1
|
Collet Q, Velard F, Laurent F, Josse J. Intracellular Staphylococcus aureus in osteoblasts and osteocytes and its impact on bone homeostasis during osteomyelitis. Bone 2025; 198:117536. [PMID: 40393553 DOI: 10.1016/j.bone.2025.117536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
Osteomyelitis is a severe infection of bone tissue that can lead to bone loss and even osteonecrosis. This condition is mostly caused by Gram-positive bacteria, with Staphylococcus aureus being the most common etiological agent. Among the pathophysiological mechanisms involved in osteomyelitis, the ability of S. aureus to be internalized by osteoblasts or osteocytes and to survive within these cells, is particularly noteworthy. Infected osteoblasts and osteocytes not only serve as reservoirs in chronic cases of osteomyelitis but also play an active role in the osteoimmunology process, notably by producing mediators that promote the bone resorption activity of osteoclasts, thereby disrupting bone homeostasis. The present review explores both historical and recent literature on the internalization of S. aureus by osteoblasts and osteocytes, its intracellular behavior following internalization, and its mechanisms for inducing cell death. Additionally, it examines how S. aureus affects bone formation activity and promotes the production of inflammatory and pro-osteoclastic mediators. This review aims to highlight the limitations of current findings and outline key questions for future investigations.
Collapse
Affiliation(s)
- Quentin Collet
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France; Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France.
| | | | - Frédéric Laurent
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France; Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| |
Collapse
|
2
|
Szmek J, Englmaierová M, Skřivan M, Pěchoučková E. Skeletal disorders in laying hens: a systematic review with a focus on non-cage housing systems and hemp-based dietary interventions for bone health. Br Poult Sci 2025:1-30. [PMID: 40331968 DOI: 10.1080/00071668.2025.2489059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/17/2025] [Indexed: 05/08/2025]
Abstract
1. The poultry sector is possibly the fastest growing and most flexible of all livestock sectors. At present, the main changes to the table egg production system include the gradual abandonment and closure of all cage-housing systems for laying hens, driven by animal welfare concerns and stricter legislation in many countries. In the future, keeping hens in enriched cage systems may be restricted or phased out in response to evolving animal welfare guidelines and public demand. To meet the welfare and behavioural requirements of the hens, it is desirable to choose housing on litter or housing in aviaries as a substitute for housing in enriched cages.2. The objective of this systematic review was to examine non-cage housing systems and hemp-based dietary interventions in relation to skeletal health in laying hens. This review focussed on the risks associated with alternative housing systems, particularly the increased incidence of bone fractures and the potential of nutritional strategies to mitigate skeletal disorders, including osteoporosis.3. The proportion of hens housed in non-cage alternative housing systems is currently increasing sharply but carries certain risks. One of the most significant concerns is skeletal integrity, as hens in aviaries experience a higher rate of keel bone fractures due to collisions, falls and deviations thought to be related to internal pressure. Numerous studies have shown that the incidence of keel bone damage (i.e. fractures and deviations) was greater in aviaries compared to enriched cage systems.4. Optimal skeletal health can be supported through proper nutrition, which plays a crucial role in bone metabolism. Key nutritional elements, including calcium, vitamins D, E and K, polyunsaturated fatty acids and hemp-based products, have been shown to be beneficial in preventing skeletal disorders and associated fractures due to their specific roles in maintaining bone structure and strength.
Collapse
Affiliation(s)
- J Szmek
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague - Suchdol, Czech Republic
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Prague - Uhříněves, Czech Republic
| | - M Englmaierová
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Prague - Uhříněves, Czech Republic
| | - M Skřivan
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Prague - Uhříněves, Czech Republic
| | - E Pěchoučková
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague - Suchdol, Czech Republic
- Department of Nutrition Physiology and Animal Product Quality, Institute of Animal Science, Prague - Uhříněves, Czech Republic
| |
Collapse
|
3
|
Jin Z, Xu H, Zhao W, Zhang K, Wu S, Shu C, Zhu L, Wang Y, Wang L, Zhang H, Yan B. Macrophage ATF6 accelerates corticotomy-assisted orthodontic tooth movement through promoting Tnfα transcription. Int J Oral Sci 2025; 17:28. [PMID: 40164575 PMCID: PMC11958779 DOI: 10.1038/s41368-025-00359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/15/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
Corticotomy is a clinical procedure to accelerate orthodontic tooth movement characterized by the regional acceleratory phenomenon (RAP). Despite its therapeutic effects, the surgical risk and unclear mechanism hamper the clinical application. Numerous evidences support macrophages as the key immune cells during bone remodeling. Our study discovered that the monocyte-derived macrophages primarily exhibited a pro-inflammatory phenotype that dominated bone remodeling in corticotomy by CX3CR1CreERT2; R26GFP lineage tracing system. Fluorescence staining, flow cytometry analysis, and western blot determined the significantly enhanced expression of binding immunoglobulin protein (BiP) and emphasized the activation of sensor activating transcription factor 6 (ATF6) in macrophages. Then, we verified that macrophage specific ATF6 deletion (ATF6f/f; CX3CR1CreERT2 mice) decreased the proportion of pro-inflammatory macrophages and therefore blocked the acceleration effect of corticotomy. In contrast, macrophage ATF6 overexpression exaggerated the acceleration of orthodontic tooth movement. In vitro experiments also proved that higher proportion of pro-inflammatory macrophages was positively correlated with higher expression of ATF6. At the mechanism level, RNA-seq and CUT&Tag analysis demonstrated that ATF6 modulated the macrophage-orchestrated inflammation through interacting with Tnfα promotor and augmenting its transcription. Additionally, molecular docking simulation and dual-luciferase reporter system indicated the possible binding sites outside of the traditional endoplasmic reticulum-stress response element (ERSE). Taken together, ATF6 may aggravate orthodontic bone remodeling by promoting Tnfα transcription in macrophages, suggesting that ATF6 may represent a promising therapeutic target for non-invasive accelerated orthodontics.
Collapse
Affiliation(s)
- Zhichun Jin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hao Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Weiye Zhao
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Kejia Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shengnan Wu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Linlin Zhu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Lin Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| | - Hanwen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
4
|
Tran TT, Gal M, Ha MT, Hyun S, Kim O, Lee JH, Min BS. Triterpenoids from Potentilla chinensis Inhibit RANKL-Induced Osteoclastogenesis in Vitro and Lipopolysaccharide-Induced Osteolytic Bone Loss in Vivo. Chem Biodivers 2025; 22:e202402011. [PMID: 39539038 DOI: 10.1002/cbdv.202402011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
In this study, a phytochemical investigation on the methanol extract of Potentilla chinensis led to the isolation of eleven triterpenoids including ursolic acid (1), pomolic acid (2), tormentic acid (3), 2-epi-corosolic acid (4), 3-epi-corosolic acid (ECA, 5), 3β-hydroxyurs-11-en-13β(28)-olide (6), euscaphic acid (7), 2-epi-tormentic acid (8), corosolic acid (9), uvaol (10), and 3-O-acetylpomolic acid (11). Among them, ECA (5) showed potential anti-osteoclastogenic activity. To the best of our knowledge, this represents the first isolation of ECA (5) from P. chinensis as well as the first investigation of its effects on osteoclast formation. Further study revealed that ECA inhibited RANKL-induced mature osteoclast formation in vitro without compromising cell viability. Mechanistically, ECA attenuated RANKL-induced mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) activation, leading to the inhibition of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) activation. Moreover, ECA protected against LPS-induced inflammatory bone loss and osteoclast formation in a mouse model. However, ECA did not inhibit LPS-induced inflammatory responses in macrophages. Our findings suggest that ECA mitigates LPS-induced inflammatory bone loss in mice by inhibiting RANKL-induced activation of key osteoclastogenic transcription factors, including c-Fos and NFATc1, and may be a potential natural triterpenoid for preventing or treating osteolytic diseases.
Collapse
Affiliation(s)
- Trong Trieu Tran
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea
| | - Minju Gal
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Manh Tuan Ha
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea
| | - Seungeun Hyun
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Okwha Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea
| |
Collapse
|
5
|
Haacke N, Wang H, Yan S, Barovic M, Li X, Nagai K, Botezatu A, Hatzioannou A, Gercken B, Trimaglio G, Shah AU, Wang J, Ye L, Jaykar MT, Rauner M, Wielockx B, Chung KJ, Netea MG, Kalafati L, Hajishengallis G, Chavakis T. Innate immune training of osteoclastogenesis promotes inflammatory bone loss in mice. Dev Cell 2025:S1534-5807(25)00063-2. [PMID: 40020679 PMCID: PMC7617534 DOI: 10.1016/j.devcel.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
We previously demonstrated that long-term trained immunity (TRIM) involves adaptations that imprint innate immune memory in long-lived myelopoiesis precursors and their progeny, monocytes/macrophages and neutrophils, which thereby acquire enhanced responsiveness to future challenges. Here, we show that a distinct component of myeloid biology, osteoclastogenesis, can also undergo innate immune training. Indeed, β-glucan-induced TRIM was associated with an increased osteoclastogenesis bias in the bone marrow and an expansion of monocytes/osteoclast progenitors in the periphery, resulting in aggravated severity of experimental periodontitis and arthritis. In the setting of trained inflammatory osteoclastogenesis, we observed transcriptomic rewiring in synovial myeloid cells of arthritic mice, featuring prominent upregulation of the transcription factor melanogenesis-associated transcription factor (MITF). Adoptive transfer of splenic monocytes from β-glucan-trained mice to naive recipients exacerbated arthritis in the latter in a strictly MITF-dependent manner. Our findings establish trained osteoclastogenesis as a maladaptive component of TRIM and potentially provide therapeutic targets in inflammatory bone loss disorders.
