 male six-month-old C57BL/6J mice. The trabecular number (TbN) was significantly higher, while the trabecular separation (TbSp) was significantly lower in male compared to female mice at all skeletal sites assessed. Overall, bone volume/tissue volume (BV/TV) was also significantly higher in male vs. female mice (except for the thoracic spine, which did not differ by sex). Most parameters of the cortical bone microstructure did not differ between male and female mice. BV/TV, TbN, and TbSp at the femur, and TbN and TbSp at the tibia and lumbar spine could fully (100%) discriminate female from male bones. Cortical thickness (CtTh) at the femur was the best parameter to detect sex differences in the cortical compartment (AUC = 0.914). In 6-month-old C57BL/6J mice, BV/TV, TbN, and TbSp can be used to distinguish male from female bones. Whenever it is not possible to assess multiple bone sites, we propose to evaluate the bone microstructure of the femur for detecting potential sex differences.
Collapse
|
8
|
Ota S, Chiba K, Okazaki N, Yonekura A, Tomita M, Osaki M. Cortical thickness mapping at segmented regions in the distal radius using HR-pQCT. J Bone Miner Metab 2022; 40:1021-1032. [PMID: 36217044 DOI: 10.1007/s00774-022-01370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION An advanced method of analyzing the cortical bone microarchitecture of the distal radius using high-resolution peripheral quantitative computed tomography (HR-pQCT) was developed. MATERIALS AND METHODS The subjects were 60 women (20: aged 30-49, 20: aged 50-69, and 20: aged 70-89 years). The distal radius was scanned by HR-pQCT, and its cortical volumetric bone mineral density (Ct.vBMD), cortical porosity (Ct.Po), and cortical thickness (Ct.Th) were measured. The cortical bone was also divided into three areas according to whether its thickness was < 0.5 mm, 0.5-1.0 mm, or > 1.0 mm, and the percentage of each surface area in the total surface area of cortical bone was calculated (Ct.Th (<0.5), Ct.Th (0.5-1.0), Ct.Th (>1.0), respectively). The cortical bone at the distal radius was further segmented into dorsal, palmar, radial, and ulnar sides, and the above-described parameters were measured in these regions. RESULTS Integral analysis showed that Ct.vBMD and Ct.Th decreased and Ct.Po increased with age (R = - 0.62, - 0.55, and 0.54). Ct.Th (< 0.5) expanded with age (R = 0.49), with the rate of change between those aged 30-49 years and those aged 50-69 years being 106.7%. On regional analysis, the expansion of Ct.Th (< 0.5) with age was particularly marked on the dorsal and palmar side (R = 0.51 and 0.49), where the rate of change between those aged 30-49 years and those aged 50-69 years was the highest, at 196.1 and 149.6%. CONCLUSION The method to identify areas of cortical bone thinning in the segmented regions of the dorsal, palmar, radial, and ulnar sides of the distal radius using HR-pQCT may offer a sensitive assessment of age-related deterioration of cortical bone.
Collapse
Affiliation(s)
- Shingo Ota
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Narihiro Okazaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Akihiko Yonekura
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masato Tomita
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
9
|
Sigurdsson GV, Schmidt S, Mellström D, Ohlsson C, Saalman R, Lorentzon M. Young Adult Male Patients With Childhood-onset IBD Have Increased Risks of Compromised Cortical and Trabecular Bone Microstructures. Inflamm Bowel Dis 2022:6673056. [PMID: 35993421 DOI: 10.1093/ibd/izac181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Young adults with childhood-onset inflammatory bowel disease (IBD) have increased risks of low areal bone mineral density and low skeletal muscle mass. Volumetric BMD (vBMD), bone geometry and microstructures, in addition to possible associations with skeletal muscle index (SMI) and physical exercise have been scarcely studied in this patient group. PATIENTS AND METHODS In total, 49 young adult male patients with childhood-onset IBD and 245 age- and height-matched young adult male controls were scanned with high-resolution peripheral quantitative computed tomography. Bone geometry, vBMD, and bone microstructures were calculated as median values and compared between the patients and controls. Multivariable linear regression analyses were performed to determine the independent associations among IBD diagnosis, SMI (kg/m2), and physical exercise. RESULTS The group of young adult patients had, in comparison with the controls, significantly smaller median cortical area (126.1 mm2 vs151.1 mm2, P < .001), lower median total vBMD (296.7 mg/cm3 vs 336.7 mg/cm3, P < .001), and lower median cortical vBMD (854.4 mg/cm3 vs 878.5 mg/cm3, P < .001). Furthermore, the patients compared with the controls had lower median trabecular volume fraction (16.8% vs 18.2%, P < .001) and thinner median trabeculae (0.084 mm vs 0.089 mm, P < .001). The differences between the patients with IBD and controls persisted in multivariable analyses that included adjustments for SMI and physical exercise. CONCLUSIONS Young adult men with childhood-onset IBD are at increased risk of having reduced bone quality in both the cortical and trabecular bone structures compared with normative matched controls.
Collapse
Affiliation(s)
- Gudmundur Vignir Sigurdsson
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, and Queen Silvia's Children's Hospital, Gothenburg, Sweden.,Heilbrigdisstofnun Sudurlands, Selfoss, Iceland
| | | | - Dan Mellström
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden
| | - Robert Saalman
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, and Queen Silvia's Children's Hospital, Gothenburg, Sweden
| | - Mattias Lorentzon
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Geriatric Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
10
|
Clinical Devices for Bone Assessment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:35-53. [DOI: 10.1007/978-3-030-91979-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Ultrasonic Assessment of Cancellous Bone Based on the Two-Wave Phenomenon. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1364:119-143. [DOI: 10.1007/978-3-030-91979-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
McLean RR, Samelson EJ, Lorbergs AL, Broe KE, Hannan MT, Boyd SK, Bouxsein ML, Kiel DP. Higher Hand Grip Strength Is Associated With Greater Radius Bone Size and Strength in Older Men and Women: The Framingham Osteoporosis Study. JBMR Plus 2021; 5:e10485. [PMID: 33977203 PMCID: PMC8101610 DOI: 10.1002/jbm4.10485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/21/2021] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Mechanical loading by muscles elicits anabolic responses from bone, thus age‐related declines in muscle strength may contribute to bone fragility in older adults. We used high‐resolution peripheral quantitative computed tomography (HR‐pQCT) to determine the association between grip strength and distal radius bone density, size, morphology, and microarchitecture, as well as bone strength estimated by micro–finite element analysis (μFEA), among older men and women. Participants included 508 men and 651 women participating in the Framingham Offspring Study with grip strength measured in 2011–2014 and HR‐pQCT scanning in 2012–2015. Separately for men and women, analysis of covariance was used to compare HR‐pQCT measures among grip strength quartiles and to test for linear trends, adjusting for age, height, weight, smoking, and physical activity. Mean age was 70 years (range, 50–95 years), and men had higher mean grip strength than the women (37 kg vs. 21 kg). Bone strength estimated by μFEA‐calculated failure load was higher with greater grip strength in both men (p < 0.01) and women (p = 0.04). Higher grip strength was associated with larger cross‐sectional area in both men and women (p < 0.01), with differences in area of 6% and 11% between the lowest to highest grip strength quartiles in men and women, respectively. Cortical thickness was positively associated with grip strength among men only (p = 0.03). Grip strength was not associated with volumetric BMD (vBMD) in men. Conversely, there was a trend for lower total vBMD with higher grip strength among women (p = 0.02), though pairwise comparisons did not reveal any statistically significant differences in total vBMD among grip strength quartiles. Bone microarchitecture (cortical porosity, trabecular thickness, trabecular number) was not associated with grip strength in either men or women. Our findings suggest that the positive association between hand grip strength and distal radius bone strength may be driven primarily by bone size. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Robert R McLean
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife Boston Massachusetts USA.,CorEvitas, LLC Waltham Massachusetts USA
| | - Elizabeth J Samelson
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife Boston Massachusetts USA.,Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts USA
| | | | | | - Marian T Hannan
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife Boston Massachusetts USA.,Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts USA
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary Calgary Alberta Canada
| | - Mary L Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center Boston Massachusetts USA.,Department of Orthopedic Surgery Harvard Medical School Boston Massachusetts USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife Boston Massachusetts USA.,Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
13
|
Shiraishi K, Burghardt AJ, Osaki M, Khosla S, Carballido-Gamio J. Global and Spatial Compartmental Interrelationships of Bone Density, Microstructure, Geometry and Biomechanics in the Distal Radius in a Colles' Fracture Study Using HR-pQCT. Front Endocrinol (Lausanne) 2021; 12:568454. [PMID: 34122326 PMCID: PMC8187761 DOI: 10.3389/fendo.2021.568454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Bone parameters derived from HR-pQCT have been investigated on a parameter-by-parameter basis for different clinical conditions. However, little is known regarding the interrelationships of bone parameters and the spatial distribution of these interrelationships. In this work: 1) we investigate compartmental interrelationships of bone parameters; 2) assess the spatial distribution of interrelationships of bone parameters; and 3) compare interrelationships of bone parameters between postmenopausal women with and without a recent Colles' fracture. METHODS Images from the unaffected radius in fracture cases (n=84), and from the non-dominant radius of controls (n=98) were obtained using HR-pQCT. Trabecular voxel-based maps of local bone volume fraction (L.Tb.BV/TV), homogenized volumetric bone mineral density (H.Tb.BMD), homogenized μFEA-derived strain energy density (H.Tb.SED), and homogenized inter-trabecular distances (H.Tb.1/N) were generated; as well as surface-based maps of apparent cortical bone thickness (Surf.app.Ct.Th), porosity-weighted cortical bone thickness (Surf.Ct.SIT), mean cortical BMD (Surf.Ct.BMD), and mean cortical SED (Surf.Ct.SED). Anatomical correspondences across the parametric maps in the study were established via spatial normalization to a common template. Mean values of the parametric maps before spatial normalization were used to assess compartmental Spearman's rank partial correlations of bone parameters (e.g., between H.Tb.BMD and L.Tb.BV/TV or between Surf.Ct.BMD and Surf.app.Ct.Th). Spearman's rank partial correlations were also assessed for each voxel and vertex of the spatially normalized parametric maps, thus generating maps of Spearman's rank partial correlation coefficients. Correlations were performed independently within each group, and compared between groups using the Fisher's Z transformation. RESULTS All within-group global trabecular and cortical Spearman's rank partial correlations were significant; and the correlations of H.Tb.BMD-L.Tb.BV/TV, H.Tb.BMD-H.Tb.1/N, L.Tb.BV/TV-H.Tb.1/N, Surf.Ct.BMD-Surf.Ct.SED and Surf.Ct.SIT-Surf.Ct.SED were significantly different between controls and fracture cases. The spatial analyses revealed significant heterogeneous voxel- and surface-based correlation coefficient maps across the distal radius for both groups; and the correlation maps of H.Tb.BMD-L.Tb.BV/TV, H.Tb.BMD-H.Tb.1/N, L.Tb.BV/TV-H.Tb.1/N, H.Tb.1/N-H.Tb.SED and Surf.app.Ct.Th - Surf.Ct.SIT yielded small clusters of significant correlation differences between groups. DISCUSSION The heterogeneous spatial distribution of interrelationships of bone parameters assessing density, microstructure, geometry and biomechanics, along with their global and local differences between controls and fracture cases, may help us further understand different bone mechanisms of bone fracture.
Collapse
Affiliation(s)
- Kazuteru Shiraishi
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Andrew J. Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Julio Carballido-Gamio
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Julio Carballido-Gamio,
| |
Collapse
|
14
|
Maeda K, Mochizuki T, Kobayashi K, Tanifuji O, Someya K, Hokari S, Katsumi R, Morise Y, Koga H, Sakamoto M, Koga Y, Kawashima H. Cortical thickness of the tibial diaphysis reveals age- and sex-related characteristics between non-obese healthy young and elderly subjects depending on the tibial regions. J Exp Orthop 2020; 7:78. [PMID: 33025285 PMCID: PMC7538524 DOI: 10.1186/s40634-020-00297-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE This study aimed to evaluate the age- and sex-related characteristics in cortical thickness of the tibial diaphysis between non-obese healthy young and elderly subjects as reference data. METHODS The study investigated 31 young subjects (12 men and 19 women; mean age, 25 ± 8 years) and 54 elderly subjects (29 men and 25 women; mean age, 70 ± 6 years). Three-dimensional estimated cortical thickness of the tibial diaphysis was automatically calculated for 5000-9000 measurement points using the high-resolution cortical thickness measurement from clinical computed tomography data. In 12 assessment regions created by combining three heights (proximal, central, and distal diaphysis) and four areas of the axial plane at 90° (medial, anterior, lateral, and posterior areas) in the tibial coordinate system, the standardized thickness was assessed using the tibial length. RESULTS As structural characteristics, there were no differences in the medial and lateral thicknesses, while the anterior thickness was greater than the posterior thickness in all groups. The sex-related difference was not shown. As an age-related difference, elderly subjects showed greater or lesser cortical thickness than the young subjects, depending on the regions of the tibia. CONCLUSIONS Cortical thickness was different depending on sex, age, and regions in the tibia. The results of this study are of clinical relevance as reference points to clarify the causes of various pathological conditions for diseases. LEVEL OF EVIDENCE Level 3.
Collapse
Affiliation(s)
- Keisuke Maeda
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Tomoharu Mochizuki
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori Chuo-ku, Niigata City, Niigata, 951-8510, Japan.
| | - Koichi Kobayashi
- School of Health Sciences, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Osamu Tanifuji
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Keiichiro Someya
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Sho Hokari
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Ryota Katsumi
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Yusuke Morise
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Hiroshi Koga
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| | - Makoto Sakamoto
- School of Health Sciences, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Yoshio Koga
- Department of Orthopedic Surgery, Nioji Onsen Hospital, Niigata, Japan
| | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi-dori Chuo-ku, Niigata City, Niigata, 951-8510, Japan
| |
Collapse
|
15
|
Wu PH, Gupta T, Chang H, Petrenko D, Schafer A, Kazakia G. Soft tissue variations influence HR-pQCT density measurements in a spatially dependent manner. Bone 2020; 138:115505. [PMID: 32599223 PMCID: PMC7428203 DOI: 10.1016/j.bone.2020.115505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Significant weight loss following treatments for obesity undermines bone metabolism and increases bone turnover and fracture incidence. High resolution peripheral quantitative computed tomography (HR-pQCT) is widely used in skeletal heath assessment research to provide noninvasive bone parameter measurement (e.g. volumetric bone mineral density (vBMD)) with minimal radiation exposure. However, variation in body composition among study groups or longitudinal variations within individuals undergoing significant weight change will generate artifacts and errors in HR-pQCT data. The purpose of this study is to determine the influence of these artifacts on the measurement of vBMD. METHODS We designed a custom-made hydroxyapatite (HA)-polymer phantom surrounded by layers of reusable gel pack and hydrogenated fat to mimic the distal tibia and the surrounding lean and fat tissue. Four different thicknesses of fat were used to mimic the soft tissue of increasingly overweight individuals. We then evaluated how a change in soft tissue thickness influenced image quality and vBMD quantification within total, trabecular, and cortical bone compartments. Based on these data, we applied a data correction to previously acquired clinical data in a cohort of gastric bypass patients. RESULTS In the phantom measurements, total, trabecular, and cortical vBMD increased as soft tissue thickness decreased. The impact of soft tissue thickness on vBMD varied by anatomic quadrant. When applying the soft tissue data correction to a set of clinical data, we found that soft tissue reduction following bariatric surgery can lead to a clinically significant underestimation of bone loss in longitudinal data, and that the effect is most severe in the cortical compartment. CONCLUSION HR-pQCT-based vBMD measurement accuracy is influenced by soft tissue thickness and is spatially inhomogeneous. Our results suggest that variations in soft tissue thickness must be considered in HR-pQCT studies, particularly in studies enrolling cohorts with differing body composition or in studies of longitudinal weight change.
Collapse
Affiliation(s)
- Po-Hung Wu
- Department of Radiology and Biomedical Imaging at China Basin, University of California - San Francisco, 185 Berry Street, Suite 190, Lobby 6, San Francisco, CA 94107, USA.
| | - Tanvi Gupta
- Department of Radiology and Biomedical Imaging at China Basin, University of California - San Francisco, 185 Berry Street, Suite 190, Lobby 6, San Francisco, CA 94107, USA.
| | - Hanling Chang
- Department of Medicine, University of California - San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, 4150 Clement St, San Francisco, CA 94121, USA
| | - Dimitry Petrenko
- Department of Medicine, University of California - San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, 4150 Clement St, San Francisco, CA 94121, USA
| | - Anne Schafer
- Department of Medicine, University of California - San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, 4150 Clement St, San Francisco, CA 94121, USA; Department of Epidemiology and Biostatistics, University of California -San Francisco, 550 16th St 2nd floor, San Francisco, CA 94158, USA.
| | - Galateia Kazakia
- Department of Radiology and Biomedical Imaging at China Basin, University of California - San Francisco, 185 Berry Street, Suite 190, Lobby 6, San Francisco, CA 94107, USA.
| |
Collapse
|
16
|
Oxytocin and bone quality in the femoral neck of rats in periestropause. Sci Rep 2020; 10:7937. [PMID: 32404873 PMCID: PMC7220952 DOI: 10.1038/s41598-020-64683-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/17/2020] [Indexed: 11/08/2022] Open
Abstract
The objective of this study is to identify whether oxytocin (OT) contributes to the reduction of osteopenia in the femoral neck of rats in periestropause. Animals in irregular estrous cycles received two NaCl injections (0.15 mol/L) or OT (134 μg/kg) over a 12-h interval, and after thirty-five days without treatments, the biological sample collection was performed. The oxytocin group (Ot) demonstrated the highest enzymatic activity of alkaline phosphatase (p = 0.0138), lowest enzymatic activity of tartrate-resistant acid phosphatase (p = 0.0045), higher percentage of compact bone (p = 0.0359), cortical expression of runt-related transcription factor 2 (p = 0.0101), osterix (p = 0.0101), bone morphogenetic protein-2/4 (p = 0.0101) and periostin (p = 0.0455). Furthermore, the mineral-to-matrix ratio (ν1PO4/Proline) was higher and type-B carbonate substitution (CO3/ν1PO4) was lower (p = 0.0008 and 0.0303) in Ot group. The Ot showed higher areal bone mineral density (p = 0.0050), cortical bone area (p = 0.0416), polar moment of inertia, maximum, minimum (p = 0.0480, 0.0480, 0.0035), bone volume fraction (p = 0.0166), connectivity density (p < 0.0001), maximal load (p = 0.0003) and bone stiffness (p = 0.0145). In Ot percentage of cortical pores (p = 0.0102) and trabecular number (p = 0.0088) was lower. The results evidence action of OT in the reduction of osteopenia, suggesting that it is a promising anabolic strategy for the prevention of primary osteoporosis during the periestropause period.