Collapse
Affiliation(s)
- Nora Haacke
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Hui Wang
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shu Yan
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany
| | - Marko Barovic
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kosuke Nagai
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Adelina Botezatu
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Giulia Trimaglio
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany
| | - Anisha U Shah
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mangesh T Jaykar
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 XZ Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
6
|
Hashim NT, Babiker R, Chaitanya NCSK, Mohammed R, Priya SP, Padmanabhan V, Ahmed A, Dasnadi SP, Islam MS, Gismalla BG, Rahman MM. New Insights in Natural Bioactive Compounds for Periodontal Disease: Advanced Molecular Mechanisms and Therapeutic Potential. Molecules 2025; 30:807. [PMID: 40005119 PMCID: PMC11858609 DOI: 10.3390/molecules30040807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/18/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Periodontal disease is a chronic inflammatory condition that destroys the tooth-supporting structures due to the host's immune response to microbial biofilms. Traditional periodontal treatments, such as scaling and root planing, pharmacological interventions, and surgical procedures, have significant limitations, including difficulty accessing deep periodontal pockets, biofilm recolonization, and the development of antibiotic resistance. In light of these challenges, natural bioactive compounds derived from plants, herbs, and other natural sources offer a promising alternative due to their anti-inflammatory, antioxidant, antimicrobial, and tissue-regenerative properties. This review focuses on the molecular mechanisms through which bioactive compounds, such as curcumin, resveratrol, epigallocatechin gallate (EGCG), baicalin, carvacrol, berberine, essential oils, and Gum Arabic, exert therapeutic effects in periodontal disease. Bioactive compounds inhibit critical inflammatory pathways like NF-κB, JAK/STAT, and MAPK while activating protective pathways such as Nrf2/ARE, reducing cytokine production and oxidative stress. They also inhibit the activity of matrix metalloproteinases (MMPs), preventing tissue degradation and promoting healing. In addition, these compounds have demonstrated the potential to disrupt bacterial biofilms by interfering with quorum sensing, targeting bacterial cell membranes, and enhancing antibiotic efficacy.Bioactive compounds also modulate the immune system by shifting the balance from pro-inflammatory to anti-inflammatory responses and promoting efferocytosis, which helps resolve inflammation and supports tissue regeneration. However, despite the promising potential of these compounds, challenges related to their poor bioavailability, stability in the oral cavity, and the absence of large-scale clinical trials need to be addressed. Future strategies should prioritize the development of advanced delivery systems like nanoparticles and hydrogels to enhance bioavailability and sustain release, alongside long-term studies to assess the effects of these compounds in human populations. Furthermore, combining bioactive compounds with traditional treatments could provide synergistic benefits in managing periodontal disease. This review aims to explore the therapeutic potential of natural bioactive compounds in managing periodontal disease, emphasizing their molecular mechanisms of action and offering insights into their integration with conventional therapies for a more comprehensive approach to periodontal health.
Collapse
Affiliation(s)
- Nada Tawfig Hashim
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Rasha Babiker
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Science University, Ras-AlKhaimah 11127, United Arab Emirates;
| | - Nallan C. S. K. Chaitanya
- Department of Oral Medicine and Radiology, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Riham Mohammed
- Department Oral Surgery, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Sivan Padma Priya
- Oral Pathology Department, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Vivek Padmanabhan
- Department of Pediatric and Preventive Dentistry, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Ayman Ahmed
- Department of Periodontology and Implantology, Nile University, Khartoum 1847, Sudan;
| | - Shahista Parveen Dasnadi
- Department of Orthodontics, RAK College of Dental, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Md Sofiqul Islam
- Department of Operative Dentistry, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| | - Bakri Gobara Gismalla
- Department of Oral Rehabilitation, Faculty of Dentistry, University of Khartoum, Khartoum 11115, Sudan;
| | - Muhammed Mustahsen Rahman
- Department of Periodontics, RAK College of Dental Sciences, RAK Medical & Health Sciences University, Ras-AlKhaimah 12973, United Arab Emirates;
| |
Collapse
|
7
|
Zhang Y, Zhou C, Xie Q, Xia L, Liu L, Bao W, Lin H, Xiong X, Zhang H, Zheng Z, Zhao J, Liang W. Dual release scaffolds as a promising strategy for enhancing bone regeneration: an updated review. Nanomedicine (Lond) 2025; 20:371-388. [PMID: 39891431 PMCID: PMC11812394 DOI: 10.1080/17435889.2025.2457317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
Advancements in tissue regeneration, particularly bone regeneration is key area of research due to potential of novel therapeutic approaches. Efforts to reduce reliance on autologous and allogeneic bone grafts have led to the development of biomaterials that promote synchronized and controlled bone healing. However, the use of growth factors is limited by their short half-life, slow tissue penetration, large molecular size and potential toxicity. These factors suggest that traditional delivery methods may be inadequate hence, to address these challenges, new strategies are being explored. These novel approaches include the use of bioactive substances within advanced delivery systems that enable precise spatiotemporal control. Dual-release composite scaffolds offer a promising solution by reducing the need for multiple surgical interventions and simplifying the treatment process. These scaffolds allow for sustained and controlled drug release, enhancing bone repair while minimizing the drawbacks of conventional methods. This review explores various dual-drug release systems, discussing their modes of action, types of drugs used and release mechanisms to improve bone regeneration.
Collapse
Affiliation(s)
- Yongtao Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, Zhejiang, China
| | - Qiong Xie
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenwen Bao
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hongming Lin
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaochun Xiong
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hao Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Zeping Zheng
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
8
|
Nasme F, Behera J, Tyagi P, Debnath N, Falcone JC, Tyagi N. The potential link between the development of Alzheimer's disease and osteoporosis. Biogerontology 2025; 26:43. [PMID: 39832071 DOI: 10.1007/s10522-024-10181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) and osteoporosis (OP) pose distinct but interconnected health challenges, both significantly impacting the aging population. AD, a neurodegenerative disorder characterized by memory impairment and cognitive decline, is primarily associated with the accumulation of abnormally folded amyloid beta (Aβ) peptides and neurofibrillary tangles in the brain. OP, a skeletal disorder marked by low bone mineral density, involves dysregulation of bone remodeling and is associated with an increased risk of fractures. Recent studies have revealed an intriguing link between AD and OP, highlighting shared pathological features indicative of common regulatory pathophysiological pathways. In this article, we elucidate the signaling mechanisms that regulate the pathology of AD and OP and offer insights into the intricate network of factors contributing to these conditions. We also examine the role of bone-derived factors in the progression of AD, underscoring the plausibility of bidirectional communication between the brain and the skeletal system. The presence of amyloid plaques in the brain of individuals with AD is akin to the accumulation of brain Aβ in vascular dementia, pointing towards the need for further investigation of shared molecular mechanisms. Moreover, we discuss the role of bone-derived microRNAs that may regulate the pathological progression of AD, providing a novel perspective on the role of skeletal factors in neurodegenerative diseases. The insights presented here should help researchers engaged in exploring innovative therapeutic approaches targeting both neurodegenerative and skeletal disorders in aging populations.
Collapse
Affiliation(s)
- Fariha Nasme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Jyotirmaya Behera
- Division of Immunology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Prisha Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu, Jammu & Kashmir, 181143, India
| | - Jeff C Falcone
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
9
|
Pramanik R, Chattopadhyay S, Bishayi B. Dual neutralization of TGF-β and IL-21 regulates Th17/Treg balance by suppressing inflammatory signalling in the splenic lymphocytes of Staphylococcus aureus infection-induced septic arthritic mice. Immunol Res 2025; 73:38. [PMID: 39831928 DOI: 10.1007/s12026-024-09586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Septic arthritis (SA) caused by Staphylococcus aureus is a severe inflammatory joint disease, characterized by synovitis accompanied with cartilage destruction and bone erosion. The available antibiotic treatment alone is insufficient to resolve the inflammation that leads to high rates of morbidity and mortality. Among the CD4+ T helper lymphocytes, the Th17 and Tregs are key regulators of immune homeostasis. A high Th17 could lead to autoimmunity, whereas an increase in Tregs indicates immunosuppression. Depending on the external cytokine milieu, naïve CD4+ T cells transform into either Th17 or Treg cell lineage. TGF-β in the presence of IL-21 produces Th17 cells and drives the inflammatory cascade of reactions. We studied the effects of in vivo neutralization of TGF-β and IL-21 in septic arthritic mice to control arthritic inflammation, which has not been studied before. The arthritic index showed maximum severity in the SA group which substantially reduced in the Ab-treated groups. Flow cytometric analyses of peripheral blood collected from mice at 9DPI revealed the highest Th17/Treg ratio in the SA group but least in the combined-antibody-treated group. TGF-β1 and IL-21 cytokine production from serum, spleen, and synovial tissue homogenates was significantly reduced in the dual Ab-treated group than in the untreated SA group. From the Western blot analyses obtained from splenic lymphocytes at 9 DPI, we elucidated the possible underlying mechanism of interplay in downstream signalling involving the interaction between different STAT proteins and SOCS, NF-κB, RANKL, mTOR, iNOS, and COX-2 in regulating inflammation and osteoclastogenesis. On endogenous blockade with TGF-β and IL-21, the Th17/Treg ratio and resultant arthritic inflammation in SA were found to be reduced. Therefore, maintaining the Th17/Treg balance is critical to eradicate infection as well as suppress excessive inflammation and neutralization of TGF-β and IL-21 could provide a novel therapeutic strategy to treat staphylococcal SA.
Collapse
Affiliation(s)
- Rochana Pramanik
- Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Sreya Chattopadhyay
- Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Biswadev Bishayi
- Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India.
| |
Collapse
|
10
|
Zhou X, Chen S, Pich A, He C. Advanced Bioresponsive Drug Delivery Systems for Promoting Diabetic Vascularized Bone Regeneration. ACS Biomater Sci Eng 2025; 11:182-207. [PMID: 39666445 DOI: 10.1021/acsbiomaterials.4c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The treatment of bone defects in diabetes mellitus (DM) patients remains a major challenge since the diabetic microenvironments significantly impede bone regeneration. Many abnormal factors including hyperglycemia, elevated oxidative stress, increased inflammation, imbalanced osteoimmune, and impaired vascular system in the diabetic microenvironment will result in a high rate of impaired, delayed, or even nonhealing events of bone tissue. Stimuli-responsive biomaterials that can respond to endogenous biochemical signals have emerged as effective therapeutic systems to treat diabetic bone defects via the combination of microenvironmental regulation and enhanced osteogenic capacity. Following the natural bone healing processes, coupling of angiogenesis and osteogenesis by advanced bioresponsive drug delivery systems has proved to be of significant approach for promoting bone repair in DM. In this Review, we have systematically summarized the mechanisms and therapeutic strategies of DM-induced impaired bone healing, outlined the bioresponsive design for drug delivery systems, and highlighted the vascularization strategies for promoting bone regeneration. Accordingly, we then overview the recent advances in developing bioresponsive drug delivery systems to facilitate diabetic vascularized bone regeneration by remodeling the microenvironment and modulating multiple regenerative cues. Furthermore, we discuss the development of adaptable drug delivery systems with unique features for guiding DM-associated bone regeneration in the future.
Collapse
Affiliation(s)
- Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- Institute for Technical and Macromolecular Chemistry, Functional and Interactive Polymers, RWTH Aachen University, Aachen 52074, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen 52074, Germany
| | - Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Andrij Pich
- Institute for Technical and Macromolecular Chemistry, Functional and Interactive Polymers, RWTH Aachen University, Aachen 52074, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen 52074, Germany
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
11
|
Ma L, Kang X, Tan J, Wang Y, Liu X, Tang H, Guo L, Tang K, Bian X. Denervation‑induced NRG3 aggravates muscle heterotopic ossification via the ErbB4/PI3K/Akt signaling pathway. Mol Med Rep 2025; 31:9. [PMID: 39450542 PMCID: PMC11529186 DOI: 10.3892/mmr.2024.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/14/2024] [Indexed: 10/26/2024] Open
Abstract
Peripheral nerve injury exacerbates progression of muscle heterotopic ossification (HO) and induces changes in expression of local cytokines in muscle tissue. The objective of the present study was to assess the impact of peripheral nerve injury on muscle HO development and the mechanism of cytokine modulation. A mouse model of gastrocnemius muscle HO was established and the sciatic nerve cut to simulate peripheral nerve injury. To evaluate the underlying factors contributing to the exacerbation of muscle HO resulting from denervation, fresh muscle tissue was collected and micro‑computed tomography, histochemical staining, RNA‑sequencing, reverse transcription‑quantitative PCR, Western blot, muscle tissue chip array were performed to analyze the molecular mechanisms. Sciatic nerve injury exacerbated HO in the gastrocnemius muscle of mice. Moreover the osteogenic differentiation of nerve‑injured muscle tissue‑derived fibro‑adipogenic progenitors (FAPs) increased in vitro. The expression of neuregulin 3 (NRG3) was demonstrated to be increased after nerve injury by muscle tissue chip array. Subsequent transcriptome sequencing analysis of muscle tissue revealed an enrichment of the PI3K/Akt pathway following nerve injury and an inhibitor of the PI3K/Akt pathway reduced the osteogenic differentiation of FAPs. Mechanistically, in vitro, peripheral nerve injury increased secretion of NRG3, which, following binding to ErbB4 on the cell surface of FAPs, promoted expression of osteogenesis‑associated genes via the PI3K/Akt signaling pathway, thus contributing to osteogenic differentiation of FAPs. In vivo, inhibition of the PI3K/Akt pathway effectively protected against muscle HO induced by peripheral nerve injury in mice. The present study demonstrated that the regulatory roles of NRG3 and the PI3K/Akt pathway in peripheral nerve injury exacerbated muscle HO and highlights a potential therapeutic intervention for treatment of peripheral nerve injury‑induced muscle HO.
Collapse
Affiliation(s)
- Lin Ma
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xia Kang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jindong Tan
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yunjiao Wang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xiao Liu
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Hong Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Lin Guo
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Kanglai Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xuting Bian
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
- Department of Health Service, Shigatse Branch, Xinqiao Hospital, Army Medical University, Shigatse 857000, Tibet Autonomous Region. P.R. China
| |
Collapse
|
12
|
Shan L, Liao X, Yang X, Zhu E, Yuan H, Zhou J, Li X, Wang B. Naked cuticle homolog 2 controls the differentiation of osteoblasts and osteoclasts and ameliorates bone loss in ovariectomized mice. Genes Dis 2025; 12:101209. [PMID: 39552785 PMCID: PMC11567042 DOI: 10.1016/j.gendis.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/05/2023] [Indexed: 11/19/2024] Open
Abstract
Naked cuticle homolog 2 (NKD2) has been recognized as an antagonist of Wnt/β-catenin signaling and a tumor suppressor. The role of NKD2 in osteoblast and osteoclast differentiation and the mechanism are not fully understood. In this study, we identified the up-regulation of NKD2 during osteoblast and adipocyte differentiation. Functional experiments revealed that NKD2 stimulated osteoblast differentiation and suppressed adipocyte formation. Furthermore, NKD2 down-regulated the expression of receptor activator of nuclear factor-κB ligand in bone marrow mesenchymal stem cells and inhibited osteoclast formation from osteoclast precursor cells. Mechanistic investigations revealed that the regulation of osteoblast and adipocyte differentiation by NKD2 involved Wnt/β-catenin and tuberous sclerosis complex subunit 1 (TSC1)/mechanistic target of rapamycin complex 1 (mTORC1) signaling pathways. Unlike in undifferentiated mesenchymal cells where NKD2 promoted Dishevelled-1 degradation, in the cells differentiating toward osteoblasts or adipocytes NKD2 down-regulated secreted frizzled related protein 1/4 expression and failed to destabilize Dishevelled-1, thereby activating Wnt/β-catenin signaling. Moreover, NKD2 bound to TSC1 and inhibited mTORC1 signaling. Further investigation uncovered an interplay between TSC1/mTORC1 and Wnt/β-catenin signaling pathways. Finally, transplantation of NKD2-overexpressing bone marrow mesenchymal stem cells into the marrow of mice increased osteoblasts, reduced osteoclasts and marrow fat, and partially prevented bone loss in ovariectomized mice. This study provides evidence that NKD2 in mesenchymal stem/progenitor cells reciprocally regulates the differentiation of osteoblasts and adipocytes by modulating Wnt/β-catenin and mTORC1 pathways and inhibits osteoclast formation by down-regulating receptor activator of nuclear factor-κB ligand. It suggests that NKD2 up-regulation may ameliorate postmenopausal bone loss.
Collapse
Affiliation(s)
- Liying Shan
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoxia Liao
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoli Yang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| |
Collapse
|
13
|
Saenjum C, Thim-Uam A, Khonthun C, Oonlao P, Nuntaboon P, Surh YJ, Phromnoi K. Anthocyanins from a new hybrid sweet potato peel cultivated in Northern Thailand mitigate LPS-induced inflammation and RANKL-induced osteoporosis by regulating ROS-mediated pathways. Inflammopharmacology 2025; 33:381-399. [PMID: 39806052 PMCID: PMC11799051 DOI: 10.1007/s10787-024-01634-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Maejo 341 Sweet potato (MSP) is a new purple sweet potato variety cultivated in Northern Thailand, but its health benefits are unknown. This study aimed to investigate its antioxidant, anti-inflammatory, and anti-osteoporotic activities, as well as its anthocyanin content. The peel and flesh of MSP were extracted with ethanol and water. Compared with the flesh extracts, the peel extracts presented greater antioxidant capacity and were rich in phenolics, flavonoids, and anthocyanins, namely, cyanidin-3-O-glucoside, peonidin-3-O-glucoside, pelargonidin-3-O-glucoside, cyanidin, and peonidin. The peel extracts suppressed lipopolysaccharide-induced inflammation by inhibiting the secretion of proinflammatory cytokines and enzymes, including TNF-α, IL-1β, IL-6, COX-2, and iNOS, as well as reducing nitric oxide and matrix metalloproteinase-9 secretion. The extracts inhibited the RANKL-induced NF-κB and MAPK pathways and downregulated osteoclastogenic marker expression. Under LPS and RANKL treatment, the peel extracts notably reduced reactive oxygen species production while increasing antioxidant gene expression. Furthermore, they increased osteoblast viability and slightly raise alkaline phosphatase activity. These findings suggest that MSP peel could be used as a functional food to alleviate oxidative stress and inflammation-related osteoporosis.