Collapse
|
17
|
Malekzadeh M, Abbasi-Rad S, Keyak JH, Nabil M, Asadi M, Mobini N, Naghdi P, Emadi H, Saligheh Rad H, Shiran MB. Liquid Calibration Phantoms in Ultra-Low-Dose QCT for the Assessment of Bone Mineral Density. J Clin Densitom 2020; 23:108-116. [PMID: 30902572 DOI: 10.1016/j.jocd.2019.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Cortical bone is affected by metabolic diseases. Some studies have shown that lower cortical bone mineral density (BMD) is related to increases in fracture risk which could be diagnosed by quantitative computed tomography (QCT). Nowadays, hybrid iterative reconstruction-based (HIR) computed tomography (CT) could be helpful to quantify the peripheral bone tissue. A key focus of this paper is to evaluate liquid calibration phantoms for BMD quantification in the tibia and under hybrid iterative reconstruction-based-CT with the different hydrogen dipotassium phosphate (K2HPO4) concentrations phantoms. METHODOLOGY Four ranges of concentrations of K2HPO4 were made and tested with 2 exposure settings. Accuracy of the phantoms with ash gravimetry and intermediate K2HPO4 concentration as hypothetical patients were evaluated. The correlations and mean differences between measured equivalent QCT BMD and ash density as a gold standard were calculated. Relative percentage error (RPE) in CT numbers of each concentration over a 6-mo period was reported. RESULTS The correlation values (R2 was close to 1.0), suggested that the precision of QCT-BMD measurements using standard and ultra-low dose settings were similar for all phantoms. The mean differences between QCT-BMD and the ash density for low concentrations (about 93 mg/cm3) were lower than high concentration phantoms with 135 and 234 mg/cm3 biases. In regard to accuracy test for hypothetical patient, RPE was up to 16.1% for the low concentration (LC) phantom for the case of high mineral content. However, the lowest RPE (0.4 to 1.8%) was obtained for the high concentration (HC) phantom, particularly for the high mineral content case. In addition, over 6 months, the K2HPO4 concentrations increased 25% for 50 mg/cm3 solution and 0.7 % for 1300 mg/cm3 solution in phantoms. CONCLUSION The excellent linear correlations between the QCT equivalent density and the ash density gold standard indicate that QCT can be used with submilisivert radiation dose. We conclude that using liquid calibration phantoms with a range of mineral content similar to that being measured will minimize bias. Finally, we suggest performing BMD measurements with ultra-low dose scan concurrent with iterative-based reconstruction to reduce radiation exposure.
Collapse
Affiliation(s)
- Malakeh Malekzadeh
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abbasi-Rad
- Quantitative Medical Imaging Systems Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Joyce H Keyak
- Department of Radiological Sciences, Department of Biomedical Engineering and Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| | - Mahnaz Nabil
- Department of Mathematics, Islamic Azad University, Qazvin Branch, Qazvin, Iran
| | - Mojgan Asadi
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mobini
- Quantitative Medical Imaging Systems Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Naghdi
- Quantitative Medical Imaging Systems Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Emadi
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Hamidreza Saligheh Rad
- Quantitative Medical Imaging Systems Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bagher Shiran
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Wu PH, Gibbons M, Foreman SC, Carballido-Gamio J, Han M, Krug R, Liu J, Link TM, Kazakia GJ. Cortical bone vessel identification and quantification on contrast-enhanced MR images. Quant Imaging Med Surg 2019; 9:928-941. [PMID: 31367547 DOI: 10.21037/qims.2019.05.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Cortical bone porosity is a major determinant of bone strength. Despite the biomechanical importance of cortical bone porosity, the biological drivers of cortical porosity are unknown. The content of cortical pore space can indicate pore expansion mechanisms; both of the primary components of pore space, vessels and adipocytes, have been implicated in pore expansion. Dynamic contrast-enhanced MRI (DCE-MRI) is widely used in vessel detection in cardiovascular studies, but has not been applied to visualize vessels within cortical bone. In this study, we have developed a multimodal DCE-MRI and high resolution peripheral QCT (HR-pQCT) acquisition and image processing pipeline to detect vessel-filled cortical bone pores. Methods For this in vivo human study, 19 volunteers (10 males and 9 females; mean age =63±5) were recruited. Both distal and ultra-distal regions of the non-dominant tibia were imaged by HR-pQCT (82 µm nominal resolution) for bone structure segmentation and by 3T DCE-MRI (Gadavist; 9 min scan time; temporal resolution =30 sec; voxel size 230×230×500 µm3) for vessel visualization. The DCE-MRI was registered to the HR-pQCT volume and the voxels within the MRI cortical bone region were extracted. Features of the DCE data were calculated and voxels were categorized by a 2-stage hierarchical kmeans clustering algorithm to determine which voxels represent vessels. Vessel volume fraction (volume ratio of vessels to cortical bone), vessel density (average vessel count per cortical bone volume), and average vessel volume (mean volume of vessels) were calculated to quantify the status of vessel-filled pores in cortical bone. To examine spatial resolution and perform validation, a virtual phantom with 5 channel sizes and an applied pseudo enhancement curve was processed through the proposed image processing pipeline. Overlap volume ratio and Dice coefficient was calculated to measure the similarity between the detected vessel map and ground truth. Results In the human study, mean vessel volume fraction was 2.2%±1.0%, mean vessel density was 0.68±0.27 vessel/mm3, and mean average vessel volume was 0.032±0.012 mm3/vessel. Signal intensity for detected vessel voxels increased during the scan, while signal for non-vessel voxels within pores did not enhance. In the validation phantom, channels with diameter 250 µm or greater were detected successfully, with volume ratio equal to 1 and Dice coefficient above 0.6. Both statistics decreased dramatically for channel sizes less than 250 µm. Conclusions We have a developed a multi-modal image acquisition and processing pipeline that successfully detects vessels within cortical bone pores. The performance of this technique degrades for vessel diameters below the in-plane spatial resolution of the DCE-MRI acquisition. This approach can be applied to investigate the biological systems associated with cortical pore expansion.
Collapse
Affiliation(s)
- Po-Hung Wu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Matthew Gibbons
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Sarah C Foreman
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | | | - Misung Han
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Jing Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Thomas M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Galateia J Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
19
|
Sundaramurthy A, Xu C, Hughes JM, Gaffney-Stomberg E, Guerriere KI, Popp KL, Bouxsein ML, Reifman J, Unnikrishnan G. Regional Changes in Density and Microarchitecture in the Ultradistal Tibia of Female Recruits After U.S. Army Basic Combat Training. Calcif Tissue Int 2019; 105:68-76. [PMID: 31011765 DOI: 10.1007/s00223-019-00548-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022]
Abstract
Musculoskeletal injuries, such as stress fracture, are responsible for over 10-million lost-duty days among U.S. Army Soldiers. During Basic Combat Training (BCT), an 8- to 10-week program that transforms civilians into Soldiers, women are four times more likely than men to sustain a stress fracture. In this work, we performed high-resolution peripheral quantitative computed tomography scans on the ultradistal tibia of 90 female recruits [age = 21.5 ± 3.3 (mean ± standard deviation) years] before the start of BCT and after 8 weeks into BCT. Then, we divided the scanned bone volume into four sectors-lateral, posterior, medial, and anterior-and computed the bone density and microarchitectural parameters in each of the four sectors pre- and post-BCT. We used linear mixed models to estimate the mean difference for bone density and microarchitectural parameters, while controlling for age, race, and pre-BCT body mass index. Our results revealed that the total volumetric bone mineral density, trabecular volumetric bone mineral density, and trabecular thickness increased (p < 0.05) in each of the four sectors. In addition, cortical thickness and trabecular bone volume/total volume increased in both medial and posterior sectors (p < 0.05). Overall, six and five out of nine parameters improved in the medial and posterior sectors, respectively, after BCT. In conclusion, the heightened physical activity during BCT led to the most beneficial bone adaptation in the medial and posterior sectors of the ultradistal tibia, which is indicative of higher loading in these sectors during activities performed in the course of BCT.
Collapse
Affiliation(s)
- Aravind Sundaramurthy
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Fort Detrick, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Chun Xu
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Fort Detrick, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Erin Gaffney-Stomberg
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Katelyn I Guerriere
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Kristin L Popp
- Military Performance Division, United States Army Research Institute of Environmental Medicine, Natick, MA, USA
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Fort Detrick, MD, USA.
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Fort Detrick, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| |
Collapse
|
20
|
Wang Y, Li J, Yang J, Dong J. Regional characteristics of cortical bone quality in the proximal humerus of postmenopausal women: a preliminary study. J Shoulder Elbow Surg 2019; 28:685-691. [PMID: 30527884 DOI: 10.1016/j.jse.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Proximal humeral fractures represent the third most common fragility fracture treated in osteoporotic populations, after hip and distal radial fractures. The purpose of this study was to characterize the spatial variability in cortical geometry in the proximal humerus in postmenopausal women. METHODS The proximal humeri in 43 healthy postmenopausal women were imaged by computed tomography. Cortical bone mapping was applied to create color 3-dimensional thickness maps for each proximal humerus. Cortical parameters, including the cortical thickness (CTh), cortical mass surface density (CM), and endocortical trabecular density, were measured over the humeral head and metaphyseal region after 15 regions of interest (ROIs) were defined. RESULTS In the humeral head region, significant differences in CTh and CM values were detected between the anterior, lateral, and posterior walls (P < .05). The highest CTh and CM were found in the anterior wall in each plane (P < .05). Regarding the endocortical trabecular density, no significant findings were noted in the 3 planes (P > .05). In the metaphyseal region, the cortical structure in the medial column had higher CTh and CM values in ROI 10 compared with the lateral column (P < .05). The highest CTh and CM values of compact bone were seen in ROI 10 of the medial column (ROIs 10-12) (P < .05). CONCLUSION Our results showed significant regional variation of cortical bone in the humeral head region in postmenopausal women. Similar conditions were seen in the medial column in the metaphyseal region. This finding provides discriminatory information for stronger fixation of implants.
Collapse
Affiliation(s)
- Yeming Wang
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin, China.
| | - Jian Li
- Department of Radiology, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jianhua Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jingming Dong
- Department of Orthopedics, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
21
|
Ding J, Xu X, Wu X, Huang Z, Kong G, Liu J, Huang Z, Liu Q, Li R, Yang Z, Liu Y, Zhu Q. Bone loss and biomechanical reduction of appendicular and axial bones under ketogenic diet in rats. Exp Ther Med 2019; 17:2503-2510. [PMID: 30906438 PMCID: PMC6425126 DOI: 10.3892/etm.2019.7241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
A ketogenic diet (KD) is composed of low-carbohydrate, high-fat and adequate levels of protein. It has been used for decades as a method to treat pediatric refractory epilepsy. However, recently, its side effects on the bones have received increasing attention. In order to comprehensively evaluate the effect of KD on the microstructures and mechanical properties of the skeleton, 14 male Sprague-Dawley rats were equally divided into two groups and fed with a KD (ratio of fat to carbohydrate and protein, 3:1) or a standard diet for 12 weeks. Body weight, as well as blood ketone and glucose levels, were monitored during the experiment. Bone morphometric analyses via micro-computerized tomography were performed on cortical and trabecular bone at the middle L4 vertebral body, the proximal humerus and tibia. The compressive stiffness and strength of scanned skeletal areas were calculated using micro-finite element analysis. The KD led to higher ketone levels and lower glucose levels, with reduced body weight and total bone mineral density (TBMD). After 12 weeks, the diet reduced the bone volume fraction, the trabecular number of cancellous bone, cortical thickness, total cross-sectional area inside the periosteal envelope and the bone area of cortical bone in the tibia and humerus, while increasing trabecular separation. However, KD may not affect the L4 vertebral body. The serum calcium or phosphate concentrations in the blood remained unchanged. In addition, bone stiffness and strength were clearly decreased by the KD, and significantly correlated with the BMD and bone area at all scanned sites. In conclusion, KD led to significant bone loss and reduced biomechanical function in appendicular bones, with a lesser impact on axial bones.
Collapse
Affiliation(s)
- Jianyang Ding
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaolin Xu
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiuhua Wu
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zucheng Huang
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ganggang Kong
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Junhao Liu
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiping Huang
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qi Liu
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Rong Li
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhou Yang
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yapu Liu
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qingan Zhu
- Department of Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
22
|
Beresheim AC, Pfeiffer SK, Grynpas MD, Alblas A. Use of backscattered scanning electron microscopy to quantify the bone tissues of mid‐thoracic human ribs. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:262-278. [DOI: 10.1002/ajpa.23716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Amy C. Beresheim
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
| | - Susan K. Pfeiffer
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
- Department of ArchaeologyUniversity of Cape Town Rondebosch Cape Town South Africa
- Department of Anthropology and Center for Advanced Study of Human PaleobiologyGeorge Washington University Washington, D.C
| | - Marc D. Grynpas
- Department of Laboratory Medicine and Pathobiology and Institute for Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai Hospital Toronto Ontario Canada
| | - Amanda Alblas
- Division of Anatomy and Histology, Department of Biomedical SciencesStellenbosch University Cape Town South Africa
| |
Collapse
|
23
|
Sundh D, Nilsson M, Zoulakis M, Pasco C, Yilmaz M, Kazakia GJ, Hellgren M, Lorentzon M. High-Impact Mechanical Loading Increases Bone Material Strength in Postmenopausal Women-A 3-Month Intervention Study. J Bone Miner Res 2018; 33:1242-1251. [PMID: 29578618 PMCID: PMC6055617 DOI: 10.1002/jbmr.3431] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 01/23/2023]
Abstract
Bone adapts to loading in several ways, including redistributing bone mass and altered geometry and microarchitecture. Because of previous methodological limitations, it is not known how the bone material strength is affected by mechanical loading in humans. The aim of this study was to investigate the effect of a 3-month unilateral high-impact exercise program on bone material properties and microarchitecture in healthy postmenopausal women. A total of 20 healthy and inactive postmenopausal women (aged 55.6 ± 2.3 years [mean ± SD]) were included and asked to perform an exercise program of daily one-legged jumps (with incremental number, from 3×10 to 4×20 jumps/d) during 3 months. All participants were asked to register their performed jumps in a structured daily diary. The participants chose one leg as the intervention leg and the other leg was used as control. The operators were blinded to the participant's choice of leg for intervention. The predefined primary outcome was change in bone material strength index (BMSi), measured at the mid tibia with a handheld reference probe indentation instrument (OsteoProbe). Bone microstructure, geometry, and density were measured with high-resolution peripheral quantitative computed tomography (XtremeCT) at the ultradistal and at 14% of the tibia bone length (distal). Differences were analyzed by related samples Wilcoxon signed rank test. The overall compliance to the jumping program was 93.6%. Relative to the control leg, BMSi of the intervention leg increased 7% or 0.89 SD (p = 0.046), but no differences were found for any of the XtremeCT-derived bone parameters. In conclusion, a unilateral high-impact loading program increased BMSi in postmenopausal women rapidly without affecting bone microstructure, geometry, or density, indicating that intense mechanical loading has the ability to rapidly improve bone material properties before changes in bone mass or structure. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Daniel Sundh
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Nilsson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,City District Administration of Örgryte-Härlanda, Gothenburg, Sweden
| | - Michail Zoulakis
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Courtney Pasco
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Melis Yilmaz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Galateia J Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Martin Hellgren
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Geriatric Medicine, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
24
|
Unnikrishnan G, Xu C, Popp KL, Hughes JM, Yuan A, Guerriere KI, Caksa S, Ackerman KE, Bouxsein ML, Reifman J. Regional variation of bone density, microarchitectural parameters, and elastic moduli in the ultradistal tibia of young black and white men and women. Bone 2018; 112:194-201. [PMID: 29730277 DOI: 10.1016/j.bone.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/11/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
Whole-bone analyses can obscure regional heterogeneities in bone characteristics. Quantifying these heterogeneities might improve our understanding of the etiology of injuries, such as lower-extremity stress fractures. Here, we performed regional analyses of high-resolution peripheral quantitative computed tomography images of the ultradistal tibia in young, healthy subjects (age range, 18 to 30 years). We quantified bone characteristics across four regional sectors of the tibia for the following datasets: white women (n = 50), black women (n = 51), white men (n = 50), black men (n = 34), and all subjects (n = 185). After controlling for potentially confounding variables, we observed statistically significant variations in most of the characteristics across sectors (p < 0.05). Most of the bone characteristics followed a similar trend for all datasets but with different magnitudes. Regardless of race or sex, the anterior sector had the lowest trabecular and total volumetric bone mineral density and highest trabecular separation (p < 0.001), while cortical thickness was lowest in the medial sector (p < 0.05). Accordingly, the anterior sector also had the lowest elastic modulus in the anterior-posterior and superior-inferior directions (p < 0.001). In all sectors, the mean anisotropy was ~3, suggesting cross-sector similarity in the ratios of loading in these directions. In addition, the bone characteristics from regional and whole-bone analyses differed in all datasets (p < 0.05). Our findings on the heterogeneous nature of bone microarchitecture in the ultradistal tibia may reflect an adaptation of the bone to habitual loading conditions.
Collapse
Affiliation(s)
- Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, MCMR-TT, 504 Scott Street, Fort Detrick, MD 21702, USA
| | - Chun Xu
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, MCMR-TT, 504 Scott Street, Fort Detrick, MD 21702, USA
| | - Kristin L Popp
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Julie M Hughes
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA
| | - Amy Yuan
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA
| | - Katelyn I Guerriere
- Military Performance Division, United States Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA
| | - Signe Caksa
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA
| | - Kathryn E Ackerman
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA; Division of Sports Medicine, Boston Children's Hospital, Harvard Medical School, 319 Longwood Avenue, Boston, MA 02115, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114, USA; Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, One Overland Street, Boston, MA 02215, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Materiel Command, MCMR-TT, 504 Scott Street, Fort Detrick, MD 21702, USA.
| |
Collapse
|
25
|
Mohammad SH, Hunter RL, Tatarski RL, Butwin AN, Evans KD. Assessing Cortical Thickness in Human Tibiae With Sonography vs Computed Tomography: A Pilot Study. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2018. [DOI: 10.1177/8756479317754045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Osteoporosis is a public health problem worldwide that decreases bone strength and increases the risk for fractures. Cortical thickness of long bones has gained attention because of its contributions to the resistance of bone fracture. What is currently lacking is a nonionizing imaging modality that assesses cortical bones with a sensitivity equal to that of computed tomography (CT). Tibiae were utilized to compare cortical thickness measurements recorded with diagnostic medical sonography (DMS) and CT. Four percentage sites (4%, 38%, 50%, 66%) were identified along the tibiae, and cortical measurements were taken from 3 views (anterior, medial, lateral). Medial views at all sites except 38% had DMS full measurements that were not significantly different than those collected with CT. The 4% sites in all views yielded the most cortical thickness measurements that were not significantly different from those of CT. These promising results at DMS full 4% sites open the possibility of translating this methodology to bones that have thin cortices and high risks of fragility fractures, such as the radius.
Collapse
Affiliation(s)
- Sundus H. Mohammad
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Randee L. Hunter
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Rachel L. Tatarski
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Angela N. Butwin
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Boskey AL, Imbert L. Bone quality changes associated with aging and disease: a review. Ann N Y Acad Sci 2018; 1410:93-106. [PMID: 29265417 DOI: 10.1111/nyas.13572] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Bone quality encompasses all the characteristics of bone that, in addition to density, contribute to its resistance to fracture. In this review, we consider changes in architecture, porosity, and composition, including collagen structure, mineral composition, and crystal size. These factors all are known to vary with tissue and animal ages, and health status. Bone morphology and presence of microcracks, which also contribute to bone quality, will not be discussed in this review. Correlations with mechanical performance for collagen cross-linking, crystallinity, and carbonate content are contrasted with mineral content. Age-dependent changes in humans and rodents are discussed in relation to rodent models of disease. Examples are osteoporosis, osteomalacia, osteogenesis imperfecta (OI), and osteopetrosis in both humans and animal models. Each of these conditions, along with aging, is associated with increased fracture risk for distinct reasons.
Collapse
Affiliation(s)
- Adele L Boskey
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York.,Department of Biochemistry, Weill Cornell Medical College, New York, New York
| | - Laurianne Imbert
- Mineralized Tissue Laboratory, Hospital for Special Surgery, New York, New York
| |
Collapse
|
27
|
Singh D, Cronin DS. An investigation of dimensional scaling using cervical spine motion segment finite element models. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e2872. [PMID: 28205412 DOI: 10.1002/cnm.2872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
The paucity of experimental data for validating computational models of different statures underscores the need for appropriate scaling methods so that models can be verified and validated using experimental data. Scaling was investigated using 50th percentile male (M50) and 5th percentile female (F05) cervical spine motion segment (C4-C5) finite element models subject to tension, flexion, and extension loading. Two approaches were undertaken: geometric scaling of the models to investigate size effects (volumetric scaling) and scaling of the force-displacement or moment-angle model results (data scaling). Three sets of scale factors were considered: global (body mass), regional (neck dimensions), and local (segment tissue dimensions). Volumetric scaling of the segment models from M50 to F05, and vice versa, produced correlations that were good or excellent in both tension and flexion (0.825-0.991); however, less agreement was found in extension (0.550-0.569). The reduced correlation in extension was attributed to variations in shape between the models leading to nonlinear effects such as different time to contact for the facet joints and posterior processes. Data scaling of the responses between the M50 and F05 models produced similar trends to volumetric scaling, with marginally greater correlations. Overall, the local tissue level and neck region level scale factors produced better correlations than the traditional global scaling. The scaling methods work well for a given subject, but are limited in applicability between subjects with different morphology, where nonlinear effects may dominate the response.