Collapse
Affiliation(s)
- Chalermpong Saenjum
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B. BES-CMU), Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Chakkraphong Khonthun
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Panida Oonlao
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Piyawan Nuntaboon
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Young-Joon Surh
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B. BES-CMU), Chiang Mai University, Chiang Mai, 50200, Thailand
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Kanokkarn Phromnoi
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand.
| |
Collapse
|
14
|
Wei J, Liu Q, Yuen HY, Lam ACH, Jiang Y, Yang Y, Liu Y, Zhao X, Xiao L. Gut-bone axis perturbation: Mechanisms and interventions via gut microbiota as a primary driver of osteoporosis. J Orthop Translat 2025; 50:373-387. [PMID: 40171106 PMCID: PMC11960541 DOI: 10.1016/j.jot.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 04/03/2025] Open
Abstract
A growing number of studies have highlighted the significance of human gut microbiota (GM) as a potential target for osteoporosis. In this review, we discuss the effect of GM to bone metabolism focusing on two aspects: the local alterations of the human gut permeability that modify how the GM interact with the gut-bone axis (e.g., intestinal leakage, nutrient absorption), and the alterations of the GM itself (e.g., changes in microbiota metabolites, immune secretion, hormones) that modify the events of the gut-bone axis. We then classify these changes as possible therapeutic targets of bone metabolism and highlight some associated promising microbiome-based therapies. We also extend our discussions into combinatorial treatments that incorporate conservative treatments, such as exercise. We anticipate our review can provide an overview of the current pathophysiological and therapeutic paradigms of the gut-bone axis, as well as the prospects of ongoing clinical trials for readers to gain further insights into better microbiome-based treatments to osteoporosis and other bone-degenerative diseases. The translational potential of this article: This paper reviewed the potential links between gut microbiota and osteoporosis, as well as the prospective therapeutic avenues targeting gut microbiota for osteoporosis management, presenting a thorough and comprehensive literature review.
Collapse
Affiliation(s)
- Jingyuan Wei
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qi Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho-Yin Yuen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Avery Chik-Him Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yuanyuan Jiang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
| | - Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yaxiong Liu
- Jihua Laboratory, Foshan, Guangdong, 528000, China
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
| |
Collapse
|
15
|
Papa V, Li Pomi F, Minciullo PL, Borgia F, Gangemi S. Skin Disorders and Osteoporosis: Unraveling the Interplay Between Vitamin D, Microbiota, and Epigenetics Within the Skin-Bone Axis. Int J Mol Sci 2024; 26:179. [PMID: 39796035 PMCID: PMC11720247 DOI: 10.3390/ijms26010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Growing scientific evidence suggests a strong interconnection between inflammatory skin diseases and osteoporosis (OP), a systemic condition characterized by decreased bone density and structural fragility. These conditions seem to share common pathophysiological mechanisms, including immune dysregulation, chronic inflammation, and vitamin D deficiency, which play a crucial role in both skin and bone health. Additionally, the roles of gut microbiota (GM) and epigenetic regulation via microRNAs (miRNAs) emerge as key elements influencing the progression of both conditions. This review aims to examine the skin-bone axis, exploring how factors such as vitamin D, GM, and miRNAs interact in a subtle pathophysiological interplay driving skin inflammation and immune-metabolic bone alterations. Recent research suggests that combined therapeutic approaches-including vitamin D supplementation, targeted microbiota interventions, and miRNA-based therapies-could be promising strategies for managing comorbid inflammatory skin diseases and OP. This perspective highlights the need for multidisciplinary approaches in the clinical management of conditions related to the skin-bone axis.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (V.P.); (S.G.)
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Paola Lucia Minciullo
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (V.P.); (S.G.)
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (V.P.); (S.G.)
| |
Collapse
|
16
|
Chen WJ, Wang XL, Wang YF, Liu DM, Yue MY, Wei J, Li J, Chen TT, Tu HJ. LPL-RH suppresses bone loss in ovariectomised rat models. BMC Microbiol 2024; 24:545. [PMID: 39732687 DOI: 10.1186/s12866-024-03683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis. METHODS Forty-five SD rats were randomly divided into five groups (n = 9). Rats from four groups were ovariectomised and treated with NS, calcium, probiotics, or calcium + probiotics, while one group underwent a sham operation and was treated with NS. The osteometabolic effects were evaluated, and the mechanistic role of the probiotic supplement was explored. RESULTS Intragastric administration of Bifidobacterium animalis subsp. lactis LPL-RH (LPL-RH) markedly suppressed osteoclastic activation and bone calcium loss by downregulating TRAP enzymatic activity, the OPG/RANKL ratio, and the downstream signalling pathway RANKL/TRAF6/NF-κB/NFATc1/TRAP in ovariectomised SD rats. LPL-RH also reduced CD4+IL-17 A+ TH17 cells in the bone marrow, the pro-osteoclastogenic cytokine IL-17 A, pro-inflammatory molecules (LPS), and its binding protein (LBP) in the blood. LPL-RH restored intestinal ZO-1, occludin, claudin 2, claudin 12, and claudin 15, which improved ileal histopathology, reduced ileal oxidative stress, and attenuated the LPS-responsive TLR4/MyD88/NF-κB pathway. Furthermore, 16 S rRNA sequencing revealed that LPL-RH altered the faecal microbiome by reducing the relative abundance of S24-7 at the family level and promoting Prevotella and Bacteroides at the genus level. CONCLUSION Collectively, LPL-RH suppressed osteoclastogenesis and osteolysis by modulating type 17 immunity and gut microbiome.
Collapse
Affiliation(s)
- Wen-Jie Chen
- Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, 330031, P. R. China
| | - Xin-Liang Wang
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Yu-Fan Wang
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Ding-Ming Liu
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Meng-Yun Yue
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Jing Wei
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China
| | - Jian Li
- The Key Laboratory of Hematology of Jiangxi Province, The Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
| | - Ting-Tao Chen
- Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
- National Engineering Research Centre of Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, P. R. China.
| | - Huai-Jun Tu
- Departments of Geriatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China.
| |
Collapse
|
17
|
Stromsnes K, Fajardo CM, Soto-Rodriguez S, Kajander ERU, Lupu RI, Pozo-Rodriguez M, Boira-Nacher B, Font-Alberich M, Gambini-Castell M, Olaso-Gonzalez G, Gomez-Cabrera MC, Gambini J. Osteoporosis: Causes, Mechanisms, Treatment and Prevention: Role of Dietary Compounds. Pharmaceuticals (Basel) 2024; 17:1697. [PMID: 39770539 PMCID: PMC11679375 DOI: 10.3390/ph17121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoporosis is a chronic disease that is characterized by a loss of bone density, which mainly affects the microstructure of the bones due to a decrease in bone mass, thereby making them more fragile and susceptible to fractures. Osteoporosis is currently considered one of the pandemics of the 21st century, affecting around 200 million people. Its most serious consequence is an increased risk of bone fractures, thus making osteoporosis a major cause of disability and even premature death in the elderly. In this review, we discuss its causes, the biochemical mechanisms of bone regeneration, risk factors, pharmacological treatments, prevention and the effects of diet, focusing in this case on compounds present in a diet that could have palliative and preventive effects and could be used as concomitant treatments to drugs, which are and should always be the first option. It should be noted as a concluding remark that non-pharmacological treatments such as diet and exercise have, or should have, a relevant role in supporting pharmacology, which is the recommended prescription today, but we cannot ignore that they can have a great relevance in the treatment of this disease.
Collapse
Affiliation(s)
- Kristine Stromsnes
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Cristian Martinez Fajardo
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain;
| | - Silvana Soto-Rodriguez
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Erika Ria Ulrika Kajander
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Remus-Iulian Lupu
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | | | - Balma Boira-Nacher
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071 Granada, Spain;
| | - Maria Font-Alberich
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Marcos Gambini-Castell
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Gloria Olaso-Gonzalez
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Maria-Carmen Gomez-Cabrera
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| | - Juan Gambini
- Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, 46010 Valencia, Spain; (K.S.); (S.S.-R.); (E.R.U.K.); (R.-I.L.); (M.F.-A.); (M.G.-C.); (G.O.-G.); (M.-C.G.-C.)
| |
Collapse
|
18
|
López-Valverde N, Quispe-López N, Blanco Rueda JA. Inflammation and immune response in the development of periodontal disease: a narrative review. Front Cell Infect Microbiol 2024; 14:1493818. [PMID: 39679199 PMCID: PMC11638196 DOI: 10.3389/fcimb.2024.1493818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
We present this critical review with the aim of highlighting the current status of periodontal diseases, focusing on the relevance of host modulating agents and immune pathways, in addition to new complementary therapeutic approaches for the treatment of these pathologies. Periodontal diseases are prevalent pathologies worldwide and the main cause of edentulism in the adult population. Their pathogenesis seems to be based on a dysbiosis of the oral microbiota that interacts with the host's immune defenses and is responsible for the inflammatory/immune response, which would be modified by a number of conditions such as individual susceptibility, environmental and sociodemographic factors, certain systemic pathologies and the individual's genetic condition, among others. Numerous studies have reported on the complex web of inflammatory mediators in periodontal disease and their role in tissue destruction as well as in homeostatic imbalance. Precisely, the role of epigenetics as a modifier of the host genetic condition has captured research attention in recent years. Therefore, this mini-review first discusses an updated etiological hypothesis of periodontal disease and the roles of certain cytokines in the immune response. In addition, the latest therapeutic trends with new developments and future perspectives are summarized.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Department of Surgery, University of Salamanca; Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | | | | |
Collapse
|
19
|
Ok CY, Kwon RJ, Jang HO, Bae MK, Bae SK. Visfatin Enhances RANKL-Induced Osteoclastogenesis In Vitro: Synergistic Interactions and Its Role as a Mediator in Osteoclast Differentiation and Activation. Biomolecules 2024; 14:1500. [PMID: 39766208 PMCID: PMC11673010 DOI: 10.3390/biom14121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Visfatin, an adipokine secreted by various cell types, plays multifaceted pathophysiological roles in inflammatory conditions, including obesity, which is closely associated with osteoclastogenesis, a key process underlying bone loss and increased osteoporosis (OP) risk. However, the role of visfatin in osteoclastogenesis remains controversial. This study was conducted to investigate the effects of visfatin on receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation from precursor cells in vitro. Our results demonstrated that although visfatin exhibited a modest osteoclast-inductive effect relative to that of RANKL, co-stimulation of bone marrow-derived macrophages (BMDMs) with visfatin and RANKL led to significantly enhanced osteoclast differentiation and activation compared to individual stimulation. Neutralization of visfatin activity using blocking antibodies before differentiation markedly suppressed RANKL-induced osteoclastogenesis, as evidenced by a near-complete absence of tartrate-resistant acid phosphatase-positive multinucleated osteoclasts, decreased levels of nuclear factor of activated T cells cytoplasmic 1 and osteoclast-specific proteins, inhibition of nuclear factor-κB and mitogen-activated protein kinase signaling pathways, and a decrease in resorption pit formation. Our findings underscore the critical role of visfatin in RANKL-induced osteoclastogenesis in vitro and highlight the RANKL/visfatin signaling axis as a potential therapeutic target for destructive bone loss-related diseases.
Collapse
Affiliation(s)
- Chang Youp Ok
- Department of Dental Pharmacology, School of Dentistry, Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (C.Y.O.); (H.-O.J.)
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Ryuk Jun Kwon
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Hye-Ock Jang
- Department of Dental Pharmacology, School of Dentistry, Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (C.Y.O.); (H.-O.J.)
| | - Moon-Kyoung Bae
- Department of Oral Physiology, School of Dentistry, Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Soo-Kyung Bae
- Department of Dental Pharmacology, School of Dentistry, Education and Research Team for Life Science on Dentistry, Pusan National University, Yangsan 50612, Republic of Korea; (C.Y.O.); (H.-O.J.)
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
20
|
Gal M, Tuan HM, Park JH, Park KH, Kim O, Min BS, Lee JH. Irilin D suppresses RANKL-induced osteoclastogenesis and prevents inflammation-induced bone loss by disrupting the NF-κB and MAPK signaling pathways. Eur J Pharmacol 2024; 982:176956. [PMID: 39209096 DOI: 10.1016/j.ejphar.2024.176956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Excessive activity of osteoclasts(OCs) lead to bone resorption in chronic inflammatory conditions. The use of natural compounds to target OCs offers significant promise in the treatment or prevention of OC-associated diseases. Irilin D (IRD), a natural isoflavone derived from Belamcanda chinensis (L.) DC., has potential effects on OC differentiation both in vitro and in vivo that have yet to be thoroughly explored. In our study, we found that IRD inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced OC differentiation, actin ring formation, and bone resorption in vitro without compromising cell viability. However, IRD did not exhibit anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated macrophages. Furthermore, IRD reduced LPS-induced inflammatory bone loss by blocking osteoclastogenesis in a mouse model. Mechanistically, IRD disrupted RANKL-induced activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB), leading to the inhibition of c-Fos and nuclear factor of activated T cells cytoplasmic 1 (NFATc1) activation. We also demonstrated that IRD inhibited RANKL-induced osteoclastic NFATc1 target genes, including DC-STAMP, ACP5, and CtsK. Our results indicate that IRD mitigates LPS-induced inflammatory bone resorption in mice by inhibiting RANKL-activated MAPKs and NF-κB signaling pathways, suggesting its potential as a natural isoflavone for preventing or treating OC-associated diseases.
Collapse
Affiliation(s)
- Minju Gal
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Ha Manh Tuan
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea
| | - Ju-Hee Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Kang-Hyeon Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Okhwa Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea
| | - Byung-Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea.
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-Do, 24341, Republic of Korea.
| |
Collapse
|
21
|
Wang DX, Yang ZS, Li DC, Li YD, Wang Y, Chen YL, Tang ZL. Promotion of mandibular distraction osteogenesis by parathyroid hormone via macrophage polarization induced through iNOS downregulation. Heliyon 2024; 10:e38564. [PMID: 39449705 PMCID: PMC11497452 DOI: 10.1016/j.heliyon.2024.e38564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Objective To investigate whether Parathyroid hormone (PTH) can promote mandibular distraction osteogenesis by regulating macrophage polarization and the underlying mechanisms of this phenomenon. Methods Forty-eight Rabbits were used to establish the mandibular distraction osteogenesis experimental model, randomly divided into 2 groups. Intermittent post-operative injections of 20 μg/kg PTH and normal saline were administered to the experimental and control groups, respectively. Regenerated new bone was examined using HE staining, osteoclast numbers were determined through tartrate-resistant acid phosphatase (TRAP) staining, and macrophage polarization markers arginase 1 (Arg1) and inducible nitric oxide synthase (iNOS) expressions were elucidated using immunohistochemistry (IHC), the mRNA expression of CD206, CD11C, Arg1 and iNOS were detected using qPCR. Results The bone trabeculae in the experimental group were thicker, with a more homogeneous structure and more new osteoid than in the control group. In the area of distraction osteogenesis, the osteoclast count in the experimental group was higher than in the control group (P < 0.05). IHC results indicated differential expressions of Arg1 and iNOS in the experimental group compared to the control group (P < 0.05). Relative mRNA expressions of CD11c and iNOS were lower in the experimental group than in the control group (P < 0.05), whereas the expressions of CD206 and Arg1 mRNA were higher in the experimental group compared to the control group (P < 0.05). Conclusion Intermittent PTH injections increased macrophage quantity in the mandible generated by distraction osteogenesis, downregulated iNOS, upregulated Arg1, and promoted macrophage polarization from M1 to M2 phenotype, thereby promoting mandibular distraction osteogenesis.
Collapse
Affiliation(s)
- Dong-xiang Wang
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhi-shan Yang
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - Du-chenhui Li
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yong-di Li
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Wang
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - You-li Chen
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zheng-long Tang
- School and Hospital of Stomatology of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
22
|
Ucci A, Giacchi L, Rucci N. Primary Bone Tumors and Breast Cancer-Induced Bone Metastases: In Vivo Animal Models and New Alternative Approaches. Biomedicines 2024; 12:2451. [PMID: 39595017 PMCID: PMC11591690 DOI: 10.3390/biomedicines12112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Bone is the preferential site of metastasis for the most common tumors, including breast cancer. On the other hand, osteosarcoma is the primary bone cancer that most commonly occurs and causes bone cancer-related deaths in children. Several treatment strategies have been developed so far, with little or no efficacy for patient survival and with the development of side effects. Therefore, there is an urgent need to develop more effective therapies for bone primary tumors and bone metastatic disease. This almost necessarily requires the use of in vivo animal models that better mimic human pathology and at the same time follow the ethical principles for the humane use of animal testing. In this review we aim to illustrate the main and more suitable in vivo strategies employed to model bone metastases and osteosarcoma. We will also take a look at the recent technologies implemented for a partial replacement of animal testing.
Collapse
Affiliation(s)
| | | | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.U.); (L.G.)
| |
Collapse
|
23
|
Ali Z, Al-Ghouti MA, Abou-Saleh H, Rahman MM. Unraveling the Omega-3 Puzzle: Navigating Challenges and Innovations for Bone Health and Healthy Aging. Mar Drugs 2024; 22:446. [PMID: 39452854 PMCID: PMC11509197 DOI: 10.3390/md22100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs, n-3 PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), are essential polyunsaturated fats primarily obtained from fatty fish and plant-based sources. Compelling evidence from preclinical and epidemiological studies consistently suggests beneficial effects of ω-3 PUFAs on bone health and healthy aging processes. However, clinical trials have yielded mixed results, with some failing to replicate these benefits seen in preclinical models. This contraindication is mainly due to challenges such as low bioavailability, potential adverse effects with higher doses, and susceptibility to oxidation of ω-3 fatty acids, hindering their clinical effectiveness. This review comprehensively discusses recent findings from a clinical perspective, along with preclinical and epidemiological studies, emphasizing the role of ω-3 PUFAs in promoting bone health and supporting healthy aging. Additionally, it explores strategies to improve ω-3 PUFA efficacy, including nanoparticle encapsulation and incorporation of specialized pro-resolving mediators (SPM) derived from DHA and EPA, to mitigate oxidation and enhance solubility, thereby improving therapeutic potential. By consolidating evidence from various studies, this review underscores current insights and future directions in leveraging ω-3 PUFAs for therapeutic applications.
Collapse
Affiliation(s)
- Zayana Ali
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohammad Ahmed Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
24
|
Carmona JU, López C. Effects of Temperature and Time on the Denaturation of Transforming Growth Factor Beta-1 and Cytokines from Bovine Platelet-Rich Gel Supernatants. Gels 2024; 10:583. [PMID: 39330185 PMCID: PMC11431824 DOI: 10.3390/gels10090583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
There is a lack of information about transforming growth factor beta-1 (TGF-β1) and cytokines contained in pure platelet-rich plasma (P-PRP) and release from pure-platelet-rich gel supernatants (P-PRGS) might be affected by the temperature and time factors; P-PRP from 6 heifers was activated with calcium gluconate. Thereafter, P-PRG and their supernatants (P-PRGS) were maintained at -80, -20, 4, 21, and 37 °C and collected at 3, 6, 12, 24, 48, 96, 144, 192, 240, and 280 h for subsequent determination of TGF-β1, tumor necrosis factor alfa (TNF-α), interleukin (IL)-2, and IL-6; TGF-β1 concentrations were significantly (p < 0.05) higher in PRGS maintained at 21 and 37 °C when compared to PRGS maintained at 4, -20, and -80 °C; PRGS TNF-α concentrations were not influenced by temperature and time factors. However, PRGS maintained at 4 °C showed significantly (p < 0.05) higher concentrations when compared to PRGS maintained at -20, and -80 °C at 144, and 192 h. IL-6 concentrations were significantly (p < 0.05) higher in PRGS stored at -20, and -80 over the first 48 h and at 10 days when compared to PRGS stored at 4, 21, and 37 °C. These results could suggest that P-PRP/P-PRGS could be maintained and well preserved for at least 12 days at room temperature for clinical use in bovine therapeutic massive protocols.