Collapse
|
28
|
Chen M, Yuan H. Assessment of porosity index of the femoral neck and tibia by 3D ultra-short echo-time MRI. J Magn Reson Imaging 2017; 47:820-828. [PMID: 28561910 DOI: 10.1002/jmri.25782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/19/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Min Chen
- Department of Radiology; Peking University Third Hospital; Beijing P.R. China
| | - Huishu Yuan
- Department of Radiology; Peking University Third Hospital; Beijing P.R. China
| |
Collapse
|
29
|
Milovanovic P, Vukovic Z, Antonijevic D, Djonic D, Zivkovic V, Nikolic S, Djuric M. Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:71. [PMID: 28357689 DOI: 10.1007/s10856-017-5878-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.
Collapse
Affiliation(s)
- Petar Milovanovic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 4/2 Dr Subotica, Belgrade, 11000, Serbia
| | - Zorica Vukovic
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 12 Njegoseva, Belgrade, 11000, Serbia
| | - Djordje Antonijevic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 4/2 Dr Subotica, Belgrade, 11000, Serbia
| | - Danijela Djonic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 4/2 Dr Subotica, Belgrade, 11000, Serbia
| | - Vladimir Zivkovic
- Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, 31a Deligradska, Belgrade, 11000, Serbia
| | - Slobodan Nikolic
- Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, 31a Deligradska, Belgrade, 11000, Serbia
| | - Marija Djuric
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 4/2 Dr Subotica, Belgrade, 11000, Serbia.
| |
Collapse
|
30
|
Johnson JE, Troy KL. Validation of a new multiscale finite element analysis approach at the distal radius. Med Eng Phys 2017; 44:16-24. [PMID: 28373011 DOI: 10.1016/j.medengphy.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 03/02/2017] [Accepted: 03/12/2017] [Indexed: 12/15/2022]
Abstract
High-resolution peripheral computed tomography is commonly used to evaluate mechanical behavior of the distal radius microstructure using micro-finite element (FE) modeling. However, only a 9mm section is considered and boundary conditions (BCs) are usually simplified (platen-compression), and may not represent physiologic loading. Regardless, these methods are increasingly being used for clinical evaluations. Our goal was to develop and validate a novel multiscale solution that allows for physiologically relevant loading simulations (such as bracing during a fall), and show that mechanical behavior in the distal radius is different under platen BCs. Our approach incorporated bone microstructure together with organ-level radius geometry, by replacing matching continuum regions with micro-FE sections in user-defined regions of interest. Multiscale model predicted strains showed a strong correlation and a significant relationship with measured strains (r=0.836, p<0.001; slope=0.881, intercept=-12.17 µε, p<0.001). Interestingly, platen BC simulated strains were almost 50% lower than measured strains (r=0.835, p<0.001), and strain distributions were clearly different. Our multiscale method demonstrated excellent potential as a computationally efficient alternative for observing true mechanical environment within distal radius microstructure under physiologically accurate loading.
Collapse
Affiliation(s)
- Joshua E Johnson
- Worcester Polytechnic Institute, Department of Biomedical Engineering, 100 Institute Road, Worcester, MA 01609, Unites States of America.
| | - Karen L Troy
- Worcester Polytechnic Institute, Department of Biomedical Engineering, 100 Institute Road, Worcester, MA 01609, Unites States of America.
| |
Collapse
|
31
|
Raman J, MacDermid JC, Walton D, Athwal GS. Rasch analysis indicates that the Simple Shoulder Test is robust, but minor item modifications and attention to gender differences should be considered. J Hand Ther 2017; 30:348-358. [PMID: 28237075 DOI: 10.1016/j.jht.2017.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 11/26/2016] [Accepted: 01/04/2017] [Indexed: 02/03/2023]
Abstract
STUDY DESIGN Repeated cross-sectional study. INTRODUCTION Multiple studies have evaluated the psychometric properties of the Simple Shoulder Test (SST) through traditional methods supporting it as valid and reliable. Since the evidentiary pool supporting the use of the SST has only partially addressed key measurement properties and the development of SST pre-dates the common use of Rasch model, validation of SST has become a necessity to establish as a reliable and valid PRO for shoulder conditions. To date, no study has analysed SST through Rasch, a modern method for analyzing properties of measurement tools. PURPOSE OF THE STUDY The purpose of this study was to perform a Rasch analysis of the SST to assess the overall fit to the Rasch model, individual item fit, gender-based DIF, local dependency of items and the unidimensionality of the scale. A secondary purpose was to determine the stability of fit to the Rasch model when captured pre-operatively or post-operatively. METHODOLOGY Patients completed SST before surgery and between 6 months and 1 year after surgery. Rasch analysis was performed to analyse the carious properties of SST through the Rasch model. RESULTS SST appears to be robust when tested against the Rasch model. Rasch analysis has highlighted potential areas for to improve in the SST questionnaire. The potential areas to improve are to consider questions that measure the ability of a person to lift the arm above shoulder level and to consider gender differences when measuring the ability to carry weights with the affected arm. DISCUSSION This study adds to previous body of empirical evidence arising classical measurement approaches that have suggested that the SST has robust measurement properties, by providing evidence of adequate fit to the Rasch model after minor adjustments. CONCLUSION The results of this study should provide confidence to clinicians on SST who wish to use a brief shoulder-specific measure in their practice. The SST appears to be robust when tested against the Rasch model despite some potential areas for improvement. The potential areas that should be explored in future Rasch analyses are the questions that measure the ability of a person to lift the arm above shoulder level and the potential for gender differences when measuring the ability to carry weights with the affected arm.
Collapse
Affiliation(s)
- Jayaprakash Raman
- School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - Joy C MacDermid
- School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada; School of Physical Therapy, Western University, London, Ontario, Canada; Clinical Research Lab, Hand and Upper Limb Centre, St. Joseph's Health Care, London, Ontario, Canada
| | - David Walton
- School of Physical Therapy, Western University, London, Ontario, Canada
| | - George S Athwal
- Hand and Upper Limb Centre, St. Joseph's Hospital, London, Ontario, Canada
| |
Collapse
|
32
|
Gabel L, Macdonald HM, McKay HA. Sex Differences and Growth-Related Adaptations in Bone Microarchitecture, Geometry, Density, and Strength From Childhood to Early Adulthood: A Mixed Longitudinal HR-pQCT Study. J Bone Miner Res 2017; 32:250-263. [PMID: 27556581 PMCID: PMC5233447 DOI: 10.1002/jbmr.2982] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 11/09/2022]
Abstract
Sex differences in bone strength and fracture risk are well documented. However, we know little about bone strength accrual during growth and adaptations in bone microstructure, density, and geometry that accompany gains in bone strength. Thus, our objectives were to (1) describe growth related adaptations in bone microarchitecture, geometry, density, and strength at the distal tibia and radius in boys and girls; and (2) compare differences in adaptations in bone microarchitecture, geometry, density, and strength between boys and girls. We used HR-pQCT at the distal tibia (8% site) and radius (7% site) in 184 boys and 209 girls (9 to 20 years old at baseline). We aligned boys and girls on a common maturational landmark (age at peak height velocity [APHV]) and fit a mixed effects model to these longitudinal data. Importantly, boys showed 28% to 63% greater estimated bone strength across 12 years of longitudinal growth. Boys showed 28% to 80% more porous cortices compared with girls at both sites across all biological ages, except at the radius at 9 years post-APHV. However, cortical density was similar between boys and girls at all ages at both sites, except at 9 years post-APHV at the tibia when girls' values were 2% greater than boys'. Boys showed 13% to 48% greater cortical and total bone area across growth. Load-to-strength ratio was 26% to 27% lower in boys at all ages, indicating lower risk of distal forearm fracture compared with girls. Contrary to previous HR-pQCT studies that did not align boys and girls at the same biological age, we did not observe sex differences in Ct.BMD. Boys' superior bone size and strength compared with girls may confer them a protective advantage. However, boys' consistently more porous cortices may contribute to their higher fracture incidence during adolescence. Large prospective studies using HR-pQCT that target boys and girls who have sustained a fracture are needed to verify this. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Leigh Gabel
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Heather M. Macdonald
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
- Department of Family Practice, University of British Columbia, Vancouver, Canada
| | - Heather A. McKay
- Department of Orthopaedics, University of British Columbia, Vancouver, Canada
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Department of Family Practice, University of British Columbia, Vancouver, Canada
| |
Collapse
|
33
|
Kavitha MS, Park SY, Heo MS, Chien SI. Distributional Variations in the Quantitative Cortical and Trabecular Bone Radiographic Measurements of Mandible, between Male and Female Populations of Korea, and its Utilization. PLoS One 2016; 11:e0167992. [PMID: 28002443 PMCID: PMC5176279 DOI: 10.1371/journal.pone.0167992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/24/2016] [Indexed: 11/18/2022] Open
Abstract
It is important to investigate the irregularities in aging-associated changes in bone, between men and women for bone strength and osteoporosis. The purpose of this study was to characterize the changes and associations of mandibular cortical and trabecular bone measures of men and women based on age and to the evaluation of cortical shape categories, in a large Korean population. Panoramic radiographs of 1047 subjects (603 women and 444 men) aged between 15 to 90 years were used. Mandibular cortical width (MCW), mandibular cortical index (MCI), and fractal dimensions (FD) of the molar, premolar, and anterior regions of the mandibular trabecular bone were measured. Study subjects were grouped into six 10-years age groups. A local linear regression smoothing with bootstrap resampling for robust fitting of data was used to estimate the relationship between radiographic mandibular variables and age groups as well as genders. The mean age of women (49.56 ± 19.5 years) was significantly higher than that of men (45.57 ± 19.6 years). The MCW of men and women (3.17mm and 2.91mm, respectively, p < 0.0001) was strongly associated with age and MCI. Indeed, trabecular measures also correlated with age in men (r > −0.140, p = 0.003), though not as strongly as in women (r > −0.210, p < 0.0001). In men aged over 55 years, only MCW was significantly associated (r = −0.412, p < 0.0001). Furthermore, by comparison of mandibular variables from different age groups and MCI categories, the results suggest that MCW was detected to be strongly associated in both men and women for the detection of bone strength and osteoporosis. The FD measures revealed relatively higher association with age among women than men, but not as strong as MCW.