Collapse
Affiliation(s)
- Jorge U Carmona
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Manizales 170004, Colombia
| | - Catalina López
- Grupo de Investigación Patología Clínica Veterinaria, Departamento de Salud Animal, Universidad de Caldas, Manizales 170004, Colombia
| |
Collapse
|
25
|
Promta P, Chaiyosang P, Panya A, Laorodphun P, Leelapornpisid W, Imerb N. The Evaluation of Anti-Osteoclastic Activity of the Novel Calcium Hydroxide Biodegradable Nanoparticles as an Intracanal Medicament. J Endod 2024; 50:667-673. [PMID: 38447912 DOI: 10.1016/j.joen.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION The aim of this study was to evaluate the anti-osteoclastic activity of calcium hydroxide-loaded poly(lactic-co-glycolic acid) nanoparticles [Ca(OH)2-loaded PLGA NPs] in comparison to calcium hydroxide nanoparticles [Ca(OH)2 NPs]. METHODS RAW 264.7 cell lines (third-fifth passage) were cultured and incubated with soluble receptor activator of nuclear factor kappa B ligand in triplicate. Subsequently, Ca(OH)2-loaded PLGA NPs and Ca(OH)2 NPs were added for 7 days to evaluate their effects on receptor activator of nuclear factor kappa B ligand-induced osteoclast differentiation of RAW 264.7 cells by tartrate-resistant acid phosphatase activity. Additionally, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was conducted to confirm the cytotoxicity of treatments to cells. RESULTS Tartrate-resistant acid phosphatase staining showed a significant reduction in the osteoclast number when treated with Ca(OH)2-loaded PLGA NPs compared with Ca(OH)2 NPs (P < .01). In comparison to the control, the number of osteoclasts significantly reduced upon treatment with Ca(OH)2-loaded PLGA NPs (P < .05), but there was no significant difference in Ca(OH)2 NPs. Furthermore, osteoclast morphology in both treatment groups exhibited smaller sizes than the control group. Neither Ca(OH)2-loaded PLGA NPs nor Ca(OH)2 NPs demonstrated cytotoxic effects on RAW264.7 cells. CONCLUSIONS Both Ca(OH)2 NPs with and without poly(lactic-co-glycolic acid) have the ability to inhibit osteoclast differentiation. However, Ca(OH)2-loaded PLGA NPs exhibit greater potential than Ca(OH)2 NPs, making them a promising intracanal medicament for cases of root resorption.
Collapse
Affiliation(s)
- Patarawadee Promta
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharaporn Chaiyosang
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pongrapee Laorodphun
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Warat Leelapornpisid
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Napatsorn Imerb
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
26
|
Kanno Y. The Roles of Fibrinolytic Factors in Bone Destruction Caused by Inflammation. Cells 2024; 13:516. [PMID: 38534360 PMCID: PMC10968824 DOI: 10.3390/cells13060516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, Crohn's disease, periodontitis, and carcinoma metastasis frequently result in bone destruction. Pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-17 are known to influence bone loss by promoting the differentiation and activation of osteoclasts. Fibrinolytic factors, such as plasminogen (Plg), plasmin, urokinase-type plasminogen activator (uPA), its receptor (uPAR), tissue-type plasminogen activator (tPA), α2-antiplasmin (α2AP), and plasminogen activator inhibitor-1 (PAI-1) are expressed in osteoclasts and osteoblasts and are considered essential in maintaining bone homeostasis by regulating the functions of both osteoclasts and osteoblasts. Additionally, fibrinolytic factors are associated with the regulation of inflammation and the immune system. This review explores the roles of fibrinolytic factors in bone destruction caused by inflammation.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Molecular Pathology, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyotanabe, Kyoto 610-0395, Japan
| |
Collapse
|
27
|
Shan L, Yang X, Liao X, Yang Z, Zhou J, Li X, Wang B. Histone demethylase KDM7A regulates bone homeostasis through balancing osteoblast and osteoclast differentiation. Cell Death Dis 2024; 15:136. [PMID: 38346941 PMCID: PMC10861515 DOI: 10.1038/s41419-024-06521-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Histone methylation plays a crucial role in various cellular processes. We previously reported the in vitro function of histone lysine demethylase 7 A (KDM7A) in osteoblast and adipocyte differentiation. The current study was undertaken to investigate the physiological role of KDM7A in bone homeostasis and elucidate the underlying mechanisms. A conditional strategy was employed to delete the Kdm7a gene specifically in osterix-expressing osteoprogenitor cells in mice. The resulting mutant mice exhibited a significant increase in cancellous bone mass, accompanied by an increase in osteoblasts and bone formation, as well as a reduction in osteoclasts, marrow adipocytes and bone resorption. The bone marrow stromal cells (BMSCs) and calvarial pre-osteoblastic cells derived from the mutant mice exhibited enhanced osteogenic differentiation and suppressed adipogenic differentiation. Additionally, osteoclastic precursor cells from the mutant mice exhibited impaired osteoclast differentiation. Co-culturing BMSCs from the mutant mice with wild-type osteoclast precursor cells resulted in the inhibition of osteoclast differentiation. Mechanistic investigation revealed that KDM7A was able to upregulate the expression of fibroblast activation protein α (FAP) and receptor activator of nuclear factor κB ligand (RANKL) in BMSCs through removing repressive di-methylation marks of H3K9 and H3K27 from Fap and Rankl promoters. Moreover, recombinant FAP attenuated the dysregulation of osteoblast and adipocyte differentiation in BMSCs from Kdm7a deficient mice. Finally, Kdm7a deficiency prevented ovariectomy-induced bone loss in mice. This study establish the role of KDM7A in bone homeostasis through its epigenetic regulation of osteoblast and osteoclast differentiation. Consequently, inhibiting KDM7A may prove beneficial in ameliorating osteoporosis. KDM7A suppresses osteoblast differentiation and bone formation through. upregulating FAP expression and inactivating canonical Wnt signaling, and conversely promotes osteoclast differentiation and bone resorption through upregulating RANKL expression. These are based on its epigenetic removal of the repressive H3K9me2 and H3K27me2 marks from Fap and Rankl promoters. As a result, the expression of KDM7A in osteoprogenitor cells tends to negatively modulate bone mass.
Collapse
Affiliation(s)
- Liying Shan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Xiaoli Yang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Xiaoxia Liao
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China
| | - Zheng Yang
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China.
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, China.
| |
Collapse
|
28
|
Li S, Han X, Liu N, Chang J, Liu G, Hu S. Lactobacillus plantarum attenuates glucocorticoid-induced osteoporosis by altering the composition of rat gut microbiota and serum metabolic profile. Front Immunol 2024; 14:1285442. [PMID: 38264658 PMCID: PMC10803555 DOI: 10.3389/fimmu.2023.1285442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Osteoporosis, one of the most common non-communicable human diseases worldwide, is one of the most prevalent disease of the adult skeleton. Glucocorticoid-induced osteoporosis(GIOP) is the foremost form of secondary osteoporosis, extensively researched due to its prevalence.Probiotics constitute a primary bioactive component within numerous foods, offering promise as a potential biological intervention for preventing and treating osteoporosis. This study aimed to evaluate the beneficial effects of the probiotic Lactobacillus plantarum on bone health and its underlying mechanisms in a rat model of glucocorticoid dexamethasone-induced osteoporosis, using the osteoporosis treatment drug alendronate as a reference. Methods We examined the bone microstructure (Micro-CT and HE staining) and analyzed the gut microbiome and serum metabolome in rats. Results and discussion The results revealed that L. plantarum treatment significantly restored parameters of bone microstructure, with elevated bone density, increased number and thickness of trabeculae, and decreased Tb.Sp. Gut microbiota sequencing results showed that probiotic treatment increased gut microbial diversity and the ratio of Firmicutes to Bacteroidota decreased. Beneficial bacteria abundance was significantly increased (Lachnospiraceae_NK4A136_group, Ruminococcus, UCG_005, Romboutsia, and Christensenellaceae_R_7_group), and harmful bacteria abundance was significantly decreased (Desulfovibrionaceae). According to the results of serum metabolomics, significant changes in serum metabolites occurred in different groups. These differential metabolites were predominantly enriched within the pathways of Pentose and Glucuronate Interconversions, as well as Propanoate Metabolism. Furthermore, treatment of L. plantarum significantly increased serum levels of Pyrazine and gamma-Glutamylcysteine, which were associated with inhibition of osteoclast formation and promoting osteoblast formation. Lactobacillus plantarum can protect rats from DEX-induced GIOP by mediating the "gut microbial-bone axis" promoting the production of beneficial bacteria and metabolites. Therefore L. plantarum is a potential candidate for the treatment of GIOP.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiang Chang
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The First People’s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, China
| |
Collapse
|
29
|
Ciacci C, De Micco I, Di Stefano M, Mengoli C. Celiac disease in adult patients. PEDIATRIC AND ADULT CELIAC DISEASE 2024:103-123. [DOI: 10.1016/b978-0-443-13359-6.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Li B, Chen Z, Zhang Z, Liu H, Han D, Yang H, Zhang Z. Zuogui pill disrupt the malignant cycle in breast cancer bone metastasis through the Piezo1-Notch-1-GPX4 pathway and active molecules fishing. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155257. [PMID: 38103318 DOI: 10.1016/j.phymed.2023.155257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Breast cancer bone metastasis is closely associated with the bone microenvironment. Zuogui Pill (ZGP), a clinically approved formulation in China, effectively regulates the bone microenvironment for the prevention and treatment of osteoporosis. PURPOSE Few reports have utilized the ZGP for bone metastasis models. This study investigated the intervention and bone-protective properties of ZGP against breast cancer bone metastasis, explored the potential mechanism, and screened for its active compositions by molecules fishing. METHODS To investigate the intervention efficacy of ZGP and its protein-level mechanism of action, the mouse bone metastasis model and in vitro cell co-culture model were constructed. Affinity ultrafiltration, molecular docking, cellular thermal shift assay and physical scale detection were used to investigate the affinity components of the RANKL protein in ZGP. RESULTS The administration of ZGP combined with zoledronic acid inhibited the development of tumors and secondary lung metastasis in mice. This translated to a prolonged survival period and enhanced quality of life. ZGP could disrupt the malignant cycle by modulating the Piezo1-Notch-1-GPX4 signaling pathway in the "bone-cancer" communication in the cell co-culture model. Furthermore, 25 chemical components of ZGP were identified, with 10 active compounds exhibiting significant affinity for the RANKL protein. CONCLUSION The findings of this work highlighted ZGP's potential for intervening in the progression of breast cancer bone metastasis. Thus, this investigation served as an experimental foundation for expanding the application scope of ZGP and for advancing drug development efforts in bone metastasis treatment.
Collapse
Affiliation(s)
- Baohong Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zichao Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zhenyong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hui Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dongli Han
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Haolin Yang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
31
|
Padovano C, Bianco SD, Sansico F, De Santis E, Tamiro F, Colucci M, Totti B, Di Iasio S, Bruno G, Panelli P, Miscio G, Mazza T, Giambra V. The Notch1 signaling pathway directly modulates the human RANKL-induced osteoclastogenesis. Sci Rep 2023; 13:21199. [PMID: 38040752 PMCID: PMC10692129 DOI: 10.1038/s41598-023-48615-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
Notch signaling is an evolutionary conserved pathway with a key role in tissue homeostasis, differentiation and proliferation. It was reported that Notch1 receptor negatively regulates mouse osteoclast development and formation by inhibiting the expression of macrophage colony-stimulating factor in mesenchymal cells. Nonetheless, the involvement of Notch1 pathway in the generation of human osteoclasts is still controversial. Here, we report that the constitutive activation of Notch1 signaling induced a differentiation block in human mononuclear CD14+ cells directly isolated from peripheral blood mononuclear cells (PBMCs) upon in vitro stimulation to osteoclasts. Additionally, using a combined approach of single-cell RNA sequencing (scRNA-Seq) simultaneously with a panel of 31 oligo-conjugated antibodies against cell surface markers (AbSeq assay) as well as unsupervised learning methods, we detected four different cell stages of human RANKL-induced osteoclastogenesis after 5 days in which Notch1 signaling enforces the cell expansion of specific subsets. These cell populations were characterized by distinct gene expression and immunophenotypic profiles and active Notch1, JAK/STAT and WNT signaling pathways. Furthermore, cell-cell communication analyses revealed extrinsic modulators of osteoclast progenitors including the IL7/IL7R and WNT5a/RYK axes. Interestingly, we also report that Interleukin-7 receptor (IL7R) was a downstream effector of Notch1 pathway and that Notch1 and IL7R interplay promoted cell expansion of human RANKL-induced osteoclast progenitors. Taken together, these findings underline a novel cell pattern of human osteoclastogenesis, outlining the key role of Notch1 and IL-7R signaling pathways.
Collapse
Affiliation(s)
- Costanzo Padovano
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Salvatore Daniele Bianco
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Francesca Sansico
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Elisabetta De Santis
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Francesco Tamiro
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Mattia Colucci
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Beatrice Totti
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Serena Di Iasio
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Gaja Bruno
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Patrizio Panelli
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Giuseppe Miscio
- Clinical Laboratory Analysis and Transfusional Medicine, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013, San Giovanni Rotondo, Italy
| | - Vincenzo Giambra
- Hematopathology Laboratory, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013, San Giovanni Rotondo (FG), Italy.
| |
Collapse
|
32
|
Giannoni P, Marini C, Cutrona G, Sambuceti GM, Fais F, de Totero D. Unraveling the Bone Tissue Microenvironment in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5058. [PMID: 37894425 PMCID: PMC10605026 DOI: 10.3390/cancers15205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in Western countries. Although characterized by the progressive expansion and accumulation of leukemic B cells in peripheral blood, CLL cells develop in protective niches mainly located within lymph nodes and bone marrow. Multiple interactions between CLL and microenvironmental cells may favor the expansion of a B cell clone, further driving immune cells toward an immunosuppressive phenotype. Here, we summarize the current understanding of bone tissue alterations in CLL patients, further addressing and suggesting how the multiple interactions between CLL cells and osteoblasts/osteoclasts can be involved in these processes. Recent findings proposing the disruption of the endosteal niche by the expansion of a leukemic B cell clone appear to be a novel field of research to be deeply investigated and potentially relevant to provide new therapeutic approaches.
Collapse
Affiliation(s)
- Paolo Giannoni
- Department of Experimental Medicine, Biology Section, University of Genova, 16132 Genova, Italy;
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (G.M.S.)
- CNR Institute of Bioimages and Molecular Physiology, 20054 Milano, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (G.C.); (F.F.)
| | - Gian Mario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (G.M.S.)
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (G.C.); (F.F.)
- Department of Experimental Medicine, Anatomy Section, University of Genova, 16132 Genova, Italy
| | - Daniela de Totero
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| |
Collapse
|
33
|
Zhao Y, He P, Yao J, Li M, Wang B, Han L, Huang Z, Guo C, Bai J, Xue F, Cong Y, Cai W, Chu PK, Chu C. pH/NIR-responsive and self-healing coatings with bacteria killing, osteogenesis, and angiogenesis performances on magnesium alloy. Biomaterials 2023; 301:122237. [PMID: 37467596 DOI: 10.1016/j.biomaterials.2023.122237] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Although biodegradable polymer coatings can impede corrosion of magnesium (Mg)-based orthopedic implants, they are prone to excessive degradation and accidental scratching in practice. Bone implant-related infection and limited osteointegration are other factors that adversely impact clinical application of Mg-based biomedical implants. Herein, a self-healing polymeric coating is constructed on the Mg alloy together with incorporation of a stimuli-responsive drug delivery nanoplatform by a spin-spray layer-by-layer (SSLbL) assembly technique. The nanocontainers are based on simvastatin (SIM)-encapsulated hollow mesoporous silica nanoparticles (S@HMSs) modified with polydopamine (PDA) and polycaprolactone diacrylate (PCL-DA) bilayer. Owing to the dynamic reversible reactions, the hybrid coating shows a fast, stable, and cyclical water-enabled self-healing capacity. The antibacterial assay indicates good bacteria-killing properties under near infrared (NIR) irradiation due to synergistic effects of hyperthermia, reactive oxygens species (ROS), and SIM leaching. In vitro results demonstrate that NIR laser irradiation promotes the cytocompatibility, osteogenesis, and angiogenesis. The coating facilitates alkaline phosphatase activity and expedites extracellular matrix mineralization as well as expression of osteogenesis-related genes. This study reveals a useful strategy to develop multifunctional coatings on bioabsorbable Mg alloys for orthopedic implants.
Collapse
Affiliation(s)
- Yanbin Zhao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Peng He
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Junyan Yao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Bin Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Linyuan Han
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Zhihai Huang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chao Guo
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yu Cong
- Jinling Hospital Department of Orthopedics, Southeast University, School of Medicine, Nanjing, 210002, China.
| | - Weihua Cai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
34
|
Chen J, Liao X, Gan J. Review on the protective activity of osthole against the pathogenesis of osteoporosis. Front Pharmacol 2023; 14:1236893. [PMID: 37680712 PMCID: PMC10481961 DOI: 10.3389/fphar.2023.1236893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Osteoporosis (OP), characterized by continuous bone loss and increased fracture risk, has posed a challenge to patients and society. Long-term administration of current pharmacological agents may cause severe side effects. Traditional medicines, acting as alternative agents, show promise in treating OP. Osthole, a natural coumarin derivative separated from Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim. f., exhibits protective effects against the pathological development of OP. Osthole increases osteoblast-related bone formation and decreases osteoclast-related bone resorption, suppressing OP-related fragility fracture. In addition, the metabolites of osthole may exhibit pharmacological effectiveness against OP development. Mechanically, osthole promotes osteogenic differentiation by activating the Wnt/β-catenin and BMP-2/Smad1/5/8 signaling pathways and suppresses RANKL-induced osteoclastogenesis and osteoclast activity. Thus, osthole may become a promising agent to protect against OP development. However, more studies should be performed due to, at least in part, the uncertainty of drug targets. Further pharmacological investigation of osthole in OP treatment might lead to the development of potential drug candidates.
Collapse
Affiliation(s)
- Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou, China
| | - Juwen Gan
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
35
|
Maisuria R, Norton A, Shao C, Bradley EW, Mansky K. Conditional Loss of MEF2C Expression in Osteoclasts Leads to a Sex-Specific Osteopenic Phenotype. Int J Mol Sci 2023; 24:12686. [PMID: 37628864 PMCID: PMC10454686 DOI: 10.3390/ijms241612686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Myocyte enhancement factor 2C (MEF2C) is a transcription factor studied in the development of skeletal and smooth muscles. Bone resorption studies have exhibited that the reduced expression of MEF2C contributes to osteopetrosis and the dysregulation of pathological bone remodeling. Our current study aims to determine how MEF2C contributes to osteoclast differentiation and to analyze the skeletal phenotype of Mef2c-cKO mice (Cfms-cre; Mef2cfl/fl). qRT-PCR and Western blot demonstrated that Mef2c expression is highest during the early days of osteoclast differentiation. Osteoclast genes, including c-Fos, c-Jun, Dc-stamp, Cathepsin K, and Nfatc1, had a significant reduction in expression, along with a reduction in osteoclast size. Despite reduced CTX activity, female Mef2c cKO mice were osteopenic, with decreased bone formation as determined via a P1NP ELISA, and a reduced number of osteoblasts. There was no difference between male WT and Mef2c-cKO mice. Our results suggest that Mef2c is critical for osteoclastogenesis, and that its dysregulation leads to a sex-specific osteopenic phenotype.