Collapse
Affiliation(s)
- Muthu Subash Kavitha
- Department of Computer Vision and Image Processing, School of Electronics Engineering, Kyungpook National University, Daegu, South Korea
| | - Soon-Yong Park
- Department of Computer and Robot Vision, School of Computer Science and Engineering, Kyungpook National University, Daegu, South Korea
| | - Min-Suk Heo
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Seoul National niversity, Seoul, South Korea
- * E-mail: (MSH); (SIC)
| | - Sung-Il Chien
- Department of Computer Vision and Image Processing, School of Electronics Engineering, Kyungpook National University, Daegu, South Korea
- * E-mail: (MSH); (SIC)
| |
Collapse
|
34
|
Carballido-Gamio J, Bonaretti S, Kazakia GJ, Khosla S, Majumdar S, Lang TF, Burghardt AJ. Statistical Parametric Mapping of HR-pQCT Images: A Tool for Population-Based Local Comparisons of Micro-Scale Bone Features. Ann Biomed Eng 2016; 45:949-962. [PMID: 27830488 DOI: 10.1007/s10439-016-1754-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022]
Abstract
HR-pQCT enables in vivo multi-parametric assessments of bone microstructure in the distal radius and distal tibia. Conventional HR-pQCT image analysis approaches summarize bone parameters into global scalars, discarding relevant spatial information. In this work, we demonstrate the feasibility and reliability of statistical parametric mapping (SPM) techniques for HR-pQCT studies, which enable population-based local comparisons of bone properties. We present voxel-based morphometry (VBM) to assess trabecular and cortical bone voxel-based features, and a surface-based framework to assess cortical bone features both in cross-sectional and longitudinal studies. In addition, we present tensor-based morphometry (TBM) to assess trabecular and cortical bone structural changes. The SPM techniques were evaluated based on scan-rescan HR-pQCT acquisitions with repositioning of the distal radius and distal tibia of 30 subjects. For VBM and surface-based SPM purposes, all scans were spatially normalized to common radial and tibial templates, while for TBM purposes, rescans (follow-up) were spatially normalized to their corresponding scans (baseline). VBM was evaluated based on maps of local bone volume fraction (BV/TV), homogenized volumetric bone mineral density (vBMD), and homogenized strain energy density (SED) derived from micro-finite element analysis; while the cortical bone framework was evaluated based on surface maps of cortical bone thickness, vBMD, and SED. Voxel-wise and vertex-wise comparisons of bone features were done between the groups of baseline and follow-up scans. TBM was evaluated based on mean square errors of determinants of Jacobians at baseline bone voxels. In both anatomical sites, voxel- and vertex-wise uni- and multi-parametric comparisons yielded non-significant differences, and TBM showed no artefactual bone loss or apposition. The presented SPM techniques demonstrated robust specificity thus warranting their application in future clinical HR-pQCT studies.
Collapse
Affiliation(s)
| | - Serena Bonaretti
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Galateia J Kazakia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas F Lang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
Li C, Jin D, Chen C, Letuchy EM, Janz KF, Burns TL, Torner JC, Levy SM, Saha PK. Automated cortical bone segmentation for multirow-detector CT imaging with validation and application to human studies. Med Phys 2016; 42:4553-65. [PMID: 26233184 DOI: 10.1118/1.4923753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Cortical bone supports and protects human skeletal functions and plays an important role in determining bone strength and fracture risk. Cortical bone segmentation at a peripheral site using multirow-detector CT (MD-CT) imaging is useful for in vivo assessment of bone strength and fracture risk. Major challenges for the task emerge from limited spatial resolution, low signal-to-noise ratio, presence of cortical pores, and structural complexity over the transition between trabecular and cortical bones. An automated algorithm for cortical bone segmentation at the distal tibia from in vivo MD-CT imaging is presented and its performance and application are examined. METHODS The algorithm is completed in two major steps-(1) bone filling, alignment, and region-of-interest computation and (2) segmentation of cortical bone. After the first step, the following sequence of tasks is performed to accomplish cortical bone segmentation-(1) detection of marrow space and possible pores, (2) computation of cortical bone thickness, detection of recession points, and confirmation and filling of true pores, and (3) detection of endosteal boundary and delineation of cortical bone. Effective generalizations of several digital topologic and geometric techniques are introduced and a fully automated algorithm is presented for cortical bone segmentation. RESULTS An accuracy of 95.1% in terms of volume of agreement with manual outlining of cortical bone was observed in human MD-CT scans, while an accuracy of 88.5% was achieved when compared with manual outlining on postregistered high resolution micro-CT imaging. An intraclass correlation coefficient of 0.98 was obtained in cadaveric repeat scans. A pilot study was conducted to describe gender differences in cortical bone properties. This study involved 51 female and 46 male participants (age: 19-20 yr) from the Iowa Bone Development Study. Results from this pilot study suggest that, on average after adjustment for height and weight differences, males have thicker cortex (mean difference 0.33 mm and effect size 0.92 at the anterior region) with lower bone mineral density (mean difference -28.73 mg/cm(3) and effect size 1.35 at the posterior region) as compared to females. CONCLUSIONS The algorithm presented is suitable for fully automated segmentation of cortical bone in MD-CT imaging of the distal tibia with high accuracy and reproducibility. Analysis of data from a pilot study demonstrated that the cortical bone indices allow quantification of gender differences in cortical bone from MD-CT imaging. Application to larger population groups, including those with compromised bone, is needed.
Collapse
Affiliation(s)
- Cheng Li
- Department of Electrical and Computer Engineering, College of Engineering, Iowa City, Iowa 52242
| | - Dakai Jin
- Department of Electrical and Computer Engineering, College of Engineering, Iowa City, Iowa 52242
| | - Cheng Chen
- Department of Electrical and Computer Engineering, College of Engineering, Iowa City, Iowa 52242
| | - Elena M Letuchy
- Department of Epidemiology, College of Public Health, Iowa City, Iowa 52242
| | - Kathleen F Janz
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, Iowa City, Iowa 52242
| | - Trudy L Burns
- Department of Epidemiology, College of Public Health, Iowa City, Iowa 52242
| | - James C Torner
- Department of Epidemiology, College of Public Health, Iowa City, Iowa 52242
| | - Steven M Levy
- Department of Preventive and Community Dentistry, College of Dentistry, Iowa City, Iowa 52242 and Department of Epidemiology, College of Public Health, Iowa City, Iowa 52242
| | - Punam K Saha
- Department of Electrical and Computer Engineering, College of Engineering, Iowa City, Iowa 52242 and Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
36
|
Poorsattar-Bejeh Mir A, Haghanifar S, Poorsattar-Bejeh Mir M, Rahmati-Kamel M. Individual scoring and mapping of hard and soft tissues of the anterior hard palate for orthodontic miniscrew insertion. ACTA ACUST UNITED AC 2015; 8. [PMID: 26446347 DOI: 10.1111/jicd.12186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/16/2015] [Indexed: 11/29/2022]
Abstract
AIM The aim of the present study was to introduce a scoring system to select optimal sites to insert a miniscrew in a hard palate. METHODS The present study consisted of 37 adult patients (21 females and 16 males) aged between 20 and 50 years, with a mean age of 34.81 (±9.52) years. Hard and soft tissues of the anterior hard palate were assessed using cone-beam computed tomography. The scoring system was as follows: mucosal thickness: 0-2 mm (2 points), 2-4 mm (1 point), and 4-6 mm (0 points); total bone vertical height: ≥5 mm (1 point) and <5 mm (0 points); and palatal cortical thickness: ≥1 mm (1 point) and <1 mm (0 points). RESULTS Significant variability was found between the individuals. Total vertical bone height decreased posteriorly and laterally. Mucosal thickness decreased posteriorly, but increased laterally. Palatal cortical thicknesses were higher than the nasal cortical thicknesses. The most balanced sites (highest point) were the midpalatal suture, followed by paramedian points located 3 mm lateral to the midline and 4 mm posterior to the incisive canal. CONCLUSIONS Considering that both hard and soft tissue parameters are crucial to obtain the best possible success rates, careful investigation is recommended prior to clinical decisions being made.
Collapse
Affiliation(s)
- Arash Poorsattar-Bejeh Mir
- Dental Materials Research Center, School of Dentistry, Babol University of Medical Sciences, Babol, Mazandaran, Iran.,Fusion Dental Research Center, Dallas, TX, USA
| | - Sina Haghanifar
- Dental Materials Research Center, School of Dentistry, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| | | | - Manoucher Rahmati-Kamel
- Dental Materials Research Center, School of Dentistry, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| |
Collapse
|
37
|
Liphardt AM, Schipilow JD, Macdonald HM, Kan M, Zieger A, Boyd SK. Bone micro-architecture of elite alpine skiers is not reflected by bone mineral density. Osteoporos Int 2015; 26:2309-17. [PMID: 25910749 DOI: 10.1007/s00198-015-3133-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 04/07/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED Bone quality is affected by muscle forces and external forces. We investigated how micro-architecture is influenced in elite alpine skiers who have received high loading levels throughout their adolescent bone development. Bone strength was higher in skiers, likely due to external forces, but muscle forces may also be a significant contributor. INTRODUCTION Impact loading and muscle forces affect bone quality, but little is known about how they influence 3 dimensional aspects of bone structure. This study investigated bone quality in female and male elite alpine skiers using high-resolution peripheral quantitative computed tomography (HR-pQCT). METHODS HR-pQCT at the distal radius and tibia, whole-body lean mass, and muscle strength were assessed in 10 female (22.7 ± 3.9 years) and 12 male (25.5 ± 3.3 years) Canadian national alpine team athletes and compared to recreationally active female (N = 10, 23.8 ± 3.2 years) and male (N = 12; 23.7 ± 3.6 years) control subjects. HR-pQCT standard parameters and customized cortical and finite element (FE) analyses were performed and analyzed using one-way ANOVA and Pearson's correlation. RESULTS Male and female skiers had stronger bones than controls at radius (38-49 %, p < 0.001) and tibia (24-28 %, p < 0.001). This result was not consistently reflected by total bone mineral density (BMD) because higher trabecular BMD occurred in parallel with lower cortical BMD, which was due to a redistribution of mineral leading to a shift of the endocortical margin toward a thicker cortex. The endocortical regional adaptation was likely responsible for the greater strength of the athletes' bones. Lean mass and muscle strength was 29 to 90 % greater (p < 0.001) in athletes compared to controls. Good associations between muscle strength and FE-estimated bone strength were found (r = 0.63 to 0.80; p < 0.001), although micro-architecture was more strongly associated with muscle outcomes in females than males. CONCLUSIONS Higher bone strength in elite alpine skiers is achieved through micro-architectural adaptation that is not apparent by BMD measurements alone. The improved micro-architecture at radius and tibia suggests that muscle forces may play an important role in bone adaptation.