Collapse
Affiliation(s)
- Ravi Maisuria
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (R.M.); (A.N.)
| | - Andrew Norton
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (R.M.); (A.N.)
| | - Cynthia Shao
- College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Elizabeth W. Bradley
- Department of Orthopedics, School of Medicine and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kim Mansky
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (R.M.); (A.N.)
| |
Collapse
|
36
|
Little-Letsinger SE, Hamilton SE. Leveraging mice with diverse microbial exposures for advances in osteoimmunology. Front Endocrinol (Lausanne) 2023; 14:1168552. [PMID: 37251680 PMCID: PMC10210590 DOI: 10.3389/fendo.2023.1168552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
The skeletal and immune systems are intricately intertwined within the bone marrow microenvironment, a field of study termed osteoimmunology. Osteoimmune interactions are key players in bone homeostasis and remodeling. Despite the critical role of the immune system in bone health, virtually all animal research in osteoimmunology, and more broadly bone biology, relies on organisms with naïve immune systems. Drawing on insights from osteoimmunology, evolutionary anthropology, and immunology, this perspective proposes the use of a novel translational model: the dirty mouse. Dirty mice, characterized by diverse exposures to commensal and pathogenic microbes, have mature immune systems comparable to adult humans, while the naïve immune system of specific-pathogen free mice is akin to a neonate. Investigation into the dirty mouse model will likely yield important insights in our understanding of bone diseases and disorders. A high benefit of this model is expected for diseases known to have a connection between overactivation of the immune system and negative bone outcomes, including aging and osteoporosis, rheumatoid arthritis, HIV/AIDS, obesity and diabetes, bone marrow metastases, and bone cancers.
Collapse
Affiliation(s)
| | - Sara E. Hamilton
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
37
|
Sako H, Omori K, Nakayama M, Mandai H, Ideguchi H, Yoshimura-Nakagawa S, Sakaida K, Nagata-Kamei C, Kobayashi H, Ishii S, Ono M, Ibaragi S, Yamamoto T, Suga S, Takashiba S. The Fungal Metabolite (+)-Terrein Abrogates Inflammatory Bone Resorption via the Suppression of TNF-α Production in a Ligature-Induced Periodontitis Mouse Model. J Fungi (Basel) 2023; 9:jof9030314. [PMID: 36983482 PMCID: PMC10055831 DOI: 10.3390/jof9030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Current periodontal treatment focuses on the mechanical removal of the source of infection, such as bacteria and their products, and there is no approach to control the host inflammatory response that leads to tissue destruction. In order to control periodontal inflammation, we have previously reported the optimization of (+)-terrein synthesis methods and the inhibitory effect of (+)-terrein on osteoclast differentiation in vitro. However, the pharmacological effect of (+)-terrein in vivo in the periodontitis model is still unknown. In this study, we investigated the effect of synthetic (+)-terrein on inflammatory bone resorption using a ligature-induced periodontitis mouse model. Synthetic (+)-terrein (30 mg/kg) was administered intraperitoneally twice a week to the mouse periodontitis model. The control group was treated with phosphate buffer. One to two weeks after the induction of periodontitis, the periodontal tissues were harvested for radiological evaluation (micro-CT), histological evaluation (HE staining and TRAP staining), and the evaluation of inflammatory cytokine production in the periodontal tissues and serum (quantitative reverse-transcription PCR, ELISA). The synthetic (+)-terrein-treated group suppressed alveolar bone resorption and the number of osteoclasts in the periodontal tissues compared to the control group (p < 0.05). In addition, synthetic (+)-terrein significantly suppressed both mRNA expression of TNF-α in the periodontal tissues and the serum concentration of TNF-α (both p < 0.05). In conclusion, we have demonstrated that synthetic (+)-terrein abrogates alveolar bone resorption via the suppression of TNF-α production and osteoclast differentiation in vivo. Therefore, we could expect potential clinical effects when using (+)-terrein on inflammatory bone resorption, including periodontitis.
Collapse
Affiliation(s)
- Hidefumi Sako
- Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazuhiro Omori
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Correspondence: ; Tel.: +81-86-235-6677; Fax: +81-86-235-6679
| | - Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, Gifu 509-0261, Japan
| | - Hidetaka Ideguchi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Saki Yoshimura-Nakagawa
- Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kyosuke Sakaida
- Department of Periodontics and Endodontics, Division of Dentistry, Okayama University Hospital, Okayama 700-8558, Japan
| | - Chiaki Nagata-Kamei
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hiroya Kobayashi
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Satoki Ishii
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Okayama 700-8530, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery and Biopathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Tadashi Yamamoto
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Sciences and Technology, Okayama University, Okayama 700-8530, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| |
Collapse
|
38
|
Weivoda MM, Bradley EW. Macrophages and Bone Remodeling. J Bone Miner Res 2023; 38:359-369. [PMID: 36651575 PMCID: PMC10023335 DOI: 10.1002/jbmr.4773] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Bone remodeling in the adult skeleton facilitates the removal and replacement of damaged and old bone to maintain bone quality. Tight coordination of bone resorption and bone formation during remodeling crucially maintains skeletal mass. Increasing evidence suggests that many cell types beyond osteoclasts and osteoblasts support bone remodeling, including macrophages and other myeloid lineage cells. Herein, we discuss the origin and functions for macrophages in the bone microenvironment, tissue resident macrophages, osteomacs, as well as newly identified osteomorphs that result from osteoclast fission. We also touch on the role of macrophages during inflammatory bone resorption. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Elizabeth W. Bradley
- Department of Orthopedics and Stem Cell Institute, University of Minnesota, Minneapolis, MN
| |
Collapse
|
39
|
Jiao Y, Wang X, Wang Q, Geng Q, Cao X, Zhang M, Zhao L, Deng T, Xu Y, Xiao C. Mechanisms by which kidney-tonifying Chinese herbs inhibit osteoclastogenesis: Emphasis on immune cells. Front Pharmacol 2023; 14:1077796. [PMID: 36814488 PMCID: PMC9939464 DOI: 10.3389/fphar.2023.1077796] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
The immune system plays a crucial role in regulating osteoclast formation and function and has significance for the occurrence and development of immune-mediated bone diseases. Kidney-tonifying Chinese herbs, based on the theory of traditional Chinese medicine (TCM) to unify the kidney and strengthen the bone, have been widely used in the prevention and treatment of bone diseases. The common botanical drugs are tonifying kidney-yang and nourishing kidney-yin herbs, which are divided into two parts: one is the compound prescription of TCM, and the other is the single preparation of TCM and its active ingredients. These botanical drugs regulate osteoclastogenesis directly and indirectly by immune cells, however, we have limited information on the differences between the two botanical drugs in osteoimmunology. In this review, the mechanism by which kidney-tonifying Chinese herbs inhibiting osteoclastogenesis was investigated, emphasizing the immune response. The differences in the mechanism of action between tonifying kidney-yang herbs and nourishing kidney-yin herbs were analysed, and the therapeutic value for immune-mediated bone diseases was evaluated.
Collapse
Affiliation(s)
- Yi Jiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xing Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qiong Wang
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qishun Geng
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiaoxue Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| | - Cheng Xiao
- Beijing University of Chinese Medicine, China-Japan Friendship Clinical Medical College, Beijing, China,Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China,Department of Emergency, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Yuan Xu, ; Cheng Xiao,
| |
Collapse
|
40
|
Hong JE, Lee CG, Hwang S, Kim J, Jo M, Kang DH, Yoo SH, Kim WS, Lee Y, Rhee KJ. Pulsed Electromagnetic Field (PEMF) Treatment Ameliorates Murine Model of Collagen-Induced Arthritis. Int J Mol Sci 2023; 24:ijms24021137. [PMID: 36674651 PMCID: PMC9862561 DOI: 10.3390/ijms24021137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of the joint synovial membranes. RA is difficult to prevent or treat; however, blocking proinflammatory cytokines is a general therapeutic strategy. Pulsed electromagnetic field (PEMF) is reported to alleviate RA's inflammatory response and is being studied as a non-invasive physical therapy. In this current study, PEMF decreased paw inflammation in a collagen-induced arthritis (CIA) murine model. PEMF treatment at 10 Hz was more effective in ameliorating arthritis than at 75 Hz. In the PEMF-treated CIA group, the gross inflammation score and cartilage destruction were lower than in the untreated CIA group. The CIA group treated with PEMF also showed lower serum levels of IL-1β but not IL-6, IL-17, or TNF-α. Serum levels of total anti-type II collagen IgG and IgG subclasses (IgG1, IgG2a, and IgG2b) remained unchanged. In contrast, tissue protein levels of IL-1β, IL-6, TNF-α, receptor activator of nuclear factor kappa-Β (RANK), RANK ligand (RANKL), IL-6 receptor (IL-6R), and TNF-α receptor1 (TNFR1) were all lower in the ankle joints of the PEMF-treated CIA group compared with the CIA group. The results of this study suggest that PEMF treatment can preserve joint morphology cartilage and delay the occurrence of CIA. PEMF has potential as an effective adjuvant therapy that can suppress the progression of RA.
Collapse
Affiliation(s)
- Ju-Eun Hong
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea
| | - Chang-Gun Lee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Soonjae Hwang
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Junyoung Kim
- Department of Biomedical Engineering, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea
| | - Minjeong Jo
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Da-Hye Kang
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea
| | - Sang-Hyeon Yoo
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea
| | - Woo-Seung Kim
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea
| | - Yongheum Lee
- Department of Biomedical Engineering, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea
- Correspondence: ; Tel.: +82-33-760-2445; Fax: +82-33-760-2195
| |
Collapse
|