Collapse
Affiliation(s)
- A-M Liphardt
- Schulich School of Engineering, University of Calgary, Calgary, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Sundh D, Mellström D, Nilsson M, Karlsson M, Ohlsson C, Lorentzon M. Increased Cortical Porosity in Older Men With Fracture. J Bone Miner Res 2015; 30:1692-700. [PMID: 25777580 DOI: 10.1002/jbmr.2509] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 11/12/2022]
Abstract
Cortical porosity increases with age and affects bone strength, but its association with fracture in older men is unknown. The aim of this study was to investigate whether cortical porosity is associated with prevalent fractures in older men. A subsample of 456 men aged 80.2 ± 3.5 (mean ± SD) years, with available high-resolution peripheral quantitative computed tomography measurements at the tibia from the 5-year follow-up exam, was drawn from the prospective MrOS Gothenburg study. Dual-energy X-ray absorptiometry was used to measure areal bone mineral density (aBMD). Data on physical activity, calcium intake, medications, diseases, and smoking were collected on questionnaires at the follow-up exam. Of 87 men (19.1%) with fracture at or after age 50 years (all fracture group), 52 (11.4%) had had a self-reported fracture before the baseline exam and 35 (7.7%) had had an X-ray-verified fracture between baseline and follow-up. Men in the all-fracture group and in the X-ray-verified group had 15.8% (13.2% ± 4.9% versus 11.4% ± 3.8%; p < 0.001) and 21.6% (14.1% ± 5.2% versus 11.6% ± 3.9%; p < 0.01) higher cortical porosity, respectively, than men in the nonfracture group. The independent associations between bone microstructure parameters and fracture were tested using multivariate logistic regression with age, height, weight, calcium intake, smoking, physical activity, medications, and diseases as covariates. Cortical porosity was independently associated with any fracture (reported or X-ray-verified; OR per SD increase 1.49; 95% confidence interval (CI), 1.17 to 1.90) and with any X-ray-verified fracture alone (OR 1.73; 95% CI, 1.23 to 2.42). Including aBMD (spine or hip, respectively) in the multivariate logistic regression above revealed that cortical porosity was associated with any fracture (OR 1.54; 95% CI, 1.17 to 2.01) and with X-ray-verified fracture alone (OR 1.49; 95% CI, 1.00 to 2.22). Cortical porosity was associated with prevalence of fracture even after adjustment for aBMD.
Collapse
Affiliation(s)
- Daniel Sundh
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Center for Bone Research at the Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Dan Mellström
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Center for Bone Research at the Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Martin Nilsson
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Center for Bone Research at the Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, and Department of Orthopaedics, Skåne University Hospital, Malmö, Sweden
| | - Claes Ohlsson
- Center for Bone Research at the Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Lorentzon
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Center for Bone Research at the Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Nirody JA, Cheng KP, Parrish RM, Burghardt AJ, Majumdar S, Link TM, Kazakia GJ. Spatial distribution of intracortical porosity varies across age and sex. Bone 2015; 75:88-95. [PMID: 25701139 PMCID: PMC4454740 DOI: 10.1016/j.bone.2015.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 01/15/2015] [Accepted: 02/06/2015] [Indexed: 11/25/2022]
Abstract
Cortical bone porosity is a major determinant of strength, stiffness, and fracture toughness of cortical tissue. The goal of this work was to investigate changes in spatial distribution and microstructure of cortical porosity associated with aging in men and women. The specific aims were to: 1) develop an automated technique for spatial analysis of cortical microstructure based on HR-pQCT data, and; 2) apply this technique to explore sex- and age-specific spatial distribution and microstructure of porosity within the cortex. We evaluated HR-pQCT images of the distal tibia from a cross-sectional cohort of 145 individuals, characterizing detectable pores as being in the endosteal, midcortical, or periosteal layers of the cortex. Metrics describing porosity, pore number, and pore size were quantified within each layer and compared across sexes, age groups, and cortical layers. The elderly cohort (65-78 years, n=22) displayed higher values than the young cohort (20-29 years, n=29) for all parameters both globally and within each layer. While all three layers displayed significant age-related porosity increases, the greatest difference in porosity between the young and elderly cohort was in the midcortical layer (+344%, p<0.001). Similarly, the midcortical layer reflected the greatest differences between young and elderly cohorts in both pore number (+243%, p<0.001) and size (+28%, p<0.001). Females displayed greater age-related changes in porosity and pore number than males. Females and males displayed comparable small to non-significant changes with age in pore size. In summary, considerable variability exists in the spatial distribution of detectable cortical porosity at the distal tibia, and this variability is dependent on age and sex. Intracortical pore distribution analysis may ultimately provide insight into both mechanisms of pore network expansion and biomechanical consequences of pore distribution.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Biophysics Graduate Group, University of California, Berkeley, CA, USA.
| | - Karen P Cheng
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, CA.
| | - Robin M Parrish
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Andrew J Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Sharmila Majumdar
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Thomas M Link
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Galateia J Kazakia
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| |
Collapse
|
40
|
Milovanovic P, Adamu U, Simon MJK, Rolvien T, Djuric M, Amling M, Busse B. Age- and Sex-Specific Bone Structure Patterns Portend Bone Fragility in Radii and Tibiae in Relation to Osteodensitometry: A High-Resolution Peripheral Quantitative Computed Tomography Study in 385 Individuals. J Gerontol A Biol Sci Med Sci 2015; 70:1269-75. [DOI: 10.1093/gerona/glv052] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 04/02/2015] [Indexed: 11/12/2022] Open
|
41
|
Nishiyama KK, Pauchard Y, Nikkel LE, Iyer S, Zhang C, McMahon DJ, Cohen D, Boyd SK, Shane E, Nickolas TL. Longitudinal HR-pQCT and image registration detects endocortical bone loss in kidney transplantation patients. J Bone Miner Res 2015; 30:554-61. [PMID: 25213758 DOI: 10.1002/jbmr.2358] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/21/2014] [Accepted: 09/07/2014] [Indexed: 11/07/2022]
Abstract
Patients with chronic kidney disease (CKD) who undergo kidney transplantation experience bone loss and increased risk of fracture. However, the mechanisms of this bone loss are unclear. Our objective was to use image registration to define the cortex to assess changes in cortical porosity (Ct.Po) in patients undergoing first-time kidney transplantation. We obtained serial measurements of parathyroid hormone (PTH) and bone turnover markers and used high-resolution peripheral quantitative computed tomography (HR-pQCT) to scan the distal radius and tibia in 31 patients (21 men, 10 women; aged 51.9 ± 13.4 years) at transplant and after 1 year. Baseline and 1-year images were aligned using a fully automated, intensity-based image registration framework. We compared three methods to define the cortical region of interest (ROI) and quantify the changes: 1) cortical bone was independently defined in baseline and follow-up scans; 2) cortical bone was defined as the common cortical ROI; and 3) the cortical ROI at baseline was carried forward to 1-year follow-up (baseline-indexed). By the independently defined ROI, Ct.Po increased 11.7% at the radius and 9.1% at the tibia, whereas by the common ROI, Ct.Po increased 14.6% at the radius and 9.1% at the tibia. By the baseline-indexed ROI, which provides insight into changes at the endocortical region, Ct.Po increased 63.4% at the radius and 17.6% at the tibia. We found significant relationships between changes in Ct.Po and bone formation and resorption markers at the radius. The strongest associations were found between markers and Ct.Po using the baseline-index method. We conclude that Ct.Po increases throughout the cortex after kidney transplant, and this increase is particularly marked at the endocortical surface. These methods may prove useful for all HR-pQCT longitudinal studies, particularly when changes are expected at the endocortical region.
Collapse
|
42
|
Fischer L, Valentinitsch A, DiFranco MD, Schueller-Weidekamm C, Kienzl D, Resch H, Gross T, Weber M, Jaksch P, Klepetko W, Zweytick B, Pietschmann P, Kainberger F, Langs G, Patsch JM. High-Resolution Peripheral Quantitative CT Imaging: Cortical Porosity, Poor Trabecular Bone Microarchitecture, and Low Bone Strength in Lung Transplant Recipients. Radiology 2015; 274:473-81. [DOI: 10.1148/radiol.14140201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Fang L, Ding X, Wang HM, Zhu XH. Chronological changes in the microstructure of bone during peri-implant healing: a microcomputed tomographic evaluation. Br J Oral Maxillofac Surg 2014; 52:816-21. [DOI: 10.1016/j.bjoms.2014.07.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 07/11/2014] [Indexed: 11/28/2022]
|
44
|
Chen H, Kubo KY. Bone three-dimensional microstructural features of the common osteoporotic fracture sites. World J Orthop 2014; 5:486-495. [PMID: 25232524 PMCID: PMC4133454 DOI: 10.5312/wjo.v5.i4.486] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/03/2014] [Accepted: 06/03/2014] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is a common metabolic skeletal disorder characterized by decreased bone mass and deteriorated bone structure, leading to increased susceptibility to fractures. With aging population, osteoporotic fractures are of global health and socioeconomic importance. The three-dimensional microstructural information of the common osteoporosis-related fracture sites, including vertebra, femoral neck and distal radius, is a key for fully understanding osteoporosis pathogenesis and predicting the fracture risk. Low vertebral bone mineral density (BMD) is correlated with increased fracture of the spine. Vertebral BMD decreases from cervical to lumbar spine, with the lowest BMD at the third lumbar vertebra. Trabecular bone mass of the vertebrae is much lower than that of the peripheral bone. Cancellous bone of the vertebral body has a complex heterogeneous three-dimensional microstructure, with lower bone volume in the central and anterior superior regions. Trabecular bone quality is a key element to maintain the vertebral strength. The increased fragility of osteoporotic femoral neck is attributed to low cancellous bone volume and high compact porosity. Compared with age-matched controls, increased cortical porosity is observed at the femoral neck in osteoporotic fracture patients. Distal radius demonstrates spatial inhomogeneous characteristic in cortical microstructure. The medial region of the distal radius displays the highest cortical porosity compared with the lateral, anterior and posterior regions. Bone strength of the distal radius is mainly determined by cortical porosity, which deteriorates with advancing age.
Collapse
|
45
|
Kazakia GJ, Tjong W, Nirody JA, Burghardt AJ, Carballido-Gamio J, Patsch JM, Link T, Feeley BT, Ma CB. The influence of disuse on bone microstructure and mechanics assessed by HR-pQCT. Bone 2014; 63:132-40. [PMID: 24603002 PMCID: PMC4041600 DOI: 10.1016/j.bone.2014.02.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 11/19/2022]
Abstract
Numerous clinical cohorts are exposed to reduced skeletal loading and associated bone loss, including surgical patients, stroke and spinal cord injury victims, and women on bed rest during pregnancy. In this context, understanding disuse-related bone loss is critical to developing interventions to prevent fractures and the associated morbidity, mortality, and cost to the health care system. The aim of this pilot study was to use high-resolution peripheral QCT (HR-pQCT) to examine changes in trabecular and cortical microstructure and biomechanics during a period of non weight bearing (WB) and during recovery following return to normal WB. Surgical patients requiring a 6-week non WB period (n=12, 34.8±7.7 yrs) were scanned at the affected and contralateral tibia prior to surgery, after the 6-week non WB period, and 6 and 13 weeks after returning to full WB. At the affected ultradistal tibia, integral vBMD (including both trabecular and cortical compartments) decreased with respect to baseline (-1.2%), trabecular number increased (+5.6%), while trabecular thickness (-5.4%), separation (-4.6%), and heterogeneity (-7.2%) decreased (all p<0.05). Six weeks after return to full WB, trabecular structure measures reverted to baseline levels. In contrast, integral vBMD continued to decrease after 6 (-2.0%, p<0.05) and 13 weeks (-2.5%, p=0.07) of full WB. At the affected distal site, the disuse period resulted in increased porosity (+16.1%, p<0.005), which remained elevated after 6 weeks (+16.8%, p<0.01) and after 13 weeks (+16.2%, p<0.05). A novel topological analysis applied to the distal tibia cortex demonstrated increased number of canals with surface topology ("slabs" +21.7%, p<0.01) and curve topology ("tubes" +15.0%, p<0.05) as well as increased number of canal junctions (+21.4%, p<0.05) following the disuse period. Porosity increased uniformly through increases in both pore size and number. Finite element analysis at the ultradistal tibia showed decreased stiffness and failure load (-2.8% and -2.4%, p<0.01) following non WB. These biomechanical predictions remained depressed following 6 and 13 weeks of full WB. Finite element analysis at the distal site followed similar trends. Our results suggest that detectable microstructural and biomechanical degradation occurs--particularly within the cortical compartment--as a result of non WB and persists following return to normal loading. A better understanding of these microstructural changes and their short- and long-term influence on biomechanics may have clinical relevance in the context of disuse-related fracture prevention.
Collapse
Affiliation(s)
- Galateia J Kazakia
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Willy Tjong
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Jasmine A Nirody
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Andrew J Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Julio Carballido-Gamio
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Janina M Patsch
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Thomas Link
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Brian T Feeley
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, USA.
| | - C Benjamin Ma
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
46
|
Hansen S, Shanbhogue V, Folkestad L, Nielsen MMF, Brixen K. Bone microarchitecture and estimated strength in 499 adult Danish women and men: a cross-sectional, population-based high-resolution peripheral quantitative computed tomographic study on peak bone structure. Calcif Tissue Int 2014; 94:269-81. [PMID: 24146226 DOI: 10.1007/s00223-013-9808-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) allows in vivo assessment of cortical and trabecular bone mineral density (BMD), geometry, and microarchitecture at the distal radius and tibia in unprecedented detail. In this cross-sectional study, we provide normative and descriptive HR-pQCT data from a large population-based sample of Danish Caucasian women and men (n = 499) aged 20-80 years. In young adults (<35 years), women (n = 100) compared to men (n = 64) had smaller total and cortical areas, inferior metric trabecular indices, higher network inhomogeneity, lower cortical porosity, and lower finite element estimated bone strength. The changes in parameters with age were estimated from multiple regression analyses. In men, with age the greatest changes (from parameter minimum or maximum) until 80 years were found for cortical porosity (1.91 IQR), BV/TV (-1.09 IQR), and trabecular thickness (-0.87 IQR) in the radius and BV/TV (-1.55 IQR), cortical BMD (-1.25 IQR), and cortical porosity (1.25 IQR) in the tibia. In women changes were most pronounced for cortical porosity (4.76 IQR), trabecular inhomogeneity (3.84 IQR), and cortical BMD (-2.86 IQR) in the radius and cortical BMD (-5.06 IQR), cortical porosity (3.86 IQR), and cortical area (-1.64 IQR) in the tibia. These findings emphasize the age- and sex-related differences in bone morphology, with men having a structural advantage over women from early adult life translating into superior indices of bone strength. With age women are further disadvantaged compared to men by greater decrements in cortical and trabecular architecture in the radius and cortical architecture in the tibia.
Collapse
Affiliation(s)
- Stinus Hansen
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6.1.sal, 5000, Odense, Denmark,
| | | | | | | | | |
Collapse
|
47
|
Feehan L, Buie H, Li L, McKay H. A customized protocol to assess bone quality in the metacarpal head, metacarpal shaft and distal radius: a high resolution peripheral quantitative computed tomography precision study. BMC Musculoskelet Disord 2013; 14:367. [PMID: 24364867 PMCID: PMC3877978 DOI: 10.1186/1471-2474-14-367] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/18/2013] [Indexed: 12/17/2022] Open
Abstract
Background High Resolution-Peripheral Quantitative Computed Tomography (HR-pQCT) is an emerging technology for evaluation of bone quality in Rheumatoid Arthritis (RA). However, there are limitations with standard HR-pQCT imaging protocols for examination of regions of bone commonly affected in RA. We developed a customized protocol for evaluation of volumetric bone mineral density (vBMD) and microstructure at the metacarpal head (MH), metacarpal shaft (MS) and ultra-ultra-distal (UUD) radius; three sites commonly affected in RA. The purpose was to evaluate short-term measurement precision for bone density and microstructure at these sites. Methods 12 non-RA participants, individuals likely to have no pre-existing bone damage, consented to participate [8 females, aged 23 to 71 y [median (IQR): 44 (28) y]. The custom protocol includes more comfortable/stable positioning and adapted cortical segmentation and direct transformation analysis methods. Dominant arm MH, MS and UUD radius scans were completed on day one; repeated twice (with repositioning) three to seven days later. Short-term precision for repeated measures was explored using intraclass correlational coefficient (ICC), mean coefficient of variation (CV%), root mean square coefficient of variation (RMSCV%) and least significant change (LSC%95). Results Bone density and microstructure precision was excellent: ICCs varied from 0.88 (MH2 trabecular number) to .99 (MS3 polar moment of inertia); CV% varied from < 1 (MS2 vBMD) to 6 (MS3 marrow space diameter); RMSCV% varied from < 1 (MH2 full bone vBMD) to 7 (MS3 marrow space diameter); and LSC% 95varied from 2 (MS2 full bone vBMD to 21 (MS3 marrow space diameter). Cortical porosity measures were the exception; RMSCV% varying from 19 (MS3) to 42 (UUD). No scans were stopped for discomfort. 5% (5/104) were repeated due to motion during imaging. 8% (8/104) of final images had motion artifact graded > 3 on 5 point scale. Conclusion In our facility, this custom protocol extends the potential for in vivo HR-pQCT imaging to assess, with high precision, regional differences in bone quality at three sites commonly affected in RA. Our methods are easy to adopt and we recommend other users of HR-pQCT consider this protocol for further evaluations of its precision and feasibility in their imaging facilities.
Collapse
Affiliation(s)
- Lynne Feehan
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
48
|
Abstract
Osteoporosis, a disease characterized by loss of bone mass and structural deterioration, is currently diagnosed by dual-energy x-ray absorptiometry (DXA). However, DXA does not provide information about bone microstructure, which is a key determinant of bone strength. Recent advances in imaging permit the assessment of bone microstructure in vivo using high-resolution peripheral quantitative computed tomography (HR-pQCT). From these data, novel image processing techniques can be applied to characterize bone quality and strength. To date, most HR-pQCT studies are cross-sectional comparing subjects with and without fracture. These studies have shown that HR-pQCT is capable of discriminating fracture status independent of DXA. Recent longitudinal studies present new challenges in terms of analyzing the same region of interest and multisite calibrations. Careful application of analysis techniques and educated clinical interpretation of HR-pQCT results have improved our understanding of various bone-related diseases and will no doubt continue to do so in the future.
Collapse
Affiliation(s)
- Kyle K Nishiyama
- Metabolic Bone Diseases Unit, Division of Endocrinology, Department of Medicine, College of Physicians and Surgeons, 630 West 168th Street, PH8 West 864, New York, NY 10032, USA
| | | |
Collapse
|